ΔΙΔΑΚΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΚΑΘΗΓΗΤΕΣ ΜΑΘΗΜΑΤΙΚΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΔΙΔΑΚΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΚΑΘΗΓΗΤΕΣ ΜΑΘΗΜΑΤΙΚΩΝ"

Transcript

1 ΔΙΔΚΤΙΚΟ ΥΛΙΚΟ Ι ΚΘΗΗΤΕΣ ΜΘΗΜΤΙΚΩΝ Σ Χ Ε Δ Ι Δ Ι Δ Σ Κ Λ Ι Σ Δημήτρης Μπουνάκης Σχ. Σύμβουλος Μαθηματικών Ηράκλειο, Οκτώβριος 2010 ΘΕΜ : ΔΙΔΚΤΙΚΟ ΥΛΙΚΟ ΛΥΚΕΙΟΥ : ΣΧΕΔΙ ΔΙΔΣΚΛΙΣ Συνάδελφοι, Ένας από τους παράγοντες που συμβάλλουν ώστε μια διδασκαλία να είναι αποτελεσματική, είναι και ο σωστός προγραμματισμός της. Το στόχο αυτό εξυπηρετούν κυρίως τα σχέδια διδασκαλίας. ια να θυμηθούν λοιπόν οι παλαιότεροι και να γνωρίσουν οι νέοι συνάδελφοι, σας στέλνω ένα σύντομο περιεχόμενο ενός μοντέλου σχεδίασης της διδασκαλίας (δεν είναι μοναδικό), σύμφωνα με την θεωρία της «ρχιτεκτονικής της Διδασκαλίας» των Gagne - Φλουρή και τρόπους υλοποίησής του σε μερικές διδακτικές ενότητες Μαθηματικών του Λυκείου. Το σχέδιο αυτό χαρακτηρίζεται ως πλήρες, σε αντίθεση με ένα απλό σχέδιο διδασκαλίας : το απλό σχέδιο περιέχει συνήθως τις βασικές διδακτικές ενέργειες, όχι αναλυτικά γραμμένες και μερικές κρίσιμες ερωτήσεις ή υποδείξεις, ασκήσεις ή προβλήματα. Πιστεύω ότι τα πλήρη σχέδια πρέπει να γίνονται όταν η διδακτική ενότητα το επιβάλλει (π.χ. διδακτική ενότητα με σημαντική ή σύνθετη θεωρία). Ευχής έργο θα ταν κάθε σχολική χρονιά κάθε συνάδελφος, ιδίως ο νέος, να φτιάχνει τουλάχιστον 5-6 πλήρη σχέδια διδασκαλίας διατηρώντας συγχρόνως και ένα αρχείο ανά τάξη, χρήσιμο για τα επόμενα χρόνια. Η γνώση και η εμπειρία που θα αποκόμιζε θα ταν πολύτιμη για το διδακτικό του έργο. ια τα περισσότερα μαθήματα αρκεί πολλές φορές ένα απλό σχέδιο διδασκαλίας μαζί με την γενικότερη εσωτερικευμένη γνώση, εμπειρία και ικανότητα του Καθηγητή. υτό που πρέπει να αποφεύγει ο καθηγητής είναι να επιχειρεί να διδάξει διδακτικά απροετοίμαστος, γνωρίζοντας μόνο την μαθηματική ύλη, ή μάλλον με μόνη την βεβαιότητα αυτή, «λέγοντας» απλά αυτά που έχει κατά νου, χωρίς πρόγραμμα, χωρίς μέθοδο, χωρίς πορεία, «όπως έρθουν τα πράγματα». έβαια, μερικοί ισχυρίζονται ότι τα σχέδια διδασκαλίας είναι παρωχημένα, ότι δεν πρέπει να υπάρχουν, με διάφορα επιχειρήματα, ξεχνώντας ασφαλώς ότι και η απλή αγορά ενός ενδύματός μας γίνεται με κάποιο (άγραφο) σχέδιο και ότι πράξεις στη ζωή μας γενικά, οποιασδήποτε μορφής, που γίνονται στη τύχη και απρογραμμάτιστα είναι συχνά λανθασμένες με ολέθριες πολλές φορές συνέπειες... Ορισμένα από τα επιχειρήματα που ακούει κανείς κατά των σχεδίων (κυρίως αυτών της παλιάς

2 Δ.Ι.Μ.- Σ. Σ. Μ. - Σχέδια Διδασκαλίας Λυκείου 2 άκαμπτης μορφής) έχουν θεωρητική βάση, σύμφωνα με τις νέες απόψεις για τη διδασκαλία-μάθηση. Παραβλέπουν όμως το γεγονός ότι η διδασκαλία δεν είναι μια υπόθεση εργασίας, ένα θεωρητικό γεγονός, αλλά ένα σύνολο ζωντανών και συχνά «απρόβλεπτων» πράξεων, με τεράστιες συνέπειες στη πνευματική ζωή του μαθητήαλλά και στο κύρος του Καθηγητή- που αν δεν έχουν κάποιο (όχι αυστηρό) προγραμματισμό, σπάνια θα τον βοηθήσουν πραγματικά: απλά, το πιθανότερο είναι ότι θα περάσει η ώρα με τον καθηγητή «να παραδίνει το μάθημα» με λίγες πιθανότητες αποτελεσματικής διδασκαλίας. Εξ άλλου ένα σχέδιο διδασκαλίας είναι ανεξάρτητο της μορφής διδασκαλίας και της μεθόδου που θα επιλεγεί και δεν υπονοεί σε καμιά περίπτωση (όπως παλαιότερα) κάποια σταθερή μορφή ή μέθοδο. Μια συχνή ερώτηση είναι αν ένα σχέδιο διδασκαλίας «πρέπει» να εφαρμόζεται επακριβώς. Η απάντηση είναι ότι στην πράξη λίγες φορές υλοποιείται εξ ολοκλήρου και αυτό οφείλεται, είτε στην πληθώρα δραστηριοτήτων, είτε στο ότι δεν μπορούμε να προβλέψομε επακριβώς τις δυσκολίες που θα συναντήσουν οι μαθητές κλπ. Είναι όμως προτιμότερο να υπάρχει ένας «πλούσιος» σχεδιασμός υπακούοντας στις αρχές της συνολικότητας αλλά και πρακτικότητας (χωρίς φυσικά πλατειασμούς ή επουσιώδη ή άσχετα θέματα), παρά να είναι ελλιπής. έβαια η εμπειρία και η γνώση θα μας βοηθήσει σιγά-σιγά να προσεγγίζουμε το σχεδιασμό με την διδακτική πράξη. Εξ άλλου ένα σχέδιο διδασκαλίας είναι απλά ένα σχέδιο, ένα οδηγός μελλοντικής εργασίας. Το που θα μας οδηγήσει η διδακτική πράξη, δεν είναι πάντα εύκολο να το ξέρουμε, έχουμε όμως ένα οδηγό, ένα «μπούσουλα» για να μην χάσουμε τον «σωστό δρόμο». Εν τέλει, σχεδιάζοντας μια διδακτική ενότητα, ξέρουμε μέχρι που μπορούμε να πάμε, άσχετα αν θα χρειαστούμε και δεύτερη διδακτική ώρα για την υλοποίηση του σχεδίου. Δεν μας επιτρέπει ο χώρος εδώ να επεκταθούμε άλλο στην σκοπιμότητα των σχεδίων διδασκαλίας, που είναι άλλωστε βασικό θέμα σε βιβλία διδακτικής Μαθηματικών, γι αυτό είναι ευπρόσδεκτες οποιεσδήποτε σχετικές ερωτήσεις, παρατηρήσεις και σχόλια. To διδακτικό υλικό αυτό περιλαμβάνει: ενική μορφή και περιεχόμενο ενός (πλήρους) σχεδίου διδασκαλίας,. Σχέδια Διδασκαλίας Λυκείου (10, τάξη 6, τάξη B 3, τάξη 1) Όλα σχεδόν τα σχέδια διδασκαλίας έχουν υλοποιηθεί προσωπικά σε δειγματικές διδασκαλίες. Tα σχέδια αυτά δίνονται εδώ ως παραδείγματα, αλλά και για εφαρμογή, με κάποιες ίσως προσαρμογές κατά την κρίση του διδάσκοντα.

3 Δ.Ι.Μ.- Σ. Σ. Μ. - Σχέδια Διδασκαλίας Λυκείου 3. ΜΟΡΦΗ ΚΙ ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΣ (ΠΛΗΡΟΥΣ) ΣΧΕΔΙΟΥ ΔΙΔΣΚΛΙΣ Ι. Διδακτικοί στόχοι - Ταξινόμηση σε είδη μάθησης. Διατυπώνουμε όσο το δυνατόν σαφέστερα (με συγκεκριμένα ρήματα) τι επιδιώκουμε να κάνουν ή τι δυνατότητες θα αποκτήσουν οι μαθητές στο τέλος του μαθήματος (ή μετά από μια σειρά μαθημάτων).υτό δεν σημαίνει ότι χάνονται οι δυνατοί στόχοι, των μαθηματικών: λογική σκέψη, κριτική σκέψη, ανάλυση, σύνθεση κ.ά. πλά αυτοί οι στόχοι είναι μακροπρόθεσμοι, ενώ η σχολική καθημερινότητα απαιτεί ένα ξεκαθάρισμα στόχων που θα εμπνέουν και θα φωτίζουν την κοινή πορεία δασκάλου και μαθητών. Οι διδακτικοί στόχοι αντιστοιχούν στα είδη μάθησης (κατά Gagne, όσο αφορά τον γνωστικό τομέα) που είναι: 1. «Πληροφορίες», δηλαδή απλές γνώσεις, ορισμούς, κανόνες, π.χ. να αναφέρουν οι μαθητές (ή να απομνημονεύσουν) τις ιδιότητες των δυνάμεων ή τα κριτήρια ισότητας τριγώνων κλπ. 2. «Νοητικές δεξιότητες». Είναι οι διαφόρων ειδών ικανότητες που επιδιώκουμε να μπορούν να κάνουν οι μαθητές, όπως δυνατότητα εφαρμογής κανόνα, σύνθεση κανόνων, λύση προβλήματος, π.χ. να μπορούν οι μαθητές να εφαρμόσουν ένα κριτήριο ισότητας τριγώνων σε δεδομένα τρίγωνα (κανόνας) ή να μπορούν να συγκρίνουν δυο τμήματα ή δυο γωνίες (επιλέγοντας οι ίδιοι τα κατάλληλα τρίγωνα: σύνθεση κανόνων). 3. «νωστική στρατηγική»: είναι η δυνατότητα του ατόμου να κατευθύνει την προσοχή, την αντίληψη, την μνήμη και γενικά τις πνευματικές του δυνάμεις ώστε να επινοεί τρόπους αντιμετώπισης δύσκολων ή πρωτότυπων ή ανοικτών προβλημάτων (όχι άμεση εφαρμογή συγκεκριμένης θεωρίας- ασκήσεις). Παρόλο που το είδος αυτό μάθησης είναι δύσκολο να καλλιεργηθεί ικανοποιητικά στο σχολείο, πρέπει να το επιδιώκουμε όσο είναι δυνατόν. Μέσα στις συνθήκες μάθησης της γνωστικής στρατηγικής είναι και η μεθοδολογία λύσης προβλημάτων, όπως και η παρουσίαση από τον καθηγητή λύσεων σε μη τετριμμένα προβλήματα. Στα μαθηματικά υπάρχουν πολλές ευκαιρίες και προβλήματα που μπορούν να καλλιεργήσουν αυτό το είδος μάθησης, π.χ. α) σε μια μεγαλούπολη διασταυρώνονται, ανά δυο, 100 δρόμοι, χωρίς να περνούν τρεις ή παραπάνω από το ίδιο σταυροδρόμι. Πόσα φανάρια θα χρειαστούν για τις διασταυρώσεις αυτές; β) Να βρεθεί ένα δεκαψήφιος (φυσικός) αριθμός ώστε το πρώτο ψηφίο του (από αριστερά) να δηλώνει το πλήθος των μηδενικών του, το δεύτερο το πλήθος των 1, το τρίτο το πλήθος των 2, κ.ο.κ., το δέκατο το πλήθος των 9 (που έχει αυτός ο αριθμός). ΙΙ. Μορφή διδασκαλίας: Είναι ο (ορατός) τρόπος που επικοινωνεί ο μαθητής με τον Καθηγητή ( π.χ. μονόλογος, αυτενέργεια, καθοδηγούμενη αυτενέργεια, διάλογος, ερωτηματικός διάλογος, ομαδοσυνεργατική διδασκαλία κλπ). ΙΙΙ. Διδακτική Μέθοδος : είναι η μέθοδος με την οποία ο μαθητής κατακτά το γνωστικό αντικείμενο (π.χ. Επαγωγική, Παραγωγική, εποπτικοπαραγωγική ναλυτική, Συνθετική, κλπ). Στο Λύκειο χρησιμοποιούμε κυρίως (αλλά όχι

4 Δ.Ι.Μ.- Σ. Σ. Μ. - Σχέδια Διδασκαλίας Λυκείου 4 αποκλειστικά) την παραγωγική μέθοδο διδασκαλίας, ενώ στο υμνάσιο την επαγωγική (αλλά όχι αποκλειστικά, ιδίως στην τάξη). ΙV. Εποπτικά μέσα: π.χ. απλός ή διαδραστικός πίνακας, χρωματιστές κιμωλίες ή μαρκαδόροι., διάφορες κατασκευές, προγράμματα με Η.Υ κλπ. V. Διδακτικές ενέργειες (Δ. Ε.) Τις εσωτερικές διαδικασίες ή «φάσεις της μάθησης» που γίνονται στο εσωτερικό του μαθητή (κεντρικό νευρικό σύστημα) μπορούν να επηρεάσουν οι εξωτερικές (διδακτικές) ενέργειες του δασκάλου-καθηγητή που (πρέπει να) γίνονται κατά την διάρκεια της διδασκαλίας. Οι Δ. Ε. (κατά Gagne) είναι 1. Δημιουργία κινήτρων μάθησης. Δίνουμε ένα ερώτημα, ένα πρόβλημα ή μια δραστηριότητα που ζητά απάντηση-λύση για να κινήσουμε το ενδιαφέρον των μαθητών. Τα νέα βιβλία του υμνασίου είναι πλούσια σε τέτοιες δραστηριότητες. Τα προβλήματα είναι συνήθως από την καθημερινή ζωή όπου οι μαθητές έχουν παραστάσεις, αλλά μπορούν να αναφέρονται και σε «έλλειψη καθαρά μαθηματικής γνώσης» (συνήθως στο Λύκειο). Πάντα πρέπει να μας βασανίζει το ερώτημα: - πως θα δημιουργήσω κίνητρα στους μαθητές μου για το νέο μάθημα, πως θα το κάνω ενδιαφέρον; 2. Πληροφόρηση των μαθητών για τους στόχους του μαθήματος. Οι μαθητές είναι καλό να γνωρίζουν από την αρχή για το τι πρόκειται περίπου να μάθουν. Η ενέργεια αυτή μπορεί υλοποιηθεί και με ένα συνοπτικό διάγραμμα του μαθήματος Έτσι πιστεύουμε ότι θα αυξηθεί το ενδιαφέρον των μαθητών για το νέο μάθημα. 3. νάκληση προηγουμένων γνώσεων. Είναι προφανής η χρησιμότητα των προηγούμενων σχετικών γνώσεων για την κατανόηση του νέου μαθήματος, προπάντων στα Μαθηματικά. Πολλές φορές οι μαθητές δυσκολεύονται να κατανοήσουν το νέο μάθημα γιατί δεν έχει ληφθεί υπόψη ο παράγοντας αυτός. 4. Κατεύθυνση προσοχής μαθητών ή παρουσίαση του υλικού για την μάθηση. Στρέφομε την προσοχή των μαθητών σε συγκεκριμένο σημείο ή ερέθισμα ή πρόβλημα και τους παροτρύνουμε να προχωρήσουν.. 5. (Ενδεχόμενη) Παροχή οδηγιών για νέα μάθηση. Μετά την υποβολή ερώτησης ή ανάθεση εργασίας στους μαθητές, αν δεν προχωρούν τους απευθύνουμε ερωτήσεις-υποδείξεις, οδηγίες, νύξεις, παροτρύνσεις κ.λ.π. για να τους βοηθήσουμε. Η βοήθεια δίνεται βαθμιαία, από τις γενικές ερωτήσεις-υποδείξεις, προχωρούμε ανάλογα με την πρόοδο των μαθητών στις πιο ειδικές (λ. διδακτικό υλικό «Πώς να το λύσω» καθώς και «Οι ερωτήσεις στη διδασκαλία των Μαθηματικών»). 6. Ενίσχυση της συγκράτησης των νέων στοιχείων. νακεφαλαίωση Επισήμανση των δυνατοτήτων των προτάσεων, θεωρημάτων κλπ

5 Δ.Ι.Μ.- Σ. Σ. Μ. - Σχέδια Διδασκαλίας Λυκείου 5 Μέριμνα για την καλή «κωδικοποίηση» των νέων στοιχείων με μνημονικούς κανόνες, πινακοποίηση, ιεράρχηση, ταξινόμηση, ερωτήσεις σύντομης απάντησης κλπ. 7. Εκτέλεση ενεργειών μαθητών ανατροφοδότηση. πλές εφαρμογές και ασκήσεις της θεωρίας. ασικό σημείο εδώ είναι η επιβεβαίωση της νέας γνώσης ή των ελλείψεων του μαθητή. Προτιμούμε να έρθει στο πίνακα για να παρουσιάσει την εργασία του «μέτριος» μαθητής. Ο μαθητής αυτός, συνήθως έχει εργαστεί, έχει «πάθει» και είναι σε θέση να «παρασύρει» στη μάθηση όλη την τάξη με τα πιθανά λάθη του. 8. Μεταφορά μάθησης. Λύση αρχικού προβλήματος-δραστηριότητας, εφαρμογές δυσκολότερου επιπέδουασκήσεις (οριζόντια μεταφορά) αλλά και υποβοήθηση επόμενων μαθημάτων (κατακόρυφη μεταφορά). 9. Εργασία στο σπίτι για εμπέδωση της μάθησης και έλεγχος για επιβεβαίωση της εργασίας στα τετράδια των μαθητών. Ιδιαίτερη πρόβλεψη για προαιρετικές ασκήσεις για τους καλούς μαθητές ή μαθητές με αυξημένα Μαθηματικά ενδιαφέροντα. Η σειρά που με την οποία γίνονται οι Δ. Ε. είναι η παραπάνω, όμως δεν είναι αυστηρή: μπορεί να αλλάζει, αλλά και να παραλείπεται κάποια Δ.Ε., π.χ. η ανάκληση προηγουμένων γνώσεων αν είναι διαπιστωμένη η κατάκτησή τους. Πολλές φορές στην αρχή του μαθήματος μαζί με τον έλεγχο του προηγουμένου μαθήματος κάνουμε και ανάκληση προηγουμένων γνώσεων. Επίσης η Δ.Ε. της συγκράτησης των νέων στοιχείων μπορεί να γίνει μετά ή συγχρόνως με την εκτέλεση των ενεργειών του μαθητή κλπ. Περισσότερα για τα παραπάνω θέματα ο αναγνώστης θα βρει κυρίως στο βιβλίο των Μ. Κασσωτάκη. Φλουρή: Μάθηση και Διδασκαλία, τ., 2005, σελ και σελ , το οποίο συνιστώ γενικά για κάθε εκπαιδευτικό. ια οποιαδήποτε ερώτηση, παρατήρηση ή συμπλήρωση είμαι στη διάθεσή σας.

6 Δ.Ι.Μ.- Σ. Σ. Μ. - Σχέδια Διδασκαλίας Λυκείου 6. ΣΧΕΔΙ ΔΙΔΣΚΛΙΣ ΛΥΚΕΙΟΥ 1. ΣΧΕΔΙΟ ΔΙΔΣΚΛΙΣ (ΠΛΗΡΕΣ): ΛΕΡ ΛΥΚΕΙΟΥ 2 η Διδακτική ενότητα (από την ενότητα 1.2): Ιδιότητες ανισοτήτων (1,2,3). Σημείωση: ια την ενότητα 1.2 προτείνω, λόγω της σπουδαιότητάς της, χωρισμό σε 4 Διδακτικές ενότητες: 1 η.ορισμός διάταξης και οι πέντε ιδιότητες της σελίδας η.ιδιότητες ανισοτήτων 1, 2, 3. 3 η.διδακτική ενότητα: Ιδιότητα 4, Πόρισμα κλπ (όλες οι αποδείξεις, χάριν και της μεθόδου της εις άτοπο απαγωγής που σπανίζει στην Άλγεβρα). 4 η.διαστήματα -: επανάληψη λύση ασκήσεων. Ι. Διδακτικοί στόχοι - Ταξινόμηση σε είδη μάθησης 1. Να είναι σε θέση οι μαθητές να γράφουν και να αναφέρουν (με λόγια) τις βασικές ιδιότητες 1, 2, 3 των ανισοτήτων. (είδος μάθησης «πληροφορίες») 2. Να διαπιστώσουν ότι οι ιδιότητες με τις πράξεις διαίρεση και αφαίρεση δεν ισχύουν (γενικά). (είδος μάθησης «πληροφορίες») 3. Να αποκτήσουν τις ικανότητες να εφαρμόζουν τις παραπάνω ιδιότητες σε διάφορες περιπτώσεις. (είδος μάθησης «Νοητικές δεξιότητες») ΙΙ. Μορφή διδασκαλίας: Καθοδηγούμενη αυτενέργεια - ερωτηματικός διάλογος. ΙΙΙ. Διδακτική Μέθοδος : Επαγωγική - Παραγωγική. ΙV. Εποπτικά μέσα: Πίνακας, χρωματιστές κιμωλίες. ΙV. Διδακτικές ενέργειες 1. Έλεγχος και ανάκληση προηγουμένων γνώσεων. Ερωτήσεις από το προηγούμενο μάθημα Ποιες από τις παρακάτω ανισότητες είναι αληθείς; 7 6, x , 1+α 2 < 0, , -2(1+κ 4 ) > 0. ν (x - α) 2 + y 2 = 0 τότε τι συμπεραίνετε για το x, y;... Δείξετε ότι 2(x ) (x + 5) 2. Πότε ισχύει η ισότητα; ν α > β και β > γ δείξετε ότι α > γ (μεταβατική ιδιότητα). 2. Δημιουργία κινήτρων μάθησης Πρόβλημα Μια γέφυρα μπορεί να δεχθεί βάρος μέχρι 18 τόνους. Ένα φορτηγό βάρους 3500 Kg πρόκειται να περάσει από την γέφυρα αυτή φορτωμένο με σωλήνες βάρους 50 Kg. Μέχρι πόσες τέτοιες σωλήνες μπορεί να φορτώσει ώστε να μπορέσει να περάσει; (οι μαθητές θα μεταφράσουν το πρόβλημα σε Μαθηματική γλώσσα )

7 Δ.Ι.Μ.- Σ. Σ. Μ. - Σχέδια Διδασκαλίας Λυκείου 7 3. Πληροφόρηση. Σήμερα θα μάθετε μερικές ιδιότητες των ανισοτήτων σχετικές με τις πράξεις για να λύνετε σχετικά προβλήματα αλλά και να αποδεικνύετε ανισοταυτότητες. 5. Κατεύθυνση προσοχής μαθητών - παροχή οδηγιών για νέα μάθηση. Στην ανισότητα 4 > -2: Προσθέσετε (αφαιρέσετε) το 6. Πολλαπλασιάσετε (διαιρέσετε) με το 3 (-3). Τι συμπεραίνετε; 4. Νέα μάθηση (με ενδεχόμενη παροχή οδηγιών).. Ιδιότητες και πράξεις: αφού έχει γίνει μια πρώτη επαγωγική προσπέλαση στις ιδιότητες παροτρύνουμε τους μαθητές να αποδείξουν 1 ή 2 από τις: α > β α ± γ > β ± γ (διαγραφής στην πρόσθεση-αφαίρεση), αν γ > 0 τότε α > β αγ > βγ (διαγραφής θετικού παράγοντα). Διαίρεση; αν γ < 0 τότε α > β αγ < βγ. Διαίρεση;. α) Προσθέσετε, πολλαπλασιάσετε, κατά μέλη δυο δικές σας ομόστροφες (ετερόστροφες) ανισότητες (δυο ομάδες). Τι συμπεραίνετε; πόδειξη της προσθετικής β) Η πολλαπλασιαστική ιδιότητα υπό συνθήκη γ) φαιρέσετε, διαιρέσετε. Τι συμπεραίνετε; Συμπέρασμα - διατύπωση με λόγια από τους μαθητές των ιδιοτήτων. 6. Εκτέλεση ενεργειών μαθητών επανατροφοδότηση εκτίμηση. ν α + x > β τότε x >, αν α - x < β τότε x..(επισήμανση της αλλαγής προσήμου κατά την μεταφορά όρου) ν 1 < x < 2 και 0 < y < 3, βρείτε μεταξύ ποιων αριθμών περιέχονται οι αριθμοί -3x, 3x + 1, x + y, x y, xy - 1. Aν α + β 2 > 0, β + γ > 3, γ + 1 > -α, δείξετε ότι α +β + γ > Ενίσχυση της συγκράτησης των νέων στοιχείων. Οι ιδιότητες έχουν γραφεί στον πίνακα. νακεφαλαίωση από τους μαθητές (ειδική αναφορά στον αρνητικό παράγοντα και στις εξαιρέσεις). 8. Μεταφορά μάθησης. Λύση αρχικού προβλήματος (περισσότερα για ανισώσεις παρακάτω ) ν α > β > 0 να δείξετε ότι 1 1 < α β (μικρός θετικός παρανομαστής μεγάλο κλάσμα κλπ) 1 ν θ > 0 τότε θ + 2 (να απομνημονευθεί όπως και η προηγούμενη). θ α + β ν α<β να διατάξετε σε αύξουσα σειρά τους αριθμούς α, α-1,, β + 2, β. 2

8 Δ.Ι.Μ.- Σ. Σ. Μ. - Σχέδια Διδασκαλίας Λυκείου 8 9. Εργασία στο σπίτι: i. σκήσεις βιβλίου ομάδας 5, 6, 8. 1 ii. ν α > β > 0 να διατάξετε κατά αύξουσα σειρά τους αριθμούς 1,, 1+ α α β 3 Προαιρετική άσκηση: ν α >2β > 0 δείξετε ότι > (κατασκευαστική β α 2 μέθοδος) β Εθελοντική εργασία: Ένας μαθητής να γράψει σ ένα χαρτόνι τις ιδιότητες των ανισοτήτων (για την τάξη). Σημείωση: Δίνουμε εδώ μερικές ασκήσεις, τουλάχιστον για καλούς μαθητές, από την 3 η διδακτική ενότητα (ιδιότητα 4) θέλοντας να τονίσουμε τον σημαντικό ρόλο της.. 1. Aν 2x 1 > 1 δείξετε ότι x > 0 και αντιστρόφως. 2. Να λύσετε τις εξισώσεις (1 + x 2 ) 2007 = 1, (3λ + 1) (λ + 3) 2007 = 0 με λ > 0, (y 1) 4016 = (y 2 + 2) ν x > y > 0 δείξετε ότι < x y εδώ της κατασκευαστικής μεθόδου απόδειξης ανισοτήτων) (επισήμανση και 4. Έστω ν περιττός φυσικός και α, β πραγματικοί αριθμοί. i) ν α < β αποδείξετε ότι α ν < β ν, ii) Ισχύει, α < β α ν < β ν (η χρήσιμη αυτή ιδιότητα να γραφεί συμπληρωματικά από τους μαθητές στο κάτω μέρος της σελίδας 30 του βιβλίου μαζί με τις άλλες). iii) Να λύσετε την εξίσωση (3x - 4) 2007 = (x 2 - x) 2007.

9 Δ.Ι.Μ.- Σ. Σ. Μ. - Σχέδια Διδασκαλίας Λυκείου 9 2. ΣΧΕΔΙΟ ΔΙΔΣΚΛΙΣ: ΛΕΡ ΛΥΚΕΙΟΥ Διδακτική ενότητα 1.4: (Ορισμός ν-οστής ρίζας) - Ιδιότητες ριζών. (Σημ. Είχε διδαχθεί ο ορισμός της ν-οστής ρίζας στο προηγούμενο μάθημα) Ι. Διδακτικοί στόχοι - Ταξινόμηση σε είδη μάθησης 1. Να είναι σε θέση οι μαθητές να αναφέρουν τον ορισμό της ν-οστής ρίζας θετικού αριθμού (ή μηδέν) και τις σχετικές ιδιότητες. («πληροφορίες») 2. Να αποκτήσουν την ικανότητα να χρησιμοποιούν τον ορισμό και τις ιδιότητες των ριζών στον αλγεβρικό λογισμό. («Νοητικές δεξιότητες») ΙΙ. Μορφή διδασκαλίας: Ερωτηματικός διάλογος - Καθοδηγούμενη αυτενέργεια. ΙΙΙ. Διδακτική Μέθοδος : Συνδυασμός επαγωγικής - παραγωγικής μεθόδου. ΙV. Εποπτικά μέσα: Πίνακας, χρωματιστοί μαρκαδόροι, χάρτινο πινακίδιο. V. Διδακτικές ενέργειες 1. Έλεγχος- νάκληση προηγουμένων γνώσεων. Ορισμός τετραγωνικής ρίζας και ιδιότητες.. Ορισμός θετικής ν-οστής ρίζας θετικού αριθμού θ (ή μηδέν). ν ν ν ν =. ασικές σχέσεις : ( θ ) θ, θ θ = (ν Ν*, θ 0). 2. Εκτέλεση ενεργειών μαθητών ανατροφοδότηση εκτίμηση Να βρείτε τις ρίζες 32, Συμπληρώστε : α) 16 =..., β) 6 ( 3) 6 =... γ) 4 x 4 =. Λύσετε την εξίσωση 3 χ = 4 Δ. ια ποιες τιμές του α έχει νόημα αριθμού η παράσταση Π = 15 1 α ; 3. Δημιουργία κινήτρων μάθησης - Πληροφόρηση 16 5 Μπορείτε να βρείτε τον αριθμό ν = ; 2009 Σήμερα θα μάθουμε τις ιδιότητες των ν-οστών ριζών. 4. Κατεύθυνση προσοχής μαθητών-παροχή οδηγιών για νέα μάθηση.. ασικές ιδιότητες. πό τις γνωστές ιδιότητες των τετραγωνικών ριζών στις ιδιότητες των ν-οστών ριζών (γράφονται στο πίνακα οι ιδιότητες )

10 Δ.Ι.Μ.- Σ. Σ. Μ. - Σχέδια Διδασκαλίας Λυκείου Συγκρίνετε τους αριθμούς 8 27, και 3 8 / 3 27, 3 8/27 Τι παρατηρείτε; ν πόδειξη της α ν β = ν αβ (με ύψωση ). Όμοια για το πηλίκο. ν ν κ ενίκευση Ειδίκευση ( ( ) α κ α = ), α β = αν β 5. Εκτέλεση ενεργειών μαθητών ανατροφοδότηση εκτίμηση. ρείτε τις ρίζες , 3 0, 008. Ένας μαθητής έγραψε κάποτε σε ένα διαγώνισμα ότι = και 9 8 = 72. Συμφωνείτε; 16 5 Υπολογίσετε τον αριθμό ν = Συμπληρώστε 2... = ( 2) =..., 4... = Να μετατρέψετε τo κλάσμα Κ= 3 4 σε ισοδύναμο με ρητό παρανομαστή. 3 ν ν 6. Κατεύθυνση προσοχής μαθητών-παροχή οδηγιών για νέα μάθηση. Άλλες ιδιότητες (ίσως χωρίς απόδειξη) : Παραδείγματα: 2 =, 9 = νακεφαλαίωση. ν μ ν μ = νρ μρ θ θ, θ = 7. Εκτέλεση ενεργειών μαθητών ανατροφοδότηση εκτίμηση. Να γράψετε με τη μορφή μιας ρίζας τις παραστάσεις = 3 3, = νακεφαλαίωση: Διατύπωση Ιδιοτήτων ν θ μ Εργασία στο σπίτι 1.σκήσεις βιβλίου (σελ.50-51) : 7, 8 (i), 11(ii), ομάδα την 5, σελ..53:25, 26, 27, Προαιρετική : Nα λύσετε ως προς x την εξίσωση ψ = 3 x 2, x R. 3. Προαιρετική : ν χ > ψ > 0, να αποδείξετε ότι 3 3 χ ψ χ ψ = χ + χψ + ψ (Υπ. μπορείτε να χρησιμοποιήσετε και μια γνωστή κυβική ταυτότητα)

11 Δ.Ι.Μ.- Σ. Σ. Μ. - Σχέδια Διδασκαλίας Λυκείου 11 ΦΥΛΛΟ ΕΡΣΙΩΝ 1. Ορισμός:. ν-οστή ρίζα ενός θετικού αριθμού θ λέμε τον.. αριθμό ρ για τον οποίο ισχύει = θ και τον συμβολίζουμε με ρ =.. Άρα ισχύουν ( θ ) ν.... ν = και ν θ ν =... ν και 0 =... (ν = 1, 2, 3, 4.) 2.. Να βρείτε τις ρίζες =..., = 4. Συμπληρώστε : α) 16 =..., β) 6 ( 3) 6 =... γ) 4 x 4 =. Λύσετε την εξίσωση 3 χ = 4. Λύση Δ. ια ποιες τιμές του α έχει νόημα αριθμού η παράσταση Π = 15 1 α ; Λύση 3 3 Συγκρίνετε τους αριθμούς 8 27, και 3 8/ 3 27, 3 8/27 Τι παρατηρείτε; 3. Δυο βασικές ιδιότητες ριζών. Υπολογίσετε τις ρίζες = 3 0, 008 = Ένας μαθητής έγραψε κάποτε σε ένα διαγώνισμα ότι = και 9 8 = 72. Συμφωνείτε; 16 5 Να υπολογίσετε τον αριθμό ν = ν = 5. Συμπληρώστε 2... = ( 2) =..., 4... = 2 5 5, 3

12 Δ.Ι.Μ.- Σ. Σ. Μ. - Σχέδια Διδασκαλίας Λυκείου 12 Δ. Να μετατρέψετε το κλάσμα Κ= σε ισοδύναμο με ρητό παρανομαστή 8 = (Ίσως) Δυο άλλες ιδιότητες ριζών. ν μ θ =..., νρ θ μρ = Παραδείγματα: 2 = = 5. Να γράψετε με τη μορφή μιας ρίζας τις παραστάσεις = = = 3 3 = Εργασία στο σπίτι : 1.σκήσεις βιβλίου (σελ.50-51) : 7, 8 (i), 11(ii), ομάδα την 5, σελ..53:25,26,27, Προαιρετική : Nα λύσετε ως προς x την εξίσωση ψ = 3 x 2, x R. 3. Προαιρετική : ν χ > ψ > 0, να αποδείξετε ότι 3 3 χ ψ χ ψ = χ + χψ + ψ (Υπ. μπορείτε να χρησιμοποιήσετε και μια γνωστή κυβική ταυτότητα)

13 Δ.Ι.Μ.- Σ. Σ. Μ. - Σχέδια Διδασκαλίας Λυκείου ΣΧΕΔΙΟ ΔΙΔΣΚΛΙΣ: ΛΕΡ ΛΥΚΕΙΟΥ Άλγεβρα A Λυκείου. πό την ενότητα 2.3, την Δ.Ε. : Άθροισμα και ινόμενο ριζών δευτεροβάθμιας εξίσωσης. Σχολείο :.. Ι. Διδακτικοί στόχοι - Ταξινόμηση σε είδη μάθησης F. Viete ( ) 1. Να είναι σε θέση οι μαθητές να αναφέρουν τις σχέσεις ριζών και συντελεστών (άθροισμα και γινόμενο, τύποι Viete) («πληροφορίες») 2. Να αποκτήσουν την ικανότητα να χρησιμοποιούν τις σχέσεις αυτές σε διάφορα προβλήματα (υπολογισμοί, πρόσημα ριζών κλπ) («Νοητικές δεξιότητες») ΙΙ. Μορφή διδασκαλίας: Ερωτηματικός διάλογος - Καθοδηγούμενη αυτενέργεια. ΙΙΙ. Διδακτική Μέθοδος : Παραγωγική. ΙV. Εποπτικά μέσα: Πίνακας, χρωματιστοί μαρκαδόροι. V. Διδακτικές ενέργειες 1. Έλεγχος- νάκληση προηγουμένων γνώσεων Ερωτήσεις σχετικά με τις λύσεις της εξίσωσης αx 2 + βx + γ = 0 Λύσετε την εξίσωση 2λ 2 +5λ + 3 = 0 2. Δημιουργία κινήτρων μάθησης - Πληροφόρηση Μπορείτε να βρείτε το πρόσημο των ριζών της εξίσωσης 1821x 2 - (α 2 + β 4 + γ 6 + 1)x - 10 α 4 = 0 (α, β, γ R ) Σήμερα θα ασχοληθούμε με τις σχέσεις ριζών και συντελεστών της δευτεροβάθμιας εξίσωσης, που αναφέρονται στο άθροισμα και το γινόμενο των ριζών της (συμμετρικές παραστάσεις) που μας είναι πολύ χρήσιμες σε πολλά θέματα της Άλγεβρας. 3. Κατεύθυνση προσοχής μαθητών - παροχή οδηγιών για νέα μάθηση. ρείτε το άθροισμα των ριζών της εξίσωσης 2λ 2 +5λ + 3 = 0. Τι παρατηρείτε;. ς θεωρήσομε την εξίσωση αx 2 + βx + γ = 0 και ας υποθέσουμε ότι έχει δυο ρίζες ρ 1, ρ 2.. Να εκφράσετε τις ρίζες της συναρτήσει των α, β, γ (τύποι ριζών). Δ. Υπολογίσετε το S= ρ 1 + ρ 2 και P = ρ 1 ρ 2 Ε. Συμπέρασμα για τις ρίζες της αx 2 + βx + γ = 0 (τύποι Viete).

14 Δ.Ι.Μ.- Σ. Σ. Μ. - Σχέδια Διδασκαλίας Λυκείου 14 Στ. Δυνατότητες των σχέσεων: υπολογισμοί, πρόσημα ριζών Ζ. Ειδική περίπτωση : άθροισμα και γινόμενο των ριζών της x 2 -κx +λ = 0. Συμπέρασμα για τα κ, λ. 4. Εκτέλεση ενεργειών μαθητών ανατροφοδότηση εκτίμηση ρείτε το άθροισμα S και το γινόμενο P των ριζών της εξίσωσης 2x 2 +3x=6, Ομοίως για την εξίσωση α = 6α. Ποιες είναι οι ρίζες της εξίσωσης; Οι ρίζες της εξίσωσης x 2 + αx + 1 = 0, α > 2, είναι. ίσες. αντίθετες. αντίστροφες Δ. ετερόσημες νακεφαλαίωση 5. Μεταφορά μάθησης. Έστω η εξίσωση x 2 = x + 1. Να δείξετε ότι έχει δυο άνισες ρίζες, έστω ρ, φ. Να βρείτε το άθροισμα και το γινόμενο των ριζών της. ρείτε το πρόσημο των ριζών της Υπολογίσετε τις παραστάσεις = ρ 2 +φ 2 1 1, = +, = ρ 3 + φ 3, Δ = (ρ- φ) 2, Ε = ρ -φ ρ φ. Mια ρίζα της εξίσωσης x 2 - λx + 10 = 0 είναι το 2.Να βρείτε την άλλη και το λ. Mπορείτε να βρείτε το πρόσημο των ριζών της αρχικής εξίσωσης 1821x 2 - (α 2 +β 4 +γ 6 +1)x - 10 α 4 = 0 Δ. Να βρείτε τις τιμές του λ R για τις οποίες η εξίσωση x 2-2x + λ = 1 έχει δυο ρίζες άνισες και ομόσημες. Ποιο είναι το πρόσημο των ριζών της; Ε. ια ποιες τιμές του μ η εξίσωση 2t 2 3μt + μ 2 = 2 έχει ρίζες α) αντίθετες β) αντίστροφες ; Εργασία στο σπίτι : 1.σκήσεις βιβλίου σελ. 124 την 1, σελ. 125 την 7 και ομάδα 1, Να διαβάσετε (εγκυκλοπαίδεια ή διαδίκτυο) σχετικά με τη ζωή και το έργο του F. Viete. Προαιρετικές 1. ν α 1, β R, να δείξετε ότι η εξίσωση x 2 - (1 + β 2 )x + 2α -1- α 2 = 0 έχει ρίζες άνισες και ετερόσημες. Ποια είναι απολύτως μεγαλύτερη, η θετική ή η αρνητική; Τι συμβαίνει αν α=1; 2. ν ρ 2 > 4μ και x 2 +βx+γ + x 2 +κx+λ 2 x 2 +ρx+μ για κάθε x R, να δείξετε ότι β = κ = ρ και γ = λ = μ. 3. Να βρείτε τους αριθμούς α, β, γ Ζ ώστε η εξίσωση αx 2 +βx + γ = x +2 να έχει τρεις (τουλάχιστον) ρίζες.

15 Δ.Ι.Μ.- Σ. Σ. Μ. - Σχέδια Διδασκαλίας Λυκείου 15 ΦΥΛΛΟ ΕΡΣΙΩΝ 1. ρείτε το άθροισμα S και το γινόμενο P των ριζών της εξίσωσης 2x 2 +3x=6, 2. Ομοίως για την εξίσωση α = 6α. Ποιες είναι οι ρίζες της εξίσωσης; 3. Οι ρίζες της εξίσωσης x 2 + αx + 1 = 0, α > 2, είναι. ίσες. αντίθετες. αντίστροφες Δ. ετερόσημες F. Viete ( Έστω η εξίσωση x 2 = x + 1. Να δείξετε ότι έχει δυο άνισε ρίζες, έστω ρ, φ. Να βρείτε το άθροισμα και το γινόμενο των ριζών της. ρείτε το πρόσημο των ριζών της Υπολογίσετε τις παραστάσεις = ρ 2 +φ 2 1 1, = +, = ρ 3 + φ 3, Δ = (ρ- φ) 2, Ε = ρ -φ ρ φ 5. Mια ρίζα της εξίσωσης x 2 - λx + 10 = 0 είναι το 2.Να βρείτε την άλλη και το λ 6. Mπορείτε να βρείτε το πρόσημο των ριζών της αρχικής εξίσωσης 1821x 2 - (α 2 +β 4 +γ 6 +1)x - 10 α 4 = 0 7. Να βρείτε τις τιμές του λ R για τις οποίες η εξίσωση x 2-2x + λ = 1 έχει δυο ρίζες άνισες και ομόσημες. Ποιο είναι το πρόσημο των ριζών της; 8. ια ποιες τιμές του μ η εξίσωση 2t 2 3μt + μ 2 = 2 έχει ρίζες α) αντίθετες β) αντίστροφες ; Εργασία στο σπίτι : 1.σκήσεις βιβλίου σελ. 124 την 1, σελ. 125 την 7 και ομάδα 1, Να διαβάσετε (εγκυκλοπαίδεια ή διαδίκτυο) σχετικά με τη ζωή και το έργο του F. Viete. Προαιρετικές 1. ν α 1, β R, να δείξετε ότι η εξίσωση x 2 - (1 + β 2 )x + 2α -1- α 2 = 0 έχει ρίζες άνισες και ετερόσημες. Ποια είναι απολύτως μεγαλύτερη, η θετική ή η αρνητική; Τι συμβαίνει αν α=1; 2. ν ρ 2 > 4μ και x 2 +βx+γ + x 2 +κx+λ 2 x 2 +ρx+μ για κάθε x R, να δείξετε ότι β = κ = ρ και γ = λ = μ. 3. Να βρείτε τους αριθμούς α, β, γ Ζ ώστε η εξίσωση αx 2 +βx + γ = x +2 να έχει τρεις (τουλάχιστον) ρίζες.

16 Δ.Ι.Μ.- Σ. Σ. Μ. - Σχέδια Διδασκαλίας Λυκείου ΣΧΕΔΙΟ ΔΙΔΣΚΛΙΣ: ΕΩΜΕΤΡΙ ΛΥΚΕΙΟΥ Σχολείο:,.. Διδάσκων :. Μάθημα: εωμετρία A Λυκείου, Τμήμα Διδακτική ενότητα: 3.6. Kριτήρια ισότητας ορθογωνίων τριγώνων. Διδακτικοί στόχοι - Ταξινόμηση σε είδη μάθησης 1. Να είναι σε θέση οι μαθητές να αναφέρουν (με λόγια) τα κριτήρια ισότητας ορθογωνίων τριγώνων και τα δυο πορίσματα. («πληροφορίες») 2. Να αποκτήσουν την ικανότητα να εφαρμόζουν τα κριτήρια αυτά στην λύση ασκήσεων-προβλημάτων που αναφέρονται σε σύγκριση τριγώνων, τμημάτων και γωνιών. («Νοητικές δεξιότητες») ΙΙ. Μορφή διδασκαλίας: Καθοδηγούμενη αυτενέργεια - ερωτηματικός διάλογος. ΙΙΙ. Διδακτική Μέθοδος : Παραγωγική. ΙV. Εποπτικά μέσα: Πίνακας, χρωμ. μαρκαδόροι. χάρτινα ορθ. τρίγωνα. V. Διδακτικές ενέργειες 1. Έλεγχος κατανόησης προηγουμένου μαθήματος και ανάκληση προηγουμένων γνώσεων (γενικά κριτήρια τριγώνων) Με ερωτήσεις προς τους μαθητές. 2. Δημιουργία κινήτρων μάθησης Λέγεται ότι ο Θαλής (600 π.χ.) για να βρει την απόσταση ενός πλοίου από την παραλία έκανε τα εξής Πλοίο Θ ά λ α σ σ α Ο Π α ρ α λ ί α Πως ήταν σίγουρος ο Θαλής ότι Π = ;

17 Δ.Ι.Μ.- Σ. Σ. Μ. - Σχέδια Διδασκαλίας Λυκείου Πληροφόρηση: Σήμερα θα μάθετε τα κριτήρια ισότητας ορθογωνίων τριγώνων, τα οποία μαζί με τα γενικά κριτήρια στα τρίγωνα είναι πάρα πολύ χρήσιμα στη εωμετρία. Επίσης θα μάθετε δυο χρήσιμες προτάσεις στο ισοσκελές τρίγωνο και το κύκλο. 4. Κατεύθυνση προσοχής μαθητών-παροχή οδηγιών για νέα μάθηση.. Κριτήρια με πλευρές i.προσέξτε τα ορθογώνια τρίγωνα Είναι ίσα ; Ποια άλλα στοιχεία τους θα έχουν ίσα; Δ Ε Σχήμα 1 Ζ ii. Συγκρίνετε τα τρίγωνα Λ Σχήμα 2 Διατύπωση κριτηρίων με πλευρές Κ Μ. Κριτήρια με πλευρά και γωνία. i.συγκρίνετε τα ορθογώνια τρίγωνα Ε Σχήμα 3 Δ Ζ ii.είναι ίσα τα τρίγωνα Μ Σχήμα 4 Κ Ρ

18 Δ.Ι.Μ.- Σ. Σ. Μ. - Σχέδια Διδασκαλίας Λυκείου 18 iii. Συγκρίνετε τα ορθογώνια τρίγωνα Δ Σχήμα 5 Ε Διατύπωση κριτηρίων με πλευρά και γωνία. Ζ 5. Εκτέλεση ενεργειών μαθητών επανατροφοδότηση εκτίμηση. Τι άλλο (το λιγότερο) πρέπει να έχουν τα παρακάτω ορθογώνια τρίγωνα για να είναι ίσα; Η Κ Σχήμα 6 Δ Λ Μ 6. Ενίσχυση της συγκράτησης των νέων στοιχείων. Δυο ορθογώνια τρίγωνα που έχουν δυο πλευρές ίσες μια προς μια είναι ίσα; Η απάντηση ενός μαθητή ήταν ναι, είναι (πάντα) ίσα.συμφωνείτε; (αν επί πλέον έχουν και μια οξεία γωνία ίση; ) Επίδειξη κατασκευής από χαρτόνι Δυο ορθογώνια τρίγωνα που έχουν μια πλευρά και μια οξεία γωνία ίσες μια προς μια είναι ίσα; Συμφωνείτε; Προσέξτε τα παρακάτω τρίγωνα. Σχήμα 7 Επίδειξη κατασκευής από χαρτόνι πάντηση στο αρχικό πρόβλημα (Θαλή). νακεφαλαίωση. 7. Μεταφορά μάθησης. Πόρισμα Ι: το ύψος ισοσκελούς τριγώνου από την κορυφή είναι. Πόρισμα ΙΙ: Η κάθετη από το κέντρο ενός κύκλου Να αποδείξετε ότι τα ύψη ισοσκελούς τριγώνου από τα άκρα της βάσης του είναι ίσα. 8. Εργασία στο σπίτι :. Ερωτήσεις κατανόησης 2,3,4,5 (μόνο προφορικά ). σκήσεις: εμπέδωσης 2, 4, αποδεικτικές την 1.

19 Δ.Ι.Μ.- Σ. Σ. Μ. - Σχέδια Διδασκαλίας Λυκείου 19 ΦΥΛΛΟ ΕΡΣΙΣ. Κριτήρια με πλευρές i.προσέξτε τα ορθογώνια τρίγωνα Είναι ίσα ; Ποια άλλα στοιχεία τους θα έχουν ίσα; Δ Ε Σχήμα 1 Ζ ii. Τι σχέση έχουν άραγε τα ορθογώνια τρίγωνα (σύντομη απόδειξη) Λ Σχήμα 2 Συμπληρώνω : Κ Μ ν δυο ορθογώνια τρίγωνα έχουν δυο. ίσες μια προς μια, τότε είναι. Κριτήρια με πλευρά και γωνία. i.συγκρίνετε τα ορθογώνια τρίγωνα Ε Δ Σχήμα 3 Ζ ii.είναι ίσα τα τρίγωνα Λ Κ Ρ Σχήμα 4

20 Δ.Ι.Μ.- Σ. Σ. Μ. - Σχέδια Διδασκαλίας Λυκείου 20 iii. Συγκρίνετε τα ορθογώνια τρίγωνα Δ Σχήμα 5 Ε Ζ Συμπληρώνω: ν δυο ορθογώνια τρίγωνα έχουν μια.... ίση και μια. στη πλευρά αυτή. αντίστοιχα ίσες μια προς μια τότε είναι.. 6. Άσκηση: Τι άλλο (το λιγότερο) θέλουν τα παρακάτω ορθογώνια τρίγωνα για να είναι ίσα; Η Κ Σχήμα 6 Δ Λ Μ 7.. Δυο ορθογώνια τρίγωνα που έχουν δυο πλευρές ίσες μια προς μια είναι ίσα; Η απάντηση ενός μαθητή ήταν ναι, είναι (πάντα) ίσα.συμφωνείτε; (Τι συμβαίνει αν έχουν ακόμη και δυο γωνίες ίσες);. Δυο ορθογώνια τρίγωνα που έχουν μια πλευρά και μια οξεία γωνία ίσες μια προς μια είναι ίσα; Συμφωνείτε; Προσέξτε τα παρακάτω τρίγωνα. Σχήμα 7 8. Δυο πορίσματα: Πόρισμα Ι: το ύψος ισοσκελούς τριγώνου από την κορυφή είναι. Πόρισμα ΙΙ: Η κάθετη από το κέντρο ενός κύκλου Άσκηση: Να αποδείξετε ότι τα ύψη ισοσκελούς τριγώνου από τα άκρα της βάσης του είναι ίσα. Εργασία στο σπίτι :. Ερωτήσεις κατανόησης 2, 3, 4, 5 (μόνο προφορικά).. σκήσεις: εμπέδωσης 2, 4, αποδεικτικές την 1. Πρόβλημα (προαιρετικό): να βρείτε το είδος των ορθογωνίων τριγώνων με την ιδιότητα: μια ευθεία που διέρχεται από μια κορυφή τους τα χωρίζει σε δυο ίσα τρίγωνα. (μπορείτε να χρησιμοποιήσετε το θεώρημα της 3.10).

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

Ηράκλειο, 7 Νοεµβρίου 2008

Ηράκλειο, 7 Νοεµβρίου 2008 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΤΙ ΥΠΟΥΡΕΙΟ ΕΘΝΙΚΗΣ ΠΙ ΕΙΣ ΚΙ ΘΡΗΣΚΕΥΜΤΩΝ ΠΕΡΙΦΕΡΕΙΚΗ /ΝΣΗ Π/ΘΜΙΣ & /ΘΜΙΣ ΕΚΠ/ΣΗΣ ΚΡΗΤΗΣ ΡΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΟΥΛΩΝ. Ε. Ν. ΗΡΚΛΕΙΟΥ ηµήτριος I. Μπουνάκης Σχολικός Σύµβουλος Μαθηµατικών Ταχ.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ

Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 007 Σχ. Έτος 006-007 ΤΑΞΗ Γ ΘΕΩΡΙΑ 1. α.) Να συμπληρώσετε τις ταυτότητες : 3 ( α + β ) = ( β ) = α 3 3 3 β.) Να αποδείξετε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα -εξεταστέα

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,... 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν-1 +...+α

Διαβάστε περισσότερα

Μαθηματικά A Γυμνασίου

Μαθηματικά A Γυμνασίου Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑΣ ΓΥΜΝΑΣΙΟΥ

ΔΙΔΑΣΚΑΛΙΑΣ ΓΥΜΝΑΣΙΟΥ ΔΙΔΑΚΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΚΑΘΗΓΗΤΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΣΧΕΔΙΑ ΔΙΔΑΣΚΑΛΙΑΣ ΓΥΜΝΑΣΙΟΥ Δημήτρης Μπουνάκης Σχ. Σύμβουλος Μαθηματικών dimitrmp@sch.gr Ηράκλειο, Οκτώβριος 2010 ΘΕΜΑ : ΔΙΔΑΚΤΙΚΟ ΥΛΙΚΟ ΓΥΜΝΑΣΙΟΥ : ΣΧΕΔΙΑ ΔΙΔΑΣΚΑΛΙΑΣ

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια κυρίως στους

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους :

Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους : ΚΕΦΑΛΑΙΟ Ο ΣΥΝΑΡΤΗΣΕΙΣ. Σύνολα ΠΑΡΑΣΤΑΣΗ ΣΥΝΟΛΟΥ ΓΡΑΦΗ ΣΥΝΟΛΟΥ Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους : ) Παράσταση με αναγραφή των στοιχείων Όταν δίνονται

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Γ

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Γ ΥΜΝΑΣΙΟ - 010 90 Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι

Διαβάστε περισσότερα

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ Θεώρημα οξείας γωνίας Το τετράγωνο πλευράς τριγώνου, που βρίσκεται απέναντι από οξεία γωνία, είναι ίσο με το άθροισμα των τετραγώνων των δύο άλλων πλευρών του, ελαττωμένο

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11 2. Σύνολα..............................................................

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού 108 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθµό, να υπολογιστεί

Διαβάστε περισσότερα

Ερωτήσεις επί των ρητών αριθµών

Ερωτήσεις επί των ρητών αριθµών Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

V. Διαφορικός Λογισμός. math-gr

V. Διαφορικός Λογισμός. math-gr V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας 07 3. Να αποδείξετε την ταυτότητα + + αβ βγ γα = Να αποδείξετε ότι για όλους τους α, β, γ ισχύει + + αβ + βγ + γα Πότε ισχύει ισότητα; = = + + =

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων

α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρα Β-Λυκείου (2ο πακέτο ασκήσεων) 1 22630 Δίνεται η γραφική παράσταση της συνάρτησης f(x) = 3 x με x R. α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ»

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ» ΕΠΝΛΗΠΤΙΚΕΣ ΣΚΗΣΕΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΜΕΡΟΣ ο «ΕΩΜΕΤΡΙ». 1. Να υπολογίσετε τα εμβαδά των σχημάτων,, χρησιμοποιώντας ως μονάδα μέτρησης εμβαδών το. Τι παρατηρείτε; ρίσκουμε ότι τα εμβαδά των,, είναι : 5,

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός. 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

Τρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός)

Τρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός) Τρίγωνα Αθανασίου Δημήτρης (Μαθηματικός) www.peira.gr asepfreedom@yahoo.gr 1 3.1 Στοιχεία και είδη τριγώνων 2 Ένα τρίγωνο ΑΒΓ έχει τρεις κορυφές Α, Β, Γ, τρεις πλευρές ΒΓ, ΓΑ, ΑΒ και τρεις γωνίες Β ΑΓ,

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ. Δύο ομάδες Ο, Ο παίζουν μεταξύ τους σε μια σχολική ποδοσφαιρική συνάντηση (οι αγώνες δεν τελειώνουν ποτέ με ισοπαλία). Νικήτρια θεωρείται η ομάδα που θα νικήσει

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x ) () Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,

Διαβάστε περισσότερα

/νσεων /θµιας Εκπ/σης) ΠΡΟΣ: ΚΟΙΝ.:

/νσεων /θµιας Εκπ/σης) ΠΡΟΣ: ΚΟΙΝ.: ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛ. ΧΡΟΝΙΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛ. ΧΡΟΝΙΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛ. ΧΡΟΝΙΑ - ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΛΕΡΑ. Να λύσετε τα πιο κάτω συστήματα: α) χ+ψ=7 β)3κ+λ=4 γ) +y= δ)χ+ψ= χ-ψ=- 5κ=+3λ -y-y =7 4χψ=3.Να γίνουν οι πράξεις: α)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης. Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0%. Να βρείτε: i. Το πλήθος των μαθητών

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

Β Γυμνασίου. Θέματα Εξετάσεων

Β Γυμνασίου. Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων Θέμα 1. α. Ποια ποσά λέγονται ανάλογα και ποια σχέση τα συνδέει; β. Τι γνωρίζετε για τη γραφική παράσταση της συνάρτησης y=αx

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς

Διαβάστε περισσότερα