Modeling hourly Electricity Spot Market Prices as non stationary functional times series

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Modeling hourly Electricity Spot Market Prices as non stationary functional times series"

Transcript

1 MPRA Munich Personal RePEc Archive Modeling hourly Elecriciy Spo Marke Prices as non saionary funcional imes series Dominik Liebl niversiy of Cologne Sepember 2010 Online a hp://mpra.ub.uni-muenchen.de/25017/ MPRA Paper No , posed 15. Sepember :58 TC

2 Modeling hourly Elecriciy Spo Marke Prices as non saionary funcional imes series Dominik Liebl niversiy of Cologne Absrac The insananeous naure of elecriciy disinguishes is spo prices from spo prices for equiies and oher commodiies. p o now elecriciy canno be sored economically and herefore demand for elecriciy has an unempered eec on elecriciy prices. In paricular, hourly elecriciy spo prices show a vas range of dynamics which can change rapidly. In his paper we inroduce a robus version of funcional principal componen analysis for sparse daa. The funcional perspecive inerpres spo prices as funcions of demand for elecriciy and allows o esimae a single price curve for each day. Variaions in marke fundamenals such as commodiy prices are absorbed by he rs principal componens. Keywords: Funcional principal componen analysis, non saionary funcional ime series daa, sparse daa, elecriciy spo marke prices, European Elecriciy Exchange (EEX). 1. Inroducion Spo prices for elecriciy are peculiar. p o now elecriciy canno be sored economically herefore he amoun of elecriciy ha can be used for arbirage over ime can be negleced and demand for elecriciy has an unempered eec on elecriciy prices. The pricing in he power marke is based on marginal generaion coss of he las power plan ha is required o cover he demand. The supply curve is based on he increasing generaion coss of he insalled power Earlier versions of his paper have been presened a he DAGSa 2010 in Dormund and he Saisische Woche 2010 in Nürnberg. I wan o hank especially Prof. Alois Kneip for fruiful discussions, Prof. Pascal Sarda, who encouraged me consrucively on my way o wrie his paper during my say a he working group STAPH in Toulouse, and Prof. Wolfgang Härdle for consrucive discussion a he DATGSa Corresponding Auhor: Dominik Liebl Seminar für Wirschafs und Sozialsaisik, Lehrsuhl Prof. Mosler, niversiä zu Köln, Alberus MagnusPlaz, Köln Germany

3 plans, wih a seeply increasing, exponenial shape. sually base load plans such as nuclear and lignie plans cover he minimal load, i.e. demand for elecriciy, hroughou he year. Load following is mosly done by medium and peak load plans such as hard-coal and gas-red power plans. Pricing above marginal coss, so called peak load pricing, is ypical in markes wih non sorable producs. The reason behind his are opporuniy coss and incremenal coss from consrains, such as hose arising from emission and capaciy limis, which hen become marginal coss relevan (Cramon, 2004). This deviaion from variable cos pricing is also observable on he low demand side. Plan operaors ry o avoid shuing o power plans in order o avoid ramp up coss and herefore bid occasionally below variable coss, alhough laer becomes only visible if i is allowed o sell negaive prices are allowed o rade. In micro economic heory i is common o se prices equal o he marginal cos of producion and o deermine he equilibrium prices by he ineracion of demand and supply curves. Paricularly, elecriciy spo prices are usually modeled by he Courno model or he Supply Funcion Equilibrium model (Klemperer and Meyer, 1989). A recen example is he paper of Willems e al. (2009) an oher well known example is he paper of Green and Newbery (1992). Funcional daa analysis (fda) is able o share his perspecive, since is aomic saisical unis are funcions raher han poins and/or vecors. The books of Ramsay and Silverman (2005) and Ferray and Vieu (2006) give a broad overview o funcional daa analysis. As explained above, we have o disinguish beween pricing based on marginal generaion coss and pricing based on opporuniy coss. The funcional approach can model he marginal cos sysem well since marginal generaion coss are srongly conneced o he demand for elecriciy. The opporuniy coss sysem has o be modeled separaely and boh models may be conneced by a kind of regime swiching mechanism. Markov regime-swiching models, such as in Moun e al. (2006) and Kosaer and Mosler (2006), became one of he mos applied approaches in modeling and forecasing elecriciy prices. These ry o divide he series ino regimes wih own mean and covariance srucures. Bu he supply curve induces a coninuum of mean and covariance regimes and i is herefore dicul o assign prices o cerain regimes, even for he ofen used less volaile daily or half-daily averages of spo prices. One of he few high frequency analysis is done by Karakasani and Bunn (2008); Karakasani and Bunn model and forecas elecriciy spo prices from he K-Power Exchange. They divide heir daa ino sub samples for he 48 half hourly rading periods and addiionally separae weekdays from weekends. Wihin such sub samples, daily demand values for elecriciy have go a clear smooh sinoidal paern over he year wih higher/lower demand values during he winer/summer monhs. The demand paern is ranslaed ino a price paern by he ime invarian shape of he supply curve. This ranslaion causes addiional disorions and ha may be he reason why he auhors presen heir resuls for he rading periods 25 (12:30pm) and 35 (17:30pm) wih low varying demand paerns. Furhermore, elecriciy from volaile renewable 2

4 energy sources like wind and solar is ofen provided wih a purchase guaranee. If his is he case, hen no he smooh demand paerns are relevan for he price paerns bu he rougher adjused demand paerns wih need ou hourly elecriciy infeeds from renewable energy sources. Regarding he role of he supply curve as a diuser of he (adjused) demand paern, we propose o focus on he esimaion of is shape raher han on he esimaion of he price paern direcly. We propose o use (funcional) principal componen analysis o a low dimensional facor model o he daily supply curves. From he mehodological perspecive, he Dynamic Semiparameric Facor Model (DSFM) of Park e al. (2009) and he follow up applicaion o elecriciy spo prices Härdle and Trück (2010) are very close o our approach. Park e al. use an ieraing opimizaion algorihm o an orhogonal facor model o he daa and argue ha (funcional) principal componen analysis may no be able o handle sparse and non saionary (funcional) ime series daa. We exend he procedure of Yao e al. (2005), ha is able o handle sparse daa, o he conex of non saionary ime series daa. Härdle and Trück esimae a facor model o he daily N dimensional elecriciy spo price vecors Y = (Y 1,..., Y N ) and repor ha a hree dimensional facor model explains abou 80% of he variaion in hourly spo prices a he European Elecriciy Exchange (EEX). As he above cied papers, his applicaion of he DSFM model focuses on modeling and forecasing he price paern direcly and has o use a regime swiching mechanism in order o cope wih he vas price-diusions from he ineracions of demand paerns wih he supply curve. The esimaion of he supply curves has a limiaion ha is imposed by he aucion design. Even hough for each day here are N supply curves, one for each rading period h = 1,..., N, we can only esimae he mean supply curve of day. The general aucion design is similar for he greaes elecriciy markes places like in he Neherlands, Germany, Ausria, Scandinavian counries, France, and California. I is a wo-sided single-price aucion, which means ha here are bids from he purchase and sell side, ha are mached a a singe marke clearing price. The price for each rading period, h = 1,..., 24, of a day is seled by a separae aucion, and all period specic aucions of a day are conduced simulaneously he day before. The raders regiser he amouns of elecriciy hey are willing o sell/purchase for individually selecable price inervals in a rading ool, where each rading period is represened by a new inpu line. Noe ha hey base heir bid-decisions on he same informaion se for all period specic aucions. The price selemen mechanism deermines for each rading period, h, he spo price, Y h, by he poin of inersecion of he (over all bids) aggregaed supply and demand curves. More deails abou aucion designs a power exchanges can be found among ohers in he book of Rafal Weron (2006). The horizonally shifs of he N demand curves reveal he shape a daily mean supply curve by he price vecor, Y = (Y 1,..., Y N ), and he according (residual) demand values. Figure 1 shows he raw daa of 3

5 hree consecuive days of wo dieren (arbirary) weeks obviously, he supply curves possess depend on former supply curves and form a (funcional) ime series daa se. ER/MWh Adjused Demand (MW) Figure 1: Three consecuive days from wo dieren arbirary weeks. Since we esimae he supply curves from he hourly spo prices, Y h, a he European Elecriciy Exchange (EEX), we will generally refer o he curves as price curves. The marke of he EEX has go a high share of producers of elecriciy from volaile renewable energy sources (mainly wind), who feed heir elecriciy direcly ino he grid and receive a cerain guaraneed price. Adjused demand, u, shall reec he price relevan residual amoun of elecriciy ha is demanded from he convenional marke paricipans. We assume ha he hourly spo prices for elecriciy a he EEX come from an underlying smooh process, such ha Y i = X (u i ) + ε i, (1) where X (.) is a smooh monoone funcion of adjused demand u, where is a closed and bounded subspace of R, we will se, wihou loss of generaliy, = [0, 1]. The index i = 1,..., 24 in u i refers o he i-h order saisic of he hourly adjused demand values dened as u h = d h p h, where d h is he gross demand for elecriciy and p h is he corresponding infeed of elecriciy from wind energy a day = {0, ±, 1, ±2,... } in hour h = 1,..., N, wih N = 24. The noise erm, ε i, is assumed o be independenly disribued wihin and beween each day, wih E(ε i ) = 0 and a heeroscedasic V ar(ε i ) = σ 2 ε(u i ). The wihin independence is realisic since he hourly prices of he day are deermined conemporaneously a 12 o'clock a day 1. The beween independence 4

6 and a model for he heeroscedasiciy follows from he error-in-variables discussion in he nex paragraph. As i can be seen in gure 1 he model from equaion (1) is suppored by he raw daa. There are some remarkable srong deviaions, especially for high and low values of adjused demand. This comes from an inheren inaccuracy of adjused demand values, u i. The spo marke of elecriciy is acually an oneday-ahead fuure marke, and he marke paricipans (i.e. he raders) base heir decisions on heir own hourly forecas values of adjused demand. Insead of hese price relevan bu unobservable forecas values we have o form he adjused demand values, u i, from he acual realized values of gross demand, d i, and acual producion of elecriciy from renewable energy sources, p i. Formally, we have o deal wih an error-in-variables problem and formalize he noisy covariaes as u i = w i + ν i, where w i are he unobservable price relevan adjused demand values, and he noise erm ν i is assumed o have E(ν i ) = 0 and V ar(ν i ) = σν 2 for all = {0, ±1, ±2,... } and i = {1,..., 24}. This inaccuracy causes sronger disorions a low and high values of adjused demand where he price curves have go higher slopes han for moderae values of adjused demand. Acually, his is a degeneraed case of an error-in-variable problem, since he dependen variable, Y i, is observed nearly wihou noise. We assume ha he noise in he observaions of Y i is negligible and ha we can ranslae he error-in-variables problem ino an usual esimaion problem wih heeroscedasic error erms. A more sophisicaed esimaion procedure is beyond he scope of our paper, bu migh be a opic for fuure sudies. Our aim is o esimae he daily price funcions X from he discree daa vecor Y = (Y 1,..., Y N ). We use N o refer o he amoun of prices per day ha are used o esimae he funcion X since some prices are assigned o he opporuniy regime. We use a parsimonious ex-pos assignmen, price above a cerain hreshold are classied o he opporuniy regime, all ohers are classied o he marginal cos regime. A reasonable hreshold seems o be 145 ER, since for prices > 145 ER he raders lose heir coninuous marginal cos reference and begin o bid in clusers (150 ER, 200 ER, 250 ER,... ) of prices (see lef panel of gure 2). The righ panel of gure 2 shows all prices classied o he marginal cos regime. Generically, we assume he daily price curves o come from a sochasic process (X ) for = {0, 1, 2,... } wih realizaions in he space of square inegrable funcions H = L 2 () on a compac se R. As in mulivariae saisics, saionary funcional sochasic process are usually described by heir ime invarian mean funcion and covariance operaor. However he series of price curves has go a clear sochasic, non saionary rend. The curves inheri his propery from he non saionary prices for raw maerials (such as gas, coal, and Co2-cericaes) ha are needed o produce elecriciy. The (funcional) random walk model, X = δ + X 1 + e, wih = {0, 1, 2,... } (2) 5

7 Spo Prices Adjused demand ER/MWh Figure 2: Lef Panel: Non parameric densiy esimaion of elecriciy spo prices (Noe: Only prices 325 ER are ploed, bu here are prices up o 2437 ER). Righ Panel: Pooled spo prices classied o he marginal regime, wih wo highlighed price vecors from wo arbirary days. wih a linear rend, where δ H, an iniial value from a random funcion, Z 0, ha is normally disribued wih mean, µ Z, and covariance operaor, Γ Z, and a whie noise process, (e ) H, wih mean zero and covariance operaor, Γ e, seems mos appropriae. Noe ha, as in he univariae case he EX = µ Z for all, bu he covariance operaor depends on, such ha he process dened in (2) is non saionary. This is a special case of he so called ARH(1) model, i.e. an auo regressive model in H. Noe ha any ARH(p), wih p > 1, model can be ransformed ino an ARH(1) model, such ha he above model is no necessarily a resricion wih respec o he lag order (see Bosq (2000)). Furhermore, as usual pracice in mulivariae ime series analysis we do no apply funcional moving average erms in order o avoid idenicaion problems wih he AR erms. The mean funcion of he funcional random walk is independen of and we can invesigae, wihou loss of generaliy, he properies of he demeaned process (X ) = (X µ Z ). This yields he same funcional random walk process as in equaion (2) bu wih an iniial funcional random variable Z 0 ha has he zero funcion as i's mean; we wrie X = δ + X 1 + e. As already noed in Park e al. (2009), we need saionary of he ime series in order o use he well developed funcional principal componen analysis. Tradiional ransformaion procedures such as diereniaion of he ime series, (X ), canno be used, because he prices are observed a non equidisan adjused demand values, u i. We propose a new ransformaion procedure ha decomposes he original series, (X ), ino is saionary funcional componen, ( X ), and is non saionary univariae random walk componen, (Θ ). The decomposiion is moivaed by he uni sphere projecion of funcional daa (see Locanore e al. 6

8 (1999) and Gervini (2008)). In order o use a noaion, ha corresponds o he marix noaion of mulivariae saisics, we inroduce he ensor produc noaion dened as X X (u, v) = X (u) X (v), for (u, v) R 2 and = {0, 1, 2,... }. Then, he covariance funcion [ of a saionary funcional series, ( X ), can be wrien as ρ(u, v) = E ( X µ ) ( X ] µ ) (u, v). The covariance operaor is dened as Γ X f(u) = ρ(u, v)f(v)dv, for any funcion f H. Is specral decomposiion by is eigenvalues, λ1 > λ 2 >..., and corresponding eigenfuncions, φ 1, φ 2,..., wih he usual resricions φ2 k = 1 and φ kφ m = 0 for m < k, allows us o wrie he funcionals X by he well known Karhunen-Loève decomposiion as X (u) = µ Z (u) + β k φ k (u). Where µ Z = E( X ) and β k = ( X µ Z )φ k are he principal componen scores wih E(β k ) = 0 and E(βk 2 ) = λ k. No leas because of he bes basis propery (in he mean square error sense) of he Karhunen-Loève decomposiion, ofen a relaively small number of eigenfuncions provides a good o he sample curves. One problemaic fac regarding our daa is ha he adjused demand values u j are no uniformly disribued over he whole domain, bu may be clusered a sub-inervals wihin. This makes i dicul o approximae he inegrals in β k = ( X µ Z )φ k by radiional mehods like he rapezoidal rule where β k N j=1 Y jφ k (u j )(u j u,j 1 ), wih u 0 = 0. This is he same problem as in he so called sparse daa problem in funcional daa analysis where i is dicul o approximae inegrals from insucienly many daa poins (see e.g. Yao e al. (2005)). Yao e al. sugges o esimae he principal componen scoresβ k by heir condiional expecaion given he sparse daa {u 1,..., u N }. This procedure works very well for our non uniform disribued u j. In he nex secion we inroduce a new decomposiion of a non saionary funcional ime series ino is saionary spherical componen and ino is non saionary scaling componen. In he secion 3 we discuss how o esimae he mean funcion, µ Z, he covariance funcion, ρ(u, v), which is he kernel of he covariance operaor, Γ X f(u) = ρ(u, v)f(v)dv, and he sandard deviaion, σ. In subsecion 3.1 we esimae he eigenfuncions of he covariance operaor and discus heir inerpreaions. The subsecion 3.2 adaps he condiional esimaion of principal componen scores from Yao e al. (2005) in order o esimae he pc-scores based on non uniformly (on ) disribued daa, u i. Finally, we demonsrae he goodness of of our esimaion procedure in subsecion

9 2. Principal componen analysis for non saionary daa From a pracical poin of view i would be a grea advanage o projec he innie dimensional ARH(1) process ino a nie dimensional funcional space, P, spanned by K basis funcions, φ 1,..., φ K, such ha he mean squared error of he projecion, T N { } 2 X (u j ) X,K (u j ) wih X,K = =1 j=1 K β k φ k and β k = X φ k, (3) is minimized, where (X ) = (X µ Z ). If he series (X ) corresponds (a leas wih high accuracy) o a K dimensional funcional ime series, (X,K ), we could ransform he innie dimensional process, (X ), ino K univariae ime series, (β 1 ), (β 2 )..., (β K ), ha are orhogonal o each oher. The well known Karhunen-Loève heorem suggess o use he K eigenfuncions ha correspond o he K highes eigenvalues of he covariance operaor of he process (X ) as basis funcions. Esimaion of he eigenfuncions works perfecly for iid or saionary daa, bu in he case of non saionary processes we face he problem ha each elemen of (X ) has go a dieren covariance operaor. Neverheless, we can show ha each covariance operaor, Γ X of X for all = {1, 2,... }, is an elemen of he same space (see heorem 2.1). Theorem 2.1. Wihou loss of generaliy, given a de-meand version (X ) = (X µ Z ) of he random walk process in equaion (2). a) The covariance operaors, Γ X = EX X for = {1, 2,... }, are elemens of he same space. As a consequence, he eigenfuncions of he covariance operaors are he same for all = {1, 2,... }. b) The covariance operaors, Γ X = EX X for = {1, 2,... }, are asympoically idenical, apar from scale dierences. This characerisics moivaed us o ransformaion he process by he unisphere projecion, ha is usually used in mulivariae robus saisics of iid samples (see e.g. Huber and Ronchei (2009), Locanore e al. (1999) and Gervini (2008)). We propose o decompose he series, (X ), ino a funcional componen, ( X ) H, and an univariae componen, (Θ ) R, such ha (X ) = ( X Θ ). We call he s componen spherical componen and he laer scaling componen. Deniion The spherical componen of a funcional random walk as in equaion (2) is given by πx = πδ + πx 1 + πe. Where π = (.)/. 2, is he uni-sphere projecion operaor, wih. 2 = (.)2, is he L 2 norm in H. Deniion The scaling componen of a funcional random walk as in equaion (2) is given by X 2 = δ 2 + X e 2. Wih. 2 = (.)2, he L 2 norm in H. 8

10 I can be shown ha he spherical componen, compacly wrien as X = δ + X 1 + ẽ, is saionary and ha he covariance operaors of each elemen in ( X ) has go he same eigenfuncions as is non saionary counerpar in (X ) (see heorem 2.2). Noe ha he scaling componen, compacly wrien as Θ = α + Θ 1 + ɛ, is a sandard univariae random walk wih drif α R and whie noise process (ɛ ) N(0, σ ɛ ). Theorem 2.2. Wihou loss of generaliy, given a de-meand version (X ) = (X µ Z ) of he random walk process in equaion (2). a) Is spherical componen, ( X ) = (πx ), is a saionary process. b) The covariance operaors, Γ X = E X X for = {1, 2,... }, are elemens of he same space as he non spherical counerpars, Γ X = EX X. As a consequence, he eigenfuncions of he covariance operaors, Γ X, are he same as of he covariance operaors, Γ X, for all = {1, 2,... }. As a consequence of heorem 2.2, asympoically, he covariance operaors, Γ X, of he non saionary original process, (X ), are he same as he covariance operaors, Γ X, of he spherical process, ( X ) excep for scale dierences. Therefore, we can esimae he original covariance operaors from he saionary spherical series, ( X ). And rescale he esimaed covariance operaor by he scaling componen, (Θ ), ha has absorbed he scale dierences. The K eigenfuncions ha belong o he rs K eigenvalues, λ 1,..., λ K, of he spherical covariance operaor will fulll he opimaliy crierion in (3). 3. Esimaion of he mean, covariance funcion, and sandard deviaion We esimae he mean funcion by local linear polynomial smoohing as proposed by Yao e al. (2005). The measuremen errors are balanced when all prices are pooled and herefore he esimaion of he mean funcion ˆµ(u) = Sm[u, (u i, Y i ), T, N, h µ ] says saisfacory, where S[v, (u i, Y i ), T, N, h µ ] denoes he resul of he local polynomial smoohing procedure of he pooled daa (u i, Y (u i )), for i = 1,..., N, and = 1,..., T, evaluaed a v R wih smoohing parameer h µ. All smoohing parameers are deermined such ha hey are he minimizing he generalized cross validaion crierion (Silverman (1984)). Explici formulas of he esimaors of he mean funcion and he covariance funcion are given in he Appendix A. In gure 3 he esimaed mean funcion, ˆµ, is ploed along wih all pooled daa poins, (u i, Y i ) for = 1,..., T and i = 1,..., N, ha are classied o he marginal cos regime (Y i 145 ER). Furhermore, all prices wih 9

11 adjused demand values smaller han 34, 000 (MW) are omied because hey are no dense enough o guaranee subsequen sable local polynomial smoohing. ER/MWh Figure 3: Esimaed mean funcion, ˆµ, and all pooled prices minus ouliers. The esimaion of he covariance funcion uses he above explained spherical componen, ( X ), of he original series, (X ). The spherical esimaor of he covariance funcion is given in equaion 4, where Sm [ u, v, (, G ), T, h ρ, linear ] denoes he resul of he local linear polynomial surface smoohing procedure of he pooled daa (, G ), = 1,..., T, evaluaed a (u, v) R 2 wih smoohing parameer h ρ and. E denoes he sandard euclidean norm, ρ n (u, v) = Sm [ u, v, (, G ), T, h ρ, linear ], (4) wih: G = [ (Y (u i ) ˆµ(u i )) (Y (u j ) ˆµ(u j )) Y (u i ) ˆµ(u i ) E Y (u j ) ˆµ(u j ) E ] i,j=1,...,n for all i j. (5) We use he subscrip n o denoe he esimaor of ρ in order o avoid messy superscrips. One should exercise cauion in esimaion of he covariance funcion ρ. As equaion 1 indicaes, we have o ake he noise erm ino accoun oherwise he esimaor of he diagonal, ρ(v = u, u) = ρ(u), would be biased. A sraigh forward soluion, originally proposed by Saniswalis and Lee (1998), is 10

12 o leave ou he diagonal elemens, as done in equaion 5. The variance of he curves X (u) is usually reeced as a prominen feaure along he diagonal of he covariance funcion ρ and may be under esimaed by he above explained esimaion procedure. Following Yao e al. (2003) we roae he coordinaes, (u i, u j ), of each elemen of G, clockwise by 45, ( u i u j ) = ( ) ( ) ui, u j and esimae he surface again wih a local quadraic polynomial smooher, [ ] ρ n (u, v ) = Sm u, v, (, Ġ), T, h ρ, quadraic (6) [ (Y (u i wih: Ġ = ) ˆµ(u i )) ( Y (u j ) ˆµ(u j )) ] Y (u i ) ˆµ(u i ) E Y (u j ) ˆµ(u j ). (7) E i,j=1,...,n for all i j The quadraic orhogonal o he diagonal of he covariance funcion approximaes he variance of he funcions beer. The diagonal of he esimaed covariance funcion, ρ n (u, v = u) = ρ n (u) is se equal o ρ n (0, u/ 2) for all u wih ρ n (u) < ρ n (0, u/ 2); we denoe his adjused esimaion of he covariance funcion classically by ˆρ. In he lef panel of gure 4 he esimaed covariance funcion, ˆρ, is shown; he sharpened diagonal is hardly visible bu exisen. The righ panel of gure 4 gives a comparison of he hree esimaed diagonals of he covariance funcion, ρ n (u), ρ n (u), and D n (u), where he laer uses only he noisy diagonal elemens (see equaion (8)). [ D n (u) = Sm u, (, G ] D ), T, h D, linear (8) [ ] (Y (u i ) ˆµ(u i )) 2 wih: GD = Y (u i ) ˆµ(u i ) 2 E i=1,...,n. The dashed line refers o he esimaor ρ n (u), from equaion (4), he doed line refers o he esimaor ρ n (u), from equaion (6) wih roaed coordinaes and quadraic smoohing, and he solid line is refers o he esimaor, Dn (u), from smoohing only he diagonal componens. I is clearly visible ha he inclusion of he diagonal elemens leads o a srong disorion of he covariance diagonal, because of he noise erm. The dierence beween he diagonal esimaion wih diagonal componens, D, and wihou diagonal componens bu roaed coordinaes, ρ, can be used o esimae he variance of he noise erm, σ Specral decomposiion of he covariance operaor Given an esimaion of he spherical covariance funcion, ˆρ, we can derive he se of eigenvalues, {ˆλ},...K, and he se of eigenfuncions, { ˆφ k },...K, by he 11

13 l r Diagonal Terms only Diagonal Terms excluded wih Roaion Diagonal Terms excluded wihou Roaion Figure 4: Lef Panel: Esimae covariance funcion, ˆρ. Righ Panel: The resuls of he hree versions of diagonal esimaion of he covariance funcion. specral decomposiion of he covariance operaor, ˆΓf(u) = ˆρ(u, v)f(v)dv, wih f(u) L 2 (), from he soluions of he eigenequaions ˆρ(u, v) ˆφ k (u)du = ˆλ k ˆφk (v), wih he usual resricions ˆφ 2 k = 1 and ˆφ k ˆφl = 0 for all k < l. The sandard procedure is o discreize he covariance funcion, ˆρ, a an equidisan grid (u d 1,..., u d n) (u d 1,..., u d n) and hen o use rouines from he mulivariae specral decomposiion of marices (see e.g. Ramsay and Silverman (2005) for a deailed explanaion). From heorems 2.1 and 2.2 above, we know ha he eigenfuncions of he spherical covariance operaors, Γ X, are he same as he eigenfuncions of all original covariance operaors, Γ X, such ha hese fulll he bes basis propery of equaion (3). Noe ha, hey are no unique in his characerisic. There may be an oher se of eigenfuncions ha is as well ecien in he mean squared error sense bu is beer o inerpre. Again, mehods from he mulivariae saisics can be used here o produce new eigenfuncions. Given a discreized se of esimaed eigenfuncions, [φ d 1,..., φ d K ] wih ˆφ d k = ( ˆφ k (u d 1),..., ˆφ k (u d n)) R n, every K K roaion marix R, wih R R = RR = I, leads o a new orhonormal se of basis vecors [ψ d 1,..., ψ d K ] = R[φd 1,..., φ d K ]. Ofen, eigenfuncions are only inerpreable afer a suiable roaion scheme. The well known VARIMAX roaion ries o maximize he variance of each discreized eigenfuncion ˆφ d = ( ˆφ(u d 1),..., ˆφ(u d n)) by eiher scaling he values ˆφ(u d i ) agains zero or agains very high absolue values. Figure 5 shows he four roaed eigenfuncions ha belong o he four highes eigenvalues. The 12

14 dieren ypes of power plans become apparen surprisingly well. The greaes par (70.88%) of he oal variaions of he spo prices, which belong o he marginal cos regime, is beween 50, 200 MW and 62, 000 MW. This region is generally supplied by coal power plans, which face he mos price volaile resource commodiies (hard coal, brow coal, and CO2 cericaes). The second greaes par (22.16%), beween 62, 000 MW and 73, 720 MW, generally can be assigned o gas and oil power plans ha are ofen used in hours wih peak demands for elecriciy. The hird par (5.49%) of he oal variance, beween 34, 520 MW and 50, 200 MW, can be assigned o he base power plans, mosly nuclear power plans. VARIMX Eigenfun % VARIMX Eigenfun % ER/MWh ER/MWh Adjused Demand (MW) Adjused Demand (MW) VARIMX Eigenfun % VARIMX Eigenfun % ER/MWh ER/MWh Adjused Demand (MW) Adjused Demand (MW) Figure 5: VARIMAX roaed eigenfuncions Condiional esimaion of he principal componen scores From he heorem 2.2 we know ha he spherical covariance operaor, Γ X, is asympoically he same as he covariance operaor, Γ X, excep for scale dierences. This allows us o model, rs, he spherical sample curves, ( X ), as a K dimensional process (see equaion (3)), X,K = K ξ k φ k, and hen o rescale hem o heir original size, (X ), by heir scaling componen, (θ ). For simpliciy, we do no disinguish noaionally beween sample and generic versions of (X ). The usual esimaion of he pc-scores approximaes he inegral, ξ k = φ k X. Given he non uniformly disribued daa, 13

15 u 1,..., u N, over he domain,, we canno adequaely approximae he pcscores by numerical inegraion procedures. The PACE approach of Yao e al. (2005) uses he condiional expecaion, E(β k X ), given a join normal disribuion of he random vecor (β k, X ). This procedure can be applied o our problem, when we use he assumpion ha he spherical scores, ξk, and he discree spherical curve values, Ỹ = Y µ Y µ E wih Y = (Y,1,..., Y N ) and µ = (µ(u 1 ),..., µ(u N )), come from a join Gaussian disribuion of ( β k, X ). We esimae he condiional principal componen scores, ξ k c, given he non uniformly disribued discree observed curve daa, Ỹ, by ξ c k = E[ β k Ỹ ] = λ k φ k Σ 1 Ỹ (Ỹ ), (9) where Σ Y = [ ρ(u i, u j )] i,j=1,...,n + σ 2 I N is a N N symmeric marix and φ k = (φ(u 1 ),..., φ(u N )) a N dimensional vecor Fied Curves Dieren from radiional mehods our esimaion procedure does no focus on esimaion of he hourly spo prices direcly, bu on he esimaion of daily mean price curves (or supply curves, respecively). The lef panel of gure 6 shows he esimaed price curve of Thursday he 9 h February in The circle poins are assigned o he marginal cos regime and conribue o he esimaion procedure. The wo prices corresponding o he wo riangle poins are assigned o he opporuniy regime and do no conribue o he esimaion procedure. The righ panel of gure 6 shows he whole week from Monday he 6 h o Sunday he 12 h February in Here, he prices are ploed in he radiional in correspondence o heir rading periods. We wan o emphasize ha our separaion of he daa ino a marginal cos regime and an opporuniy cos regime is more fundamenal han sandard regime swich models ha usually swich beween wo or more (ofen comparable) ime series models. (See Jong (2006) for an overview of classical regime swich models in he conex of elecriciy spo marke daa.) Here, we base he regime swich on a change in he bidding behavior of he raders. Ex pos his is easily done wih a hard hreshold price; see discussion o gure 2. Ex ane his is no a rivial hing o do, since every rader may be forced o swich ino he opporuniy cos regime on basis of privae informaion such as delivery obligaions and unexpeced changes in power plan capaciies. On basis of public available daa i will be hardly possible o predic individual regime swiches, bu i migh be possible o predic siuaions in which (nearly) all marke paricipans will have o swich ino he opporuniy regime. This will be par of fuure research. 14

16 ER/MWh MW Figure 6: Esimaed price curve, X (u), of Th. 9/Feb./06; wih superimposed 24 prices, Y = {Y 1,..., Y 24 }, of ha day. The wo prices corresponding o he wo riangle poins are assigned o he opporuniy regime. 4. Conclusion In his paper we suppor a new angle of vision in modeling hourly elecriciy spo marke daa. We argue ha he inra-day seasonaliy canno be esimaed by radiional ime series models, ha are based on he assumpion of a hourly updaing informaion se (as already done by Huisman e al. (2007)). This assumpion is ofen no valid because mos elecriciy exchanges use a singe price aucion where he hourly price vecors, {Y h } h=1,...,24 for day, are deermined simulaneously he day before a 1. We use a funcional ime series model and esimae daily mean supply funcions by funcional principal componen analysis. Here, he inra-daily raw daa is no he radiional consecuive price vecor, {Y h } h=1,...,24, bu he re-ordered price vecor, {Y i } i=1,...,24, corresponding o he covariae vecor of adjused demand values, u 1 < < u i < < u 24. This inroduces wo problems, rs, he daa looses is equidisan design, acually he adjused demand values, u i, even are no uniformly disribued wihin he domain R. Second, (funcional) principal componen analysis needs iid daa or a leas saionary daa, bu our daa se is non saionary. The rs problem is solved by an adapion of he principal componen analysis for spaces daa (see Saniswalis and Lee (1998) and Yao e al. (2005)). The second problem is solved by he inroducion of a new decomposiion of he funcional imes series ino a saionary spherical componen and a non saionary scaling componen. The laer is one of our main conribuions ha migh be very useful for many oher funcional imes series esimaion problems. Furhermore, 15

17 Su Th. Fr. Sa. ER/MWh Orig. Prices Fied Prices Mo. Tu. We Hours Figure 7: Original and ed prices of he week: Mo. 6/Feb./06 Su. 12/Feb./06. Here, he prices are re-ordered ino he radiional hourly perspecive. our approach handles he informaion se correcly as a daily updaing informaion se. The resul ha we need only hree componens in order o explain 98.53% of he oal variaion suppors he imporance o accoun for he correc consideraion of he daa generaing process. Oher sudies ha work wih similar approaches bu use he radiional hourly price vecors, {Y h } h=1,...,24, need higher numbers of principal componens for comparable fracions of explained variance (see e.g. Wolak (1997) and Härdle and Trück (2010)). 16

18 Appendix A. Explici Formulas Mean funcion µ(u): ˆµ(u) = Sm[u, (u i, Y i ), T, N, h µ ] ˆµ(u) = ˆβ 0 (u) Wih ˆβ T N 0 (u) from: min K 1 ( u u i )[Y i β 0 β 1 (u u i )] 2 β 0,β 1 h µ i Wih ˆβ 0 (u, v) from: [ ρ n (u, v) = Sm u, v, (, G ] ), T, h ρ, linear [ (Y (u i ) ˆµ(u i )) (Y (u j ) ˆµ(u j )) wih: G = Y (u i ) ˆµ(u i ) E Y (u j ) ˆµ(u j ) E ρ(u, v) = ˆβ 0 (u, v) T min β 0,β 11,β 12 K 2 ( u u i h G 1 i j N, v u j h G ) ] i,j=1,...,n for all i j [G (u i, u j ) β 0 β 11 (u u i ) β 12 (v u j )] 2 { (1 w Where K 1 (w) = ) 3 w < 1 0 oherwise Where: w = u ui h µ K 2 (w, x) = K 1 (w)k 1 (x) Where: w = u ui h G and x = v ui h G (Or any oher valid univar. kernelfuncion.) The bandwidhs are deermined by Generalized Cross Validaion (CGV). These rouines are already implemened in he R package locfi (Loader, 2010). Appendix B. Proofs Proof of heorem 2.1. Par a): From he deniion of he covariance operaor and he random walk. Γ X (u, v) = E(X X (u, v)) = E(X (u) X (v)) 1 1 Γ X (u, v) = E(( e i (u) + Z0 (u))( e i (v) + Z0 (v))). i=0 Wih Γ e (u, v) = K λe k φe k φe k (u, v) we can wrie e (u) = βe k φe k (u) for all = {1, 2,... }, where βk e N(0, λe k ). And similar for Z 0, wih Γ Z (u, v) = i=0 17

19 K λz k φz k φz k (u, v), we can wrie Z 0(u) = βz k φz k (u), where βz k N(0, λ Z k ). This yields, Γ X (u, v) = Γ e (u, v) + Γ Z (u, v), (B.1) which corresponds o he usual univariae and mulivariae random walk characeric of an wih O() increasing covariance. Given he specral decomposiions of he covariance operaors, we have, Γ X (u, v) = λ e kφ e k φ e k(u, v) + λ Z k φ Z k φ Z k (u, v). Noe ha Γ X (u, v) is an elemen of an addiion of wo vecor spaces, P P + Q Q = {p p = α p,k φ e k φ e k, (α p,k ) 2 <, α p,k R k} + {q q = α q,k φ e k φ e k, (α q,k ) 2 <, α q,k R k}. Wihou loss of generaliy we can invesigae he degeneraed case where λ Z k = 0 for all k. Then we have Γ X (u, v) = λ e kφ e k φ e k(u, v) P P. Wih he propery ha vecor spaces are closed wih respec o scalar muliplicaion we can direcly show ha P P = P +i P +i, P P = span{ φ e 1 φ e 1, φ e 2 φ e 2,... } = {p p = α k φ e k φ e k and α k R k} = {p p = γ k ( + i) φ e k φ e k and γ k R k} where γ = (α k )/( + i) = span{( + i) φ e 1 φ e 1, ( + i) φ e 2 φ e 2,... } = P +i P +i = P P, for arbirary, i = {1, 2,... }. Therefore each covariance operaor, Γ X (u, v), is an elemen of he same space K K P P = {p p = α p,k φ e k φ e k, (α p,k ) 2 <, α p,k R k}. This shows par a) of heorem

20 Par b): From equaion (B.1) we have, ( ) lim, s ΓX (/s) = cons. = Γ X +s lim (, s (/s) = cons. ( Γ e + (1/) Γ Z ) ( + s) ( Γ e + (1/( + s)) Γ Z ) ) = 1 (1 + cons.). This shows par b) of heorem 2.1. Proof of heorem 2.2. Par a): Wihou loss of generaliy, we invesigae he de-meand process, ( X ), given by π(x µ Z ) = δ + π(x 1 µ Z ) + πe = 1 πe + π(z 0 µ Z ) i=0 X = δ + X 1 + ẽ wih X = (X µ Z ) and (.) = π(.) = (.) (.) 2 1 = δ + ẽ + Z 0 wih Z0 = (Z 0 µ Z ) and Z 0 = πz0 i=0 We proof ha he spherical componen, ( X ), is a (weak) saionary process. I.e. (i) has go consan mean funcion for all = {0, 1, 2,... }, (ii) nie covariance operaor, and (iii) auocovariance operaors ha are independen of (see any inroducory ime series book, such as Shumway and Soer (2006)). Given he funcional random walk process dened by equaion (2). Wihou loss of generaliy, we se δ equal o he null funcion such ha, Condiion (i): X = X 1 + ẽ 19

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall

Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall 64_INS.qxd /6/0 :56 AM Page Key Formulas From Larson/Farber Elemenary Saisics: Picuring he World, Second Ediion 00 Prenice Hall CHAPTER Class Widh = round up o nex convenien number Maximum daa enry - Minimum

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

The conditional CAPM does not explain assetpricing. Jonathan Lewellen & Stefan Nagel. HEC School of Management, March 17, 2005

The conditional CAPM does not explain assetpricing. Jonathan Lewellen & Stefan Nagel. HEC School of Management, March 17, 2005 The condiional CAPM does no explain assepricing anomalies Jonahan Lewellen & Sefan Nagel HEC School of Managemen, March 17, 005 Background Size, B/M, and momenum porfolios, 1964 001 Monhly reurns (%) Avg.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram? HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

& Risk Management , A.T.E.I.

& Risk Management , A.T.E.I. Μεταβλητότητα & Risk Managemen Οικονοµικό Επιµελητήριο της Ελλάδας Επιµορφωτικά Σεµινάρια Σταύρος. Ντεγιαννάκης, Οικονοµικό Πανεπιστήµιο Αθηνών Χρήστος Φλώρος, A.T.E.I. Κρήτης Volailiy - Μεταβλητότητα

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Analiza reakcji wybranych modeli

Analiza reakcji wybranych modeli Bank i Kredy 43 (4), 202, 85 8 www.bankikredy.nbp.pl www.bankandcredi.nbp.pl Analiza reakcji wybranych modeli 86 - - - srice - - - per capia research and developmen dynamic sochasic general equilibrium

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 6η: Basics of Industrial Organization Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 6η: Basics of Industrial Organization Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 6η: Basics of Industrial Organization Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools Firms - Basics

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΦΩΤΟΒΟΛΤΑΙΚΟΥ ΠΑΡΚΟΥ ΜΕ ΟΙΚΙΣΚΟΥΣ ΓΙΑ ΠΑΡΑΓΩΓΗ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΜΕΣΗΣ ΤΑΣΗΣ STUDY PHOTOVOLTAIC PARK WITH SUBSTATIONS

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Centre No. Candidate No. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Materials required for examination Nil Paper Reference

Διαβάστε περισσότερα

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his

Διαβάστε περισσότερα

1. Ευθύγραμμη ομαλή κίνηση 2. Εξίσωση κίνησης 3. Μετατόπιση & διάστημα 4. ιάγραμμα ταχύτητας χρόνου 5. Στρατηγική λύσης προβλημάτων.

1. Ευθύγραμμη ομαλή κίνηση 2. Εξίσωση κίνησης 3. Μετατόπιση & διάστημα 4. ιάγραμμα ταχύτητας χρόνου 5. Στρατηγική λύσης προβλημάτων. 24/9/214 Γενική Φσική Κωνσταντίνος Χ. Παύλο Φσικός Ραδιοηλεκτρολόγος (MSc) Καστοριά, Σεπτέμβριος 14 1. 2. Εξίσωση κίνησης 3. Μετατόπιση & διάστημα 4. ιάγραμμα ταχύτητας χρόνο 5. ονομάζεται η κίνηση πο

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ-ΟΦΕΛΟΥΣ ΓΙΑ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΥΠΡΟ ΜΕΧΡΙ ΤΟ 2030

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools Firms - Basics of Industrial

Διαβάστε περισσότερα

Πώς μπορεί κανείς να έχει έναν διερμηνέα κατά την επίσκεψή του στον Οικογενειακό του Γιατρό στο Ίσλινγκτον Getting an interpreter when you visit your

Πώς μπορεί κανείς να έχει έναν διερμηνέα κατά την επίσκεψή του στον Οικογενειακό του Γιατρό στο Ίσλινγκτον Getting an interpreter when you visit your Πώς μπορεί κανείς να έχει έναν διερμηνέα κατά την επίσκεψή του στον Οικογενειακό του Γιατρό στο Ίσλινγκτον Getting an interpreter when you visit your GP practice in Islington Σε όλα τα Ιατρεία Οικογενειακού

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014 LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV 18 February 2014 Slowly/quietly Clear/clearly Clean Quickly/quick/fast Hurry (in a hurry) Driver Attention/caution/notice/care Dance Σιγά Καθαρά Καθαρός/η/ο

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 1: Elements of Syntactic Structure Το περιεχόμενο του μαθήματος διατίθεται με άδεια

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

Geographic Barriers to Commodity Price Integration: Evidence from US Cities and Swedish Towns,

Geographic Barriers to Commodity Price Integration: Evidence from US Cities and Swedish Towns, Crawford School of Public Policy CAMA Centre for Applied Macroeconomic Analysis Geographic Barriers to Commodity Price Integration: Evidence from US Cities and Swedish Towns, 1732-1860 CAMA Working Paper

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

Συντακτικές λειτουργίες

Συντακτικές λειτουργίες 2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

14 Lesson 2: The Omega Verb - Present Tense

14 Lesson 2: The Omega Verb - Present Tense Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.

Διαβάστε περισσότερα

RUHR. The New Keynesian Phillips Curve with Myopic Agents ECONOMIC PAPERS #281. Andreas Orland Michael W.M. Roos

RUHR. The New Keynesian Phillips Curve with Myopic Agents ECONOMIC PAPERS #281. Andreas Orland Michael W.M. Roos RUHR ECONOMIC PAPERS Andreas Orland Michael W.M. Roos The New Keynesian Phillips Curve with Myopic Agents #281 Imprint Ruhr Economic Papers Published by Ruhr-Universität Bochum (RUB), Department of Economics

Διαβάστε περισσότερα

IMES DISCUSSION PAPER SERIES

IMES DISCUSSION PAPER SERIES IMES DISCUSSION PAPER SERIES Will a Growth Miracle Reduce Debt in Japan? Selahattin mrohorolu and Nao Sudo Discussion Paper No. 2011-E-1 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 2-1-1

Διαβάστε περισσότερα

Test Data Management in Practice

Test Data Management in Practice Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater. Low Impedance, For Switching Power Supplies Low impedance and high reliability withstanding 5000 hours load life at +05 C (3000 / 2000 hours for smaller case sizes as specified below). Capacitance ranges

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Firm Behavior GOAL: Firms choose the maximum possible output (technological

Διαβάστε περισσότερα

ΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ

ΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ Ε ΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ ΙE ΕΚΠΑΙ ΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ ΓΕΝΙΚΗΣ ΙΟΙΚΗΣΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ Θέµα: Εκπαίδευση: Μέσο ανάπτυξης του ανθρώπινου παράγοντα και εργαλείο διοικητικής µεταρρύθµισης Επιβλέπουσα:

Διαβάστε περισσότερα

LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV. 10 December 2013

LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV. 10 December 2013 LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV 10 December 2013 I get up/i stand up I wash myself I shave myself I comb myself I dress myself Once (one time) Twice (two times) Three times Salary/wage/pay Alone/only

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 4: English a Language of Economy Το περιεχόμενο του μαθήματος διατίθεται με άδεια

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα

Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science

Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science Statistics & Research methods Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science 30 25 1,65 20 1,66 15 10 5 1,67 1,68 Κανονική 0 Height 1,69 Καμπύλη Κανονική Διακύμανση & Ζ-scores

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΚΙΝΔΥΝΩΝ

ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΚΙΝΔΥΝΩΝ ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ Δ ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΠΡΟΣΤΑΣΙΑΣ ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΚΙΝΔΥΝΩΝ Σπουδάστρια: Διαούρτη Ειρήνη Δήμητρα Επιβλέπων καθηγητής:

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΤΟΥ ΣΥΝΟΛΙΚΟΥ ΑΡΙΘΜΟΥ ΤΩΝ ΓΕΩΡΓΙΚΩΝ ΕΛΚΥΣΤΗΡΩΝ ΤΗΣ ΕΛΛΑΔΑΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΧΡΟΝΙΚΗΣ ΤΑΣΗΣ

ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΤΟΥ ΣΥΝΟΛΙΚΟΥ ΑΡΙΘΜΟΥ ΤΩΝ ΓΕΩΡΓΙΚΩΝ ΕΛΚΥΣΤΗΡΩΝ ΤΗΣ ΕΛΛΑΔΑΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΧΡΟΝΙΚΗΣ ΤΑΣΗΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 8 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ.409-46 ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΤΟΥ ΣΥΝΟΛΙΚΟΥ ΑΡΙΘΜΟΥ ΤΩΝ ΓΕΩΡΓΙΚΩΝ ΕΛΚΥΣΤΗΡΩΝ ΤΗΣ ΕΛΛΑΔΑΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΧΡΟΝΙΚΗΣ

Διαβάστε περισσότερα

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions. Luevorasirikul, Kanokrat (2007) Body image and weight management: young people, internet advertisements and pharmacists. PhD thesis, University of Nottingham. Access from the University of Nottingham repository:

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE

Διαβάστε περισσότερα

Case 1: Original version of a bill available in only one language.

Case 1: Original version of a bill available in only one language. currentid originalid attributes currentid attribute is used to identify an element and must be unique inside the document. originalid is used to mark the identifier that the structure used to have in the

Διαβάστε περισσότερα

Terabyte Technology Ltd

Terabyte Technology Ltd Terabyte Technology Ltd is a Web and Graphic design company in Limassol with dedicated staff who will endeavour to deliver the highest quality of work in our field. We offer a range of services such as

Διαβάστε περισσότερα

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ιπλωµατική Εργασία του φοιτητή του τµήµατος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών

Διαβάστε περισσότερα

The random walk model with autoregressive errors

The random walk model with autoregressive errors MPRA Munich Personal RePEc Archive The random walk model wih auoregressive errors Halkos George and Kevork Ilias Universiy of Thessaly, Deparmen of Economics 2005 Online a hp://mpra.ub.uni-muenchen.de/33312/

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ Πτυχιακή εργασία ΜΕΛΕΤΗ ΠΟΛΥΦΑΙΝΟΛΩΝ ΚΑΙ ΑΝΤΙΟΞΕΙΔΩΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΣΟΚΟΛΑΤΑΣ Αναστασία Σιάντωνα Λεμεσός

Διαβάστε περισσότερα

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author. Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author. 2012, Γεράσιμος Χρ. Σιάσος / Gerasimos Siasos, All rights reserved. Στοιχεία επικοινωνίας συγγραφέα / Author

Διαβάστε περισσότερα

Υλοποίηση Δικτυακών Υποδομών και Υπηρεσιών: OSPF Cost

Υλοποίηση Δικτυακών Υποδομών και Υπηρεσιών: OSPF Cost Υλοποίηση Δικτυακών Υποδομών και Υπηρεσιών: OSPF Cost Πανεπιστήμιο Πελοποννήσου Τμήμα Επιστήμης & Τεχνολογίας Τηλεπικοινωνιών Ευάγγελος Α. Κοσμάτος Basic OSPF Configuration Υλοποίηση Δικτυακών Υποδομών

Διαβάστε περισσότερα

Αναερόβια Φυσική Κατάσταση

Αναερόβια Φυσική Κατάσταση Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής

Διαβάστε περισσότερα

Όλνκα πνπδάζηξηαο: Γξεγνξία αββίδνπ Α.Δ.Μ:7859. Δπηβιέπνλ Καζεγεηήο: Παζραιίδεο Αζαλάζηνο ΑΝΩΣΑΣΟ ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΚΑΒΑΛΑ

Όλνκα πνπδάζηξηαο: Γξεγνξία αββίδνπ Α.Δ.Μ:7859. Δπηβιέπνλ Καζεγεηήο: Παζραιίδεο Αζαλάζηνο ΑΝΩΣΑΣΟ ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΚΑΒΑΛΑ ΑΝΩΣΑΣΟ ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΚΑΒΑΛΑ ΥΟΛΖ ΓΗΟΗΚΖΖ ΚΑΗ ΟΗΚΟΝΟΜΗΑ ΣΜΖΜΑ ΛΟΓΗΣΗΚΖ Εςπωπαϊϊκή Εταιιπείία,, ο θεσμόρ καιι η ανάπτςξη τηρ. Όλνκα πνπδάζηξηαο: Γξεγνξία αββίδνπ Α.Δ.Μ:7859 Δπηβιέπνλ Καζεγεηήο:

Διαβάστε περισσότερα

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.

Διαβάστε περισσότερα

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας» ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ «ΠΑΙ ΙΚΟ ΒΙΒΛΙΟ ΚΑΙ ΠΑΙ ΑΓΩΓΙΚΟ ΥΛΙΚΟ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που εκπονήθηκε για τη

Διαβάστε περισσότερα

LECTURE 2 CONTEXT FREE GRAMMARS CONTENTS

LECTURE 2 CONTEXT FREE GRAMMARS CONTENTS LECTURE 2 CONTEXT FREE GRAMMARS CONTENTS 1. Developing a grammar fragment...1 2. A formalism that is too strong and too weak at the same time...3 3. References...4 1. Developing a grammar fragment The

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Correction Table for an Alcoholometer Calibrated at 20 o C

Correction Table for an Alcoholometer Calibrated at 20 o C An alcoholometer is a device that measures the concentration of ethanol in a water-ethanol mixture (often in units of %abv percent alcohol by volume). The depth to which an alcoholometer sinks in a water-ethanol

Διαβάστε περισσότερα

Repeated measures Επαναληπτικές μετρήσεις

Repeated measures Επαναληπτικές μετρήσεις ΠΡΟΒΛΗΜΑ Στο αρχείο δεδομένων diavitis.sav καταγράφεται η ποσότητα γλυκόζης στο αίμα 10 ασθενών στην αρχή της χορήγησης μιας θεραπείας, μετά από ένα μήνα και μετά από δύο μήνες. Μελετήστε την επίδραση

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ

Διαβάστε περισσότερα

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΧΝΕΙΟ ΣΜΗΜΑ ΑΓΡΟΝΟΜΩΝ-ΣΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΣΟΜΕΑ ΣΟΠΟΓΡΑΦΙΑ ΕΡΓΑΣΗΡΙΟ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟ ΓΙ ΚΟ ΕΚΠΑ ΙΔ ΕΥ Τ ΙΚΟ Ι ΔΡΥ Μ Α 'ΠΕ Ι ΡΑ ΙΑ ΤΜΗΜΑ ΚΛΩΣΤΟΥΦΑΝΤΟΥΡΓΙΑΣ ΕΙΔΙΚΟΤΗΤΑ ΒΑΦΙΚΗΣ ΠΤΥΧΙΑΚΉ ΕΡΓ ΑΣΙΑ ΤΙΤΛΟΣ ΕΥΧΡΗΣΤΙΑ ΕΞΕΙΔΙΚΕΥΜΕΝΟΥ

ΤΕΧΝΟΛΟ ΓΙ ΚΟ ΕΚΠΑ ΙΔ ΕΥ Τ ΙΚΟ Ι ΔΡΥ Μ Α 'ΠΕ Ι ΡΑ ΙΑ ΤΜΗΜΑ ΚΛΩΣΤΟΥΦΑΝΤΟΥΡΓΙΑΣ ΕΙΔΙΚΟΤΗΤΑ ΒΑΦΙΚΗΣ ΠΤΥΧΙΑΚΉ ΕΡΓ ΑΣΙΑ ΤΙΤΛΟΣ ΕΥΧΡΗΣΤΙΑ ΕΞΕΙΔΙΚΕΥΜΕΝΟΥ 515 ΤΕΧΝΟΛΟ ΓΙ ΚΟ ΕΚΠΑ ΙΔ ΕΥ Τ ΙΚΟ Ι ΔΡΥ Μ Α 'ΠΕ Ι ΡΑ ΙΑ ~ " ΤΜΗΜΑ ΚΛΩΣΤΟΥΦΑΝΤΟΥΡΓΙΑΣ ΕΙΔΙΚΟΤΗΤΑ ΒΑΦΙΚΗΣ ΠΤΥΧΙΑΚΉ ΕΡΓ ΑΣΙΑ ΤΙΤΛΟΣ ΕΥΧΡΗΣΤΙΑ ΕΞΕΙΔΙΚΕΥΜΕΝΟΥ ΠΡΟΣΤΑΤΕΥΤΙΚΟΥ ΙΜΑΤΙΣΜΟΥ ΑΡΓΥΡΟΠΟΥ ΛΟΣ ΘΕΜΙΣΤΟΚΛΗΣ

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

A note on deriving the New Keynesian Phillips Curve under positive steady state inflation

A note on deriving the New Keynesian Phillips Curve under positive steady state inflation A noe on deriving he New Keynesian Phillips Curve under posiive seady sae inflaion Hashma Khan Carleon Univerisiy Barbara Rudolf Swiss Naional Bank Firs version: February 2005 This version: July 2005 Absrac

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα