Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009."

Transcript

1 ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα: Μαρία Κ. Μιχαήλ Ακολουθιακά Κυκλώματα Συνδυαστική Λογική: Η τιμή σε μία έξοδο εξαρτάται μόνο από τις τρέχουσες τιμές των εισόδων. Μπορεί να εκτελέσει χρήσιμες λειτουργίες (πρόσθεση/αφαίρεση/πολλαπλασιασμό/ ). Απαιτεί διαδοχή μεταξύ πολλών βασικών στοιχείων. Ακριβή και συνήθως όχι ευέλικτη. Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών MKM - 2 Ακολουθιακά Κυκλώματα (συν.) Ακολουθιακή Λογική: Η τιμή σε μία έξοδο δεν εξαρτάται μόνο από τις τρέχουσες τιμές των εισόδων, αλλά και από τις προηγούμενες τιμές των εισόδων. Αποθηκεύει πληροφορίες μεταξύ λειτουργιών (δεν απαιτεί διαδοχή). Χρειάζεται κάποιου είδους μνήμη για να μπορεί να «θυμάται» τις προηγούμενες τιμές των εισόδων. Ακολουθιακά Κυκλώματα (συν.) Κυκλώματα που Κυκλώματα που αποθηκεύουν εξετάσαμε μέχρι τώρα πληροφορίες Καταστάσεις Χρόνου MKM - 3 MKM - 4 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops

2 Ακολουθιακή Λογική: Βασικές έννοιες Τα κυκλώματα ακολουθιακής λογικής έχουν την ικανότητα να «θυμούνται» προηγούμενες καταστάσεις του κυκλώματος και προηγούμενες τιμές στις εισόδους. Έξοδοι του κυκλώματος μπορούν να χρησιμο- ποιηθούν ως νέες τιμές εισόδου στο κύκλωμα (κυκλώματα μ ανάδρασης = feedback circuits). Τα στοιχεία αποθήκευσης είναι κυκλώματα που μπορούν να αποθηκεύουν δυαδική πληροφορία: μνήμη. Σύγχρονα vs. Ασύγχρονα Κυκλώματα Υπάρχουν 2 τύποι ακολουθιακών κυκλωμάτων: Σύγχρονο (latch mode) ακολουθιακό κύκλωμα: Η συμπεριφορά του ορίζεται βάσει των τιμών στις εξόδους και στα στοιχεία μνήμης, σε διακριτές στιγμές του χρόνου. Αυτού του είδους τα κυκλώματα πετυχαίνουν συγχρονισμό χρησιμοποιώντας ένα σήμα χρονισμού, το γνωστό ως ρολόι. Ασύγχρονο (fundamental mode) ακολουθιακό κύκλωμα: Η συμπεριφορά του ορίζεται από την σειρά των αλλαγών των τιμών στις εισόδους σε συνεχή χρόνο. Οι τιμές των εξόδων μπορούν να αλλάξουν ανά πάσα στιγμή, χωρίς κανένα συγκεκριμένο συγχρονισμό (clockless). MKM - 5 MKM - 6 Σήμα Ρολογιού Σύγχρονα Ακολουθιακά Κυκλώματα: Flip-flops για καταστάσεις μνήμης Γεννήτρια Ρολογιού: Περιοδικό σήμα από παλμούς ρολογιού Σήματα με ίδια περίοδο MKM - 7 Τα flip-flops flops έχουν ως εισόδους σήματα από το συνδυαστικό κομμάτι του κυκλώματος καθώς και σήμα από ένα ρολόι με περιοδικούς παλμούς μεταξύ αμετάβλητων περιοδικών διαστημάτων. MKM - 8 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 2

3 Στοιχεία Μνήμης Προσομοίωση ιακριτών Γεγονότων (Discrete Event imulation) Buffers Η αποθηκεμένη τιμή δεν μπορεί να αλλάξει Inverters Χρησιμοποιείται για την καλύτερη κατανόηση της χρονικής συμπεριφοράς ρ ενός κυκλώματος. Κανόνες:. Οι πύλες μοντελοποιούνται με 2 τρόπους: a) Βάσει της λειτουργίας τους, με μηδενική καθυστέρηση (ideal, instantaneous) b) Με σταθερή καθυστέρηση ανά πύλη (fixed gate delay) 2. Κάθε αλλαγή στις τιμές εισόδων αξιολογείται, βάσει του μοντέλου μηδενικής καθυστέρησης, για να υπολογιστούν τυχόν αλλαγές στις τιμές εξόδων (=γεγονός) ό (evaluation of event) 3. Αλλαγές στις τιμές εξόδων προγραμματίζονται βάσει του μοντέλου σταθερής καθυστέρησης (scheduling of event) 4. Οι τιμές εξόδων (και πιθανόν άλλα επηρεαζόμενα σήματα) αλλάζουν μόνο στον χρόνο του προγραμματιζόμενου γεγονότος MKM - 9 MKM - 0 Προσομοίωση πύλης NAND Παράδειγμα: : NAND 2-εισόδων με καθυστέρηση 0.5 ns: A B F(Instantaneous) DELAY 0.5 ns. Θεωρήστε ότι οι A και B έχουν τιμή εδώ και ώρα Σε χρόνο t=0, η A αλλάζει σε 0 και όταν t= 0.8 ns, αλλάζει πίσω σε t (ns) A B F(I) F Σχόλια 0 0 A=B= για αρκετή ώρα F(I) αλλάζει σε F αλλάζει σε μετά από 0.5 ns F(Instantaneous) αλλάζει σε F αλλάζει σε 0 μετά από 0.5 ns MKM - F Μοντέλο Καθυστέρησης Πυλών Θεωρείστε τις πιο κάτω πύλες NOT, AND και OR, με καθυστέρηση n ns, όπου n = 0.2 ns, n = 0.4 ns και n = 0.5 ns, αντίστοιχα: MKM - 2 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 3

