Κωνικές τομές. Πηγή έμπνευσης για την κατασκευή προβλημάτων της Ευκλείδειας Γεωμετρίας.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κωνικές τομές. Πηγή έμπνευσης για την κατασκευή προβλημάτων της Ευκλείδειας Γεωμετρίας."

Transcript

1 Κωνικές τομές. Πηγή έμπνευσης για την κατασκευή προβλημάτων της Ευκλείδειας Γεωμετρίας. Σπύρος Παναγιωτόπουλος Καθηγητής Μαθηματικών ΓΕΛ Σπερχειάδας Λαμία Μιχαήλ Τζούμας Σχ. Σύμβουλος Μαθηματικών Ιωσήφ Ρωγών και Βεΐκου Μεσολόγγι Περίληψη Μια μαθηματική δραστηριότητα αποτελείται από δύο σκέλη: την κατασκευή και τη λύση ενός προβλήματος. Δυστυχώς, οι μαθηματικοί δάσκαλοι, μέχρι σήμερα, εστιάζουν στο σκέλος της λύσης του προβλήματος και παραβλέπουν εκείνο της κατασκευής. Όμως, προκειμένου να αναπτύξουν οι μαθητές μας διερευνητικό προσανατολισμό, αλλά και θετική στάση απέναντι στα Μαθηματικά, θα πρέπει να πάψουμε να αγνοούμε το σκέλος της κατασκευής προβλήματος. Για την κατασκευή προβλημάτων υψηλής ποιότητας προσφέρεται η Ευκλείδεια Γεωμετρία και ιδιαίτερα οι Κωνικές Τομές(κ.τ.), λόγω του πλήθους των ιδιοτήτων που έχουν. Η χρήση επιπλέον της σύγχρονης τεχνολογίας δίνει τη δυνατότητα στους μαθητές να πειραματιστούν, να εικάσουν, αλλά και να προβληματιστούν και να συμπεράνουν. Conic Sections: Source of ideas for the problem posing of Euclidean Geometry Spyros Panagiotopoulos Teacher of Mathematics Michael Tzoumas Advisor of Math Teachers 1

2 Abstract A mathematic activity consists of two parts: The construction of the problem and the solution of it. Unfortunately, up to the present day, teachers of mathematics focus on the process of solving the problem and overlook that of construction. However, if we wish our students to acquire an exploratory orientation along with a positive attitude towards mathematics, we should cease overlooking the part of problem construction. Euclidean Geometry, and especially Conic Sections, offers the opportunity of constructing high standard mathematical problems because of the great variety of properties it is accompanied with. Furthermore, the use of current technology offers the students the potentiality to experiment and suppose as well as to speculate and infer. 1. Εισαγωγή. Στα πλαίσια της ενεργητικής και ερευνητικής στάσης των μαθητών για τα Μαθηματικά, κεντρική θέση κατέχει η δραστηριότητα, δηλαδή η κατασκευή και επίλυση ενός προβλήματος. Μάλιστα, ο Polya [5] στο περίφημο έργο του «How to solve it» προτείνει: «Όταν δεν μπορείς να λύσεις κάποιο πρόβλημα, προσπάθησε να λύσεις κάποιο σχετικό», προφανώς που θα κατασκευάσεις. Όμως, και πολλοί άλλοι επιστήμονες και ερευνητές υποστηρίζουν ότι οι μαθητές πρέπει να έχουν την ευκαιρία για την κατασκευή (και επίλυση) μαθηματικών προβλημάτων π.χ. [6], [8]. Συνηθισμένο αλλά και κυρίαρχο πλαίσιο για την κατασκευή και διατύπωση Μαθηματικών προβλημάτων είναι αυτό της καθημερινής ζωής. Ω- στόσο, στις μεγάλες τάξεις της δευτεροβάθμιας εκπαίδευσης, η εύρεση και χρήση ενός αξιόλογου τέτοιου πλαισίου δυσκολεύει σημαντικά, ιδιαίτερα στη στοιχειώδη Ευκλείδεια Γεωμετρία (σεγ), δεδομένου ότι τόσο στα σχολικά εγχειρίδια, όσο και στην υπάρχουσα βιβλιογραφία δεν υπάρχει ή είναι περιορισμένο. Προτείνουμε, λοιπόν, ενοποίηση των εννοιών της σεγ μέσα στο πλαίσιο των κ.τ., όπου ένα μεγάλο πλήθος ιδιοτήτων αυτών δίνει τη δυνατότητα αλλά και την ευκαιρία οι μαθητές να διαπραγματευτούν δημιουργικά, κάνοντας επανάληψη και επομένως κατακτώντας, ένα μεγάλο πλήθος των εννοιών αυτών. Επιπλέον, το πλαίσιο που προτείνουμε, επειδή μπορεί να διατηρηθεί σταθερό, δύναται να θεωρηθεί «ξεκούραστο», με την έννοια ότι μειώνει το νοητικό φορτίο του μαθητή που επιφέρει η συνεχής αλλαγή πλαισίου. Η κατασκευή ενός προβλήματος μπορεί να προκύψει σε τρεις περιπτώσεις [7].

3 Κατά την επίλυση ενός προβλήματος, όταν, δηλαδή, προσπαθώντας να λύσεις κάποιο πρόβλημα, σου παρουσιάζεται ένα νέο, μικρότερο ίσως από το αρχικό, ενίοτε ισοδύναμο ή και μεγαλύτερο. Μετά τη λύση του προβλήματος ο λύτης (ή ερευνητής), αξιοποιώντας την εμπειρία του, είναι δυνατόν να κατασκευάσει άλλα, χρησιμοποιώντας την καινούργια γνώση ή να δημιουργήσει μια καινούργια κατάσταση, αλλάζοντας πιθανόν τις συνθήκες του αρχικού. Όταν εκμεταλλευτούμε κατάλληλα τα εμπειρικά δεδομένα (η νέα τεχνολογία είναι πλούσια πηγή τέτοιων εμπειριών) ή ένα εξωτερικό ερέθισμα για να δημιουργήσουμε ένα εντελώς νέο και πρωτότυπο πρόβλημα. Ορισμένοι ερευνητές ταξινομούν τα προβλήματα που κατασκευάζονται σε δομημένα, ημιδομημένα και ελεύθερα. Άλλοι πάλι σε τυπικά και άτυπα. Εμείς, όμως, εδώ δε θα ασχοληθούμε και ούτε θα μελετήσουμε τον τρόπο ταξινόμησης αυτών, αλλά θα δώσουμε παραδείγματα κατασκευής (και λύσης) προβλημάτων της Ευκλείδειας Γεωμετρίας, μέσα από τις κωνικές τομές, ώστε να αποτελέσουν εφαλτήριο, στις τελευταίες τάξεις της δευτεροβάθμιας εκπαίδευσης, όσων ενδιαφέρονται για μια τέτοια προσέγγιση. Τα καινούργια προβλήματα μπορούν να γίνουν με πολλούς τρόπους, εδώ, όμως, απλά αλλάζουν οι υποθέσεις του αρχικού προβλήματος των κ.τ. (ενίοτε και τα συμπεράσματα) με άλλες ισοδύναμες που προκύπτουν από την κατασκευή ή την παρατήρηση αυτών. Όσον αφορά τον τρόπο παρουσίασης, θα ισχύσουν τα εξής: Όταν αναφερόμαστε στην αναλυτική γεωμετρία, θα αναφερόμαστε ως Θέμα, ενώ, όταν αναφερόμαστε στην κατασκευή, θα α- ναφέρεται ως Πρόβλημα. Στη δεύτερη παράγραφο υπάρχουν Θέματα και Προβλήματα από την Παραβολή, στη τρίτη παράγραφο από την Έλλειψη και στη τέταρτη από την Υπερβολή. 3

4 . Προβλήματα από την Παραβολή Ορισμός.1 Έστω ένα σημείο Ε και μια ευθεία, που δεν περιέχει το Ε. Ο- νομάζεται παραβολή με εστία το σημείο Ε και διευθετούσα την ευθεία δ ο γεωμετρικός τόπος (γ.τ.) C, των σημείων του επιπέδου τα οποία ισαπέχουν από το Ε και τη δ. Κατασκευάζουμε την Παραβολή με ένα λ.δ.γ, ως εξής. Στην ευθεία δ παίρνουμε ένα σημείο Α και φέρνουμε την ημιευθεία Αt κάθετη στη δ. Φέρνουμε τη μεσοκάθετη στο τμήμα ΕΑ, η οποία τέμνει την Αt στο Μ. Καθώς το Α διαγράφει τη δ το Μ, δημιουργεί την Παραβολή. Ένα πλήθος ιδιοτήτων της σ.ε.γ. γίνεται τότε φανερό, όπως φαίνεται στις [9] και [10]. Έχοντας στο μυαλό μας τις ιδιότητες αυτές, είμαστε έτοιμοι να ξεκινήσουμε την κατασκευή των προβλημάτων Θέμα 1 ο : Έστω η Παραβολή C με εστία το σημείο Ε και διευθετούσα την ευθεία δ. Αν ΜΝ μια χορδή της C που διέρχεται από το Ε, τότε (Σχήμα 1) οι εφαπτόμενες στα Μ και Ν τέμνονται στο Κ, πάνω στην δ. η γωνία ΜΚΝ είναι ορθή. η ΚΕ είναι κάθετη στην ΜΝ. Αν ΜΜ και ΝΝ είναι οι αποστάσεις των Μ και Ν από τον οριζόντιο άξονα, τότε το γινόμενο ΜΜ ΝΝ είναι σταθερό. Πρόβλημα.1: Σε δισορθογώνιο τραπέζιο ΑΜΝΒ με Α=Β=90 ο και ΜΝ=ΑΜ+ΒΝ (Σχήμα ), ισχύουν τα εξής: 4

5 1. Οι διχοτόμοι των γωνιών Μ και Ν τέμνονται στο σημείο Κ της ΑΒ.. Αν Ε σημείο της ΜΝ ώστε ΜΕ=ΑΜ, η ΚΕ είναι κάθετη στην ΜΝ. 3. Η γωνία ΜΚΝ είναι ορθή. 4. Το γινόμενο των αποστάσεων των Μ και Ν από την παράλληλη στις βάσεις, από το Ε είναι σταθερό. Λύση: Το 1. είναι γνωστή ά- σκηση του βιβλίου Γεωμετρίας [3]. Το. προκύπτει από την ισότητα των τριγώνων ΑΜΚ και ΜΚΕ. Για το 3. παρατηρούμε ότι το τρίγωνο ΜΚΝ είναι ορθογώνιο, αφού η ΜΚ και ΝΚ διχοτομούν παραπληρωματικές γωνίες. Τέλος το 4. προκύπτει από το γεγονός ότι ΚΝ ΑΕ και ΚΜ ΒΕ, οπότε και από το ορθογώνιο τρίγωνο ΑΕΒ έχουμε ΜΜ ΝΝ = ΑΛ ΒΛ=ΕΛ. Ενδιαφέρον αποκτά το παραπάνω πρόβλημα, αν υπάρξουν μαθητές που θα πάρουν τις υποθέσεις τους από τη στερεομετρία, π.χ. Πρόβλημα.: Έστω (Ο,R) μια σφαίρα στο εσωτερικό ενός κώνου, και (K 1,R 1 ) και (K,R ) είναι οι τομές των δυο εφαπτόμενων επιπέδων αυτής, των κάθετων στον άξονα του κώνου. Αν ένα επίπεδο, διερχόμενο από τον άξονα του κώνου, τέμνει το σχήμα, τότε η διχοτόμος κάθε γωνίας του τετράπλευρου, που σχηματίζεται, διέρχεται από σταθερό σημείο. Το γινόμενο των αποστάσεων των βάσεων από το επίπεδο επαφής σφαίρας - κώνου είναι σταθερό. Λύση: Η λύση του ανάγεται στη λύση του προηγούμενου προβλήματος, αφού φέρνοντας την Κ 1 Κ προκύπτει το Σχήμα. 5

6 3. Προβλήματα από την Έλλειψη. Ορισμός 4.1. Έστω Ε και Ε δυο σημεία ενός επιπέδου. Ονομάζεται έλλειψη με εστίες τα σημεία Ε και Ε ο γεωμετρικός τόπος C των σημείων του επιπέδου των οποίων το άθροισμα των αποστάσεων από τα Ε και Ε είναι σταθερό ( ) και μεγαλύτερο του Ε Ε ( ). Η κατασκευή της έλλειψης με ένα λ.δ.γ γίνεται ως εξής. Σε κύκλο (, ) παίρνουμε ένα σημείο Ν. Φέρνουμε τη μεσοκάθετη στο τμήμα ΕΝ, η οποία τέμνει την Ε Ν στο Μ. Καθώς το Ν διαγράφει τον κύκλο, το Μ δημιουργεί την Έλλειψη. Ένα πλήθος ιδιοτήτων της σ.ε.γ. καταγράφονται στις [9] και [10]. Όταν εκμεταλλευτούμε τις ιδιότητες αυτές, μπορούμε να κατασκευάσουμε πλήθος προβλημάτων της σ.ε.γ. Εδώ θα κάνουμε α- πλά νύξη. 1. Θέμα 3.1. Έστω ΓΔ το τμήμα μιας εφαπτομένης της έλλειψης με εστίες τα Ε και Ε στο Μ, που περιέχεται μεταξύ των εφαπτόμενων στα άκρα Α και Α του μεγάλου της ά- ξονα (Σχήμα 4). 1. Οι Ε Γ και ΕΔ διχοτομούν τις γωνίες ΜΕ Α και ΜΕΑ αντίστοιχα.. Το τμήμα ΓΔ φαίνεται από κάθε εστία της με ορθή γωνία. 6

7 Αφού τα Γ και Δ είναι τα παράκεντρα του τριγώνου ΜΕΕ προκύπτει το επόμενο πρόβλημα. Πριν από αυτό όμως θα δώσουμε ως Λήμμα, ξαναδιατυπωμένη, μια άσκηση από το [3]. Λήμμα 3.1. (Άσκηση 7, σελ. 88, [3]) Σε τρίγωνο ΑΒΓ η απόσταση του ίχνους του έκκεντρου σε μια πλευρά του, από μια κορυφή του, ισούται με τη διαφορά της απέναντι πλευράς (της κορυφής) από την ημιπερίμετρο αυτού. Η απόσταση του ίχνους του παράκεντρου στο εξωτερικό μιας πλευράς του, από την πλησιέστερη κορυφή του τριγώνου, ισούται με τη διαφορά της πλευράς, που ανήκει το ίχνος, από την ημιπερίμετρο αυτού. Πρόβλημα 3.1 Θεωρούμε το τρίγωνο ΑΒΓ. Αν Ι είναι το έκκεντρο και Α 1, Β 1, Γ 1 τα παράκεντρα αυτού (Σχήμα 5). Τότε 1. οι κύκλοι με διάμετρο τις Β 1 Γ 1 και ΙΑ 1, αντίστοιχα, διέρχονται από τα Β και Γ.. Οι προβολές των τμημάτων ΒΓ 1 και ΓΒ 1 στην ΒΓ είναι ίσες. 3. Επίσης οι προβολές των τμημάτων ΒΙ και ΓΑ 1 στην ΒΓ είναι ίσες Λύση: 1. Οι διχοτόμοι εφεξής παραπληρωματικών γωνιών τέμνονται κάθετα.. Από το λήμμα 3.1. ΒΝ = ΓΜ = τ-α ΒΛ = ΓΚ = τ-γ. Θέμα 3. (Εφαρμογή 1, σελ. 109 []). Έστω C 1 (α,β) μια έλλειψη με κέντρο Ο και C (Ο,α) ο κύκλος με κέντρο Ο και ακτίνα α. Αν Μ ένα σημείο της έλλειψης C 1 και Δ το σημείο που η κάθετη από το Μ στον οριζόντιο άξονα τέμνει το κύκλο C, τότε οι εφαπτόμενες του κύκλου στο Δ και της έλλειψης στο Μ διέρχονται από το ίδιο σημείο Σ του οριζόντιου άξονα. Πρόβλημα 3.. Θεωρούμε τον κύκλο C 1 (O, R) και επί μιας διαμέτρου του Α Α το σημείο Β. Θεωρούμε, επίσης, τα σημεία Κ και Γ, μέσα των ΟΒ και ΑΒ αντίστοιχα. Έστω, τέλος, η μεσοκάθετη στην ΒΜ, όπου Μ τυχαίο σημείο του κύκλου C 1, η οποία τέμνει την Α Α στο Σ και την ΟΜ στο 7

8 Ν. Αν Δ είναι το σημείο τομής της κάθετης από το Ν στην Α Α με τον κύκλο C (K, KΓ = ρ), τότε η εφαπτόμενη του κύκλου C στο Δ διέρχεται από το Σ (Σχήμα 6). Λύση: Αφού η ΚΕ ΟΜ (Κ και Ε τα μέσα των ΟΒ και ΒΜ αντίστοιχα) ισχύει 1. Επίσης 1, επειδή η ΝΕ μεσοκάθετη στη ΒΜ. Α- κόμη, αφού το ΒΕΝΖ είναι εγγράψιμο. Έτσι, τα τρίγωνα ΚΖΕ και ΚΕΣ είναι όμοια( ˆ κοινή, ˆ o o ˆ ). Από την ομοιότητα αυτή προκύπτει ότι. Έστω τώρα Σ το σημείο τομής της εφαπτομένης στο Δ του κύκλου C και της ΟΑ. Αφού το ΔΖ είναι ύψος του ορθογωνίου τριγώνου ΚΔΣ, θα ισχύει. Όμως επειδή ΚΔ = ' ΚΕ = ρ, προκύπτει ότι και από αυτό ότι ΚΣ = ΚΣ, που είναι το ' ζητούμενο. 4. Προβλήματα από την Υπερβολή. Ορισμός 4.1. Έστω Ε και Ε δυο σημεία ενός επιπέδου. Ονομάζεται υπερβολή με εστίες τα σημεία Ε και Ε ο γεωμετρικός τόπος C των σημείων 8

9 του επιπέδου των οποίων η διαφορά των αποστάσεων από τα Ε και Ε είναι σταθερή ( ) και μικρότερη του Ε Ε ( ). Κατασκευάζουμε την Υπερβολή με ένα λ.δ.γ, ως εξής. Σε κύκλο (, ) παίρνουμε ένα σημείο Ν. Φέρνουμε τη μεσοκάθετη στο τμήμα ΕΝ, η οποία τέμνει την Ε Ν στο Μ. Καθώς το Ν διαγράφει τον κύκλο, το Μ δημιουργεί την Υπερβολή. Ένα πλήθος ιδιοτήτων της σ.ε.γ. φανερώνονται, [9] και [10]. Αυτές τις ιδιότητες εκμεταλλευόμαστε για την κατασκευή των προβλημάτων μας. Θέμα 4.1: (Άσκ. σελ. 14 []). Έστω ε και ε οι εφαπτόμενες στις κορυφές Α και Α μιας υπερβολής (Σχήμα 7). Αν μια τρίτη εφαπτόμενη τέμνει τις δυο προηγούμενες στα σημεία Γ και Γ, τότε 1. ο κύκλος με διάμετρο το ΓΓ διέρχεται από τις εστίες της υπερβολής.. AΓ AΓ '. Πρόβλημα 4.1: Θεωρούμε τον κύκλο (Ο,ρ), ένα σημείο Α εκτός αυτού και Β το σημείο τομής του κύκλου με το τμήμα ΟΑ. Έστω Ν το μέσον του ΑΒ και Μ τυχαίο σημείο του κύ- 9

10 κλου. Αν Γ το σημείο τομής της μεσοκάθετης στο ΑΜ και της μεσοκάθετης στο ΑΒ, τότε 1. το τετράπλευρο ΟΑΓΜ είναι εγγράψιμο.. Αν, επιπλέον, το Δ είναι σημείο της ΟΑ με ΟΔ = = ΑΝ και Ε είναι το σημείο τομής της κάθετης στην ΟΑ στο Δ και της μεσοκάθετης ΑΜ, τότε το ΟΕΑΓ είναι εγγράψιμο. 3. ΕΔ ΓΝ = σταθερό. Λύση: 1. Έστω ΟΓ η διάκεντρος των κύκλων c και f (Σχήμα 8). Το ΟΑΓΜ είναι εγγράψιμο, αφού η ΟΓ διχοτομεί την γωνία ΜΓΒ και η ΓΝ την γωνία ΒΓΑ, η γωνία β είναι ίση με την γωνία α (= 90 ) όμως, αφού η ΓΚ διχοτομεί την γωνία ΜΓΑ και για την γ ισχύει το ίδιο, δηλαδή γ= 90. Για το. και το 3., αφού φέρουμε την μεσοκάθετη στην ΟΑ, όλα προκύπτουν από τη συμμετρία. Τέλος, αναφέρουμε το επόμενο πρόβλημα, που δεν είναι πρόβλημα της σεγ, αλλά είναι πρόβλημα των κωνικών τομών. Προέρχεται από τη μελέτη των προβλημάτων 3.1 και 4.1. Πρόβλημα 4.. Θεωρούμε τρίγωνο ΑΒΓ και επί της ΒΓ το σημείο Σ σε σταθερή απόσταση c από το Β ή Γ. Ο γεωμετρικός τόπος της κορυφής Α είναι: 1. Τμήμα έλλειψης, όταν το παράκεντρο Ι β ή Ι γ κινείται επί της κάθετης στη ΒΓ στο σημείο Σ (το Σ εκτός του τμήματος).. Τμήμα υπερβολής, όταν το παράκεντρο Ι α ή το έκκεντρο Ι κινείται επί της κάθετης στη ΒΓ στο σημείο Σ (το Σ εντός του τμήματος). Λύση: Από το Λήμμα 3.1, προκύπτουν τα εξής: 10

11 1 1. c ( ) c c, δηλαδή, το άθροισμα των αποστάσεων της κορυφής Α από τα σταθερά σημεία Β και Γ είναι σταθερό. 1. c ( ) c c, δηλαδή, η διαφορά των αποστάσεων της κορυφής Α από τα σταθερά σημεία Β και Γ είναι σταθερή. Επίλογος Στην παρούσα εργασία έγινε μια προσπάθεια να δείξουμε ότι από τις κωνικές τομές μπορούμε να κατασκευάσουμε πλήθος προβλημάτων της σ.ε.γ. Ο αριθμός τέτοιων προβλημάτων, που θα μπορούσε κάποιος να δει και να επεξεργαστεί, είναι πολύ μεγάλος. Οι έννοιες, που θα επαναλάβουν ή θα διαπραγματευτούν οι μαθητές είναι, επίσης, πολλές. Για του λόγου το αληθές, αναφέρουμε ότι στο πρόβλημα.1. οι μαθητές έρχονται σε επαφή με το τραπέζιο και τις ιδιότητες αυτού, τις παραπληρωματικές γωνίες και τις διχοτόμους αυτών, με την ομοιότητα των τριγώνων και τις μετρικές σχέσεις των ορθογωνίων τριγώνων, ενώ στο πρόβλημα.. με τον κώνο, τον κόλουρο κώνο, τη σφαίρα και τα σημεία επαφής αυτών με επίπεδο και κώνο, τις ιδιότητες των εφαπτόμενων σφαίρας, την τομή επιφάνειας από επίπεδο. Στο πρόβλημα 3.1 ξαναβλέπουν το έκκεντρο και τα παράκεντρα του τριγώνου, την προβολή τμήματος σε ευθεία, τις εγγεγραμμένες γωνίας σε κύκλο, ενώ στο 3. τα εγγράψιμα τετράπλευρα και τις ιδιότητες αυτών, τα όμοια τρίγωνα και τις μετρικές σχέσεις αυτών, την παραλληλία και τις ιδιότητες της μεσοκάθετης. Τέλος στο πρόβλημα 4.1. θα θυμηθούν τις επίκεντρες και τις εγγεγραμμένες γωνίες, καθώς και τη σχέση αυτών με τα τόξα στα οποία βαίνουν και φυσικά τη συμμετρία και θα αντιληφθούν το μεγάλο πλήθος των προβλημάτων, που αυτή λύνει. Φυσικά, θεωρούμε ότι τόσο οι κωνικές τομές, όσο και η Ευκλείδεια Γεωμετρία αξίζουν της ιδιαίτερης προσοχής των Δασκάλων των Μαθηματικών, αφού δίνουν πολλαπλούς άξονες διδασκαλίας, αλλά και ανάπτυξης της μαθηματικής σκέψης. Η εφαρμογή της σύγχρονης τεχνολογίας βοηθάει στην κατεύθυνση αυτή. Η χρήση σύγχρονων αντιλήψεων και πρακτικών, όσον αφορά τη διδασκαλία των Μαθηματικών, πρέπει επίσης να υιοθετηθεί. Μια καλή πηγή πληροφόρησης, σχετικά με τις κωνικές τομές, είναι οι αναφορές [1] και [4]. 11

12 ΒΙΒΛΙΟΓΡΑΦΙΑ 1. Δ. Μπουνάκης, «Ιστορία και μελέτη με Ευκλείδεια μέσα των Κωνικών τομών», μεταπτυχιακή εργασία, Μαθηματικό τμήμα του Πανεπιστημίου Κρήτης, 004. ( ). Αδαμόπουλος, Βισκαδουράκης, Γαβαλάς, Πολύζος, Σβέρκος, «Μαθηματικά Θετικής και Τεχνολογικής κατεύθυνσης Β Λυκείου», ΟΕΔΒ, Αργυρόπουλος, Βλάμος, Κατσούλης, Μαρκάτης, Σιδέρης, «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου», ΟΕΔΒ, Th. Carronet, «Exercises de Géométrie», Huitième Livre, Librairie, Vuibert, Paris, G. Polya, «How to solve it» (nd ed.). New York: Doubleday, (1957). 6. E. A. Silver, & J. Cai, «An analysis of arithmetic problem posing by middle school students», Journal for Research in Mathematics Education, 7 (5), (1996). 7. L. D. English, «Children s problem posing within formal and informal contexts», Journal for Research in Mathematics Education, 9 (1), , (1998). 8. E. A. Silver, «On mathematical problem posing», For the Learning of Mathematics, 14 (1), (1994). 9. Μ. Γ. Τζούμας, «Οι γνωστές άγνωστες κωνικές τομές» 10. Μ. Γ. Τζούμας, «Οι κωνικές τομές με σεγ» 1

Κωνικές τοµές. Πηγή έµπνευσης για την κατασκευή προβληµάτων της Ευκλείδειας Γεωµετρίας.

Κωνικές τοµές. Πηγή έµπνευσης για την κατασκευή προβληµάτων της Ευκλείδειας Γεωµετρίας. Κωνικές τοµές. Πηγή έµπνευσης για την κατασκευή προβληµάτων της Ευκλείδειας Γεωµετρίας. Σπύρος Παναγιωτόπουλος Καθηγητής Μαθηµατικών ΓΕΛ Σπερχειάδας 351 00 Λαµία spegepana@gmail.com Μιχαήλ Τζούµας Σχ.

Διαβάστε περισσότερα

Οι γνωστές άγνωστες κωνικές τοµές

Οι γνωστές άγνωστες κωνικές τοµές Οι γνωστές άγνωστες κωνικές τοµές Μιχαήλ Τζούµας Σχ. Σύµβουλος Μαθηµατικών Ιωσήφ Ρωγών και Βεΐκου 302 00 Μεσολόγγι mtzoumas@sch.gr Περίληψη Οι κωνικές τοµές (κ.τ.) και ειδικότερα η Παραβολή, η Έλλειψη

Διαβάστε περισσότερα

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=ΒΓ. Φέρνουμε το ΑΕ ΒΓ και έστω Ζ,Η τα μέσα των ΔΓ και ΑΒ αντίστοιχα. Ν.δ.ο. α) το ΖΓΒΗ είναι ρόμβος ( 9 μον.) β) ΗΖ=ΗΕ ( 8 μον.) γ)

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ

Διαβάστε περισσότερα

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο; 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2 ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:

Διαβάστε περισσότερα

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ.

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ. ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΩΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Θεωρούμε το ισόπλευρο τρίγωνο ΑΒΓ και έστω ένα σημείο της πλευράς ΑΓ. Κατασκευάζουμε το παραλληλόγραμμο ΒΓΕ και έστω Ζ η τομή της Ε με την ΑB. Ονομάζουμε

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 16691

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ  ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 16691 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 16691 1.. 2.. 1.,. ( ) ( ) (2 ).. ( ) (5 ),,. ; ; 2.,,. 3.,.,,. (,,,, ). : ), ) ),, ),...1 16692 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 4. 5.. 6. (,, ). 1.,

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

«Η Ευκλείδεια γεωμετρία και η διδασκαλία της» Λύσεις Θεμάτων Εξέτασης

«Η Ευκλείδεια γεωμετρία και η διδασκαλία της» Λύσεις Θεμάτων Εξέτασης Τομέας Παιδαγωγικής Ιστορίας, και Φιλοσοφίας των Μαθηματικών «Η Ευκλείδεια γεωμετρία και η διδασκαλία της» Λύσεις Θεμάτων Εξέτασης 0-0-06 ΘΕΜΑ α [] Σε τυχαίο ορθογώνιο τρίγωνο ΑΒΓ ( Α=90 Ο ) η διχοτόμος

Διαβάστε περισσότερα

ΟΙ ΑΠΟΛΛΩΝΙΕΣ ΚΑΤΑΣΚΕΥΕΣ ΩΣ ΤΟΜΕΣ ΚΩΝΙΚΩΝ ΜΕ ΠΡΟΓΡΑΜΜΑ ΔΥΝΑΜΙΚΗΣ ΓΕΩΜΕΤΡΙΑΣ

ΟΙ ΑΠΟΛΛΩΝΙΕΣ ΚΑΤΑΣΚΕΥΕΣ ΩΣ ΤΟΜΕΣ ΚΩΝΙΚΩΝ ΜΕ ΠΡΟΓΡΑΜΜΑ ΔΥΝΑΜΙΚΗΣ ΓΕΩΜΕΤΡΙΑΣ ΟΙ ΑΠΟΛΛΩΝΙΕ ΚΑΤΑΚΕΥΕ Ω ΤΟΜΕ ΚΩΝΙΚΩΝ ΜΕ ΠΡΟΓΡΑΜΜΑ ΔΥΝΑΜΙΚΗ ΓΕΩΜΕΤΡΙΑ ΠΕΡΙΛΗΨΗ την παρούσα εργασία ασχολούμαστε με προβλήματα του Απολλώνιου. Χωρίζεται σε τρία μέρη. το πρώτο γίνεται μια απλή προσέγγιση

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

3.2 Η ΠΑΡΑΒΟΛΗ. Ορισμός Παραβολής. Εξίσωση Παραβολής

3.2 Η ΠΑΡΑΒΟΛΗ. Ορισμός Παραβολής. Εξίσωση Παραβολής 9 3 Η ΠΑΡΑΒΟΛΗ Ορισμός Παραβολής Έστω μια ευθεία δ και ένα σημείο Ε εκτός της δ Ονομάζεται παραβολή με εστία το σημείο Ε και διευθετούσα την ευθεία δ ο γεωμετρικός τόπος C των σημείων του επιπέδου τα οποία

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (14) -- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου Φεργαδιώτης Αθανάσιος -- Τράπεζα θεμάτων Μαθηματικών

Διαβάστε περισσότερα

ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ;

ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ; ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ; Γιώργου Τσαπακίδη Είναι εύκολο να παρατηρήσουμε ότι τα συμμετρικά σχήματα έχουν πολύ περισσότερες ιδιότητες από τα μη συμμετρικά σχήματα. Το ισοσκελές τρίγωνο, που έχει άξονα

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) 1 Στις πλευρες ΑΒ, ΒΓ, ΓΑ ισοπλευρου τριγωνου ΑΒΓ, παιρνουμε 3 Να δειχτει οτι α + 110 0α Ποτε ισχυει Συγκρινετε το ισον; τα τριγωνα με σημεια Δ, Ε, Ζ αντιστοιχα,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ ΕΞΙΣΩΣΗ ΠΑΡΑΒΟΛΗΣ 8. Να βρεθεί η εξίσωση της παραβολής με κορυφή το (0, 0) στις παρακάτω περιπτώσεις: α) είναι συμμετρική ως προς το θετικό ημιάξονα Οx και έχει παράμετρο p = 5 β)

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του Κωνικές τομές Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του ΚΥΚΛΟΣ το επίπεδο είναι κάθετο στον άξονα του κώνου ΠΑΡΑΒΟΛΗ το επίπεδο είναι παράλληλο σε μια γενέτειρα

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς

Διαβάστε περισσότερα

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γρήγορη Επανάληψη Θεωρίας Ένα τρίγωνο ανάλογα με το είδος των γωνιών του ονομάζεται: Σε κάθε ορθογώνιο τρίγωνο η πλευρά που

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Θέμα A. Να αποδείξετε ότι η εξίσωση της εφαπτομένης του κύκλου στο σημείο του Α, ) είναι 8 μονάδες) Β. Να δώσετε τον ορισμό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 0.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΘΕΩΡΙΑ Αν θεωρήσουμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα. Τότε είναι:

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας 07 3. Να αποδείξετε την ταυτότητα + + αβ βγ γα = Να αποδείξετε ότι για όλους τους α, β, γ ισχύει + + αβ + βγ + γα Πότε ισχύει ισότητα; = = + + =

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία 2014 2015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΘΕΩΡΙΑ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 2 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ιδακτέα εξεταστέα ύλη σχολικού

Διαβάστε περισσότερα

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8.

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8. ΥΠΕΡΒΟΛΗ ΕΞΙΣΩΣΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΥΠΕΡΒΟΛΗΣ 1) Να βρεθεί η εξίσωση της υπερβολής αν έχει: i) Εστιακή απόσταση γ=0 και άξονα β=16, 5 ii) Άξονα α=16 και εκκεντρότητα ε=. 4 ) Να βρείτε την εξίσωση της υπερβολής,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 1 Από εξωτερικό σημείο Σ κύκλου (Κ, ρ) θεωρούμε τις τέμνουσες ΣΑΒ και ΣΓΔ του κύκλου για τις οποίες ισχύει ΣΒ=ΣΔ. Τα ΚΛ και ΚΜ είναι τα αποστήματα των χορδών ΑΒ και ΓΔ του

Διαβάστε περισσότερα

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές

Διαβάστε περισσότερα

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης 6.5 6.6 σκήσεις σχολικού βιβλίου σελίδας 34 ρωτήσεις Κατανόησης. Σε ένα εγγεγραµµένο τετράπλευρο i) Τα αθροίσµατα των απέναντι γωνιών του είναι ίσα Σ Λ ii) Κάθε πλευρά φαίνεται από τις απέναντι κορυφές

Διαβάστε περισσότερα

Τρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός)

Τρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός) Τρίγωνα Αθανασίου Δημήτρης (Μαθηματικός) www.peira.gr asepfreedom@yahoo.gr 1 3.1 Στοιχεία και είδη τριγώνων 2 Ένα τρίγωνο ΑΒΓ έχει τρεις κορυφές Α, Β, Γ, τρεις πλευρές ΒΓ, ΓΑ, ΑΒ και τρεις γωνίες Β ΑΓ,

Διαβάστε περισσότερα

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688 1 ο Αχαρνών 197 Αγ. Νικόλαος 10.865196 ο Αγγ. Σικελιανού 4 Περισσός 10.718688 AΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ (Α =90Ο ) και Α το ύψος του. Αν Ε και Ζ είναι οι προβολές του

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 6. Εγγεγραμμένα Σχήματα Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 1 Επίκεντρη γωνία Μια γωνία λέγεται επίκεντρη γωνία ενός κύκλου αν η κορυφή της είναι το κέντρο του κύκλου. Το τόξο ΑΓΒ που

Διαβάστε περισσότερα

4. Πολύγωνα Πολύγωνο ονομάζεται κάθε κλειστά γεωμετρικό σχήμα που αποτελείται από διαδοχικά ευθύγραμμα τμήματα

4. Πολύγωνα Πολύγωνο ονομάζεται κάθε κλειστά γεωμετρικό σχήμα που αποτελείται από διαδοχικά ευθύγραμμα τμήματα 4. Πολύγωνα Πολύγωνο ονομάζεται κάθε κλειστά γεωμετρικό σχήμα που αποτελείται από διαδοχικά ευθύγραμμα τμήματα Όταν όλες οι πλευρές και οι εσωτερικές γωνίες του πολύγωνου είναι ίσες, τότε λέγεται κανονικό

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα

Διαβάστε περισσότερα

Κωνικές τομές: καθορισμός των συνόρων σε υγρές περιοχές

Κωνικές τομές: καθορισμός των συνόρων σε υγρές περιοχές Κωνικές τομές: καθορισμός των συνόρων σε υγρές περιοχές Η Ευκλείδεια γεωμετρία στην εκπαίδευση και στην κοινωνία. Δημήτρης Θεοδωράκης 1 ο ΓΕΛ Μεσολογγίου dtheodorakis@sch.gr Σπύρος Στίγκας 4 ο ΓΕΛ Αγρινίου

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Να επιλέξετε μια απάντηση για κάθε ερώτηση και να δικαιολογήσετε σύντομα την απάντησή σας. i. Αν η εξωτερική γωνία ενός κανονικού ν-γώνου ισούται με 0 ο, τότε το ν ισούται

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (29) -2- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ

Διαβάστε περισσότερα

ΤΑ ΔΙΑΝΥΣΜΑΤΑ, Η ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ, ΟΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ Η ΣΟΦΙΑ!

ΤΑ ΔΙΑΝΥΣΜΑΤΑ, Η ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ, ΟΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ Η ΣΟΦΙΑ! ΤΑ ΔΙΑΝΥΣΜΑΤΑ, Η ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ, ΟΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ Η ΣΟΦΙΑ! - Κύριε, πόσο μας χρειάζονται αυτά που μάθαμε πέρσι στα μαθηματικά της κατεύθυνσης; - Σοφία, αν όχι όλα, αρκετά από αυτά. - Για πείτε

Διαβάστε περισσότερα

Εφαρμογές της αναλυτικοσυνθετικής μεθόδου. Δέκα Στοιχειώδεις Κατασκευές:

Εφαρμογές της αναλυτικοσυνθετικής μεθόδου. Δέκα Στοιχειώδεις Κατασκευές: Δέκα Στοιχειώδεις Κατασκευές: Κ 1 : Κατασκευή ευθείας διερχόμενης από δύο σημεία. Κ 2 : Κατασκευή κύκλου με δοθέν κέντρο και δοθείσα ακτίνα. Κ 3 : Κατασκευή ισοπλεύρου τριγώνου Κ 4 : Κατασκευή ευθυγράμμου

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο:

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος ΔΙΑΝΥΣΜΑΤΑ 8556 ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =.. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και το 3.2 Ασκήσεις: 1-8 Θεωρία ως και το 3.4 Ασκήσεις: 9-13 Θεωρία ως και το 3.7 Ασκήσεις: 14-29

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

Μεθοδολογία Παραβολής

Μεθοδολογία Παραβολής Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΠΡΟΤΑΣΕΙΣ ΤΗΣ ΕΥΚΛΕΙΔΙΑΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΒΑΣΙΚΕΣ ΠΡΟΤΑΣΕΙΣ ΤΗΣ ΕΥΚΛΕΙΔΙΑΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΒΑΣΙΚΕΣ ΠΡΟΤΑΣΕΙΣ ΤΗΣ ΕΥΚΛΕΙΔΙΑΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Η παρούσα σύνοψη παρουσιάζει τις προτάσεις του σχολικού βιβλίου που διδάχτηκαν την φετινή χρονιά,συνοπτικά δίχως αποδείξεις και με διαφορετική σειρά

Διαβάστε περισσότερα

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 4 Η Ευκλείδεια Γεωμετρία στην εκπαίδευση και στην κοινωνία. Κώστας Μαλλιάκας, Καθηγητής Δ.Ε., 1 ο ΓΕΛ Ρόδου, kmath@otenet.gr

Διαβάστε περισσότερα

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες 10) γ) Να βρείτε

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα.

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα. 1. Από εξωτερικό σηµείο Σ κύκλου (Κ,ρ) θεωρούµε τις τέµνουσες ΣΑΒ και ΣΓ του κύκλου για τις οποίες ισχύει ΣΒ=Σ. Τα ΚΛ και ΚΜ είναι τα αποστήµατα των χορδών ΑΒ και Γ του κύκλου αντίστοιχα. α) i. τα τρίγωνα

Διαβάστε περισσότερα

1 Εγγεγραµµένα σχήµατα

1 Εγγεγραµµένα σχήµατα Εγγεγραµµένα σχήµατα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Σκοπός του µαθήµατος είναι να δώσει στους µαθητές συνοπτικά τις απαραίτητες γνώσεις από τη διδακτέα ύλη της Α λυκείου που δεν διδάχθηκε ή διδάχθηκε περιληπτικά.

Διαβάστε περισσότερα

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179 8. 8. σκήσεις σχολικού βιβλίου σελίδας 77 79 ρωτήσεις Κατανόησης. i) ν δύο τρίγωνα είναι ίσα τότε είναι όµοια; ii) ν δύο τρίγωνα είναι όµοια προς τρίτο τότε είναι µεταξύ τους όµοια πάντηση i) Προφανώς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

ΑΒ ίνεται τραπέζιο ΑΒΓ (ΑΒ//Γ ) και σηµείο Μ της πλευράς του Α ώστε =. Από το

ΑΒ ίνεται τραπέζιο ΑΒΓ (ΑΒ//Γ ) και σηµείο Μ της πλευράς του Α ώστε =. Από το 1. ίνεται ισοσκελές τρίγωνο ΑΒΓ µε ΑΒ=ΑΓ, Â =36o και η διχοτόµος του Β. α) Να αποδείξετε ότι: i) Τα τρίγωνα Β Γ και ΑΒΓ είναι όµοια. ii) A 2 =ΑΓ Γ β) Αν θεωρήσουµε το ΑΓ ως µοναδιαίο τµήµα (ΑΓ=1), να υπολογίσετε

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα