Orthogonal polynomials

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Orthogonal polynomials"

Transcript

1 Orthogol polyomils We strt with Defiitio. A sequece of polyomils {p x} with degree[p x] for ech is clled orthogol with respect to the weight fuctio wx o the itervl, b with < b if { b, m wxp m xp x dx h δ m with δ m :, m. The weight fuctio wx should be cotiuous d positive o, b such tht the momets exist. The the itegrl µ : f, g : wx x dx,,,,... wxfxgx dx deotes ier product of the polyomils f d g. The itervl, b is clled the itervl of orthogolity. This itervl eeds ot to be fiite. If h for ech {,,,...} the sequece of polyomils is clled orthoorml, d if p x k x + lower order terms with k for ech {,,,...} the polyomils re clled moic. Exmple. As exmple we tke wx d, b,. Usig the Grm-Schmidt process the orthogol polyomils c be costructed s follows. Strt with the sequece {, x, x,...}. Choose p x. The we hve sice Further we hve sice d p x x, x, p x p x, p x p x, x x, x, dx d x, p x x x, p x p x, p x p x x, p x p x, p x p x x x,, x, x x, x x, x, x x x dx 3, x, x x dx x dx. x 3 x x x + 6, x x dx 4 6 x x + dx The polyomils p x, p x x d p x x x + 6 re the first three moic orthogol polyomils o the itervl, with respect to the weight fuctio wx.

2 Repetig this process we obti d so o. p 3 x x 3 3 x x, p 4x x 4 x x 7 x + 7, p 5 x x 5 5 x4 + 9 x3 5 6 x x 5, The orthoorml polyomils would be q x p x/ h, etceter. q x p x/ h 3x /, q x p x h 6 5 q 3 x p 3x 7 x 3 3 h3 x x, x x +, 6 All sequeces of orthogol polyomils stisfy three term recurrece reltio: Theorem. A sequece of orthogol polyomils {p x} stisfies where p + x A x + B p x + C p x,,, 3,..., A k +,,,,... d C A h,,, 3,.... k A h Proof. Sice degree [p x] for ech {,,,...} the sequece of orthogol polyomils {p x} is lierly idepedet. Let A k + /k. The p + x A xp x is polyomil of degree. Hece p + x A xp x c k p k x. The orthogolity property ow gives p + x A xp x, p k x This implies c m p m x, p k x c k p k x, p k x c k h k. m h k c k p + x A xp x, p k x p + x, p k x A xp x, p k x A p x, xp k x. For k < we hve degree [xp k x] < which implies tht p x, xp k x. Hece: c k for k <. This proves tht the polyomils stisfy the three term recurrece reltio p + x A xp x c p x + c p x,,, 3,.... Further we hve k h c A p x, xp x A h c A h. k A h This proves the theorem.

3 Note tht the three term recurrece reltio for sequece of moic k orthogol polyomils {p x} hs the form p + x xp x + B p x + C p x with C h h,,, 3,.... A cosequece of the three term recurrece reltio is Theorem. A sequece of orthogol polyomils {p x} stisfies p k xp k y k p+xp y p + yp x,,,,... h k h k + x y d {p k x} h k k h k + p +xp x p + xp x,,,,.... Formul is clled the Christoffel-Drboux formul d its cofluet form. Proof. The three term recurrece reltio implies tht d Subtrctio gives p + xp y A x + B p xp y + C p xp y p + yp x A y + B p yp x + C p yp x. p + xp y p + yp x A x yp xp y + C [p xp y p yp x]. This leds to the telescopig sum p k xp k y x y h k This implies tht k x y k p k+ xp k y p k+ yp k x A k h k p k xp k y p k yp k x A k h k k p +xp y p + yp x k x y. A h h p k xp k y h k p +xp y p + yp x A h k h k + p + xp y p + yp x, which proves. The cofluet form the follows by tkig the limit y x: p + xp y p + yp x lim y x x y lim y x p x p + x p + y p + x p x p y x y p xp +x p + xp x. 3

4 Zeros Theorem 3. If {p x} is sequece of orthogol polyomils o the itervl, b with respect to the weight fuctio wx, the the polyomil p x hs exctly rel simple zeros i the itervl, b. Proof. Sice degree[p x] the polyomil hs t most rel zeros. Suppose tht p x hs m distict rel zeros x, x,..., x m i, b of odd order or multiplicity. The the polyomil p xx x x x x x m does ot chge sig o the itervl, b. This implies tht wxp xx x x x x x m dx. By orthogolity this itegrl equls zero if m <. Hece: m, which implies tht p x hs distict rel zeros of odd order i, b. This proves tht ll zeros re distict d simple hve order or multiplicity equl to oe. Theorem 4. If {p x} is sequece of orthogol polyomils o the itervl, b with respect to the weight fuctio wx, the the zeros of p x d p + x seprte ech other. Proof. This follows from the cofluet form of the Christoffel-Drboux formul. Note tht This implies tht Hece h wx {p x} dx >,,,,.... k h k + p +xp x p + xp x {p k x} >. h k k k + p +xp x p + xp x >. Now suppose tht x,k d x,k+ re two cosecutive zeros of p x with x,k < x,k+. Sice ll zeros of p x re rel d simple p x,k d p x,k+ should hve opposite sigs. Hece we hve p x,k p x,k+ d p x,k p x,k+ <. This implies tht p + x,k p + x,k+ should be egtive too. The the cotiuity of p + x implies tht there should be t lest oe zero of p + x betwee x,k d x,k+. However, this holds for ech two cosecutive zeros of p x. This proves the theorem. Moreover, if {x,k } k d {x +,k} + k deote the cosecutive zeros of p x d p + x respectively, the we hve < x +, < x, < x +, < x, < < x +, < x, < x +,+ < b. 4

5 Guss qudrture If f is cotiuous fuctio o, b d x < x < < x re distict poits i, b, the there exists exctly oe polyomil P with degree such tht P x i fx i for ll i,,...,. This polyomil P c esily be foud by usig Lgrge iterpoltio s follows. Defie px x x x x x x d cosider px P x fx i x x i p x i fx i x x x x i x x i+ x x x i x x i x i x i x i+ x i x. i i Let {p x} be sequece of orthogol polyomils o the itervl, b with respect to the weight fuctio wx. The for x < x < < x we tke the distict rel zeros of the polyomil p x. If f is polyomil of degree, the fx P x is polyomil of degree with t lest the zeros x < x < < x. Now we defie fx P x + rxp x, where rx is polyomil of degree. This c lso be writte s This implies tht fx wxfx dx i p x fx i x x i p x i + rxp x. i wxp x fx i x x i p x i dx + wxrxp x dx. Sice degree[rx] the orthogolity property implies tht the ltter itegrl equls zero. This implies tht wxfx dx λ,i fx i with λ,i : i wxp x x x i p dx, i,,...,. x i This is the Guss qudrture formul. This gives the vlue of the itegrl i the cse tht f is polyomil of degree if the vlue of fx i is kow for the zeros x < x < < x of the polyomil p x. If f is ot polyomil of degree this leds to pproximtio of the itegrl: wxfx dx λ,i fx i with λ,i : i wxp x x x i p dx, i,,...,. x i The coefficiets {λ,i } i re clled Christoffel umbers. Note tht these umbers do ot deped o the fuctio f. These Christoffel umbers re ll positive. This c be show s follows. We hve λ,i wxl,i x dx with l,i x : 5 p x x x i p, i,,...,. x i

6 The l,i x l,ix is polyomil of degree which vishes t the zeros {x,k } k of p x. Hece l,ix l,i x p xqx for some polyomil q of degree. This implies tht wx l,ix l,i x dx by orthogolity. Hece we hve λ,i Now we c lso prove wxl,i x dx wxp xqx dx wx {l,i x} dx >. Theorem 5. Let {p x} be sequece of orthogol polyomils o the itervl, b with respect to the weight fuctio wx d let m <. The we hve: betwee y two zeros of p m x there is t lest oe zero of p x. Proof. Suppose tht x m,k d x m,k+ re two cosecutive zeros of p m x d tht there is o zero of p x i x m,k, x m,k+. The cosider the polyomil The we hve gx Now the Guss qudrture formul gives p m x x x m,k x x m,k+. gxp m x for x / x m,k, x m,k+. wxgxp m x dx λ,i gx,i p m x,i, where {x,i } i re the zeros of p x. Sice there re o zeros of p x i x m,k, x m,k+ we coclude tht gx,i p m x,i for ll i,,...,. Further we hve λ,i > for ll i,,..., which implies tht the sum t the right-hd side cot vish. However, the itegrl t the left-hd side is zero by orthogolity. This cotrdictio proves tht there should be t lest oe zero of p x betwee the two cosecutive zeros of p m x. i y x The polyomils q x, q 3 x d q 4 x 6

7 Clssicl orthogol polyomils The clssicl orthogol polyomils re med fter Hermite, Lguerre d Jcobi: me p x wx, b Hermite H x e x, Lguerre Jcobi x e x x α, P α,β x x α + x β, Legedre P x, The Hermite polyomils re orthogol o the itervl, with respect to the orml distributio wx e x, the Lguerre polyomils re orthogol o the itervl, with respect to the gmm distributio wx e x x α d the Jcobi polyomils re orthogol o the itervl, with respect to the bet distributio wx x α + x β. The Legedre polyomils form specil cse α β of the Jcobi polyomils. These clssicl orthogol polyomils stisfy orthogolity reltio, three term recurrece reltio, secod order lier differetil equtio d so-clled Rodrigues formul. Moreover, for ech fmily of clssicl orthogol polyomils we hve geertig fuctio. I the sequel we will ofte use the Kroecker delt which is defied by {, m δ m :, m for m, {,,,...} d the ottio D d dx for the differetitio opertor. The we hve Leibiz rule D [fxgx] 3 D k fxd k gx,,,,... 4 k which is geerliztio of the product rule. The proof is by mthemticl iductio d by use of Pscl s trigle idetity + +, k,,...,. k k k 7

8 Hermite The Hermite polyomils re orthogol o the itervl, with respect to the orml distributio wx e x. They c be defied by mes of their Rodrigues formul: H x wx D wx e x D e x,,,,..., 5 where the differetitio opertor D is defied by 3. Sice D + D D, we obti D + wx D [D wx] D [wxh x] [ w xh x + wxh x ] which implies tht + wx [ xh x H x ],,,,..., H + x xh x H x,,,, The defiitio 5 implies tht H x. The 6 implies by iductio tht H x is polyomil of degree. Further we hve tht H x is eve d H + x is odd d tht the ledig coefficiet of the polyomil H x equls k. The Hermite polyomils stisfy the orthogolity reltio π e x H m xh x dx δ m, m, {,,,...}. 7 To prove this we use the defiitio 5 to obti e x H m xh x dx H m xd e x dx. Now we use itegrtio by prts times to coclude tht the itegrl vishes for m <. For m we hve usig itegrtio by prts e x H xh x dx H xd e x dx k This proves the orthogolity reltio 7. e x dx π. I order to fid the three term recurrece reltio we strt with The we hve by usig Leibiz rule 4 which implies tht wx e x w x xwx. D H x e x dx D + wx D w x D [ xwx] xd wx D wx, H + x xh x H x,,, 3,

9 Combiig 6 d 8 we fid tht Differetitio of 6 gives Now we use 9 to coclude tht H x H x,,, 3, H +x xh x + H x H x,,,, H x xh x + H x H x,,,,..., which implies tht H x stisfies the secod order lier differetil equtio y x xy x + yx, {,,,...}. Filly we will prove the geertig fuctio We strt with The Tylor series for ft is e xt t H x ft e x t e x e xt t. ft with, by usig the substitutio x t u, [ ] [ d f d dt e x t t for,,,.... Hece we hve e x e xt t e x t ft This proves the geertig fuctio. f du e u ] t. t ux f D e x e x H x t e x H x t. 9

10 Lguerre The Lguerre polyomils re orthogol o the itervl, with respect to the gmm distributio wx e x x α. They c be defied by mes of their Rodrigues formul: x By usig Leibiz rule 4 we hve D [ e x x +α] k k Hece we hve where + α k This proves tht k + α k wx D [wx x ] ex x α D [ e x x +α],,,,.... D k e x D k x +α k e x + α + α α + k + x α+k e x x α k k x we lso hve for,,,... Note tht we hve Γ + α + Γk + α + xk. + α x k k,,,,..., k k! Γ + α + k! Γk + α + k + α + k, k,,,...,. k! x is polyomil of degree. Sice k α + α + k! α + k x α + k x k α + k k! + α k α + k, k,,,..., + α α +,,,,... d tht the ledig coefficiet of the polyomil x equls Further we hve d dx Lα x d dx k,,,,.... F α + ; x. 3 + α x k k + α x k k! k k k k! k + α x k k k k! Lα+ x,,, 3,.... 4

11 Now we c prove the orthogolity reltio e x x α m x Γ + α + x dx δ m, α > 5 for m, {,,,...}. First of ll, the itegrl coverges if the momets µ e x x +α dx exists for ll {,,,...}. This leds to the coditio α >. Note tht µ Γ+α+. Now we use to obti e x x α m x x dx We pply itegrtio by prts to obti m xd [ e x x +α] dx which equls zero for m <. For m we fid D xe x x +α dx k This proves the orthogolity reltio 5. m xd [ e x x +α] dx. D m xe x x +α dx e x x +α dx Γ + α +. The Lguerre polyomils c lso be defied by their geertig fuctio t α exp xt t xt. 6 The proof is strightforwrd. Strt with 3 d chge the order of summtio to obti xt α + t k x k α + k k! α + +k k x k t +k α + k k! k xt k xt k t α k t α k! α + k x k t α + k k! k! k! k! α + k + xt k. t t This proves 6. If we defie F x, t : t α exp xt, t the we esily obti x F x, t t t α exp xt t t F x, t + tf x, t x

12 d F x, t t { } α + t α + t α x t xt t exp xt t { α + x } t α exp xt, t t which implies tht The first reltio leds to or equivletly Hece we hve t F x, t + [x α + t] F x, t. t d t dx Lα d dx Lα xt d dx Lα + x d or equivletly, by usig 4, d dx Lα The secod reltio leds to or equivletly t dx Lα xt + t d dx Lα xt + + xt xt +. x + x,,,,... 7 x x L α+ x,,,,.... xt + x xt + [x α + t] xt + xt α + xt + xt + α + xt xt +. Equtig the coefficiets of equl powers of t we obti the three term recurrece reltio + + x + x α Lα x + + α x,,, 3, Note tht this c lso be writte s [ x x x Lα x ] [ + α ] x x,,, 3,....

13 Now we differetite d use 7 to obti x d dx Lα This implies tht x + x + x + + α x,,, 3,.... x d dx Lα x x + α x,,, 3, Now we differetite 9 d use 7 d 9 to fid x d dx Lα x + d dx Lα x d dx Lα x + α d dx Lα x [ d + α dx Lα x d ] dx Lα x α d + α x α d x d dx Lα dx Lα x x α d x dx Lα x. dx Lα This proves tht the polyomil x stisfies the secod order lier differetil equtio xy x + α + xy x + yx, {,,,...}. x Filly, we use the geertig fuctio 6 to prove the dditio formul L α+β+ x + y The geertig fuctio 6 implies tht L α+β+ x + yt t α β x + yt exp This proves. t α exp xt k xtk k xlβ k y,,,,.... m t t β exp t L β m yt m yt t k xlβ k y t. 3

14 Jcobi The Jcobi polyomils re orthogol o the itervl, with respect to the bet distributio wx x α + x β. They c be defied by mes of their Rodrigues formul: P α,β x wx D [ wx x ] x α + x β D [ x +α + x +β] for,,,.... By usig Leibiz rule 4 we hve [ D x +α + x +β] k This implies tht P α,β x D k x +α D k + x +β k + α + α + α k + x +α k k + β + β β + k + + x β+k + α + β k x +α k + x β+k,,,,.... k k + α + β k x k + x k,,,,.... k k This shows tht P α,β x is polyomil of degree. Note tht we hve the symmetry d P α,β P α,β x P β,α x,,,, α d + β P α,β,,,,.... I order to fid hypergeometric represettio we write for x x + α + β x + k P α,β x,,,,.... k x Now we hve for x x + k + k x x i ki i k i k i, k,,,.... i x Now we obti by chgig the order of summtios for x d,,,... x + α + β k i P α,β x k k i x x i + α + β i + k i k 4 i + k i i. x

15 Now we reverse the order i the first sum to fid for x d,,,... x + α + β i + k P α,β x x i i i + α i + k i + k i k i + β i + k x i k i Γ + α + i + k! Γi k + α + Γ + β + i k! Γ i + k + β + Γ + α + Γ + β + i i k i α k i + β + k k!. i i + k! i! k! i Γi + α + i! Γ i + β + i x i x Sice i {,,,..., } we hve by usig the Chu-Vdermode summtio formul i k i α k i, i α F i + β + k k! i + β + ; + α + β + i. i + β + i Hece we hve by usig Γ i + β + i + β + i Γ + β + P α,β Γ + α + i + α + β + i x i x Γi + α + i! i Γ + α + i + α + β + i x i,,,,.... Γα + α + i i! i This proves the hypergeometric represettio + α, + α + β + P α,β x F α + i ; x,,,, Note tht this result lso holds for x. I view of the symmetry 3 we lso hve + β, + α + β + P α,β x F ; + x,,,,.... β + Note tht the hypergeometric represettio implies tht d + α + α + β + dx P α,β x α + + α + β + + α + β + ; x +, + α + β + F α + + α +, + α + β + F α + P α+,β+ x,,, 3, ; x

16 Aother cosequece of the hypergeometric represettio is tht the ledig coefficiet of the polyomil P α,β x equls + α + α + β + k α + + α + β +,,,,.... Now it c be show tht the Jcobi polyomils stisfy the orthogolity reltio x α + x β P α,β m xp α,β x dx α+β+ Γ + α + Γ + β + + α + β + Γ + α + β + δ m for α >, β > d m, {,,,...}. This c be show by usig the defiitio d itegrtio by prts. The vlue of the itegrl i the cse m c be computed by usig the ledig coefficiet d the writig the itegrl i terms of bet itegrl: { x α + x β P x} α,β dx + α + β + [ P α,β xd x +α + x +β] dx D P α,β x x +α + x +β dx Γ + α + β + Γ + α + β + d by usig the substitutio x t x +α + x +β dx x +α + x +β dx x +α + x +β dx,,,,... t +α t +β dt +α+β+ t +α t +β dt +α+β+ B + α +, + β + +α+β+ Γ + α + Γ + β + Γ + α + β + +α+β+ Γ + α + Γ + β +,,,, α + β + Γ + α + β + The Jcobi polyomils P α,β x stisfy the secod order lier differetil equtio x y x + [β α α + β + x] y x + + α + β + yx,,,,.... A geertig fuctio for the Jcobi polyomils is give by α+β R + R t α + R + t β P α,β xt, R xt + t. 6

17 Legedre The Legedre polyomils re orthogol o the itervl, with respect to the weight fuctio wx. They c be defied by mes of their Rodrigues formul: P x wx D [ wx x ] D [ x ],,,, This is the specil cse α β of the Jcobi polyomils:, + P x P, x F ; x,,,, Further we hve P x P x, P d P,,,,.... The ledig coefficiet of the polyomil P x equls k +!,,,,.... The orthogolity reltio is P m xp x dx + δ m, m, {,,,...}. 7 This c be show by usig the Rodrigues formul 5 d itegrtio by prts P m xp x dx P m xd [ x ] dx D P m x x dx, which vishes for m <. For m we hve D P x x dx k x dx! x dx. Filly we hve by usig the substitutio x t for,,,... x dx Hece we hve x + x dx t t dx + + Γ + Γ + B +, + + Γ + +!. {P x} dx! + +! This proves the orthogolity reltio 7.,,,,

18 I order to fid geertig fuctio for the Legedre polyomils we use the hypergeometric represettio 6 to fid P xt k + k x k t k k! k + k x k t k! k! k k k + k + k x k t +k k! k! k! x k t k k + t k! k! k! x k t k t k k! k! [ ] / k [x t] k t k t x t / k! t [ t x t ] / xt + t / This proves the geertig fuctio xt + t. P xt. 8 xt + t If we defie F x, t xt + t /, the we hve This implies tht t F x, t xt + t 3/ x + t x t xt + t 3/. xt + t F x, t x tf x, t. t Now we use 8 to obti xt + t P xt x t P xt. This c lso be writte s P xt x P xt + P xt + x P xt P xt + or equivletly + P + xt x + P xt + + P xt +. This leds to P x xp x d the three term recurrece reltio + P + x + xp x + P x,,, 3,

19 Chebyshev For x [, ] the Chebyshev polyomils T x of the first kid d the Chebyshev polyomils U x of the secod kid c be defied by T x cosθ d U x The orthogolity property is give by si + θ, x cos θ,,,, si θ d x / T m xt x dx x / U m xu x dx π π cosmθ cosθ dθ, m sim + θ si + θ dθ, m. Both fmilies of orthogol polyomils stisfy the three term recurrece reltio sice we hve d Note tht We lso hve sice P + x xp x P x,,, 3,..., T + x + T x cos + θ + cos θ cos θ cosθ xt x U + x + U x U x xu x si + θ + siθ si θ cos θ si + θ si θ T x U x, T x x d U x x. T x U x xu x,,, 3,..., si + θ cos θ siθ si θ si θ cosθ si θ xu x. cosθ T x. I order to fid geertig fuctio for the Chebyshev polyomils T x of the first kid, we multiply the recurrece reltio by t + d tke the sum to obti If we defie the we hve T + xt + x T xt + T xt +. F x, t T xt, t <, F x, t T xt T x xt [F x, t T x] t F x, t. 9

20 This implies tht xt + t F x, t T x + T xt xtt x + xt xt xt. Hece we hve the geertig fuctio T xt F x, t xt, t <. xt + t I the sme wy we hve for the Chebyshev polyomils U x of the secod kid: Gx, t U xt, t < where Hece we hve xt + t Gx, t U x + U xt xtu x + xt xt. U xt Gx, t, t <. xt + t This c be used, for istce, to prove tht T k xx k U x,,,,.... I fct, we hve for t < T k xx k t k T k xx k t T k xt k xt xt + t U xt. I similr wy we c prove tht P k xp k x U x,,,,..., T k xx t +k xt xt + t xt where P x deotes the Legedre polyomil. I fct, we hve for t < P k xp k x t P k xp k xt P k xp xt +k k P k xt k P xt xt + t U xt. xt + t xt + t

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Hcettepe Jourl of Mthemtics d Sttistics Volume 4 4 013, 331 338 SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Nuretti IRMAK, Murt ALP Received 14 : 06 : 01 : Accepted 18 : 0 : 013 Keywords:

Διαβάστε περισσότερα

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals: s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation

Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation Qudrti Equtios d Iequtios Polyomil Algeri epressio otiig my terms of the form, eig o-egtive iteger is lled polyomil ie, f ( + + + + + +, where is vrile,,,, re ostts d Emple : + 7 + 5 +, + + 5 () Rel polyomil

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

SHORT REVISION. FREE Download Study Package from website: 2 5π (c)sin 15 or sin = = cos 75 or cos ; 12

SHORT REVISION. FREE Download Study Package from website:  2 5π (c)sin 15 or sin = = cos 75 or cos ; 12 SHORT REVISION Trigoometric Rtios & Idetities BASIC TRIGONOMETRIC IDENTITIES : ()si θ + cos θ ; si θ ; cos θ θ R (b)sec θ t θ ; sec θ θ R (c)cosec θ cot θ ; cosec θ θ R IMPORTANT T RATIOS: ()si π 0 ; cos

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Solutions_3. 1 Exercise Exercise January 26, 2017

Solutions_3. 1 Exercise Exercise January 26, 2017 s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)

Διαβάστε περισσότερα

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du) . Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3 Q. No. The fist d lst tem of A. P. e d l espetively. If s be the sum of ll tems of the A. P., the ommo diffeee is Optio l - s- l+ Optio Optio Optio 4 Coet Aswe ( ) l - s- - ( l ) l + s+ + ( l ) l + s-

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar CHAPE-III HPEBOLIC HSU-SUCUE MEIC MANIOLD I this chpte I hve obtied itebility coditios fo hypebolic Hsustuctue metic mifold. Pseudo Pojective d Pseudo H-Pojective cuvtue tesos hve bee defied i this mifold.

Διαβάστε περισσότερα

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2. etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Lecture 5: Numerical Integration

Lecture 5: Numerical Integration Lecture notes on Vritionl nd Approximte Metods in Applied Mtemtics - A Peirce UBC 1 Lecture 5: Numericl Integrtion Compiled 15 September 1 In tis lecture we introduce tecniques for numericl integrtion,

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique. Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The

Διαβάστε περισσότερα

INTEGRAL INEQUALITY REGARDING r-convex AND

INTEGRAL INEQUALITY REGARDING r-convex AND J Koren Mth Soc 47, No, pp 373 383 DOI 434/JKMS47373 INTEGRAL INEQUALITY REGARDING r-convex AND r-concave FUNCTIONS WdAllh T Sulimn Astrct New integrl inequlities concerning r-conve nd r-concve functions

Διαβάστε περισσότερα

Quadruple Simultaneous Fourier series Equations Involving Heat Polynomials

Quadruple Simultaneous Fourier series Equations Involving Heat Polynomials Itertiol Jourl of Siee Reserh (IJSR ISSN (Olie: 39-764 Ie Coperius Vlue (3: 6.4 Ipt Ftor (3: 4.438 Quruple Siulteous Fourier series Equtios Ivolvig Het Poloils Guj Shukl, K.C. Tripthi. Dr. Aekr Istitute

Διαβάστε περισσότερα

Antonis Tsolomitis Laboratory of Digital Typography and Mathematical Software Department of Mathematics University of the Aegean

Antonis Tsolomitis Laboratory of Digital Typography and Mathematical Software Department of Mathematics University of the Aegean The GFSBODONI fot fmily Atois Tsolomitis Lbortory of Digitl Typogrphy d Mthemticl Softwre Deprtmet of Mthemtics Uiversity of the Aege 9 Mrch 2006 Itroductio The Bodoi fmily of the Greek Fot Society ws

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

Some definite integrals connected with Gauss s sums

Some definite integrals connected with Gauss s sums Some definite integrls connected with Guss s sums Messenger of Mthemtics XLIV 95 75 85. If n is rel nd positive nd I(t where I(t is the imginry prt of t is less thn either n or we hve cos πtx coshπx e

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval AMS B Perturbtion Methods Lecture 4 Copyright by Hongyun Wng, UCSC Emple: Eigenvlue problem with turning point inside the intervl y + λ y y = =, y( ) = The ODE for y() hs the form y () + λ f() y() = with

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Φύλλο1. ΠΕΡΙΟΧΗ ΠΡΟΣΛΗΨΗΣ ΑΒΡΑΜΙΔΟΥ ΜΑΡΙΚΑ ΔΗΜΗΤΡΙΟΣ Γ Αθηνών ΑΒΡΑΜΙΔΟΥ ΣΟΦΙΑ ΔΗΜΗΤΡΙΟΣ Λασίθι ΑΓΓΕΛΗ ΑΝΔΡΟΜΑΧΗ ΒΑΣΙΛΕΙΟΣ

Φύλλο1. ΠΕΡΙΟΧΗ ΠΡΟΣΛΗΨΗΣ ΑΒΡΑΜΙΔΟΥ ΜΑΡΙΚΑ ΔΗΜΗΤΡΙΟΣ Γ Αθηνών ΑΒΡΑΜΙΔΟΥ ΣΟΦΙΑ ΔΗΜΗΤΡΙΟΣ Λασίθι ΑΓΓΕΛΗ ΑΝΔΡΟΜΑΧΗ ΒΑΣΙΛΕΙΟΣ ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΠΑΤΡΩΝΥΜΟ ΠΕΡΙΟΧΗ ΠΡΟΣΛΗΨΗΣ ΑΒΡΑΜΙΔΟΥ ΜΑΡΙΚΑ ΔΗΜΗΤΡΙΟΣ Γ Αθηνών ΑΒΡΑΜΙΔΟΥ ΣΟΦΙΑ ΔΗΜΗΤΡΙΟΣ Λασίθι ΑΓΓΕΛΗ ΑΝΔΡΟΜΑΧΗ ΒΑΣΙΛΕΙΟΣ Α Ανατ. Αττικής ΑΓΓΕΛΟΠΟΥΛΟΥ ΚΩΝΣΤΑΝΤΙΝΑ ΠΑΝΑΓΙΩΤΗΣ Αχαία ΑΓΓΕΛΟΠΟΥΛΟΥ

Διαβάστε περισσότερα

ΠΑΥΛΙΝΑ 609315 ΠΕ11 25,5 ΚΑΒΑΛΑΣ ΑΝΑΤ. ΑΤΤΙΚΗ

ΠΑΥΛΙΝΑ 609315 ΠΕ11 25,5 ΚΑΒΑΛΑΣ ΑΝΑΤ. ΑΤΤΙΚΗ ΕΛΛΕΙΜΑΤΙΚΕΣ - ΠΛΕΟΝΑΣΜΑΤΙΚΕΣ 1 1 ΑΒΑΝΙΔΗ ΑΝΝΑ 593587 ΠΕ70 14 ΚΟΡΙΝΘΙΑ Α ΑΘΗΝΩΝ 2 ΑΒΕΡΚΙΑΔΟΥ ΠΑΤΑΡΙΝΣΚΑ ΠΑΥΛΙΝΑ 609315 ΠΕ11 25,5 ΚΑΒΑΛΑΣ ΑΝΑΤ. ΑΤΤΙΚΗ 3 ΑΒΟΥΡΗ ΑΙΚΑΤΕΡΙΝΗ 590405 ΠΕ16 36,917 ΖΑΚΥΝΘΟΣ ΣΕΡΡΕΣ

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

The Normal and Lognormal Distributions

The Normal and Lognormal Distributions The Normal and Lognormal Distributions John Norstad j-norstad@northwestern.edu http://www.norstad.org February, 999 Updated: November 3, Abstract The basic properties of the normal and lognormal distributions,

Διαβάστε περισσότερα