Galois and Residuated Connections on Sets and Power Sets

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Galois and Residuated Connections on Sets and Power Sets"

Transcript

1 Galois and Residuated Connections on Sets and Power Sets Yong Chan Kim 1 and Jung Mi Ko 2 Department of Mathematics, Gangneung-Wonju National University, Gangneung, , Korea Abstract We investigate the relations between various connections on set and those on power set. Moreover, we give their examples. Key Words: Galois, dual Galois, residuated and dual residuated connections 1. Introduction and Preliminaries An information consists of X, Y, R where X is a set of objects, Y is a set of attributes and R is a relation between X and Y. Wille [11] introduced the formal concept lattices by allowing some uncertainty in data as examples as Galois, dual Galois, residuated and dual residuated connections. Formal concept analysis is an important mathematical tool for data analysis and knowledge processing [1-5,8,9,11]. In this paper, we show that Galois, dual Galois, residuated and dual residuated connections on set induce various connections on power sets. In particular, we give their examples. Let X be a set. A relation e X X X is called a partially order set simply, posetif it is reflexive, transitive and anti-symmetric. We can define a poset e P X P X P X as A, B e P X iff A B for A, B P X. If X, e X is a poset and we define a function x, y e 1 X iff y, x e X, then X, e 1 X is a poset. Definition 1.1. [10] Let X, e X and Y,e Y be posets and f : X Y and g : Y X maps. 1 e X,f,g,e Y is called a Galois connection if for all x X, y Y, y, fx e Y iff x, gy e X. 2e X,f,g,e Y is called a dual Galois connection if for all x X, y Y, fx,y e Y iff gy,x e Y. 3 e X,f,g,e Y is called a residuated connection if for all x X, y Y, fx,y e Y iff x, gy e Y. 4 e X,f,g,e Y is called a dual residuated connection if for all x X, y Y, y, fx e Y iff gy,x e Y. 5 f is an isotone map if fx 1,fx 2 e Y for all x 1,x 2 e X. 6 f is an antitone map if fx 2,fx 1 e Y for all x 1,x 2 e X. Theorem 1.2. [10] Let X, e X and Y,e Y be a poset and f : X Y and g : Y X maps. 1 e X,f,g,e Y is a Galois connection if f,g are antitone maps and y, fgy e Y and x, gfx e X. Manuscript received Nov. 14, 2010; revised May. 27, e X,f,g,e Y is a dual Galois connection if f,g are antitone maps and fgy,y e Y and gfx,x e X. 3 e X,f,g,e Y is a residuated connection if f,g are isotone maps and fgy,y e Y and x, gfx e X. 4 e X,f,g,e Y is called a dual residuated connection if f,g are isotone maps and y, fgy e Y and gfx,x e X. Theorem 1.3. [9] 1 e P X,F,G,e P Y is a Galois connection iff F i Γ A i= i Γ F A i. 2 e P X,F,G,e P Y is a residuated connection iff F i Γ A i= i Γ F A i. 3 e P X,F,G,e P Y is a dual Galois connection iff F i Γ A i= i Γ F A i. 4 e P X,F,G,e P Y is a dual residuated connection iff F i Γ A i= i Γ F A i. 2. Galois and Residuated Connections on Sets and Power Sets Theorem 2.1. Let X, e X and Y,e Y be a poset and f : X Y and g : Y X maps. For each A P X and B P Y, we define operations as follows: F 1 A ={y Y x Xx A fx,y e Y }, F 2 A ={y Y x Xx A y, fx e Y }, G 1 B ={x X y Y y B x, gy e X }, G 2 B ={x X y Y y B gy,x e X }, H 1 B ={x X y Y y B &x, gy e X }, H 2 B ={x X y Y y B &gy,x e X }, I 1 A ={y Y x Xx A &y, fx e Y }, I 2 A ={y Y x Xx A &fx,y e Y },

