Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009."

Transcript

1 ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα: Μαρία Κ. Μιχαήλ Ακολουθιακά Κυκλώματα Συνδυαστική Λογική: Η τιμή σε μία έξοδο εξαρτάται μόνο από τις τρέχουσες τιμές των εισόδων. Μπορεί να εκτελέσει χρήσιμες λειτουργίες (πρόσθεση/αφαίρεση/πολλαπλασιασμό/ ). Απαιτεί διαδοχή μεταξύ πολλών βασικών στοιχείων. Ακριβή και συνήθως όχι ευέλικτη. Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών MKM - 2 Ακολουθιακά Κυκλώματα (συν.) Ακολουθιακή Λογική: Η τιμή σε μία έξοδο δεν εξαρτάται μόνο από τις τρέχουσες τιμές των εισόδων, αλλά και από τις προηγούμενες τιμές των εισόδων. Αποθηκεύει πληροφορίες μεταξύ λειτουργιών (δεν απαιτεί διαδοχή). Χρειάζεται κάποιου είδους μνήμη για να μπορεί να «θυμάται» τις προηγούμενες τιμές των εισόδων. Ακολουθιακά Κυκλώματα (συν.) Κυκλώματα που Κυκλώματα που αποθηκεύουν εξετάσαμε μέχρι τώρα πληροφορίες Καταστάσεις Χρόνου MKM - 3 MKM - 4 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops

2 Ακολουθιακή Λογική: Βασικές έννοιες Τα κυκλώματα ακολουθιακής λογικής έχουν την ικανότητα να «θυμούνται» προηγούμενες καταστάσεις του κυκλώματος και προηγούμενες τιμές στις εισόδους. Έξοδοι του κυκλώματος μπορούν να χρησιμο- ποιηθούν ως νέες τιμές εισόδου στο κύκλωμα (κυκλώματα μ ανάδρασης = feedback circuits). Τα στοιχεία αποθήκευσης είναι κυκλώματα που μπορούν να αποθηκεύουν δυαδική πληροφορία: μνήμη. Σύγχρονα vs. Ασύγχρονα Κυκλώματα Υπάρχουν 2 τύποι ακολουθιακών κυκλωμάτων: Σύγχρονο (latch mode) ακολουθιακό κύκλωμα: Η συμπεριφορά του ορίζεται βάσει των τιμών στις εξόδους και στα στοιχεία μνήμης, σε διακριτές στιγμές του χρόνου. Αυτού του είδους τα κυκλώματα πετυχαίνουν συγχρονισμό χρησιμοποιώντας ένα σήμα χρονισμού, το γνωστό ως ρολόι. Ασύγχρονο (fundamental mode) ακολουθιακό κύκλωμα: Η συμπεριφορά του ορίζεται από την σειρά των αλλαγών των τιμών στις εισόδους σε συνεχή χρόνο. Οι τιμές των εξόδων μπορούν να αλλάξουν ανά πάσα στιγμή, χωρίς κανένα συγκεκριμένο συγχρονισμό (clockless). MKM - 5 MKM - 6 Σήμα Ρολογιού Σύγχρονα Ακολουθιακά Κυκλώματα: Flip-flops για καταστάσεις μνήμης Γεννήτρια Ρολογιού: Περιοδικό σήμα από παλμούς ρολογιού Σήματα με ίδια περίοδο MKM - 7 Τα flip-flops flops έχουν ως εισόδους σήματα από το συνδυαστικό κομμάτι του κυκλώματος καθώς και σήμα από ένα ρολόι με περιοδικούς παλμούς μεταξύ αμετάβλητων περιοδικών διαστημάτων. MKM - 8 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 2

3 Στοιχεία Μνήμης Προσομοίωση ιακριτών Γεγονότων (Discrete Event imulation) Buffers Η αποθηκεμένη τιμή δεν μπορεί να αλλάξει Inverters Χρησιμοποιείται για την καλύτερη κατανόηση της χρονικής συμπεριφοράς ρ ενός κυκλώματος. Κανόνες:. Οι πύλες μοντελοποιούνται με 2 τρόπους: a) Βάσει της λειτουργίας τους, με μηδενική καθυστέρηση (ideal, instantaneous) b) Με σταθερή καθυστέρηση ανά πύλη (fixed gate delay) 2. Κάθε αλλαγή στις τιμές εισόδων αξιολογείται, βάσει του μοντέλου μηδενικής καθυστέρησης, για να υπολογιστούν τυχόν αλλαγές στις τιμές εξόδων (=γεγονός) ό (evaluation of event) 3. Αλλαγές στις τιμές εξόδων προγραμματίζονται βάσει του μοντέλου σταθερής καθυστέρησης (scheduling of event) 4. Οι τιμές εξόδων (και πιθανόν άλλα επηρεαζόμενα σήματα) αλλάζουν μόνο στον χρόνο του προγραμματιζόμενου γεγονότος MKM - 9 MKM - 0 Προσομοίωση πύλης NAND Παράδειγμα: : NAND 2-εισόδων με καθυστέρηση 0.5 ns: A B F(Instantaneous) DELAY 0.5 ns. Θεωρήστε ότι οι A και B έχουν τιμή εδώ και ώρα Σε χρόνο t=0, η A αλλάζει σε 0 και όταν t= 0.8 ns, αλλάζει πίσω σε t (ns) A B F(I) F Σχόλια 0 0 A=B= για αρκετή ώρα F(I) αλλάζει σε F αλλάζει σε μετά από 0.5 ns F(Instantaneous) αλλάζει σε F αλλάζει σε 0 μετά από 0.5 ns MKM - F Μοντέλο Καθυστέρησης Πυλών Θεωρείστε τις πιο κάτω πύλες NOT, AND και OR, με καθυστέρηση n ns, όπου n = 0.2 ns, n = 0.4 ns και n = 0.5 ns, αντίστοιχα: MKM - 2 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 3

4 Μοντέλο Καθυστέρησης Κυκλώματος Θεωρείστε έναν απλό 2-σε- MUX: Με συνάρτηση: Y = A για = 0 Y = B για = A B Y A B Glitch : δημιουργείται λόγω της καθυστέρησης του αντιστροφέα MKM - 3 Y Αποθήκευση Καταστάσεως Τι γίνεται αν η A ενωθεί με την Y? Συναρτήσεις: Y = B για = Y(t) εξαρτάται από Y(t 0.9) για = 0 B Y B Μονοπάτι ανάδρασης (feedback path) Το συνδυαστικό κύκλωμα μετατράπηκε σε ακολουθιακό, αφού η συνάρτηση εξόδου εξαρτάται και από προηγούμενες τιμές εισόδων (όχι μόνο τις τρέχουσες τιμές) Y είναι η αποθηκεμένη τιμή στη σκιασμένη περιοχή MKM - 4 Y Αποθήκευση Καταστάσεως (συν. συν.) Αποθήκευση Καταστάσεως (συν. συν.) Παράδειγμα προσομοίωσης: Οι τιμές εισόδων αλλάζουν με την πάροδο του χρόνου. Οι αλλαγές σημειώνονται κάθε 00 ns, έτσι ώστε καθυστερήσεις σε δέκατα του ns αγνοούνται. Χρόνος B Y Σχόλια 0 0 Y θυμάται 0 Y = B όταν = 0 Τώρα Y θυμάται B = για = Καμία αλλαγή για Y όταν αλλάζει το B 0 0 Y = Bό όταν = Y θυμάται B = 0 για = Καμία αλλαγή για Y όταν αλλάζει το B Y εκπροσωπεί την κατάσταση του κυκλώματος, όχι απλά μια έξοδο! Θεωρείστε ότι τοποθετούμε ένα αντιστροφέα στο 0.2 μονοπάτι ανάδρασης. Συμβαίνουν τα ακόλουθα:. Το κύκλωμα γίνεται ασταθή (unstable). 2. Για = 0, το κύκλωμα γίνεται ταλαντωτής (oscillator). Μπορεί να χρησιμο- ποιηθεί ως ένα «αδρό» ρολόι. B B Y Σχόλια 0 0 Y = B όταν = 0 Τώρα Y θυμάται B 0 0 Y,. ns αργότερα 0 Y,. ns αργότερα 0 0 Y,. ns αργότερα 0.2 Y MKM - 5 MKM - 6 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 4

5 R latch (από NOR) -- R: set-reset, δισταθές στοιχείο με 2 εισόδους. Προσέξτε την «ακαθόριστη» τιμή για =R=. -- ιαβάζοντας τη λογική: Q = (R+Q ) και Q = (+Q) R==?? Ακαθόριστη έξοδος γιατί: Όταν =R=, τότε και οι 2 έξοδοι γίνονται 0. Εάν και οι 2 έξοδοι είναι 0, η κατάσταση του R latch εξαρτάται από την είσοδο που παραμένει στην τιμή για περισσότερο χρόνο, πριν γίνει 0. Άρα είναι όντως,, ακαθόριστη κατάσταση ΠΡΕΠΕΙ να αποφευχθεί. MKM - 7 MKM - 8 R Latch (από NAND) R Latch (από NAND) 0 R Q Q 0 R Q Q et R Q Q 0 R Q Q et 0 Hold X Y NAND X Y NAND MKM - 9 MKM - 20 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 5

6 R Latch (από NAND) R Latch (από NAND) 0 R Q 0 Q R Q Q et 0 Reset 0 Hold R Q 0 Q R Q Q et 0 Reset 0 Hold 0 Hold X Y NAND X Y NAND MKM - 2 MKM - 22 R Latch (από NAND) R Latches 0 0 R Q Q X Y NAND R Q Q 0 0 Disallowed 0 0 et 0 0 Reset 0 Hold 0 Hold MKM - 23 MKM - 24 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 6

7 Προσομοίωση R Latch R Latch με σήμα Ελέγχου Το Latch είναι ευαίσθητο σε αλλαγές στις εισόδους ΜΟΝΟ όταν το = Σημαντικό στοιχείο, χρησιμοποιείται για σχεδιασμό άλλων latches και flip-flops flops Θεωρείται και ως flip-flop, flop, άλλα όχι βάση του ορισμού του βιβλίου σας MKM - 25 MKM - 26 R Latch με σήμα Ελέγχου (συν.) =LK LK R R Q Q D Latch Ένας τρόπος αποφυγής των ανεπιθύμητων ακαθόριστων καταστάσεων στο R flip-flop flop, είναι η εξασφάλιση ότι οι είσοδοι και R δεν θα πάρουν ποτέ την τιμή ταυτόχρονα. Αυτό επιτυγχάνεται με ένα R-latch latch, όπου =D και R=D D-latch: R LK R Q Q 0 0 Q 0 Q 0 tore Reset et 0 0 Disallowed X X 0 Q 0 Q 0 tore MKM - 27 MKM - 28 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 7

8 D Latch (συν.) D LK Q D Latch με πύλες μετάδοσης R D LK Q Q X 0 Q 0 Q 0 R Q R LK Q Q 0 0 Q 0 Q 0 tore 0 0 Reset 0 0 et Disallowed X X 0 Q 0 Q 0 tore = το TG κλείνει και τοtg2 ανοίγει Q =D και Q=D =0 το TG ανοίγει και το TG2 κλείνει Hold Q και Q 2 MKM - 29 MKM - 30 Flip-FlopsFlops Τα Latches είναι διαυγή (transparent) δηλ., οποιαδήποτε αλλαγή στην κατάσταση του latch είναι αντιληπτή και στις εξόδους (αν υπάρχει σήμα ελέγχου, αυτό ισχύει κατά τη διάρκεια που =). Αυτό προκαλεί προβλήματα συγχρονισμού, αφού η κατάσταση ενός latch μπορεί να αλλάξει πολλαπλές φορές όταν =! Λύση: Χρησιμοποιούμε latches για τη δημιουργία των flip- flops που μπορούν να ανταποκριθούν (update) ΜΟΝΟ σε ΣΥΓΚΕΚΡΙΜΕΝΕΣ χρονικές στιγμές (όχι ανά πάσα στιγμή ή κατά τη διάρκεια ενός διαστήματος). Πυροδότηση (Triggering) Latch/FF Ο μηχανισμός που επιτρέπει σε ένα στοιχείο μνήμης (latch ή FF) να αλλάξει κατάσταση Τρόποι Πυροδότησης: Ασύγχρονα, δηλ. εντελώς διαυγή (π.χ. R-latch) Πυροδότηση-επιπέδου (level trigger, =) (π.χ. R-latch ή D-latch με σήμα ελέγχου ) Master-lave (π.χ. R-FF, D-FF) Πυροδότηση-ακμής: θετική ήαρνητική ακμή του (rising or falling edge trigger, = ή = ) (π.χ. R-FF, D-FF) latches FFs MKM - 3 MKM - 32 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 8

9 Εναλλακτικές λύσεις στην επιλογή FF Τύποι FF: R D JK Τρόποι ενεργοποίησης (triggering) triggering): Master-lave: χρησιμοποιεί πυροδότηση-επιπέδου αλλά με 2 latches, έτσι ώστε η κατάσταση του FF αλλάζει μόνο μια φορά σε μία περίοδο του ρολογιού Ενεργοποίηση-ακμής: θετική ή αρνητική ακμή του (rising or falling edge trigger, = ή = ) MKM - 33 Master-lave R-FF χρησιμοποιώντας R latches Χρησιμοποιεί πυροδότηση-επιπέδου. Κατάσταση Q=Y, όταν =0. Επίσης, τo Υ δεν μπορεί να αλλάξει τιμή όταν =0. MKM - 34 Master-lave R-FF χρησιμοποιώντας R latches (συν.) R Q Q 0 0 Q 0 Q 0 tore 0 0 Reset 0 0 et Disallowed X X 0 Q 0 Q 0 tore Όταν =, ο master ενεργοποιείται και φυλάει νέα δεδομένα, και ο slave αποθηκεύει παλιά δεδομένα. Όταν =0, η κατάσταση του master αποθηκεύεται στον slave (Q=Y), ενώ ο master δεν είναι ευαίσθητος σε νέα δεδομένα. Master-lave JK Flip-Flop Flop Master lave MKM - 35 MKM - 36 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 9

10 Πρόβλημα. Η αλλαγή στις εξόδους του FF έχει καθυστέρηση κατά ½ περίοδο του ρολογιού το κύκλωμα γίνεται πιο αργό. 2. και/ή R μπορούν να αλλάξουν πολλαπλές φορές όταν = Q =, = 0 0 και R = 0 Master latch = (set) lave = (set), όταν =0 Q =, = 0 0 και R = 0 0 Master latch = (set) και μετά = 0 (reset) lave = 0 (reset), όταν =0 Γνωστό ως «s catching» Λύση: Πυροδότηση Ακμής Ένα ακμοπυροδοτούμενο FF, αγνοεί τις αλλαγές κατά τη διάρκεια ενός παλμού. Πυροδοτείται μόνο όταν υπάρχει μετάβαση της τιμής του ρολογιού (clock transition, / ) Υλοποίηση ακμοπυροδοτούμενων FF: Άμεσα, σε επίπεδο ηλεκτρονικού κυκλώματος Με master-slave slave D-FF MKM - 37 MKM - 38 Ακμοπυροδοτούμενα Flip-Flops Flops Συνδέουμε ένα D-latch με πυροδότηση-επιπέδου (master) με ένα R-latch με πυροδότηση-επιπέδου (slave) και συμπληρωματικά ρολόγια. JK FF με Θετική Ακμοπυροδότηση D-FF με Θετική Ακμοπυροδότηση MKM - 39 MKM - 40 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 0

11 Καθιερωμένα Γραφικά Σύμβολα Μανδαλωτές (latches) Καθιερωμένα Γραφικά Σύμβολα (συν.) Master-lave Flip Flops -- Πυροδότηση Επιπέδου (level-triggering) J D D R K R R πυροδοτούμενο R πυροδοτούμενο JK R-latch R -latch D-latch με = D-latch με =0 R J K πυροδοτούμενο R πυροδοτούμενο JK MKM - 4 MKM - 42 Καθιερωμένα Γραφικά Σύμβολα (συν.) Ακμοπυροδοτούμενα (Edge-triggered) Flip Flops Χαρακτηριστικός Πίνακας (haracteristic Table) D Ακμοπυροδοτούμενο D J K Ακμοπυροδοτούμενο JK D Ακμοπυροδοτούμενο D J K Ακμοπυροδοτούμενο JK Καθορίζει τις λογικές ιδιότητες/χαρακτηριστικά / ενός flip-flop flop (όπως ένας πίνακας αληθείας για μια λογική πύλη). Q(t) παρούσα κατάσταση στο χρόνο t Q(t+) επόμενη κατάσταση στο χρόνο t+ MKM - 43 MKM - 44 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops

12 Χαρακτηριστικός Πίνακας (συν.) Χρόνος t εννοείται (δηλ. J(t) και K(t)) J K Q(t+) 0 0 Q(t) JK Flip-Flop Flop Λειτουργία Καμία Αλλαγή/Hold 0 0 Reset 0 et Q(t) Συμπλήρωμα Χαρακτηριστικός Πίνακας (συν.) R Q(t+) 0 0 Q(t) R Flip-Flop Flop Λειτουργία Καμία Αλλαγή/Hold 0 0 Reset 0 et? Ακαθόριστο/Άκυρο MKM - 45 MKM - 46 Χαρακτηριστικός Πίνακας (συν.) D D Flip-Flop Flop Q(t+) Λειτουργία 0 0 Reset et Χαρακτηριστική Εξίσωση: Q(t+) = D(t) (haracteristic Equation) -- Εκφράζει την τιμή των εξόδων στο χρόνο t+ σε σχέση με την τιμή των εισόδων στο χρόνο t, για ένα flip-flop MKM - 47 Χαρακτηριστικός Πίνακας και Χαρακτηριστική Εξίσωση (συν.) T T Flip-Flop Flop (από JK Flip-Flop με J=K=T) Q(t+) 0 Q(t) Q(t) Λειτουργία Καμία Αλλαγή/Hold Συμπλήρωμα Χαρακτηριστική Εξίσωση: Q(t+) = T Q(t) + TQ(t) MKM - 48 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 2

13 Χαρακτηριστικός Πίνακας και Χαρακτηριστική Εξίσωση (συν.) Ποιες είναι οι χαρακτηριστικές εξισώσεις για το JK flip-flop και το R flip-flop; Ασύγχρονο et/reset Πολλές φορές είναι επιθυμητό να μπορούμε να θέσουμε την τιμή ενός FF (set ή reset) ανεξάρτητα με το ρολόι ασύγχρονο set/reset Παράδειγμα: Στο ξεκίνημα (power power-up) χρησιμοποιούμε ασύγχρονο set/reset έτσι ώστε να ξεκινούμε από μια γνωστή κατάσταση (known state). Ασύγχρονο set == άμεσο set == Preset Ασύγχρονο reset == άμεσο reset == lear MKM - 49 MKM - 50 Ασύγχρονο et/reset (συν.) Παράμετροι Χρονισμού για Flip-Flops Flops J K R IEEE καθιερωμένο γραφικό σύμβολο για JK-FF με άμεσα set & reset n υπονοεί ότι το n ελέγχει όλα τα άλλα σήματα με σήμανση που ξεκινά από n. Σε αυτή την περίπτωση, το ελέγχει τα J and K. R Πίνακας Λειτουργίας J K Q(t+) 0 X X X Preset 0 X X X 0 lear 0 0 X X X Ακαθόριστο 0 0 Q(t) Hold 0 0 Reset 0 et Q(t) -- Συμπλήρωμα t s -setup time: απαραίτητος χρόνος όπου οι είσοδοι του FF πρέπει να παραμείνουν σε σταθερές τιμές, πριν την πυροδότηση, για να παρατηρηθεί αλλαγή στην έξοδο. Master-slave: ίσο με το πλάτος του παλμού πυροδότησης Edge-triggered: ίσο με ένα διάστημα, πολύ μικρότερο από αυτό του πλάτους του παλμού πυροδότησης t h - hold time: απαραίτητος χρόνος όπου οι είσοδοι του FF πρέπει να κρατήσουν τις τιμές τους, μετά την πυροδότηση Συχνά μπορεί να αγνοηθεί (κοντά στο 0). t px - propagation p delay: καθυστέρηση η μετάδοσης, δηλ.,, χρόνος από την πυροδότηση μέχρι την σταθεροποίηση της νέας τιμής στην έξοδο Μετριέται από την ακμή που πυροδοτεί την αλλαγή στην έξοδο μέχρι την εμφάνιση της αλλαγής στην έξοδο Απαραίτητα, t px > t h MKM - 5 MKM - 52 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 3

14 Παράμετροι Χρονισμού για Flip-Flops Flops t s -setup time t h - hold time t w - clock pulse width t px -propa- gation delay t PHL -High-to-Low t PLH -Low-to-High t pd -max (t PHL, t PLH PLH ) (b) Edge-triggered (negative edge) MKM - 53 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 4

ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008

ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008 ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops και Μετρητές Ριπής Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ανάλυση Ακολουθιακών Κυκλωμάτων 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ανάλυση Ακολουθιακών Κυκλωμάτων 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Ανάλυση Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Ανάλυση Ακολουθιακών Κυκλωμάτων Ανάλυση: Ο καθορισμός μιας κατάλληλης περιγραφής η οποία επιδεικνύει

Διαβάστε περισσότερα

7.1 Θεωρητική εισαγωγή

7.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΑΝ ΑΛΩΤΕΣ FLIP FLOP Σκοπός: Η κατανόηση της λειτουργίας των βασικών ακολουθιακών κυκλωµάτων. Θα µελετηθούν συγκεκριµένα: ο µανδαλωτής (latch)

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 FLIP - FLOP

ΑΣΚΗΣΗ 7 FLIP - FLOP ΑΣΚΗΣΗ 7 FLIP - FLOP Αντικείμενο της άσκησης: Η κατανόηση της δομής και λειτουργίας των Flip Flop. Flip - Flop Τα Flip Flop είναι δισταθή λογικά κυκλώματα με χαρακτηριστικά μνήμης και είναι τα πλέον βασικά

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 5: Σύγχρονη Ακολουθιακή

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 5: Σύγχρονη Ακολουθιακή ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων Ψηφιακή Σχεδίαση Κεφάλαιο 5: Σύγχρονη Ακολουθιακή Λογική Σύγχρονα Ακολουθιακά Κυκλώµατα Είσοδοι Συνδυαστικό κύκλωµα

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός Μετρητής

Διαβάστε περισσότερα

Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα

Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα 6 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων µνήµης Η έξοδος εξαρτάται από

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός

Διαβάστε περισσότερα

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Βασικές αρχές Σχεδίαση Latches και flip-flops Γιώργος Δημητρακόπουλος Δημοκρίτειο Πανεπιστήμιο Θράκης Φθινόπωρο 2013 Ψηφιακά ολοκληρωμένα κυκλώματα 1 Ακολουθιακή

Διαβάστε περισσότερα

Ακολουθιακά Κυκλώματα Flip-Flops

Ακολουθιακά Κυκλώματα Flip-Flops Ακολουθιακά Κυκλώματα Flip-Flops . Συνδυαστικα κυκλωματα Ακολουθιακα κυκλωματα x x 2 x n Συνδυαστικο κυκλωμα z z 2 z m z i =f i (x,x 2,,x n ) i =,2,,m 2. Ακολουθιακα κυκλωματα: x n Συνδυαστικο m z y κυκλωμα

Διαβάστε περισσότερα

3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων

Διαβάστε περισσότερα

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ ΠΛΗ21 ΟΣΣ#2 14 Δεκ 2008 ΠΑΤΡΑ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ 7-segment display 7-segment display 7-segment display Αποκωδικοποιητής των 7 στοιχείων (τμημάτων) (7-segment decoder) Κύκλωμα αποκωδικοποίησης του στοιχείου

Διαβάστε περισσότερα

Κεφάλαιο 7 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ακολουθιακή Λογική 2

Κεφάλαιο 7 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ακολουθιακή Λογική 2 ΚΥΚΛΩΜΑΤΑ VLSI Ακολουθιακή Λογική Κεφάλαιο 7 ο Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Δισταθή κυκλώματα Μεταστάθεια 2. Μανδαλωτές 3. Flip Flops Flops 4. Δομές διοχέτευσης 5. Διανομή ρολογιού 6. Συγχρονισμός

Διαβάστε περισσότερα

Κυκλώματα αποθήκευσης με ρολόι

Κυκλώματα αποθήκευσης με ρολόι Κυκλώματα αποθήκευσης με ρολόι Latches και Flip-Flops Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης 1 Γιατί χρειαζόμαστε τα ρολόγια Συνδιαστική λογική Η έξοδος εξαρτάται μόνο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΥΓΧΡΟΝΟ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΧΕ ΙΑΣΗ ΣΥΓΧΡΟΝΟΥ

Διαβάστε περισσότερα

βαθµίδων µε D FLIP-FLOP. Μονάδες 5

βαθµίδων µε D FLIP-FLOP. Μονάδες 5 Κεφάλαιιο: 6 ο Τίίτλος Κεφαλαίίου:: Μανταλωτές & Flip Flop (Ιούνιος 2004 ΤΕΕ Ηµερήσιο) Να σχεδιάσετε καταχωρητή δεξιάς ολίσθησης τεσσάρων βαθµίδων µε D FLIP-FLOP. Μονάδες 5 (Ιούνιος 2005 ΤΕΕ Ηµερήσιο)

Διαβάστε περισσότερα

Μετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032

Μετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά 9 ης εργαστηριακής άσκησης: Μετρητής Ριπής ΑΦΡΟΔΙΤΗ

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα

K24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα K24 Ψηφιακά Ηλεκτρονικά : TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 2 3 Γενικά Όπως είδαμε και σε προηγούμενα μαθήματα, ένα ψηφιακό κύκλωμα ονομάζεται

Διαβάστε περισσότερα

8.1 Θεωρητική εισαγωγή

8.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί

Διαβάστε περισσότερα

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 )

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 ) ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 ΥΑ ΙΚΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των απαριθµητών. Υλοποίηση ασύγχρονου απαριθµητή 4-bit µε χρήση JK Flip-Flop. Κατανόηση της αλλαγής του υπολοίπου

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α)

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α) ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α) Αντικείμενο της άσκησης: Η χρήση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων (ΟΚ), η συνδεσμολόγησή τους στην κάρτα εργασίας (bread-board) και η κατανόηση της λογικής συμπεριφοράς των

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

Χρονισμός ψηφιακών κυκλωμάτων

Χρονισμός ψηφιακών κυκλωμάτων Χρονισμός ψηφιακών κυκλωμάτων Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Γ. Δημητρακόπουλος HY422 1 Tρόποι χρονισμού Πως μπορούμε να συνδέσουμε τα στοιχεία αποθήκευσης με τη

Διαβάστε περισσότερα

Pipelining και Παράλληλη Επεξεργασία

Pipelining και Παράλληλη Επεξεργασία Pipelining και Παράλληλη Επεξεργασία Εισαγωγή Σωλήνωση - Pipelining Βασισμένη στην ιδέα σωλήνα που στέλνει νερό χωρίς να περιμένει το νερό που μπαίνει σε ένα σωλήνα να τελειώσει water pipe Μπορεί να οδηγήσει

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακής Σχεδίασης

Εργαστήριο Ψηφιακής Σχεδίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ Σύγχρονο ακολουθιακό κύκλωμα είναι εκείνο του οποίου όλα τα FFs χρονίζονταιμετοίδιο ρολόι (clock). Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων Σχεδίαση Σύγχρονων Ακολουθιακών

Διαβάστε περισσότερα

Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21

Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21 Περιεχόµενα Πρόλογος 11 Σκοπός αυτού του βιβλίου 11 Σε ποιους απευθύνεται αυτό το βιβλίο 12 Βασικά χαρακτηριστικά του βιβλίου 12 Κάλυψη συστηµάτων CAD 14 Εργαστηριακή υποστήριξη 14 Συνοπτική παρουσίαση

Διαβάστε περισσότερα

Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ

Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ 1.1 Παράσταση ενός φυσικού αριθμού 1 1.2 Δεκαδικό σύστημα 1 1.3 Δυαδικό σύστημα 2 1.4 Οκταδικό σύστηνα 2 1.5 Δεκαεξαδικό σύστημα 2 1.6 Μετατροπές από ένα

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Εκτέλεση πράξεων

Διαβάστε περισσότερα

Ενότητα ΚΑΤΑΧΩΡΗΤΕΣ ΜΕΤΡΗΤΕΣ ΜΝΗΜΕΣ RAM

Ενότητα ΚΑΤΑΧΩΡΗΤΕΣ ΜΕΤΡΗΤΕΣ ΜΝΗΜΕΣ RAM 2 Ενότητα ΚΑΤΑΧΩΡΗΤΕΣ ΜΕΤΡΗΤΕΣ ΜΝΗΜΕΣ RAM Γενικές Γραμμές Παράλληλα και Σειριακά Δεδομένα Παράλληλοι λ Καταχωρητές Σήματα Ενεργοποίησης Διαβάσματος & Γραψίματος - Εισόδου & Εξόδου Υπολογισμός Περιόδου

Διαβάστε περισσότερα

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Συνδιαστικά Λογικά Κυκλώματα / Ολοκληρωμένα Κυκλώματα 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Συνδιαστικά Λογικά Κυκλώματα / Ολοκληρωμένα Κυκλώματα 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Συνδυαστική Λογική / Ολοκληρωμένα Κυκλώματα (Μέρος Γ) Διδάσκουσα: Μαρία Κ. Μιχαήλ Περίληψη Έξοδοι υψηλής εμπέδησης: απομονωτές tri-state, πύλες μετάδοσης Ολοκληρωμένα

Διαβάστε περισσότερα

Ψηφιακά Κυκλώματα (2 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική

Ψηφιακά Κυκλώματα (2 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Ψηφιακά Κυκλώματα (2 ο μέρος) ΜΥΥ-6 Εισαγωγή στους Η/Υ και στην Πληροφορική Ακολουθιακά κυκλώματα είσοδοι.. ακολουθιακή λογική.. έξοδοι. ανάδραση Η λειτουργία μνήμης στηρίζεται στη ανάδραση (feedback):

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1 1-1 Σχηµατισµός Μηνύµατος 1 1-2 Βάση Αρίθµησης 2 1-3 Παράσταση Αριθµών στο εκαδικό Σύστηµα 2 Μετατροπή υαδικού σε εκαδικό 3 Μετατροπή εκαδικού σε υαδικό 4

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 1 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Μαρ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 4 -i: Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώµατα Περίληψη Συναρτήσεις και συναρτησιακές (λειτουργικές)

Διαβάστε περισσότερα

Μνήμες RAM. Διάλεξη 12

Μνήμες RAM. Διάλεξη 12 Μνήμες RAM Διάλεξη 12 Δομή της διάλεξης Εισαγωγή Κύτταρα Στατικής Μνήμης Κύτταρα Δυναμικής Μνήμης Αισθητήριοι Ενισχυτές Αποκωδικοποιητές Διευθύνσεων Ασκήσεις 2 Μνήμες RAM Εισαγωγή 3 Μνήμες RAM RAM: μνήμη

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Μάθημα 7: Καταχωρητές ολισθήσεως ως απαριθµητές και γεννήτριες ακολουθιών Διδάσκων: Καθηγητής Ν. Φακωτάκης Καταχωρητής

Διαβάστε περισσότερα

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Το τρανζίστορ MOS(FET) πύλη (gate) Ψηφιακή και Σχεδίαση πηγή (source) καταβόθρα (drai) (σχεδίαση συνδυαστικών κυκλωμάτων) http://di.ioio.gr/~mistral/tp/comparch/

Διαβάστε περισσότερα

ΜΙΧΑΛΗΣ ΨΑΡΑΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ

ΜΙΧΑΛΗΣ ΨΑΡΑΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Εργαστήριο Λογικής Σχεδίασης Ψηφιακών Συστημάτων ΜΙΧΑΛΗΣ ΨΑΡΑΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Τμήμα Πληροφορικής - Πανεπιστήμιο Πειραιώς i ΠΕΡΙΕΧΟΜΕΝΑ ΕΡΓΑΣΤΗΡΙΟ

Διαβάστε περισσότερα

Χρονισμός και Απόδοση Υπολογιστικών Συστημάτων

Χρονισμός και Απόδοση Υπολογιστικών Συστημάτων ΗΥ 232 Οργάνωση και στον Σχεδίαση Η/Y Διάλεξη 7 Χρονισμός και Απόδοση Υπολογιστικών Συστημάτων Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων 1 Τι σημαίνει απόδοση; Αεροσκάφος NYC to Paris

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

14. ΑΠΑΡΙΘΜΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1

14. ΑΠΑΡΙΘΜΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 14. ΑΠΑΡΙΘΜΗΤΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΑΠΑΡΙΘΜΗΤΕΣ ΤΡΟΠΟΣ ΥΛΟΠΟΙΗΣΗΣ KAI ΡΟΗ ΑΠΑΡΙΘΜΗΣΗΣ ΣΧΕ ΙΑΣΗ ΣΥΓΧΡΟΝΟΥ ΥΑ ΙΚΟΥ ΑΠΑΡΙΘΜΗΤΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ

Διαβάστε περισσότερα

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά

Διαβάστε περισσότερα

ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι

ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι Ι.Μ. ΚΟΝΤΟΛΕΩΝ S k k k S k k k 00 ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι ΑΣΚΗΣΗ ΣΧΕ ΙΑΣΗ ΜΕ ΛΟΓΙΚΕΣ ΠΥΛΕΣ ΘΕΩΡΗΤΙΚΗ ΠΡΟΕΤΟΙΜΑΣΙΑ Ψηφιακά Κυκλώµατα, κεφ.,

Διαβάστε περισσότερα

Εκτέλεση πράξεων. Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική. Πράξεις με δυαδικούς αριθμούς. Πράξεις με δυαδικούς αριθμούς

Εκτέλεση πράξεων. Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική. Πράξεις με δυαδικούς αριθμούς. Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 24-5 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης ; Ποιες κατηγορίες

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά

Διαβάστε περισσότερα

Σχεδίαση κυκλωμάτων ημιαγωγικών μνημών

Σχεδίαση κυκλωμάτων ημιαγωγικών μνημών 2 0 ^ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Παρθένα Μποχώρη Σχεδίαση κυκλωμάτων ημιαγωγικών μνημών ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Επιβλέπων: Ιωάννης

Διαβάστε περισσότερα

3 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ

3 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 8 ΙΟΥΝΙΟΥ 215 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών

Αρχιτεκτονική Υπολογιστών Αρχιτεκτονική Υπολογιστών Ψηφιακή Λογική Βασικές Πηγές: Αρχιτεκτονική Υπολογιστών: μια Δομημένη Προσέγγιση, Α. Tanenbaum, Vrije Universiteit, Amsterdam. Περιβάλλον Προσομοίωσης Hades, University of Hamburg

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΛΥΣΕΙΣ 2 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ ΠΑΤΡΑ 2006 6.

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν

Διαβάστε περισσότερα

Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ

Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ Γενικές Γραμμές Δυαδικοί Αριθμοί έναντι Δυαδικών Κωδίκων Δυαδικοί Αποκωδικοποιητές Υλοποίηση Συνδυαστικής Λογικής με Δυαδικό Αποκωδικοποιητή

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης.

Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005 Κεφάλαιο 5 -ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αφαίρεση δυαδικών Περίληψη

Διαβάστε περισσότερα

Ι ΑΣΚΩΝ ΚΑΘΗΓΗΤΗΣ: ΚΑΘΗΓΗΤΗΣ ΕΦΑΡΜΟΓΩΝ. ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ d.fotiadis@kastoria.teikoz.gr

Ι ΑΣΚΩΝ ΚΑΘΗΓΗΤΗΣ: ΚΑΘΗΓΗΤΗΣ ΕΦΑΡΜΟΓΩΝ. ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ d.fotiadis@kastoria.teikoz.gr Ι ΑΣΚΩΝ ΚΑΘΗΓΗΤΗΣ: ΦΩΤΙΑ ΗΣ Α. ΗΜΗΤΡΗΣ M.Sc. ΚΑΘΗΓΗΤΗΣ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ (Σ.Τ.ΕΦ.) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ d.fotiadis@kastoria.teikoz.gr Ασύγχρονη σειριακή

Διαβάστε περισσότερα

EPΓAΣTHPIAKEΣ AΣKHΣEIΣ ΛOΓIKOY ΣXEΔIAΣMOY

EPΓAΣTHPIAKEΣ AΣKHΣEIΣ ΛOΓIKOY ΣXEΔIAΣMOY ΠANEΠIΣTHMIO ΠATPΩN TMHMA MHX H/ Y & ΠΛHPOΦOPIKHΣ TOMEAΣ YΛIKOY KAI APXITEKTONIKHΣ YΠOΛOΓIΣTΩN Εργαστήριο Θεωρίας Κυκλωμάτων, Ηλεκτρονικών & Λογικού Σχεδιασμού EPΓAΣTHPIAKEΣ AΣKHΣEIΣ ΛOΓIKOY ΣXEΔIAΣMOY

Διαβάστε περισσότερα

Ψηφιακή Λογική και Σχεδίαση

Ψηφιακή Λογική και Σχεδίαση Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Ψηφιακή Λογική και Σχεδίαση (στοιχεία και μέθοδοι χρονισμού) http://di.ionio.gr/~mistral/tp/comparch/ Μ.Στεφανιδάκης Πέρα από τη συνδυαστική

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΑΠΑΝΤΗΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΑΠΑΝΤΗΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα : Μικροϋπολογιστές Τεχνολογία Τ.Σ. Ι, Θεωρητικής κατεύθυνσης Ημερομηνία

Διαβάστε περισσότερα

VHDL Introduction. Subtitle

VHDL Introduction. Subtitle VHDL Introduction Subtitle Getting Started VHDL means Very Hard Difficult Language That s a lie!!! τα αρχικά VHDL είναι συντομογραφία του VHSIC Hardware Description Language, ενώ το VHSIC αντιπροσωπεύει

Διαβάστε περισσότερα

ΕΡΓΑΛΕΙΑ CAD ΓΙΑ ΥΠΟΛΟΓΙΣΜΟ ΙΣΧΥΟΣ ΚΑΙ ΑΞΙΟΠΙΣΤΙΑΣ ΚΥΚΛΩΜΑΤΩΝ VLSI

ΕΡΓΑΛΕΙΑ CAD ΓΙΑ ΥΠΟΛΟΓΙΣΜΟ ΙΣΧΥΟΣ ΚΑΙ ΑΞΙΟΠΙΣΤΙΑΣ ΚΥΚΛΩΜΑΤΩΝ VLSI ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων ΕΡΓΑΛΕΙΑ CAD ΓΙΑ ΥΠΟΛΟΓΙΣΜΟ ΙΣΧΥΟΣ ΚΑΙ ΑΞΙΟΠΙΣΤΙΑΣ ΚΥΚΛΩΜΑΤΩΝ VLSI ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ ΜΠΟΥΝΤΑΣ ΔΗΜΗΤΡΙΟΣ ΒΟΛΟΣ

Διαβάστε περισσότερα

6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ

6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ 6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΥΟ ΕΙΣΟ ΩΝ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΠΕ ΩΝ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ

Διαβάστε περισσότερα

Ψηφιακά Συστήματα. Σημείωση

Ψηφιακά Συστήματα. Σημείωση Το έργο υλοποιείται στο πλαίσιο του υποέργου 2 με τίτλο «Ανάπτυξη έντυπου εκπαιδευτικού υλικού για τα νέα Προγράμματα Σπουδών» της Πράξης «Ελληνικό Ανοικτό Πανεπιστήμιο» η οποία έχει ενταχθεί στο Επιχειρησιακό

Διαβάστε περισσότερα

4.2 Αναπαράσταση δυαδικών τιμών στα ψηφιακά κυκλώματα

4.2 Αναπαράσταση δυαδικών τιμών στα ψηφιακά κυκλώματα ΚΕΦΑΛΑΙΟ 4 ΤΕΧΝΟΛΟΓΙΕΣ ΥΛΟΠΟΙΗΣΗΣ 4.1 Εισαγωγή Για την υλοποίηση των λογικών πυλών χρησιμοποιήθηκαν αρχικά ηλεκτρονικές λυχνίες κενού και στη συνέχεια κρυσταλλοδίοδοι και διπολικά τρανζίστορ. Τα ολοκληρωμένα

Διαβάστε περισσότερα

ΑΝΑLOG TO DIGITAL CONVERTER (ADC)

ΑΝΑLOG TO DIGITAL CONVERTER (ADC) ΑΝΑLOG TO DIGITAL CONVERTER (ADC) O ADC αναλαμβάνει να μετατρέψει αναλογικές τάσεις σε ψηφιακές ώστε να είναι διαθέσιμες εσωτερικά στο μικροελεγκτή για επεξεργασία. Η αναλογική τάση που θέλουμε να ψηφιοποιηθεί

Διαβάστε περισσότερα

VERILOG. Γενικά περί γλώσσας

VERILOG. Γενικά περί γλώσσας VERILOG Γενικά περί γλώσσας Χρησιµότητα της Verilog Υψηλού επιπέδου περιγραφή της συµπεριφοράς του συστήµατος µε σκοπό την εξοµοίωση. RTL περιγραφή της λειτουργίας του συστήµατος µε σκοπό τη σύνθεσή του

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 2. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ...30

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 2. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ...30 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 1.1 Τι είναι Πληροφορική;...11 1.1.1 Τι είναι η Πληροφορική;...12 1.1.2 Τι είναι ο Υπολογιστής;...14 1.1.3 Τι είναι το Υλικό και το

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

Περιγραφή Κυκλωμάτων με χρήση της VHDL. Εισαγωγικές έννοιες για σχεδιασμό με τη VHDL

Περιγραφή Κυκλωμάτων με χρήση της VHDL. Εισαγωγικές έννοιες για σχεδιασμό με τη VHDL Περιγραφή Κυκλωμάτων με χρήση της VHDL Εισαγωγικές έννοιες για σχεδιασμό με τη VHDL Οργάνωση Παρουσίασης VHDL εισαγωγικές έννοιες Ροή και επίπεδα σχεδιασμού ψηφιακών κυκλωμάτων Μοντελοποίηση Καθυστερήσεων

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 9 ΙΟΥΝΙΟΥ 22 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

Βιβλιογραϕικές σηµειώσεις 59. Ασκήσεις 19

Βιβλιογραϕικές σηµειώσεις 59. Ασκήσεις 19 ΠΕΡΙΕΧΟΜΕΝΑ Μέρος I Εισαγωγή 1 Η ψηφιακή αφαίρεση 3 1.1 Ψηϕιακά σήµατα 4 1.2 Τα ψηϕιακά σήµατα είναι ανεκτικά στον θόρυβο 5 1.3 Τα ψηϕιακά σήµατα αναπαριστούν σύνθετα δεδοµένα 9 1.3.1 Αναπαράσταση της

Διαβάστε περισσότερα

15 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

15 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 18 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Λογικές πύλες Περιεχόμενα 1 Λογικές πύλες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΛΗ 2: Ψηφιακά Συστήµατα Ακαδηµαϊκό Έτος 24 25 Ηµεροµηνία Εξέτασης 29.6.25 Χρόνος Εξέτασης

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα: Τεχνολογία Αναλογικών και Ψηφιακών Ηλεκτρονικών Τεχνολογία Τεχνικών Σχολών

Διαβάστε περισσότερα

Μοντέλα Αρχιτεκτονικής στην Σύνθεση

Μοντέλα Αρχιτεκτονικής στην Σύνθεση Μοντέλα Αρχιτεκτονικής στην Σύνθεση Σχεδιαστικά Στυλ & Αρχιτεκτονική Ο σχεδιαστής επιλέγει Σχεδιαστικό στυλ prioritized interrupt instruction buffer bus-oriented datapath serial I/O direct memory access

Διαβάστε περισσότερα

12. ΚΑΤΑΧΩΡΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1

12. ΚΑΤΑΧΩΡΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 12. ΚΑΤΑΧΩΡΗΤΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΚΑΤΑΧΩΡΗΤΕΣ Ο ΚΑΤΑΧΩΡΗΤΗΣ ΩΣ ΣΤΟΙΧΕΙΟ ΜΝΗΜΗΣ ΕΙ Η ΚΑΤΑΧΩΡΗΤΩΝ ΣΤΑΤΙΚΟΣ ΚΑΤΑΧΩΡΗΤΗΣ ΚΑΤΑΧΩΡΗΤΗΣ ΟΛΙΣΘΗΣΗΣ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΘΕΜΑ 1 Α. Ερωτήσεις πολλαπλής επιλογής 1. Σώμα εκτελεί Α.Α.Τ με περίοδο Τ και πλάτος Α. Αν διπλασιάσουμε το πλάτος της ταλάντωσης τότε η περίοδος της θα : α. παραμείνει

Διαβάστε περισσότερα

Εργαστήριο 8: Μετρητής μέσω Αθροιστή & Καταχωρητή, Ακμοπυροδότηση

Εργαστήριο 8: Μετρητής μέσω Αθροιστή & Καταχωρητή, Ακμοπυροδότηση ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2011 Τμ. Επ. Υπολογιστών Πανεπιστήμιο Κρήτης Εργαστήριο 8: Μετρητής μέσω Αθροιστή & Καταχωρητή, Ακμοπυροδότηση 29 Νοεμβρίου - 2 Δεκεμβρίου 2011 Διαλέξεις βδομάδας 8:

Διαβάστε περισσότερα

Ψηφιακά Ηλεκτρονικά. Μάθηµα 1ο.. Λιούπης

Ψηφιακά Ηλεκτρονικά. Μάθηµα 1ο.. Λιούπης Ψηφιακά Ηλεκτρονικά Μάθηµα ο. Λιούπης Ύλη του µαθήµατος () Ψηφιακά ολοκληρωµένα κυκλώµατα Πλεονεκτήµατα-µειονεκτήµατα Λογικές οικογένειες Χαρακτηριστικά Λογική άµεσα συζευγµένων transistor Λογική αντίστασης-transistor

Διαβάστε περισσότερα

Έχοντας κατανοήσει την ύλη του 1ου μαθήματος ( Εισαγωγή στην Αρχιτεκτονική Η/Υ ) θα πρέπει να μπορείτε να απαντήσετε στις παρακάτω ερωτήσεις:

Έχοντας κατανοήσει την ύλη του 1ου μαθήματος ( Εισαγωγή στην Αρχιτεκτονική Η/Υ ) θα πρέπει να μπορείτε να απαντήσετε στις παρακάτω ερωτήσεις: Ερωτήσεις αυτοαξιολόγησης 1 ου μαθήματος Έχοντας κατανοήσει την ύλη του 1ου μαθήματος ( Εισαγωγή στην Αρχιτεκτονική Η/Υ ) θα πρέπει να μπορείτε να απαντήσετε στις παρακάτω ερωτήσεις: 1. Ποια η σχέση της

Διαβάστε περισσότερα

4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 4 η Θεµατική Ενότητα : Συνδυαστική Λογική Επιµέλεια διαφανειών: Χρ. Καβουσιανός Λογικά Κυκλώµατα Ø Τα λογικά κυκλώµατα διακρίνονται σε συνδυαστικά (combinational) και ακολουθιακά (sequential). Ø Τα συνδυαστικά

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σχεδίαση και αξιολόγηση ψευδοτυχαίων γεννητριών για μειωμένη κατανάλωση ισχύος κατά τον έλεγχο ορθής λειτουργίας

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σχεδίαση και αξιολόγηση ψευδοτυχαίων γεννητριών για μειωμένη κατανάλωση ισχύος κατά τον έλεγχο ορθής λειτουργίας ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Θέμα: Επιβλέπων: Σχεδίαση και αξιολόγηση ψευδοτυχαίων γεννητριών για μειωμένη κατανάλωση ισχύος κατά τον έλεγχο ορθής λειτουργίας Καθηγητής Δημήτριος Νικολός Λαουδιάς Χρήστος Α.Μ. 2142

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος Α) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΘΕΜΑΤΑ ΨΗΦΙΑΚΗΣ ΣΧΕΔΙΑΣΗΣ

ΚΕΦΑΛΑΙΟ 3 ΘΕΜΑΤΑ ΨΗΦΙΑΚΗΣ ΣΧΕΔΙΑΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΘΕΜΑΤΑ ΨΗΦΙΑΚΗΣ ΣΧΕΔΙΑΣΗΣ Στόχος αυτού του Κεφαλαίου είναι η γνωριμία με τον τρόπο με τον οποίο εκτελούνται οι πράξεις στο εσωτερικό του Υπολογιστή. Όπως ήδη έχει αναφερθεί, η Κεντρική Μονάδα

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR Σκοπός: Να επαληθευτούν πειραµατικά οι πίνακες αληθείας των λογικών πυλών OR, NOR, XOR. Να δειχτεί ότι η πύλη NOR είναι οικουµενική.

Διαβάστε περισσότερα

Βοηθητικές Σημειώσεις στη ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

Βοηθητικές Σημειώσεις στη ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Βοηθητικές Σημειώσεις στη ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΠΜΣ στις Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών Διδάσκων : Παρασκευάς Κίτσος Επίκουρος Καθηγητής pkitsos@teimes.gr 1 Τμήμα των διαλέξεων

Διαβάστε περισσότερα

5 η Θεµατική Ενότητα : Μνήµη & Προγραµµατιζόµενη Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

5 η Θεµατική Ενότητα : Μνήµη & Προγραµµατιζόµενη Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 5 η Θεµατική Ενότητα : Μνήµη & Προγραµµατιζόµενη Λογική Επιµέλεια διαφανειών: Χρ. Καβουσιανός Μνήµη Η µνήµη καταλαµβάνει το µεγαλύτερο µέρος ενός υπολογιστικού συστήµατος Δύο τύποι: ROM - RAM RΟΜs CPU

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 Τεχνολογία Ι Θεωρητικής Κατεύθυνσης Τεχνικών Σχολών Μάθημα : Μικροϋπολογιστές

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18)

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) Άσκηση 1. Α) Στο κύκλωμα του παρακάτω σχήματος την χρονική στιγμή t=0 sec ο διακόπτης κλείνει. Βρείτε τα v c και i c. Οι πυκνωτές είναι αρχικά αφόρτιστοι. Β)

Διαβάστε περισσότερα

6.1 Θεωρητική εισαγωγή

6.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ ΚΑΙ ΠΟΛΥΠΛΕΚΤΕΣ Σκοπός: Η κατανόηση της λειτουργίας των κυκλωµάτων ψηφιακής πολυπλεξίας και αποκωδικοποίησης και η εξοικείωση µε τους ολοκληρωµένους

Διαβάστε περισσότερα