4 Μοντέλο Καθυστέρησης Κυκλώματος Θεωρείστε έναν απλό 2-σε- MUX: Με συνάρτηση: Y = A για = 0 Y = B για = A B Y A B Glitch : δημιουργείται λόγω της καθυστέρησης του αντιστροφέα MKM - 3 Y Αποθήκευση Καταστάσεως Τι γίνεται αν η A ενωθεί με την Y? Συναρτήσεις: Y = B για = Y(t) εξαρτάται από Y(t 0.9) για = 0 B Y B Μονοπάτι ανάδρασης (feedback path) Το συνδυαστικό κύκλωμα μετατράπηκε σε ακολουθιακό, αφού η συνάρτηση εξόδου εξαρτάται και από προηγούμενες τιμές εισόδων (όχι μόνο τις τρέχουσες τιμές) Y είναι η αποθηκεμένη τιμή στη σκιασμένη περιοχή MKM - 4 Y Αποθήκευση Καταστάσεως (συν. συν.) Αποθήκευση Καταστάσεως (συν. συν.) Παράδειγμα προσομοίωσης: Οι τιμές εισόδων αλλάζουν με την πάροδο του χρόνου. Οι αλλαγές σημειώνονται κάθε 00 ns, έτσι ώστε καθυστερήσεις σε δέκατα του ns αγνοούνται. Χρόνος B Y Σχόλια 0 0 Y θυμάται 0 Y = B όταν = 0 Τώρα Y θυμάται B = για = Καμία αλλαγή για Y όταν αλλάζει το B 0 0 Y = Bό όταν = Y θυμάται B = 0 για = Καμία αλλαγή για Y όταν αλλάζει το B Y εκπροσωπεί την κατάσταση του κυκλώματος, όχι απλά μια έξοδο! Θεωρείστε ότι τοποθετούμε ένα αντιστροφέα στο 0.2 μονοπάτι ανάδρασης. Συμβαίνουν τα ακόλουθα:. Το κύκλωμα γίνεται ασταθή (unstable). 2. Για = 0, το κύκλωμα γίνεται ταλαντωτής (oscillator). Μπορεί να χρησιμο- ποιηθεί ως ένα «αδρό» ρολόι. B B Y Σχόλια 0 0 Y = B όταν = 0 Τώρα Y θυμάται B 0 0 Y,. ns αργότερα 0 Y,. ns αργότερα 0 0 Y,. ns αργότερα 0.2 Y MKM - 5 MKM - 6 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 4

5 R latch (από NOR) -- R: set-reset, δισταθές στοιχείο με 2 εισόδους. Προσέξτε την «ακαθόριστη» τιμή για =R=. -- ιαβάζοντας τη λογική: Q = (R+Q ) και Q = (+Q) R==?? Ακαθόριστη έξοδος γιατί: Όταν =R=, τότε και οι 2 έξοδοι γίνονται 0. Εάν και οι 2 έξοδοι είναι 0, η κατάσταση του R latch εξαρτάται από την είσοδο που παραμένει στην τιμή για περισσότερο χρόνο, πριν γίνει 0. Άρα είναι όντως,, ακαθόριστη κατάσταση ΠΡΕΠΕΙ να αποφευχθεί. MKM - 7 MKM - 8 R Latch (από NAND) R Latch (από NAND) 0 R Q Q 0 R Q Q et R Q Q 0 R Q Q et 0 Hold X Y NAND X Y NAND MKM - 9 MKM - 20 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 5

6 R Latch (από NAND) R Latch (από NAND) 0 R Q 0 Q R Q Q et 0 Reset 0 Hold R Q 0 Q R Q Q et 0 Reset 0 Hold 0 Hold X Y NAND X Y NAND MKM - 2 MKM - 22 R Latch (από NAND) R Latches 0 0 R Q Q X Y NAND R Q Q 0 0 Disallowed 0 0 et 0 0 Reset 0 Hold 0 Hold MKM - 23 MKM - 24 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 6

7 Προσομοίωση R Latch R Latch με σήμα Ελέγχου Το Latch είναι ευαίσθητο σε αλλαγές στις εισόδους ΜΟΝΟ όταν το = Σημαντικό στοιχείο, χρησιμοποιείται για σχεδιασμό άλλων latches και flip-flops flops Θεωρείται και ως flip-flop, flop, άλλα όχι βάση του ορισμού του βιβλίου σας MKM - 25 MKM - 26 R Latch με σήμα Ελέγχου (συν.) =LK LK R R Q Q D Latch Ένας τρόπος αποφυγής των ανεπιθύμητων ακαθόριστων καταστάσεων στο R flip-flop flop, είναι η εξασφάλιση ότι οι είσοδοι και R δεν θα πάρουν ποτέ την τιμή ταυτόχρονα. Αυτό επιτυγχάνεται με ένα R-latch latch, όπου =D και R=D D-latch: R LK R Q Q 0 0 Q 0 Q 0 tore Reset et 0 0 Disallowed X X 0 Q 0 Q 0 tore MKM - 27 MKM - 28 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 7

8 D Latch (συν.) D LK Q D Latch με πύλες μετάδοσης R D LK Q Q X 0 Q 0 Q 0 R Q R LK Q Q 0 0 Q 0 Q 0 tore 0 0 Reset 0 0 et Disallowed X X 0 Q 0 Q 0 tore = το TG κλείνει και τοtg2 ανοίγει Q =D και Q=D =0 το TG ανοίγει και το TG2 κλείνει Hold Q και Q 2 MKM - 29 MKM - 30 Flip-FlopsFlops Τα Latches είναι διαυγή (transparent) δηλ., οποιαδήποτε αλλαγή στην κατάσταση του latch είναι αντιληπτή και στις εξόδους (αν υπάρχει σήμα ελέγχου, αυτό ισχύει κατά τη διάρκεια που =). Αυτό προκαλεί προβλήματα συγχρονισμού, αφού η κατάσταση ενός latch μπορεί να αλλάξει πολλαπλές φορές όταν =! Λύση: Χρησιμοποιούμε latches για τη δημιουργία των flip- flops που μπορούν να ανταποκριθούν (update) ΜΟΝΟ σε ΣΥΓΚΕΚΡΙΜΕΝΕΣ χρονικές στιγμές (όχι ανά πάσα στιγμή ή κατά τη διάρκεια ενός διαστήματος). Πυροδότηση (Triggering) Latch/FF Ο μηχανισμός που επιτρέπει σε ένα στοιχείο μνήμης (latch ή FF) να αλλάξει κατάσταση Τρόποι Πυροδότησης: Ασύγχρονα, δηλ. εντελώς διαυγή (π.χ. R-latch) Πυροδότηση-επιπέδου (level trigger, =) (π.χ. R-latch ή D-latch με σήμα ελέγχου ) Master-lave (π.χ. R-FF, D-FF) Πυροδότηση-ακμής: θετική ήαρνητική ακμή του (rising or falling edge trigger, = ή = ) (π.χ. R-FF, D-FF) latches FFs MKM - 3 MKM - 32 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 8

9 Εναλλακτικές λύσεις στην επιλογή FF Τύποι FF: R D JK Τρόποι ενεργοποίησης (triggering) triggering): Master-lave: χρησιμοποιεί πυροδότηση-επιπέδου αλλά με 2 latches, έτσι ώστε η κατάσταση του FF αλλάζει μόνο μια φορά σε μία περίοδο του ρολογιού Ενεργοποίηση-ακμής: θετική ή αρνητική ακμή του (rising or falling edge trigger, = ή = ) MKM - 33 Master-lave R-FF χρησιμοποιώντας R latches Χρησιμοποιεί πυροδότηση-επιπέδου. Κατάσταση Q=Y, όταν =0. Επίσης, τo Υ δεν μπορεί να αλλάξει τιμή όταν =0. MKM - 34 Master-lave R-FF χρησιμοποιώντας R latches (συν.) R Q Q 0 0 Q 0 Q 0 tore 0 0 Reset 0 0 et Disallowed X X 0 Q 0 Q 0 tore Όταν =, ο master ενεργοποιείται και φυλάει νέα δεδομένα, και ο slave αποθηκεύει παλιά δεδομένα. Όταν =0, η κατάσταση του master αποθηκεύεται στον slave (Q=Y), ενώ ο master δεν είναι ευαίσθητος σε νέα δεδομένα. Master-lave JK Flip-Flop Flop Master lave MKM - 35 MKM - 36 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 9

10 Πρόβλημα. Η αλλαγή στις εξόδους του FF έχει καθυστέρηση κατά ½ περίοδο του ρολογιού το κύκλωμα γίνεται πιο αργό. 2. και/ή R μπορούν να αλλάξουν πολλαπλές φορές όταν = Q =, = 0 0 και R = 0 Master latch = (set) lave = (set), όταν =0 Q =, = 0 0 και R = 0 0 Master latch = (set) και μετά = 0 (reset) lave = 0 (reset), όταν =0 Γνωστό ως «s catching» Λύση: Πυροδότηση Ακμής Ένα ακμοπυροδοτούμενο FF, αγνοεί τις αλλαγές κατά τη διάρκεια ενός παλμού. Πυροδοτείται μόνο όταν υπάρχει μετάβαση της τιμής του ρολογιού (clock transition, / ) Υλοποίηση ακμοπυροδοτούμενων FF: Άμεσα, σε επίπεδο ηλεκτρονικού κυκλώματος Με master-slave slave D-FF MKM - 37 MKM - 38 Ακμοπυροδοτούμενα Flip-Flops Flops Συνδέουμε ένα D-latch με πυροδότηση-επιπέδου (master) με ένα R-latch με πυροδότηση-επιπέδου (slave) και συμπληρωματικά ρολόγια. JK FF με Θετική Ακμοπυροδότηση D-FF με Θετική Ακμοπυροδότηση MKM - 39 MKM - 40 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 0

11 Καθιερωμένα Γραφικά Σύμβολα Μανδαλωτές (latches) Καθιερωμένα Γραφικά Σύμβολα (συν.) Master-lave Flip Flops -- Πυροδότηση Επιπέδου (level-triggering) J D D R K R R πυροδοτούμενο R πυροδοτούμενο JK R-latch R -latch D-latch με = D-latch με =0 R J K πυροδοτούμενο R πυροδοτούμενο JK MKM - 4 MKM - 42 Καθιερωμένα Γραφικά Σύμβολα (συν.) Ακμοπυροδοτούμενα (Edge-triggered) Flip Flops Χαρακτηριστικός Πίνακας (haracteristic Table) D Ακμοπυροδοτούμενο D J K Ακμοπυροδοτούμενο JK D Ακμοπυροδοτούμενο D J K Ακμοπυροδοτούμενο JK Καθορίζει τις λογικές ιδιότητες/χαρακτηριστικά / ενός flip-flop flop (όπως ένας πίνακας αληθείας για μια λογική πύλη). Q(t) παρούσα κατάσταση στο χρόνο t Q(t+) επόμενη κατάσταση στο χρόνο t+ MKM - 43 MKM - 44 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops

12 Χαρακτηριστικός Πίνακας (συν.) Χρόνος t εννοείται (δηλ. J(t) και K(t)) J K Q(t+) 0 0 Q(t) JK Flip-Flop Flop Λειτουργία Καμία Αλλαγή/Hold 0 0 Reset 0 et Q(t) Συμπλήρωμα Χαρακτηριστικός Πίνακας (συν.) R Q(t+) 0 0 Q(t) R Flip-Flop Flop Λειτουργία Καμία Αλλαγή/Hold 0 0 Reset 0 et? Ακαθόριστο/Άκυρο MKM - 45 MKM - 46 Χαρακτηριστικός Πίνακας (συν.) D D Flip-Flop Flop Q(t+) Λειτουργία 0 0 Reset et Χαρακτηριστική Εξίσωση: Q(t+) = D(t) (haracteristic Equation) -- Εκφράζει την τιμή των εξόδων στο χρόνο t+ σε σχέση με την τιμή των εισόδων στο χρόνο t, για ένα flip-flop MKM - 47 Χαρακτηριστικός Πίνακας και Χαρακτηριστική Εξίσωση (συν.) T T Flip-Flop Flop (από JK Flip-Flop με J=K=T) Q(t+) 0 Q(t) Q(t) Λειτουργία Καμία Αλλαγή/Hold Συμπλήρωμα Χαρακτηριστική Εξίσωση: Q(t+) = T Q(t) + TQ(t) MKM - 48 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 2

13 Χαρακτηριστικός Πίνακας και Χαρακτηριστική Εξίσωση (συν.) Ποιες είναι οι χαρακτηριστικές εξισώσεις για το JK flip-flop και το R flip-flop; Ασύγχρονο et/reset Πολλές φορές είναι επιθυμητό να μπορούμε να θέσουμε την τιμή ενός FF (set ή reset) ανεξάρτητα με το ρολόι ασύγχρονο set/reset Παράδειγμα: Στο ξεκίνημα (power power-up) χρησιμοποιούμε ασύγχρονο set/reset έτσι ώστε να ξεκινούμε από μια γνωστή κατάσταση (known state). Ασύγχρονο set == άμεσο set == Preset Ασύγχρονο reset == άμεσο reset == lear MKM - 49 MKM - 50 Ασύγχρονο et/reset (συν.) Παράμετροι Χρονισμού για Flip-Flops Flops J K R IEEE καθιερωμένο γραφικό σύμβολο για JK-FF με άμεσα set & reset n υπονοεί ότι το n ελέγχει όλα τα άλλα σήματα με σήμανση που ξεκινά από n. Σε αυτή την περίπτωση, το ελέγχει τα J and K. R Πίνακας Λειτουργίας J K Q(t+) 0 X X X Preset 0 X X X 0 lear 0 0 X X X Ακαθόριστο 0 0 Q(t) Hold 0 0 Reset 0 et Q(t) -- Συμπλήρωμα t s -setup time: απαραίτητος χρόνος όπου οι είσοδοι του FF πρέπει να παραμείνουν σε σταθερές τιμές, πριν την πυροδότηση, για να παρατηρηθεί αλλαγή στην έξοδο. Master-slave: ίσο με το πλάτος του παλμού πυροδότησης Edge-triggered: ίσο με ένα διάστημα, πολύ μικρότερο από αυτό του πλάτους του παλμού πυροδότησης t h - hold time: απαραίτητος χρόνος όπου οι είσοδοι του FF πρέπει να κρατήσουν τις τιμές τους, μετά την πυροδότηση Συχνά μπορεί να αγνοηθεί (κοντά στο 0). t px - propagation p delay: καθυστέρηση η μετάδοσης, δηλ.,, χρόνος από την πυροδότηση μέχρι την σταθεροποίηση της νέας τιμής στην έξοδο Μετριέται από την ακμή που πυροδοτεί την αλλαγή στην έξοδο μέχρι την εμφάνιση της αλλαγής στην έξοδο Απαραίτητα, t px > t h MKM - 5 MKM - 52 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 3

14 Παράμετροι Χρονισμού για Flip-Flops Flops t s -setup time t h - hold time t w - clock pulse width t px -propa- gation delay t PHL -High-to-Low t PLH -Low-to-High t pd -max (t PHL, t PLH PLH ) (b) Edge-triggered (negative edge) MKM - 53 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 4

ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008

ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008 ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops και Μετρητές Ριπής Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 1 ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα (συν.) Κυκλώματα που Κυκλώματα που αποθηκεύουν εξετάσαμε μέχρι τώρα πληροφορίες Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 11: Ακολουθιακά Κυκλώµατα (Κεφάλαιο 5, 6.1, 6.3, 6.4) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Ακολουθιακά

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ανάλυση Ακολουθιακών Κυκλωμάτων 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ανάλυση Ακολουθιακών Κυκλωμάτων 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Ανάλυση Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Ανάλυση Ακολουθιακών Κυκλωμάτων Ανάλυση: Ο καθορισμός μιας κατάλληλης περιγραφής η οποία επιδεικνύει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ. 6.1 Εισαγωγή

ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ. 6.1 Εισαγωγή ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 6. Εισαγωγή Τα ψηφιακά κυκλώματα διακρίνονται σε συνδυαστικά και ακολουθιακά. Τα κυκλώματα που εξετάσαμε στα προηγούμενα κεφάλαια ήταν συνδυαστικά. Οι τιμές των

Διαβάστε περισσότερα

Στοιχεία Μνήμης, JKκαιD (Flip-Flops) Μετρητής Ριπής (Ripple Counter)

Στοιχεία Μνήμης, JKκαιD (Flip-Flops) Μετρητής Ριπής (Ripple Counter) ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων Στοιχεία Μνήμης, JKκαιD (Flip-Flops) Μετρητής Ριπής (Ripple Counter) ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 FLIP - FLOP

ΑΣΚΗΣΗ 7 FLIP - FLOP ΑΣΚΗΣΗ 7 FLIP - FLOP Αντικείμενο της άσκησης: Η κατανόηση της δομής και λειτουργίας των Flip Flop. Flip - Flop Τα Flip Flop είναι δισταθή λογικά κυκλώματα με χαρακτηριστικά μνήμης και είναι τα πλέον βασικά

Διαβάστε περισσότερα

7.1 Θεωρητική εισαγωγή

7.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΑΝ ΑΛΩΤΕΣ FLIP FLOP Σκοπός: Η κατανόηση της λειτουργίας των βασικών ακολουθιακών κυκλωµάτων. Θα µελετηθούν συγκεκριµένα: ο µανδαλωτής (latch)

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗΛΟΓΙΚΗΣΧΕΔΙΑΣΗ

ΨΗΦΙΑΚΗΛΟΓΙΚΗΣΧΕΔΙΑΣΗ Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗΛΟΓΙΚΗΣΧΕΔΙΑΣΗ Μάθημα 5: Στοιχεία µνήµης ενός ψηφίου Διδάσκων: Καθηγητής Ν. Φακωτάκης Στοιχεία μνήμης Ένα ψηφιακό λογικό κύκλωμα

Διαβάστε περισσότερα

26-Nov-09. ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο Καταχωρητές 1. Διδάσκουσα: Μαρία Κ. Μιχαήλ

26-Nov-09. ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο Καταχωρητές 1. Διδάσκουσα: Μαρία Κ. Μιχαήλ ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης

Διαβάστε περισσότερα

Ακολουθιακά κυκλώματα: Μανδαλωτές και Flip-Flop. Διάλεξη 6

Ακολουθιακά κυκλώματα: Μανδαλωτές και Flip-Flop. Διάλεξη 6 Ακολουθιακά κυκλώματα: Μανδαλωτές και Flip-Flop Διάλεξη 6 Δομή της διάλεξης Εισαγωγή στην ακολουθιακή λογική Ομανδαλωτής SR Latch JK Flip-Flop D Flip-Flop Timing Definitions Latch vs Flip-Flop Ασκήσεις

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός Μετρητής

Διαβάστε περισσότερα

Ακολουθιακά Κυκλώµατα (Sequential Circuits) Συνδυαστικά Κυκλώµατα (Combinational Circuits) Σύγχρονα και Ασύγχρονα

Ακολουθιακά Κυκλώµατα (Sequential Circuits) Συνδυαστικά Κυκλώµατα (Combinational Circuits) Σύγχρονα και Ασύγχρονα Συνδυαστικά Κυκλώµατα (Combinational Circuits) Εξοδος οποιαδήποτε στιγµή εξαρτάται µόνο από τις τιµές στην είσοδο την ίδια στιγµή κολουθιακά Κυκλώµατα (Sequential Circuits) Aποθηκεύουν κατάσταση (state)

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ FLIP-FLOP ΤΟ ΒΑΣΙΚΟ FLIP-FLOP ΧΡΟΝΙΖΟΜΕΝΑ FF ΤΥΠΟΥ FF ΤΥΠΟΥ D FLIP-FLOP Τ FLIP-FLOP ΠΥΡΟΔΟΤΗΣΗ ΤΩΝ FLIP-FLOP ΚΥΡΙΟ - ΕΞΑΡΤΗΜΕΝΟ FLIP-FLOP ΑΚΜΟΠΥΡΟΔΟΤΟΥΜΕΝΑ FLIP-FLOP ΚΥΚΛΩΜΑΤΑ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 5: Σύγχρονη Ακολουθιακή

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 5: Σύγχρονη Ακολουθιακή ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων Ψηφιακή Σχεδίαση Κεφάλαιο 5: Σύγχρονη Ακολουθιακή Λογική Σύγχρονα Ακολουθιακά Κυκλώµατα Είσοδοι Συνδυαστικό κύκλωµα

Διαβάστε περισσότερα

Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα

Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα 6 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων µνήµης Η έξοδος εξαρτάται από

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός

Διαβάστε περισσότερα

Ακολουθιακά Κυκλώματα Flip-Flops

Ακολουθιακά Κυκλώματα Flip-Flops Ακολουθιακά Κυκλώματα Flip-Flops . Συνδυαστικα κυκλωματα Ακολουθιακα κυκλωματα x x 2 x n Συνδυαστικο κυκλωμα z z 2 z m z i =f i (x,x 2,,x n ) i =,2,,m 2. Ακολουθιακα κυκλωματα: x n Συνδυαστικο m z y κυκλωμα

Διαβάστε περισσότερα

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ ΠΛΗ21 ΟΣΣ#2 14 Δεκ 2008 ΠΑΤΡΑ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ 7-segment display 7-segment display 7-segment display Αποκωδικοποιητής των 7 στοιχείων (τμημάτων) (7-segment decoder) Κύκλωμα αποκωδικοποίησης του στοιχείου

Διαβάστε περισσότερα

3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων

Διαβάστε περισσότερα

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Βασικές αρχές Σχεδίαση Latches και flip-flops Γιώργος Δημητρακόπουλος Δημοκρίτειο Πανεπιστήμιο Θράκης Φθινόπωρο 2013 Ψηφιακά ολοκληρωμένα κυκλώματα 1 Ακολουθιακή

Διαβάστε περισσότερα

Κεφάλαιο 7 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ακολουθιακή Λογική 2

Κεφάλαιο 7 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ακολουθιακή Λογική 2 ΚΥΚΛΩΜΑΤΑ VLSI Ακολουθιακή Λογική Κεφάλαιο 7 ο Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Δισταθή κυκλώματα Μεταστάθεια 2. Μανδαλωτές 3. Flip Flops Flops 4. Δομές διοχέτευσης 5. Διανομή ρολογιού 6. Συγχρονισμός

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Νίκος Φακωτάκης, Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται

Διαβάστε περισσότερα

Κυκλώματα αποθήκευσης με ρολόι

Κυκλώματα αποθήκευσης με ρολόι Κυκλώματα αποθήκευσης με ρολόι Latches και Flip-Flops Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης 1 Γιατί χρειαζόμαστε τα ρολόγια Συνδιαστική λογική Η έξοδος εξαρτάται μόνο

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΑΣΚΗΣΗ ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ.. ΣΚΟΠΟΣ Η σχεδίαση ακολουθιακών κυκλωμάτων..2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ.2.. ΑΛΓΟΡΙΘΜΟΣ ΣΧΕΔΙΑΣΗΣ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα ψηφιακά κυκλώματα με μνήμη ονομάζονται ακολουθιακά.

Διαβάστε περισσότερα

Ασύγχρονοι Απαριθμητές. Διάλεξη 7

Ασύγχρονοι Απαριθμητές. Διάλεξη 7 Ασύγχρονοι Απαριθμητές Διάλεξη 7 Δομή της διάλεξης Εισαγωγή στους Απαριθμητές Ασύγχρονος Δυαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής με Latch Ασκήσεις 2 Ασύγχρονοι

Διαβάστε περισσότερα

Πρότυπα Συµβόλων για τις Μονάδες Μνήµης. Άµεση Είσοδοι (Direct Inputs) Χρονικοί Παράµετροι (Flip-Flop Timing Parameters)

Πρότυπα Συµβόλων για τις Μονάδες Μνήµης. Άµεση Είσοδοι (Direct Inputs) Χρονικοί Παράµετροι (Flip-Flop Timing Parameters) Πρότυπα Συµβόλων για τις Μονάδες Μνήµης Άµεση Είσοδοι (irect Inputs) Master-lave: Postponed output indicators Edge-Triggered: namic indicator with ontrol with ontrol (a) Latches Triggered Triggered Triggered

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. VHDL για Ακολουθιακά Κυκλώματα 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. VHDL για Ακολουθιακά Κυκλώματα 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων VHDL για Σχεδιασμό Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Περίληψη VHDL Processes Εντολές If-Then Then-Else και CASE Περιγραφή Flip-Flop Flop με VHDL

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ.3 ΑΣΥΓΧΡΟΝΟΣ ΔYΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.5 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.7 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ ΜΕ LATCH.

ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ.3 ΑΣΥΓΧΡΟΝΟΣ ΔYΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.5 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.7 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ ΜΕ LATCH. ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΥΠΟΛΟΓΙΣΤΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΑΠΑΡΙΘΜΗΤΕΣ Κ. ΕΥΣΤΑΘΙΟΥ, Γ. ΠΑΠΑΔΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα

Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα Άσκηση Δίδονται οι ακόλουθες κυματομορφές ρολογιού και εισόδου D που είναι κοινή σε ένα D latch και ένα D flip flop. Το latch είναι θετικά ενεργό, ενώ το ff θετικά ακμοπυροδοτούμενο. Σχεδιάστε τις κυματομορφές

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS)

ΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS) ΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS) Αντικείμενο της άσκησης: H σχεδίαση και η χρήση ασύγχρονων απαριθμητών γεγονότων. Με τον όρο απαριθμητές ή μετρητές εννοούμε ένα ακολουθιακό κύκλωμα με FF, οι καταστάσεις

Διαβάστε περισσότερα

Ακολουθιακά κυκλώματα: Μανδαλωτές και Flip-Flop

Ακολουθιακά κυκλώματα: Μανδαλωτές και Flip-Flop Ακολουθιακά κυκλώματα: Μανδαλωτές και Flip-Flop Δομή της διάλεξης Εισαγωγή στην ακολουθιακή λογική Ομανδαλωτής SR Latch JK Flip-Flop D Flip-Flop Timing Definitions Latch vs Flip-Flop Ασκήσεις 2 Ακολουθιακά

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters)

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters) ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Μετρητής Ριπής q Σύγχρονος

Διαβάστε περισσότερα

ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων

ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων Χειμερινό Εξάμηνο 2015-2016 ΗΥ220 -Γιώργος Καιλοκαιρινός & Βασίλης Παπαευσταθίου 1 Λογικές Πύλες, Στοιχεία Μνήμης, Συνδυαστική Λογική και Κυματομορφές ΗΥ220 -Γιώργος

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος B) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ. Τμήμα Ηλεκτρονικής. Πτυχιακή Εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ. Τμήμα Ηλεκτρονικής. Πτυχιακή Εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Ηλεκτρονικής Πτυχιακή Εργασία Υλοποίηση σύγχρονων ακολουθιακών κυκλωμάτων σε VHDL για FPGAs/CPLDs και ανάλυση χρονισμών για εύρεση

Διαβάστε περισσότερα

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΥΓΧΡΟΝΟ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΧΕ ΙΑΣΗ ΣΥΓΧΡΟΝΟΥ

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο Περίληψη

Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο Περίληψη ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 27 Οκτ-7 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 27 Συνδυαστική Λογική / Ολοκληρωμένα Κυκλώματα (Μέρος Γ) Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο

Διαβάστε περισσότερα

VHDL για Σχεδιασµό Ακολουθιακών Κυκλωµάτων

VHDL για Σχεδιασµό Ακολουθιακών Κυκλωµάτων VHDL για Σχεδιασµό Ακολουθιακών Κυκλωµάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών n VHDL Processes Περίληψη n Εντολές If-Then-Else και CASE

Διαβάστε περισσότερα

Δυαδικές Μονάδες Μνήμης: Μανδαλωτής SR, D και JK Flip-Flops Σχεδιασμός Μετρητής Ριπής

Δυαδικές Μονάδες Μνήμης: Μανδαλωτής SR, D και JK Flip-Flops Σχεδιασμός Μετρητής Ριπής ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡOY ΗΜΥ 211-2007 Δυαδικές Μονάδες Μνήμης: Μανδαλωτής SR, D και JK Flip-Flops Σχεδιασμός Μετρητής Ριπής ΕΡΓΑΣΤΗΡΙΟ ΛΟΓΙΣΜΙΚΟΥ/ΥΛΙΚΟΥ

Διαβάστε περισσότερα

ΛΟΓΙΚH ΣΧΕΔΙΑΣH ΙΙ. Καλώς ήλθατε

ΛΟΓΙΚH ΣΧΕΔΙΑΣH ΙΙ. Καλώς ήλθατε ΛΟΓΙΚH ΣΧΕΔΙΑΣH ΙΙ Καλώς ήλθατε Ωρολόγιο Πρόγραμμα Τα τυπικά (1/2) (2 ώρες παραδόσεις 1 ώρα φροντιστήριο) x 13 Πέμπτη 16:00 19:00, ΒΑ Στην αρχή μόνο παραδόσεις Τελική εξέταση : Γραπτώς, με ανοικτές σημειώσεις

Διαβάστε περισσότερα

βαθµίδων µε D FLIP-FLOP. Μονάδες 5

βαθµίδων µε D FLIP-FLOP. Μονάδες 5 Κεφάλαιιο: 6 ο Τίίτλος Κεφαλαίίου:: Μανταλωτές & Flip Flop (Ιούνιος 2004 ΤΕΕ Ηµερήσιο) Να σχεδιάσετε καταχωρητή δεξιάς ολίσθησης τεσσάρων βαθµίδων µε D FLIP-FLOP. Μονάδες 5 (Ιούνιος 2005 ΤΕΕ Ηµερήσιο)

Διαβάστε περισσότερα

Μετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032

Μετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά 9 ης εργαστηριακής άσκησης: Μετρητής Ριπής ΑΦΡΟΔΙΤΗ

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα

K24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα K24 Ψηφιακά Ηλεκτρονικά : TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 2 3 Γενικά Όπως είδαμε και σε προηγούμενα μαθήματα, ένα ψηφιακό κύκλωμα ονομάζεται

Διαβάστε περισσότερα

C D C D C D C D A B

C D C D C D C D A B Απλοποίηση µέσω Πίνακα Karnaugh: Παράδειγµα - 2 Στον παρακάτω πίνακα έχει ήδη γίνει το «βήμα- 1». Επομένως: Βήμα 2: Δεν υπάρχουν απομονωμένα κελιά. Βήμα 3: Στο ζεύγος (3,7) το κελί 3 γειτνιάζει μόνο με

Διαβάστε περισσότερα

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Βασισμένο σε μια εργασία των Καζαρλή, Καλόμοιρου, Μαστοροκώστα, Μπαλουκτσή, Καλαϊτζή, Βαλαή, Πετρίδη Εισαγωγή Η Εξελικτική Υπολογιστική

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 10 ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ

ΑΣΚΗΣΗ 10 ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ ΑΣΚΗΣΗ ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Στόχος της άσκησης: Η διαδικασία σχεδίασης σύγχρονων ακολουθιακών κυκλωμάτων. Χαρακτηριστικό παράδειγμα σύγχρονων ακολουθιακών κυκλωμάτων είναι οι σύγχρονοι μετρητές. Τις αδυναμίες

Διαβάστε περισσότερα

8.1 Θεωρητική εισαγωγή

8.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. Να μελετηθεί η λειτουργία του ακόλουθου κυκλώματος. Ποιος ο ρόλος των εισόδων του (R και S) και πού βρίσκει εφαρμογή; S Q

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. Να μελετηθεί η λειτουργία του ακόλουθου κυκλώματος. Ποιος ο ρόλος των εισόδων του (R και S) και πού βρίσκει εφαρμογή; S Q ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ = ΠΑΡΑΡΤΗΜΑ ΣΠΑΡΤΗΣ = ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Συμπληρώνεται από τον διδάσκοντα (2.0) 2 (2.5) 3 (3.0) 4 (2.5) Σ ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ

Διαβάστε περισσότερα

Flip-Flop: D Control Systems Laboratory

Flip-Flop: D Control Systems Laboratory Flip-Flop: Control Systems Laboratory Είναι ένας τύπος συγχρονιζόμενου flip- flop, δηλαδή ενός flip- flop όπου οι έξοδοί του δεν αλλάζουν μόνο με αλλαγή των εισόδων R, S αλλά χρειάζεται ένας ωρολογιακός

Διαβάστε περισσότερα

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 )

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 ) ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 ΥΑ ΙΚΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των απαριθµητών. Υλοποίηση ασύγχρονου απαριθµητή 4-bit µε χρήση JK Flip-Flop. Κατανόηση της αλλαγής του υπολοίπου

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωµάτων

ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωµάτων ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωµάτων Χειµερινό Εξάµηνο 2006-2007 Χρονισµός Σύγχρονων Κυκλώµατων, Καταχωρητές και Μανταλωτές ΗΥ220 - Βασίλης Παπαευσταθίου 1 Γενικό Μοντέλο Σύγχρονων Κυκλωµάτων clock input

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α)

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α) ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α) Αντικείμενο της άσκησης: Η χρήση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων (ΟΚ), η συνδεσμολόγησή τους στην κάρτα εργασίας (bread-board) και η κατανόηση της λογικής συμπεριφοράς των

Διαβάστε περισσότερα

Εργαστήριο Οργάνωσης Η/Υ. Δαδαλιάρης Αντώνιος

Εργαστήριο Οργάνωσης Η/Υ. Δαδαλιάρης Αντώνιος Εργαστήριο Οργάνωσης Η/Υ Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Συνδυαστικό Κυκλωμα: Το κύκλωμα του οποίου οι έξοδοι εξαρτώνται αποκλειστικά από τις τρέχουσες εισόδους του. Ακολουθιακό Κύκλωμα: Το κύκλωμα

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν

Διαβάστε περισσότερα

Ασύγχρονοι Απαριθμητές. Διάλεξη 7

Ασύγχρονοι Απαριθμητές. Διάλεξη 7 Ασύγχρονοι Απαριθμητές Διάλεξη 7 Δομή της διάλεξης Εισαγωγή στους Απαριθμητές Ασύγχρονος Δυαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής με Latch Ασκήσεις 2 Ασύγχρονοι

Διαβάστε περισσότερα

Υλοποίηση λογικών πυλών µε τρανζίστορ MOS. Εισαγωγή στην Ηλεκτρονική

Υλοποίηση λογικών πυλών µε τρανζίστορ MOS. Εισαγωγή στην Ηλεκτρονική Υλοποίηση λογικών πυλών µε τρανζίστορ MOS Εισαγωγή στην Ηλεκτρονική Λογική MOS Η αναπαράσταση των λογικών µεταβλητών 0 και 1 στα ψηφιακά κυκλώµατα γίνεται µέσω κατάλληλων επιπέδων τάσης, όπου κατά σύµβαση

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

Εισαγωγή στα κυκλώµατα CMOS 2

Εισαγωγή στα κυκλώµατα CMOS 2 1 η Θεµατική Ενότητα : Εισαγωγή στα κυκλώµατα CMOS Επιµέλεια διαφανειών:. Μπακάλης Εισαγωγή Τεχνολογία CMOS = Complementary Metal Oxide Semiconductor Συµπληρωµατικού Ηµιαγωγού Μετάλλου Οξειδίου Αποτελείται

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 8//28 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Σχεδιασμός Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα

Διαβάστε περισσότερα

Κεφάλαιο 10. Ψηφιακά κυκλώματα Flip-Flop και εφαρμογές

Κεφάλαιο 10. Ψηφιακά κυκλώματα Flip-Flop και εφαρμογές Κεφάλαιο 10. Ψηφιακά κυκλώματα Flip-Flop και εφαρμογές Σύνοψη Το κεφάλαιο αυτό αποτελεί, ουσιαστικά, συνέχεια του προηγούμενου και μελετώνται ψηφιακά κυκλώματα με πιο σύνθετη δομή. Παρουσιάζονται τα κυκλώματα

Διαβάστε περισσότερα

Ενότητα 3 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ

Ενότητα 3 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Ενότητα 3 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Γενικές Γραμμές Οικογένειες Ψηφιακής Λογικής Τάση τροφοδοσίας Λογικά επίπεδα - Περιθώριo θορύβου Χρόνος μετάβασης Καθυστέρηση διάδοσης Κατανάλωση ισχύος Γινόμενο

Διαβάστε περισσότερα

Χρονισμός ψηφιακών κυκλωμάτων

Χρονισμός ψηφιακών κυκλωμάτων Χρονισμός ψηφιακών κυκλωμάτων Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Γ. Δημητρακόπουλος HY422 1 Tρόποι χρονισμού Πως μπορούμε να συνδέσουμε τα στοιχεία αποθήκευσης με τη

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 3: Ψηφιακή Λογική ΙI Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Χρονισμός Σύγχρονων Κυκλωμάτων, Καταχωρητές και Μανταλωτές. Χειμερινό Εξάμηνο

Χρονισμός Σύγχρονων Κυκλωμάτων, Καταχωρητές και Μανταλωτές. Χειμερινό Εξάμηνο HY220 Χρονισμός Σύγχρονων Κυκλωμάτων, Καταχωρητές και Μανταλωτές Χειμερινό Εξάμηνο 2009 20102010 Γενικό Μοντέλο Σύγχρονων Κυκλωμάτων clock input input CL reg CL reg output option feedback Τα καλώδια, εκτός

Διαβάστε περισσότερα

ε. Ένα κύκλωμα το οποίο παράγει τετραγωνικούς παλμούς και απαιτείται εξωτερική διέγερση ονομάζεται ασταθής πολυδονητής Λ

ε. Ένα κύκλωμα το οποίο παράγει τετραγωνικούς παλμούς και απαιτείται εξωτερική διέγερση ονομάζεται ασταθής πολυδονητής Λ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΑΒΒΑΤΟ 16/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ (ΣΥΣΤΗΜΑΤΑ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΕΝΔΕΙΚΤΙΚΕΣ

Διαβάστε περισσότερα

7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Μονάδες Μνήµης

7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Μονάδες Μνήµης 7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Εισαγωγή Καταχωρητής: είναι µία οµάδα από δυαδικά κύτταρα αποθήκευσης και από λογικές πύλες που διεκπεραιώνουν την µεταφορά πληροφοριών. Οι µετρητές είναι

Διαβάστε περισσότερα

Απαριθμητές. Παραδείγματα Απαριθμητής Modulo 4 ελαττούμενης δυαδικής μέτρησης (2 F-F).

Απαριθμητές. Παραδείγματα Απαριθμητής Modulo 4 ελαττούμενης δυαδικής μέτρησης (2 F-F). Απαριθμητές Ακολουθιακά συστήματα που περνούν από μια συγκεκριμένη ακολουθία καταστάσεων. Συνήθως μετρούν τους παλμούς του clock, γι αυτό λέγονται απαριθμητές. Άλλες εφαρμογές: α)διαίρεση συχνότητας Απαριθμητής

Διαβάστε περισσότερα

Εισαγωγή στα ακολουθιακά στοιχεία CMOS

Εισαγωγή στα ακολουθιακά στοιχεία CMOS Εθνικό Μετσόβιο Πολυτεχνείο Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής Εισαγωγή στη Σχεδίαση VLSI Εισαγωγή στα ακολουθιακά στοιχεία

Διαβάστε περισσότερα

Pipelining και Παράλληλη Επεξεργασία

Pipelining και Παράλληλη Επεξεργασία Pipelining και Παράλληλη Επεξεργασία Εισαγωγή Σωλήνωση - Pipelining Βασισμένη στην ιδέα σωλήνα που στέλνει νερό χωρίς να περιμένει το νερό που μπαίνει σε ένα σωλήνα να τελειώσει water pipe Μπορεί να οδηγήσει

Διαβάστε περισσότερα

Θέματα χρονισμού σε φλιπ-φλοπ και κυκλώματα VLSI

Θέματα χρονισμού σε φλιπ-φλοπ και κυκλώματα VLSI Εθνικό Μετσόβιο Πολυτεχνείο Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής Εισαγωγή στην Σχεδίαση Συστημάτων VLSI Θέματα χρονισμού

Διαβάστε περισσότερα

Σύγχρονοι Απαριθμητές. Διάλεξη 8

Σύγχρονοι Απαριθμητές. Διάλεξη 8 Σύγχρονοι Απαριθμητές Διάλεξη 8 Δομή της διάλεξης Εισαγωγή Σύγχρονος Δυαδικός Απαριθμητής Σύγχρονος Δεκαδικός Απαριθμητής Προγραμματιζόμενοι Απαριθμητές Ασκήσεις 2 Σύγχρονοι Απαριθμητές Εισαγωγή 3 Εισαγωγή

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακής Σχεδίασης

Εργαστήριο Ψηφιακής Σχεδίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων 15/11/2010. Σχεδιασμός Ακολουθιακών Κυκλωμάτων 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων 15/11/2010. Σχεδιασμός Ακολουθιακών Κυκλωμάτων 1 ΗΜΥ 20: Σχεδιασμός Ψηφιακών Συστημάτων 5//200 ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Σχεδιασμός Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Σχεδιασμός Ακολουθιακών Κυκλωμάτων Αρχή: Μια λίστα/περιγραφή

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ

Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ 1.1 Παράσταση ενός φυσικού αριθμού 1 1.2 Δεκαδικό σύστημα 1 1.3 Δυαδικό σύστημα 2 1.4 Οκταδικό σύστηνα 2 1.5 Δεκαεξαδικό σύστημα 2 1.6 Μετατροπές από ένα

Διαβάστε περισσότερα

Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level)

Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level) Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level) Απαντήσεις 1. Η παραγγελία είναι σάντουιτς ή ένα σουβλάκι και τηγανητές πατάτες η οποία μπορεί να αναλυθεί ως σάντουιτς ή (σουβλάκι και τηγανητές πατάτες)

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Προγραμματιζόμενη Λογική Γιατί;

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Προγραμματιζόμενη Λογική Γιατί; ΗΜΥ 20: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ- ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Συνδυαστικές Λογικές ιατάξεις Διδάσκουσα: Μαρία Κ. Μιχαήλ Περίληψη Λογικές ιατάξεις (Programmable Logic Devices PLDs)

Διαβάστε περισσότερα

ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ Σύγχρονο ακολουθιακό κύκλωμα είναι εκείνο του οποίου όλα τα FFs χρονίζονταιμετοίδιο ρολόι (clock). Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων Σχεδίαση Σύγχρονων Ακολουθιακών

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ. Ψηφιακά κυκλώματα.

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ. Ψηφιακά κυκλώματα. ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ Ψηφιακά κυκλώματα Σημειώσεις Αναστάσιος Ι. Μπαλουκτσής (Μηχανολόγος/Ηλεκτρολόγος Μηχανικός,

Διαβάστε περισσότερα

Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21

Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21 Περιεχόµενα Πρόλογος 11 Σκοπός αυτού του βιβλίου 11 Σε ποιους απευθύνεται αυτό το βιβλίο 12 Βασικά χαρακτηριστικά του βιβλίου 12 Κάλυψη συστηµάτων CAD 14 Εργαστηριακή υποστήριξη 14 Συνοπτική παρουσίαση

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Εκτέλεση πράξεων

Διαβάστε περισσότερα

σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ.

σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ. Εισαγωγή Εργαστήριο 2 ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Σκοπός του εργαστηρίου είναι να κατανοήσουµε τον τρόπο µε τον οποίο εκφράζεται η ψηφιακή λογική υλοποιώντας ασκήσεις απλά και σύνθετα λογικά κυκλώµατα (χρήση του

Διαβάστε περισσότερα

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού

Διαβάστε περισσότερα

Σχεδίαση Ακολουθιακών Κυκλωμάτων VLSI II

Σχεδίαση Ακολουθιακών Κυκλωμάτων VLSI II Σχεδίαση Ακολουθιακών Κυκλωμάτων VLSI II 2011 1 Περίγραμμα Διάλεξης Ακολουθιακή Λογική Βασικές Έννοιες Μέθοδοι Χρονικής Ακολουθίας Διαγράμματα Χρονισμού Max and Min-Delay Περιορισμοί Δανεισμός Χρόνου (Time

Διαβάστε περισσότερα

Ενότητα ΚΑΤΑΧΩΡΗΤΕΣ ΜΕΤΡΗΤΕΣ ΜΝΗΜΕΣ RAM

Ενότητα ΚΑΤΑΧΩΡΗΤΕΣ ΜΕΤΡΗΤΕΣ ΜΝΗΜΕΣ RAM 2 Ενότητα ΚΑΤΑΧΩΡΗΤΕΣ ΜΕΤΡΗΤΕΣ ΜΝΗΜΕΣ RAM Γενικές Γραμμές Παράλληλα και Σειριακά Δεδομένα Παράλληλοι λ Καταχωρητές Σήματα Ενεργοποίησης Διαβάσματος & Γραψίματος - Εισόδου & Εξόδου Υπολογισμός Περιόδου

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ, Θεωρητικής Κατεύθυνσης Ημερομηνία

Διαβάστε περισσότερα

Φόρμα Σχεδιασμού Διάλεξης (ημ/α:15/10/07, έκδοση:0.1 ) 1. Κωδικός Μαθήματος : 2. Α/Α Διάλεξης : 1 1. Τίτλος : 1. Εισαγωγή στην Αρχιτεκτονική Η/Υ

Φόρμα Σχεδιασμού Διάλεξης (ημ/α:15/10/07, έκδοση:0.1 ) 1. Κωδικός Μαθήματος : 2. Α/Α Διάλεξης : 1 1. Τίτλος : 1. Εισαγωγή στην Αρχιτεκτονική Η/Υ 2. Α/Α Διάλεξης : 1 1. Τίτλος : 1. Εισαγωγή στην Αρχιτεκτονική Η/Υ 2. Μαθησιακοί Στόχοι : Οι θεμελιώδεις αρχές λειτουργίας των υπολογιστών. Τύποι υπολογιστικών συστημάτων και στόχοι της αρχιτεκτονικής

Διαβάστε περισσότερα

Ψηφιακή Σχεδίαση Εργαστηριο 1. Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου

Ψηφιακή Σχεδίαση Εργαστηριο 1. Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου Ψηφιακή Σχεδίαση Εργαστηριο 1 Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου ΛΟΓΙΚΕΣ ΠΥΛΕΣ ΕΡΓΑΛΕΙΑ ΕΡΓΑΣΤΗΡΙΟ Το εργαλείο που θα χρησιμοποιηθεί

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 12 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 GROUP I A Λ ΤΡΙΤΗ PC-Lab GROUP IΙ Μ Ω ΠΑΡΑΣΚΕΥΗ Central Κέντρο

Διαβάστε περισσότερα

Μικροηλεκτρονική - VLSI

Μικροηλεκτρονική - VLSI ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μικροηλεκτρονική - VLSI Ενότητα 6.1: Συνδυαστική Λογική - Βασικές Πύλες Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

Ακολουθιακές εντολές. (Peter Ashenden, The Students Guide to VHDL)

Ακολουθιακές εντολές. (Peter Ashenden, The Students Guide to VHDL) Ακολουθιακές εντολές (Peter Ashenden, The Students Guide to VHDL) Εντολή If Τα βασικά χαρακτηριστικά της είναι τα εξής: Μπορεί να χρησιµοποιηθεί για τον έλεγχο µίας ή περισσοτέρων συνθηκών. Η πρώτη συνθήκη

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Μαρ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 4 -i: Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώµατα Περίληψη Συναρτήσεις και συναρτησιακές (λειτουργικές)

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Συνδιαστικά Λογικά Κυκλώματα / Ολοκληρωμένα Κυκλώματα 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Συνδιαστικά Λογικά Κυκλώματα / Ολοκληρωμένα Κυκλώματα 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Συνδυαστική Λογική / Ολοκληρωμένα Κυκλώματα (Μέρος Γ) Διδάσκουσα: Μαρία Κ. Μιχαήλ Περίληψη Έξοδοι υψηλής εμπέδησης: απομονωτές tri-state, πύλες μετάδοσης Ολοκληρωμένα

Διαβάστε περισσότερα