2 J 1 B ={x X y Y x, gy e X y B}, J 2 B ={x X y Y gy,x e X y B}, K 1 A ={y Y x Xfx,y e Y x A}, K 2 A ={y Y x Xy, fx e Y x A}, L 1 B ={x X y Y y B c &x, gy e X }, L 2 B ={x X y Y y B c &gy,x e X }, M 1 A ={y Y x Xx A c &y, fx e Y }, M 2 A ={y Y x Xx A c &fx,y e Y }, Then the following statements hold: 1 F 1 {x} =I 2 {x} =M 2 {x} c =e Y fx, F 2 {x} = I 1 {x} = M 1 {x} c = e Y 1 fx, K 2 {x} c =e Y 1 fx c, K 1 {x} c =e Y c fx. 2 G 1 {y} = H 1 {y} = L 1 {y} c = e X 1 gy, G 2 {y} = H 2 {y} = L 2 {y} c = e X gy. J 1 {y} c =e X 1 gy c, J 2 {y} c =e X c gy. 3 e X,f,g,e Y is a Galois connection iff e P X,F 2,G 1,e P Y is a Galois connection iff e P X,K 2,H 1,e P Y is a dual residuated connection iff e P X,M 1,L 1,e P Y is a dual Galois connection iff e P X,I 1,J 1,e P Y is a residuated connection. 4 e X,f,g,e Y is a residuated connection iff e P X,F 1,G 1,e P Y is a Galois connection iff e P X,K 1,H 1,e P Y is a dual residuated connection iff e P X,M 2,L 1,e P Y is a dual Galois connection iff e P X,I 2,J 1,e P Y is a residuated connection. 5 e X,f,g,e Y is a dual Galois connection iff e P X,F 1,G 2,e P Y is a Galois connection iff e P X,K 1,H 2,e P Y is a dual residuated connection iff e P X,M 2,L 2,e P Y is a dual Galois connection iff e P X,I 2,J 2,e P Y is a residuated connection. 6 e X,f,g,e Y is a dual residuated connection iff e P X,F 2,G 2,e P Y is a Galois connection iff e P X,K 2,H 2,e P Y is a dual residuated connection iff e P X,M 1,L 2,e P Y is a dual Galois connection iff e P X,I 1,J 2,e P Y is a residuated connection. 7 If f i Γ x i = i Γ fx i for x i X, there exists a function g : Y X such that e X,f,g,e Y is a Galois connection. Moreover, e P X,F 2,G 1,e P Y is a Galois connection, e P X,K 2,H 1,e P Y is a dual residuated connection, e P X,M 1,L 1,e P Y is a dual Galois connection and e P X,I 1,J 1,e P Y is a residuated connection. 8 If f i Γ x i = i Γ fx i for x i X, there exists a function g : Y X such that a residuated connection. Moreover, e P X,F 1,G 1,e P Y is a Galois connection, e P X,K 1,H 1,e P Y is a dual residuated connection, e P X,M 2,L 1,e P Y is a dual Galois connection and e P X,I 2,J 1,e P Y is a residuated connection. 9 If f i Γ x i = i Γ fx i for x i X, there exists a function g : Y X such that e X,f,g,e Y is a dual Galois connection. Moreover, e P X,F 1,G 2,e P Y is a Galois connection, e P X,K 1,H 2,e P Y is a dual residuated connection, e P X,M 2,L 2,e P Y is a dual Galois connection and e P X,I 2,J 2,e P Y is a residuated connection. 10 If f i Γ x i = i Γ fx i for x i X, there exists a function g : Y X such that e X,f,g,e Y is a dual residuated connection. Moreover, e P X,F 2,G 2,e P Y is a Galois connection and e P X,K 2,H 2,e P Y is a dual residuated connection, e P X,M 1,L 2,e P Y is a dual Galois connection and e P X,I 1,J 2,e P Y is a residuated connection. Proof. 1 y F 1 {x} iff z Xz {x} fz,y e Y iff fx,y e Y. Similarly, F 2 {x} = e Y 1 fx. We K 1{x} c = e Y c fx from: y K 1 {x} c iff z Xfz,y e Y z {x} c iff z Xz {x} fz,y e Y iff fx,y e Y. Similarly, K 2 {x} c =e Y 1 fx c. Other cases and 2 are similarly proved as in 1. 3 First, if x, gy e X iff y, fx e Y, then A, G 1 B e P X iff B,F 2 A e P Y. B,F 2 A e P Y iff y Y y B y F 2 A iff y Y y B x Xx A y, fx e Y iff y Y x X x A y B x, gy e X iff x X x A y Y y B x, gy e X iff x X x A x G 1 B iff A, G 1 B e P X. Conversely, put A = {x} and B = {y}. Since F 2 {x} =e Y 1 fx and G 1{y} =e X 1 gy from 1 and 2, we y, fx e Y iff {y},f 2 {x} e P Y iff {x},g 1 {y} e P X iff x, gy e X. Second, if x, gy e X iff y, fx e Y, then H 1 B,A e P X iff B,K 2 A e P Y.

3 I 1 A,B e P Y iff A, J 1 B e P X. H 1 B,A e P X iff x Xx H 1 B x A iff x X y Y x, gy e X & y B x A iff x X y Y y B x, gy e X x A iff y Y y B x Xy, fx e Y x A iff y Y y B y K 2 A iff B,K 2 A e P X. Put A = {x} c and B = {y}. Since K 2 {x} c = e Y 1 fx c and H 1 {y} = e X 1 gy from 1 and 2, we x, gy e X iff H 1 {y}, {x} c e P X iff {y},k 2 {x} c e P Y iff y, fx e Y. Third, if x, gy e X iff y, fx e Y, then L 1 B,A e P X iff M 1 A,B e P Y. M 1 A,B e P Y iff y Y y M 1 A y B iff y Y z Xz A c &y, fz e Y y B iff y Y z Xz A c y, fz e Y y B iff z Xz A c y Y y, fz R y B iff z X y Y z,gy e X & y B c z A iff L 1 B,A e P X. Put A = {x} c and B = {y} c. Since M 1 {x} c = e Y 1 fx and L 1{y} c =e X 1 gy from 1 and 2, we I 1 A,B e P Y iff y Y y I 1 A y B iff y Y x Xx A &y, fx e Y y B iff y Y x Xx A y, fx e Y y B iff x Xx A y Y x, gy e X y B iff x Xx A x J 1 B iff A, J 1 B e P X. Put A = {x} and B = {y} c. Since I 1 {x} = e Y 1 fx and J 1{y} c = e X 1 gy c from 1 and 2, we y, fx e Y iff y I 1 {x} c iff I 1 {x}, {y} c e P Y iff {x},j 1 {y} c e P X iff x J 1 {y} c iff x, gy e X. 4 Let x, gy e X iff fx,y e Y be given. Then A, G 1 B e P X iff B,F 1 A e P Y from: B,F 1 A e P Y iff y Y y B y F 1 A iff y Y y B x Xx A fx,y e Y iff y Y x X x A y B x, gy e X iff x X x A y Y y B x, gy e X iff x X x A x G 1 B iff A, G 1 B e P X. Conversely, put A = {x} and B = {y}. Since F 1 {x} = e Y fx and G 1 {y} =e X 1 gy from 1 and 2, we fx,y e Y iff y F 1 {x} y, fx e Y iff y M 1 {x} c c iff M 1 {x} c, {y} c e P Y iff L 1 {y} c, {x} c e P X iff x L 1 {y} c c iff x, gy e X. iff {y},f 1 {x} e P Y iff {x},g 1 {y} e P X iff x G 1 {x} iff x, gy e X. Forth, if x, gy e X iff y, fx e Y, then Second, if x, gy e X iff fx,y e Y, then

4 H 1 B,A e P X iff B,K 1 A e P Y from: H 1 B,A e P X iff x Xx H 1 B x A iff x X y Y x, gy e X & y B x A iff x X y Y y B x, gy e X x A iff y Y y B x Xfx,y e Y x A iff y Y y B y K 1 A iff B,K 1 A e P Y. Put A = {x} c and B = {y}. Since K 1 {x} c = e Y c fx and H 1{y} =e X 1 gy from 1 and 2, we x, gy e X iff x H 1 {y} iff H 1 {y}, {x} c e P X iff {y},k 1 {x} c e P Y iff y K 1 {x} iff fx,y e Y. Third, if x, gy e X iff fx,y e Y, then L 1 B,A e P X iff M 2 A,B e P Y. M 2 A,B e P Y iff y Y y M 2 A y B iff y Y z Xz A c &fz,y e Y y B iff y Y z Xz A c fz,y e Y y B iff z Xz A c y Y fz,y R y B iff z X y Y z,gy e X & y B c z A iff L 1 B,A e P X. Put A = {x} c and B = {y} c. Since M 2 {x} c = e Y fx and L 1 {y} c =e X 1 gy from 1 and 2, we fx,y e Y iff y M 2 {x} c c iff M 2 {x} c, {y} c e P Y iff L 1 {y} c, {x} c e P X iff x L 1 {y} c c iff x, gy e X. Forth, if x, gy e X iff fx,y e Y, then I 2 A,B e P Y iff A, J 1 B e P X. I 2 A,B e P Y iff y Y y I 2 A y B iff y Y x Xx A &fx,y e Y y B iff y Y x Xx A fx,y e Y y B iff x Xx A y Y x, gy e X y B iff x Xx A x J 1 B iff A, J 1 B e P X. Put A = {x} and B = {y} c. Since I 2 {x} = e Y fx and J 1 {y} c = e X 1 gy c from 1 and 2, we fx,y e Y iff y I 1 {x} c iff I 1 {x}, {y} c e P Y iff {x},j 1 {y} c e P X iff x J 1 {y} c iff x, gy e X. 5 and 6 are similarly proved as in 3 and 4. 7 Define gy = {x y fx}. Ify fx, then x gy. Ifx gy, then fx fgy = f x = fx y. Hence e X,f,g,e Y is a Galois connection. Others follow 3. 8 Define gy = {x fx y}. If fx y, then x gy. If x gy, then fx fgy = f x = fx y. Hence e X,f,g,e Y is a residuated connection. Others follow 4. 9 Define gy = {x fx y}. Iffx y, then gy x. Ifgy x, then fx fgy = f x = fx y. Hence e X,f,g,e Y is a dual Galois connection. Others follow Define gy = {x y fx}. If y fx, then gy x. If gy x, then fx fgy = f x = fx y. Hence e X,f,g,e Y is a dual residuated connection. Others follow 6. Example 2.2. Let X = {a, b, c, d},e X and Y = {x, y, z},e Y be a poset with e X = {a, a, a, b, a, c, a, d, b, b, b, d, c, c, c, d, d, d}. e Y = {x, x, x, y, x, z, y, y, z,y, z,z}. 1 Let f : X Y as fa =x, fb =z,fc = fd =y. Then f i Γ x i = i Γ fx i for x i X. Define gw = {s X fs w}. Then g : Y X as gx =a, gy =d, gz =b. Then e X,f,g,e Y is a residuated connection. By Theorem and 2, we obtain F 1 = I 2 {a} =M 2 {a} c ={x, y, z} =e Y fa, F 1 = I 2 {b} =M 2 {a} c ={y, z} =e Y fb, F 1 = I 2 {c} =M 2 {a} c ={y} =e Y fc, F 1 = I 2 {d} =M 2 {a} c ={y} =e Y fd. K 1 {a} c = =e Y c fa, K 1 {b} c = {x} =e Y c fb, K 1 {c} c = {x, z} =e Y c fc, K 1 {d} c = {x, z} =e Y c fd.

5 G 1 = H 1 {x} =L 1 {x} c ={a} =e X 1 gx, G 1 = H 1 {y} =L 1 {y} c =X =e Y 1 gy, G 1 = H 1 {z} =L 1 {z} c ={a, b} =e Y 1 gz. J 1 {x} c ={b, c, d} =e X 1 gx c, J 1 {y} c = =e Y 1 gy c, J 1 {z} c ={c, d} =e Y 1 gz c. We obtain F 1 : P X P Y and G 1 : P Y P X as follows: Y if A {, {a}}, F 1 A = {y, z} if A {{b}, {a, b}}, {y} otherwise, X G 1 B = {a, b} {a} if B {, {y}}, if B {{z}, {y, z}}, otherwise. Then e P X,F 1,G 1,e P Y is a Galois connection. We obtain K 1 : P X P Y and H 1 : P Y P X as follows: K 1 A = H 1 B = Y if A = X, {x} if a A, {a, b} A, {x, z} if {a, b} A X, otherwise, if B =, X if y B, {a, b} if z B,y B, {a} otherwise. Then e P X,K 1,H 1,e P Y is a dual residuated connection. We obtain M 2 : P X P Y and L 1 : P Y P X as follows: if A = X, {y} if A {{a, b}, {a, b, c}, {a, b, d}}, M 2 A = {y, z} if A {{a}, {a, d}, {a, c, d}}, if B = X, {a} if B = {y, z}, L 1 B = {a, b} if B {{y}, {x, y}, X otherwise. Then e P X,M 2,L 1,e P Y is a dual Galois connection. We obtain I 2 : P X P Y and J 1 : P Y P X as follows: if A =, {z} if A {{c}, {d}, {c, d}}, I 2 A = {y, z} if A {{b}, {b, c}, {b, d}, {b, c, d}}, X if B = Y, {b, c, d} if B = {y, z}, J 1 B = {c, d} if B {{y}, {x, y}}, otherwise. Then e P X,I 2,J 1,e P Y is a residuated connection. 2 Let f : X Y as fa =y, fb =z,fc = fd =x. Then f i Γ x i = i Γ fx i for x i X. Define gw = {s X fs w}. Then g : Y X as gx =d, gy =a, gz =b. Then e X,f,g,e Y is a Galois connection. By Theorem and 2, we obtain F 2 = I 1 {a} =M 1 {a} c =Y =e Y 1 fa, F 2 = I 1 {b} =M 1 {b} c ={x, z} =e Y 1 F 2 = I 1 {c} =M 1 {c} c ={x} =e Y 1 fc, F 2 = I 1 {d} =M 1 {d} c ={x} =e Y 1 fb, fd. G 1 = H 1 {x} =L 1 {x} c =X =e X 1 gx, G 1 = H 1 {y} =L 1 {y} c ={a} =e Y 1 gy, G 1 = H 1 {z} =L 1 {z} c ={a, b} =e Y 1 J 1 {x} c = =e X 1 gx c, J 1 {y} c ={b, c, d} =e Y 1 J 1 {z} c ={c, d} =e Y 1 K 2 {a} c K 2 {b} c K 2 {c} c K 2 {d} c = =e 1 = {y} =e 1 = {y, z} =e 1 = {y, z} =e 1 gy c, gz c. Y c fa, Y c fb, Y c fc, Y c fd. gz. We obtain F 2 : P X P Y and G 1 : P Y P X as follows: Y if A {, {a}}, F 2 A = {x, z} if A {{b}, {a, b}}, {x} otherwise, X if B {, {x}}, G 1 B = {a, b} if B {{z}, {x, z}}, {a} otherwise. Then e P X,F 2,G 1,e P Y is a Galois connection. We obtain K 2 : P X P Y and H 1 : P Y P X as follows: Y if A = X, {y} if a A, {a, b} A, K 2 A = {y, z} if {a, b} A X, otherwise, H 1 B = if B =, X if x B, {a, b} if z B,x B, {a} otherwise. Then e P X,K 2,H 1,e P Y is a dual residuated connection.

6 We obtain M 1 : P X P Y and L 1 : P Y P X as follows: if A = X, {x} if A {{a, b}, {a, b, c}, {a, b, d}}, M 1 A = {x, z} if A {{a}, {a, c}, {a, d}, {a, c, d}}, if B = Y, {a} if B = {x, z}, L 1 B = {a, b} if B {{x}, {x, y}}, X otherwise. Then e P X,M 1,L 1,e P Y is a dual Galois connection. We obtain I 1 : P X P Y and J 1 : P Y P X as follows: if A =, {z} if A {{c}, {d}, {c, d}}, I 1 A = {x, z} if A {{b}, {b, c}, {b, d}, {b, c, d}}, X if B = Y, {b, c, d} if B = {x, z}, J 1 B = {b, d} if B {{x}, {x, y}}, otherwise. Then e P X,I 1,J 1,e P Y is a residuated connection. References [1] R. Bělohlávek, Similarity relations in concept lattices, J. Logic and Computation, vol. 10, no 6,pp , [2] R. Bělohlávek, Lattices of fixed points of Galois connections, Math. Logic Quart., vol. 47, pp , [3] R. Bělohlávek, Concept lattices and order in fuzzy logic, Ann. Pure Appl. Logic, vol. 128, pp , [5] G. Georgescu, A. Popescue, Non-dual fuzzy connections, Arch. Math. Log., vol. 43, pp , [6] J.G. Garcia, I.M. Perez, M.A.P. Vicente, D. Zhang, Fuzzy Galois connections categorically, Math. Log. Quart., vol. 56, pp , [7] H. Lai, D. Zhang, Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory, Int. J. Approx. Reasoning, vol. 50, pp , [8] Y.C. Kim, J.W. Park, Join preserving maps and various concepts, Int.J. Contemp. Math. Sciences, vol. 5, no.5, pp , [9] J.M. Ko, Y.C. Kim, Various connections and their relations, submit to Int. J. Fuzzy Logic and Intelligent Systems. [10] Ewa. Orlowska, I. Rewitzky, Algebras for Galoisstyle connections and their discrete duality, Fuzzy Sets and Systems, vol.161, pp , [11] R. Wille, Restructuring lattice theory; an approach based on hierarchies of concept, in: 1. RivalEd., Ordered Sets, Reidel, Dordrecht, Boston, [12] Wei Yao, Ling-Xia Lu, Fuzzy Galois connections on fuzzy posets, Math. Log. Quart., vol. 55, pp , Yong Chan Kim He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1984 and 1991, respectively. From 1991 to present, he is a professor in the Department of Mathematics, Gangneung -Wonju University. His research interests are fuzzy topology and fuzzy logic. yck@gwnu.ac.kr [4] R. Bělohlávek, Fuzzy relational systems, Kluwer Academic Publisher, New York, fuzzy logic. Jung Mi Ko She received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1983 and 1988, respectively. From 1988 to present, she is a professor in Department of Mathematics, Gangneung- Wonju University. Her research interests are jmko@gwnu.ac.kr

The Properties of Fuzzy Relations

The Properties of Fuzzy Relations International Mathematical Forum, 5, 2010, no. 8, 373-381 The Properties of Fuzzy Relations Yong Chan Kim Department of Mathematics, Gangneung-Wonju National University Gangneung, Gangwondo 210-702, Korea

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Fuzzifying Tritopological Spaces

Fuzzifying Tritopological Spaces International Mathematical Forum, Vol., 08, no. 9, 7-6 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/imf.08.88 On α-continuity and α-openness in Fuzzifying Tritopological Spaces Barah M. Sulaiman

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Intuitionistic Supra Gradation of Openness

Intuitionistic Supra Gradation of Openness Applied Mathematics & Information Sciences 2(3) (2008), 291-307 An International Journal c 2008 Dixie W Publishing Corporation, U. S. A. Intuitionistic Supra Gradation of Openness A. M. Zahran 1, S. E.

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

Quick algorithm f or computing core attribute

Quick algorithm f or computing core attribute 24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 3, Number 1 (2011), pp. 61-71 International Research Publication House http://www.irphouse.com A Note on Characterization

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS

SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS IFSCOM016 1 Proceeding Book No. 1 pp. 84-90 (016) ISBN: 978-975-6900-54-3 SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS SINEM TARSUSLU(YILMAZ), GÖKHAN ÇUVALCIOĞLU,

Διαβάστε περισσότερα

Operation Approaches on α-γ-open Sets in Topological Spaces

Operation Approaches on α-γ-open Sets in Topological Spaces Int. Journal of Math. Analysis, Vol. 7, 2013, no. 10, 491-498 Operation Approaches on α-γ-open Sets in Topological Spaces N. Kalaivani Department of Mathematics VelTech HighTec Dr.Rangarajan Dr.Sakunthala

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ) IFSCOM016 1 Proceeding Book No. 1 pp. 155-161 (016) ISBN: 978-975-6900-54-3 SOME RESULTS ON S α,β AND T α,β INTUITIONISTIC FUZZY MODAL OPERATORS GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

A Lambda Model Characterizing Computational Behaviours of Terms

A Lambda Model Characterizing Computational Behaviours of Terms A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero

Διαβάστε περισσότερα

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

On Intuitionistic Fuzzy LI -ideals in Lattice Implication Algebras

On Intuitionistic Fuzzy LI -ideals in Lattice Implication Algebras Journal of Mathematical Research with Applications Jul., 2015, Vol. 35, No. 4, pp. 355 367 DOI:10.3770/j.issn:2095-2651.2015.04.001 Http://jmre.dlut.edu.cn On Intuitionistic Fuzzy LI -ideals in Lattice

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής

Διαβάστε περισσότερα

Iterated trilinear fourier integrals with arbitrary symbols

Iterated trilinear fourier integrals with arbitrary symbols Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) (  ( 35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

Chap. 6 Pushdown Automata

Chap. 6 Pushdown Automata Chap. 6 Pushdown Automata 6.1 Definition of Pushdown Automata Example 6.1 L = {wcw R w (0+1) * } P c 0P0 1P1 1. Start at state q 0, push input symbol onto stack, and stay in q 0. 2. If input symbol is

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

On the k-bessel Functions

On the k-bessel Functions International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II)

ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II) Commun. Korean Math. Soc. 25 (2010), No. 3, pp. 457 475 DOI 10.4134/CKMS.2010.25.3.457 ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II) Ahmed Abd El-Kader Ramadan, Salah El-Deen Abbas, and Ahmed Aref

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

The operators over the generalized intuitionistic fuzzy sets

The operators over the generalized intuitionistic fuzzy sets Int. J. Nonlinear Anal. Appl. 8 (2017) No. 1, 11-21 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2017.11099.1542 The operators over the generalized intuitionistic fuzzy sets Ezzatallah

Διαβάστε περισσότερα

Covariance and Pseudo-Covariance of Complex Uncertain Variables

Covariance and Pseudo-Covariance of Complex Uncertain Variables Covariance and Pseudo-Covariance of Complex Uncertain Variables Rong Gao 1, Hamed Ahmadzade 2, Mojtaba Esfahani 3 1. School of Economics and Management, Hebei University of Technology, Tianjin 341, China

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,

Διαβάστε περισσότερα

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points Applied Mathematical Sciences, Vol. 2, 2008, no. 35, 1739-1748 Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points S. M. Khairnar and

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

The k-bessel Function of the First Kind

The k-bessel Function of the First Kind International Mathematical Forum, Vol. 7, 01, no. 38, 1859-186 The k-bessel Function of the First Kin Luis Guillermo Romero, Gustavo Abel Dorrego an Ruben Alejanro Cerutti Faculty of Exact Sciences National

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

dim(u) = n 1 and {v j } j i

dim(u) = n 1 and {v j } j i SOLUTIONS Math B4900 Homework 1 2/7/2018 Unless otherwise specified, U, V, and W denote vector spaces over a common field F ; ϕ and ψ denote linear transformations; A, B, and C denote bases; A, B, and

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΑΤΡΙΒΗ ΤΟΥ ΕΥΘΥΜΙΟΥ ΘΕΜΕΛΗ ΤΙΤΛΟΣ Ανάλυση

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα