Ήπιες και νέες μορφές ενέργειας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ήπιες και νέες μορφές ενέργειας"

Transcript

1 Τμήμα Μηχανολόγων Μηχανικών Ήπιες και νέες μορφές ενέργειας Ενότητα : Αιολική Ενέργεια ΙΙ Σκόδρας Γεώργιος, Αν. Καθηγητής gskodras@uowm.gr Τμήμα Μηχανολόγων Μηχανικών

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ψηφιακά Μαθήματα στο Πανεπιστήμιο Δυτικής Μακεδονίας» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

4 Περιεχόμενα (1/2) Θεωρία του δίσκου ενέργειας Επίδραση της περιστροφής του όμορου (θεώρημα διατήρησης στροφορμής) Δυναμική συμπεριφορά αιολικής μηχανής Παραγωγή ηλεκτρικής ενέργειας από Α/Γ Ενέργεια από τον άνεμο Συντελεστής χωρητικότητας (Capacity factor) Χαρακτηριστικές Ταχύτητες 4

5 Περιεχόμενα (2/2) Πρακτικά στοιχεία επιλογής ανεμογεννητριών Τύποι αιολικών μηχανών Μηχανές οριζόντιου άξονα Χαρακτηριστικά αιολικών μηχανών οριζόντιου άξονα Μέρη ανεμογεννήτριας οριζόντιου άξονα Αιολικές μηχανές κατακόρυφου άξονα 5

6 Θεωρία Δίσκου Ενέργειας Σύμφωνα με την θεωρία του δίσκου ενέργειας ο μηχανισμός δέσμευσης της κινητικής ενέργειας του ανέμου από τον δρομέα θεωρείται ιδανικός, δηλαδή χωρίς απώλειες Ο δρομέας εξετάζεται ως «μαύρο κουτί» διαμέσου του οποίου περνά ο αέρας που υφίσταται μεταβολή της ενέργειας του, μεταβολή που ουσιαστικά εκφράζεται με πτώση της στατικής του πίεσης 6

7 Θεωρία Δίσκου Ενέργειας Η πτερωτή θεωρείται ως δίσκος που ενεργεί πάνω στο ρευστό (δίσκος ενέργειας) Μία αιολική μηχανή δεν μπορεί να δεσμεύσει όλη την κινητική ενέργεια του ανέμου γιατί τότε η μάζα του αέρα που διαπερνά την πτερωτή μηχανή θα είχε στην συνέχεια μηδενική ενέργεια 7

8 Θεωρία Δίσκου Ενέργειας Το μέγιστο ποσό της κινητικής ενέργειας που μπορεί να δεσμεύσει μια ιδανική αιολική μηχανή υπολογίστηκε από τον Betz Ο Betz υπέθεσε ότι έχουμε μια ιδανική πτερωτή η οποία δεν φέρει το μηχανικό εξοπλισμό της πάνω στο άξονα περιστροφής και ο αριθμός των πτερυγίων μπορεί να είναι απεριόριστος, χωρίς να παρατηρείται αντίσταση στην διέλευση του αέρα από αυτά 8

9 Θεωρία Δίσκου Ενέργειας Αυτές οι προϋποθέσεις επιτρέπουν να θεωρηθεί ότι: Υπάρχουν ομοιόμορφες συνθήκες σε όλη την περιοχή σάρωσης της πτερωτής Η ταχύτητα του αέρα, τόσο διαμέσου της πτερωτής όσο και μακριά από αυτή είναι αξονική 9

10 Θεωρία Δίσκου Ενέργειας Η διάμετρος μίας ιδανικής πτερωτής, τοποθετημένη μέσα σε φλέβα κινούμενου αέρα ορίζει τον ροïκό σωλήνα του ανεμοκινητήρα Ο αέρας πολύ μακρυά (στο άπειρο) στα προσήνεμα του δίσκου έχει πίεση p και πλησιάζει τον δίσκο με ταχύτητα U. Ο δίσκος αφαιρεί ενέργεια από τον αέρα και υπήνεμα από τον δίσκο όπου η πίεσή του αέρα θα έχει αποκατασταθεί από την πίεση του περιβάλλοντος p, η ταχύτητα του ανέμου θα είναι V μικρότερη από την U (V<U) Λόγω διατήρησης της μάζας μέσα στον ροïκό σωλήνα θα πρέπει η διατομή του ροïκού σωλήνα να μεγαλώνει πίσω από την πτερωτή. 10

11 Θεωρία Δίσκου Ενέργειας 11

12 Θεωρία Δίσκου Ενέργειας Το ρευστό μετά τον δίσκο έχει μικρότερη ενέργεια από αυτή πριν από τον δίσκο και οριακά λίγο πριν και λίγο μετά παραμένει η ίδια για λόγους διατήρησης της μάζας Η στατική πίεση του ρευστού μετά τον δίσκο θα είναι μικρότερη από την στατική πίεση πριν από τον δίσκο U p- P Vs V x p+ 12

13 Θεωρία Δίσκου Ενέργειας Αρχή διατήρησης της μάζας όπου: ρ η πυκνότητα του ρευστού, Αδ η διατομή του ροïκού σωλήνα στον δίσκο ακτίνας R και Vs η ταχύτητα πάνω στον δρομέα Αρχή διατήρησης ορμής (Τ: ωστική δύναμη) όπου: U η ταχύτητα πολύ πριν φτάσει ο αέρα στον δίσκο και V η ταχύτητα πολύ μετά τον δίσκο 13

14 Θεωρία Δίσκου Ενέργειας Α οο 14

15 Θεωρία Δίσκου Ενέργειας Αρχή διατήρησης της ενέργειας ( ) 1 V s = U + V 2 Συντελεστής αξονικής απαγωγής: a = U -V U s V s = U( 1- a) V = U( 1-2a) Ισχύς που δεσμεύεται από τον δίσκο: P = T V s 15

16 Θεωρία Δίσκου Ενέργειας Α οο 16

17 Θεωρία Δίσκου Ενέργειας Όριο του Betz Συντελεστής Ισχύος: Συντελεστής Αντίστασης: Μέγιστη τιμή του συντελεστή ισχύος: ( 1 ) 2 ( a) C p = 4 a - a C T = 4 a 1- ονομάζεται όριο Betz και υπολογίζεται όταν dcp/dα=0 (εμφανίζεται ακρότατο) α=1/3 P max - = C P P max 16 C P max = = 27 59% (όπου P η μέγιστη διαθέσιμη ισχύς του ανέμου) 17

18 Θεωρία Δίσκου Ενέργειας Όριο του Betz Η μέγιστη τιμή του συντελεστή αντίστασης υπολογίζεται όταν dc Τ /dα=0 (εμφανίζεται ακρότατο) α=1/2 Για dc P /dα=0 (α=1/3) Vs=2/3*U και V=1/3*U Για dc T /dα=0 (α=1/2) Vs=1/2*U και V=0 18

19 Επίδραση της περιστροφής του όμορου (θεώρημα διατήρησης στροφορμής) Η προηγούμενη ανάλυση βασίστηκε στην υπόθεση ότι ο όμορος του πεδίου ροής στερείται συστροφής (2 αντίθετα στρεφόμενοι δρομείς). Στην πράξη όμως και στην ιδανικότερη περίπτωση υπάρχει συστροφή που δημιουργείται από την αλληλεπίδραση του ρεύματος του αέρα με τον δρομέα Η κινητική ενέργεια που έχει το ρευστό μετά τον δρομέα αποτελείται από την κινητική ενέργεια που οφείλεται στην αξονική-μεταφορική ταχύτητα του ανέμου και στην περιφερειακή κινητική ενέργεια που οφείλεται στην συστροφή του ρευστού 19

20 Επίδραση της περιστροφής του όμορου (θεώρημα διατήρησης στροφορμής) Η κινητική ενέργεια που έχει το ρευστό μετά τον δρομέα αποτελείται από την κινητική ενέργεια που οφείλεται στην αξονικήμεταφορική ταχύτητα του ανέμου και στην περιφερειακή κινητική ενέργεια που οφείλεται στην συστροφή του ρευστού 20

21 Επίδραση της περιστροφής του όμορου (θεώρημα διατήρησης στροφορμής) Η περιφερειακή κινητική ενέργεια δεν μπορεί να ανακτηθεί στο άπειρο και να γίνει στατική πίεση και γι αυτό αποτελεί ενεργειακή απώλεια του συστήματος η οποία μειώνει τον συνολικό βαθμό απόδοσης της Α/Γ Το ρευστό στην προσήνεμη πλευρά του δίσκου στερείται συστροφής (αστρόβιλο) και η κινητική του ενέργεια οφείλεται μόνο στην αξονική μεταφορική κίνησή του Το θεώρημα διατήρησης της στροφορμής εφαρμόζεται σε όγκο ισολογισμού 21

22 Επίδραση της περιστροφής του όμορου (θεώρημα διατήρησης στροφορμής) Διατήρηση της στροφορμής V r = ό Δίσκος ενέργειας dr r r Ροϊκός σωλήνας πάχους dr και ακτίνας r 22

23 Δυναμική συμπεριφορά αιολικής μηχανής (1) Η απόδοση μιας αιολικής μηχανής επηρεάζεται από την απόσταση μεταξύ των πτερυγίων για δεδομένες ταχύτητες ανέμου Η συχνότητα περιστροφής των πτερυγίων πρέπει να προσαρμόζεται με την ταχύτητα του ανέμου 23

24 Δυναμική συμπεριφορά αιολικής μηχανής (2) Η ισχύς της αιολικής μηχανής εξαρτάται από: Χρόνος tb για να πάει το πτερύγιο από τη θέση που βρίσκεται στη θέση του επόμενου πτερυγίου. Για μια αιολική μηχανή με n πτερύγια που περιστρέφεται με γωνιακή ταχύτητα ω ισχύει: t b 2p nw Χρόνος tw που μεσολαβεί για την αποκατάσταση διαταραχθέντος στρώματος αέρα με στρώμα στρωτής ροής: t = w d = u όπου d είναι το μήκος διαταραχθέντος στρώματος αέρα λόγω του περάσματος από την αιολική μηχανή Η μέγιστη ισχύς απορροφάται όταν: tb=tw στην κορυφή των πτερυγίων 24

25 Δυναμική συμπεριφορά αιολικής μηχανής (3) 0.4 Cp Συντελεστής ισχύος ως συνάρτηση του λόγου ακροπτερυγίου λ 25

26 Δυναμική συμπεριφορά αιολικής μηχανής (4) Η ιδανική καμπύλη ισχύος τείνει ασυμπτωτικά στο όριο Betz Μεγάλες διαφορές στις διάφορες μηχανές: (β) πολύπτερη αιολική μηχανή μεγάλη διακύμανση του συντελεστή ισχύος και το Cp λαμβάνει μικρές τιμές (ε) γρήγορη αιολική μηχανή με 2 πτερύγια μικρή διακύμανση και μεγάλες τιμές 26

27 Δυναμική συμπεριφορά αιολικής μηχανής (4) Ιδανική καμπύλη ισχύος 27

28 Δυναμική συμπεριφορά αιολικής μηχανής (5) Η γωνία πρόσπτωσης α η οποία ορίζεται ως η γωνία μεταξύ της χορδής του πτερυγίου (μήκος πτερυγίου) και του επιπέδου περιστροφής του πτερύγιου Επίπεδο Περιστροφής α Διεύθυνση του ανέμου 28

29 Δυναμική συμπεριφορά αιολικής μηχανής (6) Δύο είναι οι βασικές δυνάμεις: Ανωστική δύναμη Οπισθέλκουσα δύναμη Η ανωστική δύναμη είναι κάθετη στην οπισθέλκουσα, η οποία εμποδίζει την περιστροφή Ένας από τους βασικούς στόχους του αεροδυναμικού σχεδιασμού της πτερωτής είναι η κατασκευή πτερυγίων με υψηλό λόγο ανωστικής προς οπισθέλκουσα 29

30 Δυναμική συμπεριφορά αιολικής μηχανής (6) 30

31 Δυναμική συμπεριφορά αιολικής μηχανής (7) Ανωστική Δύναμη (L) Ο αέρας ολισθαίνει κατά μήκος της άνω επιφάνειας του πτερυγίου με μεγαλύτερη ταχύτητα από ότι στην κάτω επιφάνεια. Αυτό σημαίνει ότι η πίεση είναι μικρότερη στην άνω επιφάνεια του πτερυγίου από ότι στην κάτω με συνέπεια να ασκείται μία ανωστική δύναμη από κάτω προς τα πάνω. 31

32 Δυναμική συμπεριφορά αιολικής μηχανής (7) Η ανωστική δύναμη είναι κάθετη στην διεύθυνση του ανέμου Συντελεστής άνωσης: c L L = 1/ 2 2 u S όπου: u ταχύτητα του ανέμου ως προς την αεροτομή και S επιφάνεια προβολής της αεροτομής στον άνεμο L 32

33 Δυναμική συμπεριφορά αιολικής μηχανής (8) Οπισθέλκουσα Δύναμη (D) Ουσιαστικά είναι η αντίσταση που εμφανίζει αεροτομή στον αέρα που προσπέφτει στην πτερωτή. Η οπισθέλκουσα αυξάνει με την αύξηση της επιφάνειας προσβολής. Είναι εξίσου σημαντική για τον αεροδυναμικό σχεδιασμό. Αντίστοιχα υπάρχει και ο συντελεστής οπισθέλκουσας ο οποίος είναι αδιάστατος: D cd = 2 1/2 u S 33

34 Δυναμική συμπεριφορά αιολικής μηχανής (8) 34

35 Δυναμική συμπεριφορά αιολικής μηχανής (9) Συντελεστής ροπής: c M M = 1/ 2 2 u Sc όπου c το μήκος της χορδής του πτερύγιου Και η ροπή περιστροφής που αναπτύσσει ο δρομέας (Μ) σε σχέση με την μηχανική ισχύ του δρομέα (P): M = Ένας δρομέας εργάζεται σε διάφορες ταχύτητες ανέμου, η δε γωνιακή του ταχύτητα (ω) επιβάλλεται από τον κινούμενο μηχανισμό περαιτέρω μετατροπής του έργου P w 35

36 Δυναμική συμπεριφορά αιολικής μηχανής (10) Για τον υπολογισμό του σημείου λειτουργίας της Α/Γ απαιτείται η γνώση των καμπυλών λειτουργίας της μηχανής όπως αυτές εκφράζονται από τις σχέσεις της μορφής: όπου n οι στροφές του δρομέα. P=P(u,n) M=M(u,n) Οι καμπύλες αυτές μπορούν να προκύψουν από την καμπύλη του συντελεστή ισχύος Cp(λ) με δεδομένο ότι: C = M C l p 36

37 Παραγωγή ηλεκτρικής ενέργειας από Α/Γ Η μέγιστη αιολική ενέργεια που δεσμεύει μια ιδανική αιολική μηχανή είναι ένα τμήμα της κινητικής ενέργειας του ανέμου και ισούται με: E max =C p *E wind,όπου C p =0.59 το όριο του Betz Η ηλεκτρική ισχύς που παίρνουμε από την αιολική μηχανή είναι: P = c n n n P electric p gearbox generator accumulator wind όπου: n gearbox η απόδοση του πολλαπλασιαστή στροφών n generator η απόδοση της γεννήτριας n accumulator η απόδοση των συσσωρευτών Η ετήσια αιολική ενέργεια είναι: electric = όπου Τ ένα έτος E P T electric 37

38 Παραγωγή ηλεκτρικής ενέργειας από Α/Γ Παράδειγμα [1] Ανεμογεννήτρια 60 m διαμέτρου πτερωτής Ταχύτητα ανέμου 12 m/sec Πυκνότητα αέρα 1.2 kg/m 3 P wind = 0.5*ρ*A*u 3 = = 2931 kw Ο συντελεστής ισχύος της Α/Γ είναι 0.44, οπότε η ισχύς του δρομέα είναι: P rotor = 2931*0.44 = 1290 kw Το σύστημα πέδησης του δρομέα και ο πολλαπλασιαστής στροφών έχουν αποδόσεις: 99.6% και 97.2% αντίστοιχα, οπότε η παραδιδόμενη στην γεννήτρια ισχύ είναι: P generator = 1290*0.996*0.972 = 1249 kw 38

39 Παραγωγή ηλεκτρικής ενέργειας από Α/Γ Παράδειγμα [2] Ο συντελεστής απόδοσης της γεννήτριας είναι 96.5% και η έξοδος της γεννήτριας περνά από διάφορα ηλεκτρονικά κυκλώματα (μετατροπείς συχνότητας, φίλτρα αρμονικών ) με συνολική απόδοση 95.8% P generator =1249*0.958=1197 kw Τέλος πριν παραδοθεί η ηλεκτρική ενέργεια στο δίκτυο περνά από μετασχηματιστή για διόρθωση τάσης, με απόδοση 98%: P grid =1197*0.98=1173 kw Συνήθως οι απώλειες του ηλεκτρικού δικτύου είναι της τάξης του 8% 39

40 Παραγωγή ηλεκτρικής ενέργειας από Α/Γ Παράδειγμα [3] Η ισχύς του ανέμου: 2931 kw Ο δρομέας παράγει 1290 kw και παραδίδει στη γεννήτρια 1249 kw Η γεννήτρια παράγει 1197 kw εκ των οποίων τα 1173 kw παραδίδονται στο δίκτυο ηλεκτρικής ενέργειας Τελικά στον καταναλωτή παραδίδονται 1079 kw 40

41 Ενέργεια από τον άνεμο Με βάση την κατανομή Weibull υπολογίζεται η συνολική διαθέσιμη αιολική ισχύ σε W/sqm (γκρι περιοχή) Με βάση το όριο του Betz (=0,59) υπολογίζεται η μέγιστη ισχύς του ανέμου που θεωρητικά μπορεί να μετατραπεί σε μηχανική (μπλε περιοχή) Με βάση την συνολική απόδοση της εκάστοτε Α/Γ υπολογίζεται η ηλεκτρική ισχύς που παράγεται 41

42 Ενέργεια από τον άνεμο 42

43 Ενέργεια από τον άνεμο Αυτό που είναι σημαντικό είναι το γεγονός ότι το μεγαλύτερο μέρος της διαθέσιμης αιολικής ενέργειας βρίσκεται για ταχύτητες μεγαλύτερες από την μέση ταχύτητα του ανέμου του τόπου όπου είναι εγκατεστημένη η Α/Γ Αυτό συμβαίνει γιατί οι υψηλές ταχύτητες του ανέμου έχουν πολύ μεγαλύτερο ενεργειακό «περιεχόμενο» σε σχέση με τις χαμηλές ταχύτητες του ανέμου Η χρήση της μέσης ταχύτητας για τον υπολογισμό της ενέργειας που μπορεί να παράγει μια Α/Γ γενικά οδηγεί σε υποτίμηση των ενεργειακών μεγεθών 43

44 Ενέργεια από τον άνεμο Η καμπύλη ισχύος μιας Α/Γ δείχνει πως μεταβάλλεται παραγόμενη ηλεκτρική ισχύ της μηχανής για διάφορες τιμές της ταχύτητας του ανέμου. Συχνά η καμπύλη δημιουργείται από επί τόπου μετρήσεις και χρήση ανεμόμετρων Λόγω της διακύμανσης του ανέμου συχνά υπάρχει αβεβαιότητα στις μετρήσεις (π.χ. ±3% σφάλμα στην ταχύτητα του ανέμου ±9% στην αιολική ενέργεια) 44

45 Ενέργεια από τον άνεμο 45

46 Ενέργεια από τον άνεμο Η δημιουργία της καμπύλης ισχύος πρέπει να βασίζεται σε μετρήσεις περιοχών με χαμηλή τύρβη και τον άνεμο να προσπίπτει κάθετα στην πτερωτή της Α/Γ Ισχυρή τύρβη και πολύπλοκο/ανομοιόμορφο ανάγλυφο του εδάφους συχνά σημαίνουν ότι ο αέρας προσπίπτει στην πτερωτή από διάφορες διευθύνσεις. Έτσι είναι δύσκολο να παραχθεί η καμπύλη ισχύος για κάθε τόπο 46

47 Ενέργεια από τον άνεμο Η χρήση της καμπύλης ισχύος για τον υπολογισμό της ενέργειας που παράγει μία Α/Γ για συγκεκριμένη μέση ταχύτητα του ανέμου είναι συχνά λάθος. Έχει μεγάλη σημασία η κατανομή του ανέμου που χρησιμοποιήθηκε για τον υπολογισμό της μέσης ταχύτητας (αν υπάρχει μεγάλη διακύμανση της ταχύτητας του ανέμου ή αν ο άνεμος πνέει με σχετικά σταθερή ταχύτητα) 47

48 Ενέργεια από τον άνεμο Ο συντελεστής ισχύος της Α/Γ προσδιορίζει πόσο αποδοτικά η μηχανή μετατρέπει την αιολική ενέργεια σε μηχανική Αν και η μέση απόδοση είναι περίπου 20%, ο Cp μεταβάλλεται έντονα με την ταχύτητα του ανέμου Η μέγιστη απόδοση είναι 44% για ταχύτητα ~9m/sec, τιμή που ο σχεδιαστής εσκεμμένα επέλεξε Για χαμηλές ταχύτητες η απόδοση είναι χαμηλή (χαμηλή διαθέσιμη αιολική ενέργεια), ενώ για υψηλές αυξάνει 48

49 Ενέργεια από τον άνεμο Cp 49

50 Ενέργεια από τον άνεμο Δεν είναι ο βασικός σκοπός να κατασκευάζουμε ανεμογεννήτριες με υψηλή απόδοση Αυτό που έχει πραγματικά σημασία είναι το κόστος της παραγόμενης ενέργειας ( /kwh) από τον άνεμο τα επόμενα 20 χρόνια Από την στιγμή που το «καύσιμο» είναι δωρεάν δεν υπάρχει λόγος να κάνουμε εξοικονόμηση ενέργειας στην αιολική 50

51 Ενέργεια από τον άνεμο Η βέλτιστη Α/Γ δεν είναι απαραίτητα αυτή που παράγει την περισσότερη ενέργεια ανά έτος, αλλά αυτή που παράγει την φθηνότερη Από την άλλη κάθε τετραγωνικό μέτρο πτερωτής έχει οικονομικό κόστος οπότε αυτό που είναι σημαντικό είναι να συλλέγεται όση ενέργεια είναι δυνατόν κρατώντας χαμηλό το κόστος ανά kwh 51

52 Συντελεστής χωρητικότητας (Capacity factor) [1] Ένας άλλος τρόπος για να εκτιμηθεί η ετήσια παραγωγή ενέργειας από μία Α/Γ είναι ο υπολογισμός του συντελεστή χωρητικότητας για την μηχανή εγκατεστημένη σε συγκεκριμένη τοποθεσία. Ορίζεται ως το κλάσμα της ετήσιας παραγωγής ενέργειας προς την ετήσια μέγιστη θεωρητική παραγωγή ενέργειας. 52

53 Συντελεστής χωρητικότητας (Capacity factor) [1] Παράδειγμα: Αν μία Α/Γ 600kW παράγει kwh/year ο συντελεστής χωρητικότητας είναι: / ( * 24 * 600 ) = / = = 28.5% Ο συντελεστής χωρητικότητας κυμαίνεται από 0-100%, αλλά συνήθως έχει τιμές μεταξύ 20% και 70%, με συχνότερη τιμή 25-30% 53

54 Συντελεστής χωρητικότητας (Capacity factor) [2] Αν και γενικά πρέπει να προτιμάται μεγάλος συντελεστής χωρητικότητας, δεν είναι πάντα οικονομικά αποδοτικό. Για παράδειγμα η χρήση μιας μεγάλης γεννήτριας με μικρότερη πτερωτή (μικρότερος συντελεστής χωρητικότητας) μπορεί να αυξάνει την ετήσια παραγωγή ενέργειας για συγκεκριμένες συνθήκες ανέμου (σε συνάρτηση πάντα με το κόστος των εκάστοτε γεννητριών). Η επιλογή της Α/Γ σε σχέση με τον συντελεστή χωρητικότητας οδηγεί συνήθως σε επιλογή μεταξύ: 54

55 Συντελεστής χωρητικότητας (Capacity factor) [2] Σταθερή παραγωγή ενέργειας κοντά στην ονομαστική τιμή της Α/Γ (μεγάλος συντελεστής χωρητικότητας) Μεγάλη παραγωγή ενέργειας με διακυμάνσεις (μικρός συντελεστής χωρητικότητας) 55

56 Χαρακτηριστικές Ταχύτητες Υπάρχουν τρεις χαρακτηριστικές ταχύτητες που διαμορφώνουν την καμπύλη ισχύος μιας Α/Γ Η ταχύτητα έναρξης λειτουργίας (Vin) Η ονομαστική ταχύτητα (VR) Η ταχύτητα εξόδου (Vout) 56

57 Χαρακτηριστικές Ταχύτητες 57

58 Χαρακτηριστικές Ταχύτητες Η ταχύτητα έναρξης λειτουργίας (Vin) [3-5 m/sec] Η Α/Γ παρουσιάζει απώλειες λόγω τριβών στον άξονα περιστροφής, στο σύστημα πέδησης, στον πολλαπλασιαστή στροφών, κλπ. με αποτέλεσμα να αποδίδει ισχύ μόνο όταν η ταχύτητα του ανέμου ξεπεράσει μια ορισμένη ταχύτητα Vin. Για ταχύτητες μικρότερες από αυτή η Α/Γ δεν αποδίδει ισχύ. éù P0 êú 8 P R PR Vin = êú 2 êú pcpd êú ëû όπου: Po η ισχύς που χάνεται για ταχύτητες ανέμου <Vin, PR η ονομαστική ισχύ της μηχανής, Cp ο συντελεστής ισχύος, ρ η πυκνότητα του αέρα, D η διάμετρος της πτερωτής 1/3 58

59 Χαρακτηριστικές Ταχύτητες Η ονομαστική ταχύτητα (VR) Για τιμές μεγαλύτερες της Vin αυξανόμενης της ταχύτητας του ανέμου έχουμε αύξηση της ωφέλιμης ισχύος μέχρι μια ταχύτητα VR πέρα από την οποία υπάρχει σύστημα που διατηρεί σχεδόν σταθερή την παραγόμενη ισχύ (ονομαστική ισχύς). Έτσι θα πρέπει να βρεθεί για κάθε θέση εγκατάστασης της αιολικής μηχανής η καλύτερη σχέση μεταξύ των παρατηρούμενων ταχυτήτων του ανέμου και της ονομαστικής ταχύτητας της μηχανής. VR = 1.9V όπου <V> η μέση ετήσια ταχύτητα του ανέμου στη θέση εγκατάστασης 59

60 Χαρακτηριστικές Ταχύτητες Η ταχύτητα εξόδου (V out ) [22-28m/sec] Για πολύ υψηλές ταχύτητες του ανέμου πρέπει η αιολική μηχανή να τίθεται εκτός λειτουργίας για λόγους ασφάλειας. Σήμερα βέβαια στις μεγάλες αιολικές μηχανές γίνεται προσπάθεια να λειτουργούν σε οποιεσδήποτε ταχύτητες ανέμου. Η ταχύτητα εξόδου συνδέεται και με το κόστος κατασκευής του συστήματος. 60

61 Πρακτικά στοιχεία επιλογής ανεμογεννητριών Εκτίμηση ενεργειακών αναγκών Εκτίμηση διαστάσεων αιολικής μηχανής Ισχύς 61

62 Πρακτικά στοιχεία επιλογής ανεμογεννητριών 62

63 Πρακτικά στοιχεία επιλογής ανεμογεννητριών 63

64 Ονομαστική Ισχύς Πρακτικά στοιχεία επιλογής ανεμογεννητριών 64

65 Τύποι αιολικών μηχανών Άνεμος Αιολική Μηχανή Μετατροπή Ενέργειας Μεταφορά Ενέργειας Κατανάλωση Αποθήκευση Ενέργειας 65

66 Τύποι αιολικών μηχανών Παραγωγή ηλεκτρικής ενέργειας ή επί τόπου παραγωγή υδρογόνου Μεταφερόμενη Ενέργεια Κινητική Ενέργεια Ανέμου Μηχανικό Έργο Πιθανή Μετατροπή Σε Άλλη Μορφή Ενέργειας Αποθηκευμένη Ενέργεια Κατανάλωση Ενέργειας 66

67 Τύποι αιολικών μηχανών Ο βέλτιστος σχεδιασμός (τεχνικά και οικονομικά) ενός πλήρους συστήματος εκμετάλλευσης της αιολικής ενέργειας περιλαμβάνει: Μελέτη των χαρακτηριστικών του ανέμου με σκοπό την εκλογή της βέλτιστης τοποθεσίας για εγκατάσταση της αιολικής μηχανής και πρόβλεψη της παραγωγής ενέργειας Σχεδιασμός της αεροδυναμικής διάταξης που να μετατρέπει κατά τον αποδοτικότερο τρόπο την κινητική ενέργεια του ανέμου σε μηχανική Μελέτη της περίπτωσης μετατροπής του μηχανικού έργου σε άλλη πιο συμφέρουσα μορφή ενέργειας και βέλτιστο σχεδιασμό του συστήματος μετατροπής του μηχανικού έργου του δρομέα 67

68 Τύποι αιολικών μηχανών Εύρεση του καλύτερου τρόπου αντιμετώπισης των διακυμάνσεων της ενέργειας του ανέμου Μελέτη του βέλτιστου τρόπου μεταφοράς της ενέργειας, αν απαιτείται Διερεύνηση της καλύτερης προσαρμογής της μεταβαλλόμενης παραγωγής ενέργειας του συστήματος προς κατανάλωση Η βέλτιστη διάταξη αναφέρεται κυρίως από την σκοπιά του οικονομικού ανταγωνισμού της αιολικής ενέργειας σε σχέση με τις συμβατικές μορφές ενέργειας 68

69 Μηχανές οριζόντιου άξονα Παραδοσιακοί ανεμόμυλοι: Μήκος πτερυγίων: 5-15m Πλάτος πτερυγίων: ~0.2*μήκος Ταχύτητα περιστροφής: στροφές ανά λεπτό Λόγος ακροπτερυγίου: 2-3 [λ=rω/u] Συντελεστής απόδοσης: 0.3 [Cp=P μηχ. /P ανέμου =2*P μηχ /(ρ*α*u 3 )] Oπότε η μέγιστη παραγόμενη ισχύς: P max =0.15*(2*R) 2 *u 3 69

70 Μηχανές οριζόντιου άξονα Αργές αιολικές μηχανές Χρήση ανεμοδείκτη για τον προσανατολισμό της μηχανής Αριθμός πτερυγίων: Διάμετρος πτερωτής:6-8m (max:15m) Λειτουργία σε χαμηλές ταχύτητες του ανέμου (U in =2-3m/sec) Χρήση: συνήθως για άντληση νερού Λόγος ακροπτερυγίου για βέλτιστη απόδοση: ~1 Συντελεστής απόδοσης: 0.3 Χαμηλής ισχύος μηχανές λόγω μεγάλου βάρους και λειτουργίας σε μικρές ταχύτητες ανέμου 70

71 Μηχανές οριζόντιου άξονα 71

72 Μηχανές οριζόντιου άξονα Γρήγορες αιολικές μηχανές: Μηχανές μικρού σχετικά βάρους και μικρού κόστους κατασκευής σε σχέση με τις πολύπτερες Αριθμός πτερυγίων: 2-4 Λειτουργία σε υψηλές ταχύτητες του ανέμου (U in =5m/sec) Συχνά χρησιμοποιείται ανεμοδείκτης ή είναι αυτοπροσανατολιζόμενες Λόγος ακροπτερυγίου: μέχρι και 10 Λόγος ακροπτερυγίου για βέλτιστη απόδοση: ~6 Συντελεστής απόδοσης:

73 Μηχανές οριζόντιου άξονα Άλλες αιολικές μηχανές Μονόπτερη αιολική μηχανή: Πτερύγιο και αντίβαρο Εμφανίζει σημαντικούς κραδασμούς Αιολική μηχανή με ηθμό διάχυσης Αύξηση της ροής στην πτερωτή Ο ηθμός είναι τοποθετημένος έτσι ώστε η στενή διατομή του να στρέφεται προς την διεύθυνση του πνέοντος ανέμου Αύξηση κατά 50% της ταχύτητας του ανέμου λόγω ηθμού με κατά συνέπεια η παραγόμενη ισχύς x3.5 Σπάνια χρήση λόγω προβλημάτων όπως δύσκολη περιστροφή του συστήματος 73

74 Χαρακτηριστικά αιολικών μηχανών οριζόντιου άξονα Ρύθμιση βήματος-ισχύος Α/Γ Πτερύγιο Μεταβλητού βήματος Ρυθμιζόμενο ακροπτερύγιο Ρυθμιζόμενο μεταπτερύγιο Σύστημα αεροδυναμικής πέδησης Πτερύγιο σταθερού βήματος 74

75 Χαρακτηριστικά αιολικών μηχανών οριζόντιου άξονα Μελέτη αυτοματισμών σε σχέση με την ταχύτητα έναρξης λειτουργίας και την ταχύτητα εξόδου: Υδραυλικά, μηχανικά, ηλεκτρικά συστήματα (σερβομηχανισμοί) Ηλεκτρονικά συστήματα Συστήματα με αντίβαρα Σύστημα προσανατολισμού της πτερωτής Πτερύγιο προσανατολισμού Αυτόματος έλεγχος μέσω αισθητήρα Αντοχή των υλικών κατασκευής των πτερυγίων Μελέτη των τάσεων και ταλαντώσεων των πτερυγίων Εύρεση κατάλληλων υλικών (ξύλο, fiberglass, ανθρακονήματα συνθετικά υλικά,...) 75

76 Χαρακτηριστικά αιολικών μηχανών οριζόντιου άξονα Προσδιορισμός του ύψους από το έδαφος του άξονα της πτερωτής. Η αύξηση του ύψους αυξάνει το κόστος εγκατάστασης αλλά ταυτόχρονα και την παραγόμενη ισχύ. Εκείνο που καθορίζει βασικά το ύψος εγκατάστασης είναι η τραχύτητα του εδάφους και τα εμπόδια στην ροή του αέρα Κατασκευή και θεμελίωση του πύργου στήριξης Σταθερότητα και αντοχή κατασκευής Έλεγχος αντοχής κατασκευής σε σεισμό Επίδραση του πύργου στήριξης στην ροή του αέρα Μικρή επίδραση στην ροή του αέρα και κατά συνέπεια στην απόδοση του συστήματος Μελέτη ταλαντώσεων του πύργου 76

77 Χαρακτηριστικά αιολικών μηχανών οριζόντιου άξονα Η μορφή του πεδίου πίσω από την πτερωτή Επίδραση σε αιολικά πάρκα όπου υπάρχει αλληλεπίδραση Α/Γ, μελέτη ελάχιστης απόστασης μεταξύ Α/Γ Επιλογή των υποσυστημάτων της αιολικής μηχανής Επίδραση της αιολικής μηχανής στο περιβάλλον Παράμετροι όπως Αντιδιαβρωτική προστασία και προστασία από τους κεραυνούς Μελέτη συνθηκών φόρτισης για υπερβολικό άνεμο Κανονική λειτουργία Α/Γ με ταχύτητα <VR με παρουσία ριπής ανέμου 35m/sec Λειτουργία Α/Γ με ταχύτητα =Vout με ριπή ανέμου 60m/sec Ακινητοποιημένη Α/Γ με ταχύτητα ανέμου 60m/sec Φόρτιση Α/Γ λόγω απώλειας πτερυγίου (συνθήκες αστοχίας) 77

78 Μέρη ανεμογεννήτριας οριζόντιου άξονα Κέλυφος ατράκτου Πτερωτή Κύριος άξονας (low speed) Πολλαπλασιαστής στροφών Άξονας (high speed) Ηλεκτρική Γεννήτρια Μέτρηση Ταχύτητας Διεύθυνσης ανέμου Ηλεκτρονικός Έλεγχος 78

79 Μέρη ανεμογεννήτριας οριζόντιου άξονα Πτερωτή Στόχος στο σχεδιασμό του δρομέα είναι ο βέλτιστος συνδυασμός των διαφόρων παραμέτρων που τον συνθέτουν (διάμετρος δρομέα, γωνιακή ταχύτητα περιστροφής, αριθμός και υλικό πτερυγίων κλπ.) με κριτήριο τη μεγιστοποίηση της παραγόμενης ενέργειας και ελαχιστοποίηση του κόστους Η διάμετρος της πτερωτής εξαρτάται από την ονομαστική ισχύ της Α/Γ και το αιολικό δυναμικό της περιοχής εγκατάστασης Η γωνιακή ταχύτητα λειτουργίας της πτερωτής επιλέγεται έτσι ώστε ο λόγος ταχύτητας του ακροπτερυγίου (λ) να βρίσκεται στην περιοχή βέλτιστης τιμής του συντελεστή ισχύος (Cp) 79

80 Μέρη ανεμογεννήτριας οριζόντιου άξονα Πτερωτή Ο αριθμός των πτερυγίων εξαρτάται από την εφαρμογή: Πολυπτέρυγοι (π.χ. Αμερικάνικου τύπου) που στο παρελθόν βρήκαν πλατιά εφαρμογή για άντληση νερού με μειονεκτήματα: μικρός συντελεστής ισχύος (max 0.3), μικρή διάμετρος Με λίγα πτερύγια (2-3) πού έχουν μορφή των ελίκων των αεροσκαφών. Μεγάλοι συντελεστές ισχύος (~0.4) και βέλτιστη λειτουργία σε μεγάλο λόγο ταχυτήτων ακροπτερυγίου (λ). Πιο ταχύστροφοι και οικονομικότεροι από τους πολυπτέρυγους. Ο τρίπτερος δρομέας είναι ~5% αποδοτικότερος από τον δίπτερο και με μικρότερα φορτία, αλλά ακριβότερος. Ο μονόπτερος είναι οικονομικότερος αλλά με 10% μικρότερη ενεργειακή απόδοση από τον δίπτερο. 80

81 Μέρη ανεμογεννήτριας οριζόντιου άξονα Πτερωτή Το μέγεθος της ανεμογεννήτριας: Μικρής ισχύος (μέχρι 20kW) όπου η διάμετρος είναι έως 10m περίπου Μέσης ισχύος (20-250kW) με διαμέτρους μέχρι 25m Μεγάλης ισχύος (μεγαλύτερη από 250kW και γενικά kW) όπου η διάμετρος είναι μέχρι 80m. Γενικά είναι δύσκολο να ξεπεράσει κανείς την ισχύ των 2500kW γιατί απαιτείται κατασκευή πτερωτών πολύ μεγάλης διαμέτρου (άνω των 80m) η οποία παρουσιάζει σοβαρά τεχνικά προβλήματα Σε μία μοντέρνα Α/Γ 600kW η διάμετρος μπορεί να φτάσει τα 40m 81

82 Μέρη ανεμογεννήτριας οριζόντιου άξονα Πτερωτή Τα πτερύγια σε μεγάλης ισχύος Α/Γ κατασκευάζονται από εποξικό υλικό ενισχυμένο με υαλονήματα καθώς και ανθρακονήματα, ενώ χρησιμοποιείται η τεχνολογία των ελίκων των αεροσκαφών Στις μέσου μεγέθους πτερωτές χρησιμοποιούνται επίσης υαλονήματα με εναλλαγή της κατεύθυνσης των υαλονημάτων σε πολλαπλές στρώσεις, η ακόμα και ξύλο το οποίο εμφανίζει μεγάλη αντοχή και μικρή κόπωση Τα πτερύγια σε μικρές Α/Γ κατασκευάζονται από πολυουρεθάνη, υαλόνημα και ξύλο Σημαντική η συμπεριφορά των υλικών σε εναλλασσόμενη φόρτιση που μπορεί να οδηγήσει σε πρόωρη γήρανση 82

83 Μέρη ανεμογεννήτριας οριζόντιου άξονα Πτερωτή Υπάρχουν πτερύγια σταθερού και μεταβλητού βήματος που στην δεύτερη περίπτωση έχουν ως σκοπό την εξισορρόπηση, για ταχύτητες μεγαλύτερες της ονομαστικής, της παραγόμενης ισχύος με την ονομαστική ισχύ της εγκατάστασης (π.χ. γεννήτριας) ώστε να μην υπάρχουν προβλήματα υπερφόρτωσης Τρόποι μηχανικής ρύθμισης ισχύος για περιπτώσεις όπου η ταχύτητα του ανέμου >V out, όταν δεν υπάρχει κατανάλωση,... Αλλαγή προσανατολισμού ολόκληρου του πτερυγίου ή μέρους του ως προς την διεύθυνση του ανέμου Ρύθμιση με βοήθεια αεροδυναμικών φρένων στα άκρα των πτερυγίων 83

84 Μέρη ανεμογεννήτριας οριζόντιου άξονα Κύριος άξονας Συνδέει το κέντρο της πτερωτής με τον πολλαπλασιαστή στροφών Ο σφυρήλατος κύριος άξονας στηρίζεται σε δύο κύρια έδρανα Σε μία σύγχρονη ανεμογεννήτρια 600kW ο δρομέας περιστρέφεται σχετικά αργά με ταχύτητα 19 έως 30 περιστροφές το λεπτό (RPM) Ο άξονας συνδέεται με δίκτυο σωληνώσεων του υδραυλικού συστήματος που χρησιμοποιείται για την λειτουργία των αεροδυναμικών φρένων 84

85 Μέρη ανεμογεννήτριας οριζόντιου άξονα Πολλαπλασιαστής στροφών Ο πολλαπλασιαστής στροφών (gear box) έχει στόχο την προσαρμογή των στροφών του δρομέα στις στροφές της γεννήτριας Άμεση σύνδεση του κύριου άξονα με την γεννήτρια (50Hz AC) με 2, 4 ή 6 πόλους θα απαιτούσε μία ταχύτητα περιστροφής RPM, που αντιστοιχεί 2 φορές περίπου στην ταχύτητα του ήχου Έλλειψη του πολλαπλασιαστή στοφών απαιτεί χρήση γεννήτριας με πολλούς πόλους και χαμηλές ταχύτητες περιστροφής (περίπου 200 πόλους για ταχύτητα 30 RPM) Η αδράνεια του ρότορα που θα πρέπει να χειριστεί η γεννήτρια σε άμεση σύνδεση απαιτεί στιβαρή και άρα ακριβή γεννήτρια Τελική περιστροφή περίπου 1500 RPM 85

86 Μέρη ανεμογεννήτριας οριζόντιου άξονα Πολλαπλασιαστής στροφών, κριτήρια επιλογής διάρκεια ζωής βαθμός απόδοσης θόρυβος κατά τη λειτουργία του Λόγω της συνεχούς μεταβολής της ταχύτητας του ανέμου ο πολλαπλασιαστής στροφών λειτουργεί συνεχώς με κρουστικά φορτία που οδηγούν σε πολύ γρήγορη φθορά του και μείωση της διάρκειας ζωής του. Το κιβώτιο ταχυτήτων επιλέγεται να έχει ονομαστική ισχύ πολύ μεγαλύτερη από την ονομαστική ισχύ της Α/Γ και ονομαστική ροπή κατά 200% μεγαλύτερη από την ονομαστική ροπή της αιολικής μηχανής 86

87 Μέρη ανεμογεννήτριας οριζόντιου άξονα Πολλαπλασιαστής στροφών Υπάρχουν γενικά δύο είδη κιβωτίων: Κιβώτιο με παράλληλες οδοντώσεις γραναζιών (κιβώτιο παράλληλων αξόνων). Απλούστερο κατασκευαστικά και με μικρό κόστος συντήρησης Κιβώτιο όπου οι οδοντωτοί τροχοί έχουν ελικοειδή οδόντωση (κιβώτιο με πλανητικό σύστημα τροχών). Υψηλό κόστος αγοράς και συντήρησης, αλλά με μεγαλύτερο βαθμό απόδοσης και χαμηλότερες στάθμες θορύβου Για την αύξηση του χρόνου ζωής και την μείωση των κρουστικών φορτίων λειτουργίας το κιβώτιο του πολλαπλασιαστή στοφών μπορεί να στηριχθεί πάνω σε ελατήρια απόσβεσης κραδασμών Σε μία σύγχρονη ανεμογεννήτρια 600kW ο λόγος του πολλαπλασιαστή στροφών είναι 1:50 87

88 Μέρη ανεμογεννήτριας οριζόντιου άξονα Κέλυφος Low speed side High speed side Υδραυλικά φρένα 88

89 Μέρη ανεμογεννήτριας οριζόντιου άξονα Σύστημα πέδησης άξονα δρομέα Υπάρχουν διάφοροι τρόποι ακινητοποίησης του δρομέα: Μεταβολή βήματος πτερυγίου, ακροπτερυγίου ή αεροπέδη Στροφή του δρομέα παράλληλα στον άνεμο Πέδηση του άξονα Σε περίπτωση αστοχίας των μηχανισμών ρύθμισης του βήματος του πτερυγίου απαιτείται ύπαρξη συστήματος πέδησης άμεσα στον άξονα του δρομέα (συνήθως τύπου δισκόφρενο) Συνήθως γίνεται τοποθέτηση του φρένου στον υψηλόστροφο άξονα της μηχανής γιατί η ροπή πέδησης είναι μικρή Συχνά η πέδη είναι ηλεκτρομαγνητικού τύπου και ενεργοποιείται αυτόματα με την διακοπή του ρεύματος (η πέδη παραμένει ανοικτή με ηλεκτρομαγνήτες) 89

90 Μέρη ανεμογεννήτριας οριζόντιου άξονα Ηλεκτρική γεννήτρια (Σύγχρονες): Η μηχανική ισχύς μεταφέρεται από τον πολλαπλασιαστή στροφών στην ηλεκτρική γεννήτρια μέσω ενός άξονα μετάδοσης. Όλες οι τριφασικές γεννήτριες χρησιμοποιούν μεταβαλλόμενο μαγνητικό πεδίο Οι σύγχρονες γεννήτριες δεν απαιτούν εξωτερική τάση για την διέγερσή τους. Η διέγερση είναι συνεχούς ρεύματος και παράγεται από την ίδια την γεννήτρια Όταν ο αιολικός σταθμός είναι συνδεδεμένος στο δίκτυο τότε οι συχνότητες του δικτύου και της γεννήτριας ταυτίζονται Οι διακυμάνσεις των στροφών λόγω απότομων μεταβολών του ανέμου μεταφέρονται κατευθείαν στο δίκτυο 90

91 Μέρη ανεμογεννήτριας οριζόντιου άξονα Ηλεκτρική γεννήτρια (Σύγχρονες): Σε αυτόνομη λειτουργία της Α/Γ (όχι διασύνδεση με το δίκτυο ρεύματος) είναι απαραίτητη η περιστροφή των ρότορα με σταθερή γωνιακή ταχύτητα για να παραχθεί εναλλασσόμενο ρεύμα με σταθερή συχνότητα Στην πράξη οι σύγχρονες γεννήτριες με μόνιμους μαγνήτες χρησιμοποιούνται ελάχιστα λόγω: Σταδιακός απομαγνητισμός των μόνιμων μαγνητών, κυρίως εξαιτίας της λειτουργίας τους μέσα στα ισχυρά μαγνητικά πεδία που υπάρχουν στην γεννήτρια Οι ισχυροί μαγνήτες κατασκευάζονται από σπάνια υλικά (π.χ. Νεοδύμιο) τα οποία είναι κατά κανόνα ακριβά Χρήση ηλεκτρομαγνητών στο ρότορα και τροφοδοσία του με συνεχές ρεύμα από το δίκτυο 91

92 Μέρη ανεμογεννήτριας οριζόντιου άξονα Ηλεκτρική γεννήτρια (Σύγχρονες) Στάτης AC Ρότορας DC Ταχύτητα περιστροφής του στάτη= Ταχύτητα περιστροφής του πεδίου του ρότορα= Ω s 92

93 Μέρη ανεμογεννήτριας οριζόντιου άξονα 93

94 Μέρη ανεμογεννήτριας οριζόντιου άξονα Ηλεκτρική γεννήτρια (Σύγχρονες) Αυξάνοντας τον αριθμό των πόλων, μπορούμε να μειώσουμε την απαραίτητη ταχύτητα περιστροφής του πεδίου. Οι περισσότερες Α/Γ χρησιμοποιούν 4-6 πόλους για λόγους οικονομίας και όγκου Αργή μεγάλη (ακριβή) γεννήτρια Γρήγορη μικρή (φθηνή) γεννήτρια 94

95 Μέρη ανεμογεννήτριας οριζόντιου άξονα 95

96 Μέρη ανεμογεννήτριας οριζόντιου άξονα Ηλεκτρική γεννήτρια (Ασύγχρονες) Τα πλεονεκτήματα της ασύγχρονης γεννήτριας είναι η απλότητα της κατασκευής της, το χαμηλό κόστος και η ευκολία σύνδεσης με το δίκτυο Η ασύγχρονη γεννήτρια με δρομέα τύπου κλωβού χρησιμοποιείται ευρύτατα σε μικρή ισχύος Α/Γ (μέχρι 300kW), συνιστάται σε περιοχές με μικρές διακυμάνσεις της ταχύτητας του ανέμου 96

97 Μέρη ανεμογεννήτριας οριζόντιου άξονα Ο ρότορας είναι κυρίως εκείνος που κάνει την ασύγχρονη γεννήτρια διαφορετική από την σύγχρονη. Αποτελείται από ένα αριθμό χάλκινων ή αλουμινένιων ράβδων οι οποίες είναι ενωμένες στις άκρες τους και στο κέντρο του υπάρχει μεταλλικός πυρήνας. Ο ρότορας τοποθετείται στο εσωτερικό του στάτορα ο οποίος έχει συνήθως 4 πόλους. 97

98 Μέρη ανεμογεννήτριας οριζόντιου άξονα Ηλεκτρική γεννήτρια (Ασύγχρονες) Όταν ο ρότορας περιστρέφεται με ταχύτητα μεγαλύτερη από την σύγχρονη (1500 RPM για γεννήτρια 4 πόλων), δηλαδή με συχνότητα μεγαλύτερη από την συχνότητα μεταβολής του πεδίου του στάτορα, ισχυρά ρεύματα εμφανίζονται στο ρότορα. Όσο γρηγορότερα περιστρέφεται ο στάτορας τόσο περισσότερη ηλεκτρική ενέργεια παράγεται 98

99 Μέρη ανεμογεννήτριας οριζόντιου άξονα Η μεταβολή των στροφών που απαιτείται είναι της τάξεως 1-5% (1515 RPM για γεννήτρια 4 πόλων) Η γεννήτρια μεταβάλει ελάχιστα την ταχύτητά της με την μεταβολή της ροπής. Αυτό σημαίνει ότι μειωμένες τριβές στον πολλαπλασιαστή στροφών και αποτελεί από τους βασικούς λόγους χρήσης της ασύγχρονης γεννήτριας 99

100 Μέρη ανεμογεννήτριας οριζόντιου άξονα Ηλεκτρική γεννήτρια (Ασύγχρονες) Στάτης ΑC Ταχύτητα περιστροφής του πεδίου του στάτη: Ω s Ταχύτητα περιστροφής του ρότορα: Ω r =(1-s) Ω s s: slip (ολίσθηση): s=(ω s Ω r )/ Ω s 100

101 Μέρη ανεμογεννήτριας οριζόντιου άξονα Ισχυρά ρεύματα Μαγνητικό Πεδίο 101

102 Μέρη ανεμογεννήτριας οριζόντιου άξονα Γεννήτρια συνεχούς ρεύματος Οι γεννήτριες συνεχούς ρεύματος βρίσκουν εφαρμογή στη φόρτιση συσσωρευτών και όχι σε εξυπηρέτηση καταναλωτών Έχουν μεγάλη ευπάθεια των ψηκτρών συλλέκτη Μεγάλο σχετικά κόστος 102

103 Μέρη ανεμογεννήτριας οριζόντιου άξονα Έχουν αναπτυχθεί Α/Γ χωρίς πολλαπλασιαστή στροφών όπου η γεννήτρια συνδέεται απευθείας στο ρότορα και κινείται από αυτόν. Η γεννήτρια είναι μια πολύ-πολική μηχανή και βασίζεται στην αρχή λειτουργίας των σύγχρονων γεννητριών. Η γεννήτρια που αναπτύχθηκε συνδυάζει χαμηλό βάρος με υψηλή απόδοση. Επίσης επιτυγχάνεται ελαχιστοποίηση του θορύβου από τον πολλαπλασιαστή στροφών και μείωση των βλαβών, σε υψηλές ταχύτητες ανέμου, των μηχανολογικών εξαρτημάτων 103

104 Μέρη ανεμογεννήτριας οριζόντιου άξονα Σύστημα ελέγχου πτερυγίων Μεταβολή του βήματος του πτερυγίου ή του ακροπτερυγίου Στροφή του δρομέα ώστε το επίπεδό του να γυρίσει παράλληλα στην διεύθυνση του ανέμου (yaw control) Αύξηση της αεροδυναμικής αντίστασης με την ενεργοποίηση αεροπέδης (spoiler) Μηχανική πέδηση του άξονα 104

105 Μέρη ανεμογεννήτριας οριζόντιου άξονα Σύστημα ελέγχου Όλες οι λειτουργίες της Α/Γ μετρώνται και ελέγχονται από μια μονάδα ελέγχου που βασίζεται σε μικροεπεξεργαστή και περιέχει τα κατάλληλα κυκλώματα ελέγχου ισχύος 105

106 Μέρη ανεμογεννήτριας οριζόντιου άξονα Σύστημα προσανατολισμού Στις μικρού ή μεσαίου Α/Γ χρησιμοποιείται καθοδηγητικό πτερύγιο Στις Α/Γ μεγάλου μεγέθους χρησιμοποιείται σερβοκινητήρας ο οποίος ελέγχεται από τον ανεμοδείκτη του ανεμογράφου Ο δρομέας προσανατολίζεται (yaw control) με δύο ηλεκτροκίνητους οδοντωτούς τροχούς προσανατολισμού που εφαρμόζουν σε μια οδοντωτή κορώνα τοποθετημένη στην κορυφή του πύργου. 106

107 Μέρη ανεμογεννήτριας οριζόντιου άξονα 107

108 Μέρη ανεμογεννήτριας οριζόντιου άξονα Κέλυφος ατράκτου Το κέλυφος της ατράκτου (nacelle) είναι συνήθως από πολυεστερικό υλικό ενισχυμένο με υαλοβάμβακα και προστατεύει τον ηλεκτρομηχανολογικό εξοπλισμό της Α/Γ. Η πρόσβαση στην άτρακτο επιτυγχάνεται από κεντρικό άνοιγμα, ανεξάρτητα από τη θέση της ατράκτου ως προς τον πύργο 108

109 Μέρη ανεμογεννήτριας οριζόντιου άξονα Πύργος Ο πύργος είναι κυλινδρικός, ελαφρά κωνικός. Επιμεταλλώνεται και βάφεται συνήθως με λευκή βαφή. Κατασκευάζεται συνήθως σε 3 ή περισσότερα τμήματα με εσωτερικές φλάντζες σύνδεσης. ( / 10m) 109

110 Αιολικές μηχανές κατακόρυφου άξονα Τύπου Savonius Η πτερωτή αποτελείται από δύο ημικυλίνδρους Σημαντικό ρόλο παίζει η απόσταση μεταξύ των ημικυλίνδρων (e) σε σχέση με την διάμετρό τους (d) Ο αρχικός τύπος είχε κατασκευαστεί έτσι ώστε ο λόγος e/d να ισούται με 1/3 (τύπος IV) Ο λόγος ακροπτερυγίου (λ=ωr/u) για τον οποίο έχουμε την μεγαλύτερη απόδοση πρέπει να έχει τιμές: 0.9<λ<1 Ο αντίστοιχος Cp=0.25 και η μέγιστη παραγόμενη ισχύς είναι: P=0.16*S*V 3 [όπου S=h(2d-e)] 110

111 Αιολικές μηχανές κατακόρυφου άξονα 111

112 Αιολικές μηχανές κατακόρυφου άξονα Τύπου Darrieus Αποτελούνται από άκαμπτα πτερύγια στερεωμένα και στα δύο άκρα τους Η επιφάνεια τους μπορεί να είναι κυλινδρική, κωνική ή παραβολική Ο συντελεστής ισχύος: Cp=λ*Cm όπου Cm ο συντελεστής ροπής του συστήματος Η μέγιστη παραγόμενη ισχύς (2-3 πτερύγια) είναι: P=0.25*S*V 3 για λ=(5*r/(b*l)) 1/2 l:μήκος χορδής πτερυγίων, R: η μέγιστη απόσταση του πτερυγίου από το κέντρο, b:συνάρτηση της γεωμετρίας του συστήματος 112

113 Αιολικές μηχανές κατακόρυφου άξονα 113

114 Αιολικές μηχανές κατακόρυφου άξονα Τύπου Darrieus Απλότητα και οικονομία στην κατασκευή Ελαφρύ σύστημα που δεν χρειάζεται μεγάλο πύργο στήριξης Δεν απαιτείται τοποθέτηση σε μεγάλο ύψος από το έδαφος Δεν απαιτείται σύστημα προσανατολισμού Δεν χρειάζεται ρύθμιση για περιορισμό της ισχύος σε υψηλές ταχύτητες λόγω της ευνοϊκής καμπύλης Cp-λ Χαμηλή απόδοση σε σχέση με μηχανές οριζόντιου άξονα 114

115 Αιολικές μηχανές κατακόρυφου άξονα 115

116 Τέλος Ενότητας 116

117 Σημείωμα Αναφοράς Copyright, Τμήμα Μηχανολόγων Μηχανικών, Σκόδρας Γεώργιος. «Ήπιες και νέες μορφές ενέργειας». Έκδοση: 1.0. Κοζάνη Διαθέσιμο από τη δικτυακή διεύθυνση: eclass.uowm.gr/courses/mech244/ 117

118 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Όχι Παράγωγα Έργα Μη Εμπορική Χρήση 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] h t t p ://creativecommons.org/licenses/by-nc-nd/4.0/ Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό 118

119 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους. 119

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας Ήπιες Μορφές Ενέργειας Ενότητα 7: Εκμετάλλευση Αιολικού Δυναμικού, Αιολικές Μηχανές και Ανεμογεννήτριες Ελευθέριος Αμανατίδης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Περιεχόμενα ενότητας Εκμετάλλευση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ. Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ. Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης Ισχύς κινητικής ενέργειας φλέβας ανέμου P αν de dt, 1 2 ρdvυ dt P όπου, S, το εμβαδόν του κύκλου της φτερωτής και ρ, η πυκνότητα του αέρα.

Διαβάστε περισσότερα

Τεχνολογίες Ελέγχου στα Αιολικά Συστήματα

Τεχνολογίες Ελέγχου στα Αιολικά Συστήματα Τεχνολογίες Ελέγχου στα Αιολικά Συστήματα Ενότητα 1: Εισαγωγή Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό

Διαβάστε περισσότερα

Αιολική Ενέργεια & Ενέργεια του Νερού

Αιολική Ενέργεια & Ενέργεια του Νερού Αιολική Ενέργεια & Ενέργεια του Νερού Ενότητα 7: Λειτουργία α/γ για ηλεκτροπαραγωγή Γεώργιος Λευθεριώτης, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Συντελεστής ισχύος C

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.)

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) Ενότητα 5: Αιολικά Σπύρος Τσιώλης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 Η

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 Η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 Η τεχνολογία των Α/Γ Βασικά Τεχνικά χαρακτηριστικά και μεγέθη [1] Θεωρητικό Μέρος ΕΡΓΑΣΤΗΡΙΟ Α.Π.Ε Ι Κύρια μέρη της Ανεμογεννήτριας Φτερωτή (η στροφέα) που φέρει δύο η τρία πτερύγια.

Διαβάστε περισσότερα

Αιολική Ενέργεια & Ενέργεια του Νερού

Αιολική Ενέργεια & Ενέργεια του Νερού Αιολική Ενέργεια & Ενέργεια του Νερού Ενότητα 4: Αιολικές Μηχανές Γεώργιος Λευθεριώτης, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Κατηγοριοποίηση αιολικών μηχανών Κινητήρια

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙI. Ενότητα 10: Ροπή κινητήρα Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

Ηλεκτρικές Μηχανές ΙI. Ενότητα 10: Ροπή κινητήρα Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Ηλεκτρικές Μηχανές ΙI Ενότητα 10: Ροπή κινητήρα Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ήπιες Μορφές Ενέργειας Ενότητα 2: Αιολική Ενέργεια - Αιολικές Μηχανές Καββαδίας Κ.Α. Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙI. Ενότητα 8: Αρχή λειτουργίας Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

Ηλεκτρικές Μηχανές ΙI. Ενότητα 8: Αρχή λειτουργίας Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Ηλεκτρικές Μηχανές ΙI Ενότητα 8: Αρχή λειτουργίας Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙI. Ενότητα 5: Γεννήτριες εκτύπων πόλων και διεγέρσεις Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

Ηλεκτρικές Μηχανές ΙI. Ενότητα 5: Γεννήτριες εκτύπων πόλων και διεγέρσεις Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Ηλεκτρικές Μηχανές ΙI Ενότητα 5: Γεννήτριες εκτύπων πόλων και διεγέρσεις Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ανεµογεννήτριες. Γιάννης Κατσίγιαννης

Ανεµογεννήτριες. Γιάννης Κατσίγιαννης Ανεµογεννήτριες Γιάννης Κατσίγιαννης Ισχύςαέριαςδέσµης Ηισχύς P air µιαςαέριαςδέσµηςείναιίσηµε: P air 1 = ρ 2 A V 3 όπου: ρ: πυκνότητααέρα Α: επιφάνεια (για µια ανεµογεννήτρια αντιστοιχεί στην επιφάνεια

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙΙ

Ηλεκτρικές Μηχανές ΙΙ Ηλεκτρικές Μηχανές ΙΙ Ενότητα 1: Εισαγωγή Βασικές Έννοιες Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αιολική Ενέργεια & Ενέργεια του Νερού

Αιολική Ενέργεια & Ενέργεια του Νερού Αιολική Ενέργεια & Ενέργεια του Νερού Ενότητα 5: Σχεδίαση Πτερυγίων 1 Γεώργιος Λευθεριώτης, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Στοιχείο πτέρυγας ανάλυση ασκούμενων

Διαβάστε περισσότερα

Τεχνοοικονομική Μελέτη

Τεχνοοικονομική Μελέτη Τμήμα Μηχανολόγων Μηχανικών Τεχνοοικονομική Μελέτη Ενότητα 7: Σχέση μεταξύ εσόδων και ανάκτηση κεφαλαίου Σκόδρας Γεώργιος, Αν. Καθηγητής gskodras@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Ηλεκτρικοί Κινητήρες μικρής ισχύος, δομή και έλεγχος

Ηλεκτρικοί Κινητήρες μικρής ισχύος, δομή και έλεγχος Ηλεκτρικοί Κινητήρες μικρής ισχύος, δομή και έλεγχος Ενότητα 6: Κινητήρες τύπου Universal Επαμεινώνδας Μητρονίκας Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Ηλεκτρικά Κινητήρια Συστήματα

Ηλεκτρικά Κινητήρια Συστήματα Ηλεκτρικά Κινητήρια Συστήματα Ενότητα 2:Συγκρότηση ενός Ηλεκτρικού Κινητήριου Συστήματος είδη φορτίων Επαμεινώνδας Μητρονίκας Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

Τεχνολογίες Ελέγχου στα Αιολικά Συστήματα

Τεχνολογίες Ελέγχου στα Αιολικά Συστήματα Τεχνολογίες Ελέγχου στα Αιολικά Συστήματα Ενότητα 2: Μηχανικό μέρος ανεμογεννητριών Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος

Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Δυναμικής Άκαμπτου Σώματος... 4 1.1 Ερώτηση 1... 4 1.2 Ερώτηση 2... 4 1.3 Ερώτηση

Διαβάστε περισσότερα

Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας

Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας Ενότητα: Άσκηση 6: Αντιστάθμιση γραμμών μεταφοράς με σύγχρονους αντισταθμιστές Νικόλαος Βοβός, Γαβριήλ Γιαννακόπουλος, Παναγής Βοβός Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙI. Ενότητα 9: Ισοδύναμο κύκλωμα και τύποι Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

Ηλεκτρικές Μηχανές ΙI. Ενότητα 9: Ισοδύναμο κύκλωμα και τύποι Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Ηλεκτρικές Μηχανές ΙI Ενότητα 9: Ισοδύναμο κύκλωμα και τύποι Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ηλεκτρικά Κινητήρια Συστήματα

Ηλεκτρικά Κινητήρια Συστήματα Ηλεκτρικά Κινητήρια Συστήματα Ενότητα 9:Λειτουργική συμπεριφορά σύγχρονων κινητήρων Επαμεινώνδας Μητρονίκας Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Ηλεκτρικοί Κινητήρες μικρής ισχύος, δομή και έλεγχος

Ηλεκτρικοί Κινητήρες μικρής ισχύος, δομή και έλεγχος Ηλεκτρικοί Κινητήρες μικρής ισχύος, δομή και έλεγχος Ενότητα 1: Εισαγωγή Επαμεινώνδας Μητρονίκας Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν

Διαβάστε περισσότερα

Ήπιες και νέες μορφές ενέργειας

Ήπιες και νέες μορφές ενέργειας Τμήμα Μηχανολόγων Μηχανικών Ήπιες και νέες μορφές ενέργειας Ενότητα 1: ΥΔΡΟΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ I Εισαγωγή Σκόδρας Γεώργιος, Αν. Καθηγητής gskodras@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙΙ

Ηλεκτρικές Μηχανές ΙΙ Ηλεκτρικές Μηχανές ΙΙ Ενότητα 1: Εκκίνηση Ασύγχρονων Μηχανών Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας

Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας Ενότητα: Άσκηση 5: Η σύγχρονη μηχανή (γεννήτρια/κινητήρας ) Νικόλαος Βοβός, Γαβριήλ Γιαννακόπουλος, Παναγής Βοβός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας

Διαβάστε περισσότερα

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα 6: Δυναμική μηχανής συνεχούς ρεύματος Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Ηλεκτρικά Κινητήρια Συστήματα

Ηλεκτρικά Κινητήρια Συστήματα Ηλεκτρικά Κινητήρια Συστήματα Ενότητα 8:Λειτουργική συμπεριφορά ασύγχρονων κινητήρων Επαμεινώνδας Μητρονίκας Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙI

Ηλεκτρικές Μηχανές ΙI Ηλεκτρικές Μηχανές ΙI Ενότητα 1: Εισαγωγή στις σύγχρονες Γεννήτριες Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Μάθημα ασκήσεων 2: Ηλεκτρικά χαρακτηριστικά γραμμών μεταφοράς Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Δούκας

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 4: Ισχύς στο Συνεχές Ρεύμα Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ηλεκτροτεχνία ΙΙ. Ενότητα 1: Βασικές Έννοιες Ηλεκτροτεχία Ηλεκτρονική. Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας

Ηλεκτροτεχνία ΙΙ. Ενότητα 1: Βασικές Έννοιες Ηλεκτροτεχία Ηλεκτρονική. Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας Ηλεκτροτεχνία ΙΙ Ενότητα 1: Βασικές Έννοιες Ηλεκτροτεχία Ηλεκτρονική Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ανεμογεννήτρια Polaris P15 50 kw

Ανεμογεννήτρια Polaris P15 50 kw Ανεμογεννήτρια Polaris P15 50 kw Τεχνική περιγραφή Μια ανεμογεννήτρια (Α/Γ) 50kW παράγει ενέργεια για να τροφοδοτηθούν αρκετές κατοικίες. Επίσης μπορεί να χρησιμοποιηθεί για να τροφοδοτηθούν με ρεύμα απομονωμένα

Διαβάστε περισσότερα

Ηλεκτρικά Κινητήρια Συστήματα

Ηλεκτρικά Κινητήρια Συστήματα Ηλεκτρικά Κινητήρια Συστήματα Ενότητα 6:Λειτουργική Συμπεριφορά Ηλεκτρικών Κινητήρων Επαμεινώνδας Μητρονίκας Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙΙ

Ηλεκτρικές Μηχανές ΙΙ Ηλεκτρικές Μηχανές ΙΙ Ενότητα 2: Σύγχρονη Μηχανή με Κυλινδρικό Δρομέα 3 Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙI. Ενότητα 6: Εισαγωγή στους ασύγχρονους κινητήρες Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

Ηλεκτρικές Μηχανές ΙI. Ενότητα 6: Εισαγωγή στους ασύγχρονους κινητήρες Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Ηλεκτρικές Μηχανές ΙI Ενότητα 6: Εισαγωγή στους ασύγχρονους κινητήρες Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Προηγμένος έλεγχος ηλεκτρικών μηχανών

Προηγμένος έλεγχος ηλεκτρικών μηχανών Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 9: Άμεσος Διανυσματικός Έλεγχος Ασύγχρονων Μηχανών με προσανατολισμό στην μαγνητική ροή του δρομέα Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική

Διαβάστε περισσότερα

Συντελεστής ισχύος C p σαν συνάρτηση της ποσοστιαίας μείωσης της ταχύτητας του ανέμου (v 0 -v 1 )/v 0

Συντελεστής ισχύος C p σαν συνάρτηση της ποσοστιαίας μείωσης της ταχύτητας του ανέμου (v 0 -v 1 )/v 0 Συντελεστής ισχύος C p σαν συνάρτηση της ποσοστιαίας μείωσης της ταχύτητας του ανέμου (v 0 -v 1 )/v 0 19 ΠΑΡΑΓΩΓΗ ΕΝΕΡΓΕΙΑΣ ΑΠΟ ΑΝΕΜΟΓΕΝΝΗΤΡΙΕΣ Ταχύτητα έναρξης λειτουργίας: Παραγόμενη ισχύς = 0 Ταχύτητα

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙΙ

Ηλεκτρικές Μηχανές ΙΙ Ηλεκτρικές Μηχανές ΙΙ Ενότητα 2: Σ.Μ με Κυλινδρικό Δρομέα Υπολογισμός Η/Μ Ροπής Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

ΑΙΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΑΕΡΟΔΥΝΑΜΙΚΗ

ΑΙΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΑΕΡΟΔΥΝΑΜΙΚΗ ΑΙΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ: Δρ. Κονταξάκης Κώστας Επικ. καθηγητής ΤΕΙ Κρήτης 1 2 Ροϊκός σωλήνας δρομέα ανεμοκινητήρα 3 Για τη μελέτη του αεροδυναμικού πεδίου γύρω από το δίσκο θα εφαρμοστούν οι γνωστοί νόμοι της

Διαβάστε περισσότερα

Τεχνοοικονομική Μελέτη

Τεχνοοικονομική Μελέτη Τμήμα Μηχανολόγων Μηχανικών Τεχνοοικονομική Μελέτη Ενότητα 11: Αποδοτικότητα επενδύσεων και πληθωρισμός Σκόδρας Γεώργιος, Αν. Καθηγητής gskodras@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Τεχνολογίες Ελέγχου στα Αιολικά Συστήματα

Τεχνολογίες Ελέγχου στα Αιολικά Συστήματα Τεχνολογίες Ελέγχου στα Αιολικά Συστήματα Ενότητα 6: Άλλοι τύποι ανεμογεννητριών Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Προηγμένος έλεγχος ηλεκτρικών μηχανών

Προηγμένος έλεγχος ηλεκτρικών μηχανών Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 5: Εκτίμηση συνιστωσών μαγνητικής ροής με χρήση του μοντέλου τάσης Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙI. Ενότητα 3: Ισοδύναμο κύκλωμα σύγχρονης Γεννήτριας Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

Ηλεκτρικές Μηχανές ΙI. Ενότητα 3: Ισοδύναμο κύκλωμα σύγχρονης Γεννήτριας Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Ηλεκτρικές Μηχανές ΙI Ενότητα 3: Ισοδύναμο κύκλωμα σύγχρονης Γεννήτριας Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Μάθημα ασκήσεων 8: Καλώδια Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Δούκας Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Προηγμένος έλεγχος ηλεκτρικών μηχανών

Προηγμένος έλεγχος ηλεκτρικών μηχανών Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 8: Άμεσος Διανυσματικός Έλεγχος Ασύγχρονων Μηχανών με προσανατολισμό στην μαγνητική ροή του στάτη Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙI. Ενότητα 7: Κατασκευή Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

Ηλεκτρικές Μηχανές ΙI. Ενότητα 7: Κατασκευή Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Ηλεκτρικές Μηχανές ΙI Ενότητα 7: Κατασκευή Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

10 - ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ

10 - ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ 10 - ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ Ηλεκτρική μηχανή ονομάζεται κάθε διάταξη η οποία μετατρέπει τη μηχανική ενεργεια σε ηλεκτρική ή αντίστροφα ή μετατρεπει τα χαρακτηριστικά του ηλεκτρικού ρεύματος. Οι ηλεκτρικες

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Εργαστήριο ήπιων μορφών ενέργειας

Εργαστήριο ήπιων μορφών ενέργειας Εργαστήριο ήπιων μορφών ενέργειας Ενότητα: Υπολογισμός βαθμού απόδοσης φωτοβολαταϊκού συλλέκτη Τσαουσανίδης Νίκος Τμήμα ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αιολική Ενέργεια & Ενέργεια του Νερού

Αιολική Ενέργεια & Ενέργεια του Νερού Αιολική Ενέργεια & Ενέργεια του Νερού Ενότητα 8: Θεωρία ορμής - Σχεδίαση ρότορα αιολικής μηχανής οριζόντιου άξονα Γεώργιος Λευθεριώτης, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί

Διαβάστε περισσότερα

Τεχνολογίες Ελέγχου στα Αιολικά Συστήματα

Τεχνολογίες Ελέγχου στα Αιολικά Συστήματα Τεχνολογίες Ελέγχου στα Αιολικά Συστήματα Ενότητα 5: Έλεγχος ανεμογεννήτριας με ασύγχρονη μηχανή δακτυλιοφόρου δρομέα Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Μάθημα ασκήσεων 3: Κοντή γραμμή μεταφοράς Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Δούκας Δημήτριος Τμήμα

Διαβάστε περισσότερα

Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Φυσική ΙΙΙ Ενότητα 4: Ηλεκτρικά Κυκλώματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Ασκήσεις ΦΙΙΙ Γ. Βούλγαρης 2 Ταχύτητα ολίσθησης σε σύρμα από χαλκό. Διάμετρος δ=1,6 mm Ρεύμα 10 Α Πυκνότητα

Διαβάστε περισσότερα

Προηγμένος έλεγχος ηλεκτρικών μηχανών

Προηγμένος έλεγχος ηλεκτρικών μηχανών Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 3: Βαθμωτός Έλεγχος Ασύχρονων Μηχανών Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙΙ

Ηλεκτρικές Μηχανές ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ηλεκτρικές Μηχανές ΙΙ Ενότητα 7: Μέθοδοι Εκκίνησης και Πέδησης Ασύγχρονων Τριφασικών Κινητήρων Ηρακλής Βυλλιώτης Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. L d D F

Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. L d D F Ηλεκτρονικά Ισχύος Ι 3 η Θεματική Ενότητα: Μετατροπείς Εναλλασσόμενης Τάσης σε Συνεχή Τάση Δρ. Μηχ. Εμμανουήλ Τατάκης, Καθηγητής Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Ασκήσεις Προς Επίλυση

Διαβάστε περισσότερα

Ηλεκτροτεχνία ΙΙ. Ενότητα 2: Ηλεκτρικά κυκλώματα συνεχούς ρεύματος. Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας

Ηλεκτροτεχνία ΙΙ. Ενότητα 2: Ηλεκτρικά κυκλώματα συνεχούς ρεύματος. Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας Ηλεκτροτεχνία ΙΙ Ενότητα 2: Ηλεκτρικά κυκλώματα συνεχούς ρεύματος Δημήτρης Στημονιάρης, Δημήτρης Τσιαμήτρος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Προηγμένος έλεγχος ηλεκτρικών μηχανών

Προηγμένος έλεγχος ηλεκτρικών μηχανών Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 1: Έλεγχος Μηχανών Συνεχούς Ρεύματος με ξένη διέγερση Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας

Διαβάστε περισσότερα

Εργαστήριο Ελέγχου και Ευστάθειας Συστημάτων Ηλεκτρικής Ενέργειας

Εργαστήριο Ελέγχου και Ευστάθειας Συστημάτων Ηλεκτρικής Ενέργειας Εργαστήριο Ελέγχου και Ευστάθειας Συστημάτων Ηλεκτρικής Ενέργειας Ενότητα: Άσκηση 4 Συμπεριφορά σύγχρονου κινητήρα υπό φορτίο Νικόλαος Βοβός, Γαβριήλ Γιαννακόπουλος, Παναγής Βοβός Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙI. Ενότητα 2: Αρχή λειτουργίας σύγχρονων Γεννητριών Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

Ηλεκτρικές Μηχανές ΙI. Ενότητα 2: Αρχή λειτουργίας σύγχρονων Γεννητριών Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Ηλεκτρικές Μηχανές ΙI Ενότητα 2: Αρχή λειτουργίας σύγχρονων Γεννητριών Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Κινητήρας παράλληλης διέγερσης

Κινητήρας παράλληλης διέγερσης Κινητήρας παράλληλης διέγερσης Ισοδύναμο κύκλωμα V = E + I T V = I I T = I F L R F I F R Η διέγερση τοποθετείται παράλληλα με το κύκλωμα οπλισμού Χαρακτηριστική φορτίου Έλεγχος ταχύτητας Μεταβολή τάσης

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ Ι. Ενότητα 4: Ενισχυτής κοινού εκπομπού. Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

ΗΛΕΚΤΡΟΝΙΚΑ Ι. Ενότητα 4: Ενισχυτής κοινού εκπομπού. Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΗΛΕΚΤΡΟΝΙΚΑ Ι Ενότητα 4: Ενισχυτής κοινού εκπομπού Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Μάθημα ασκήσεων 4: Κοντή γραμμή μεταφοράς Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Δούκας Δημήτριος Τμήμα

Διαβάστε περισσότερα

Ηλεκτρικά Κινητήρια Συστήματα

Ηλεκτρικά Κινητήρια Συστήματα Ηλεκτρικά Κινητήρια Συστήματα Ενότητα 3: Μεταφορά Ισχύος Επαμεινώνδας Μητρονίκας Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης, Καθηγητής Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία

Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία Παιδαγωγικό Τμήμα Νηπιαγωγών Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία Ενότητα # 9: Ψηφιακός Ήχος - Audacity Θαρρενός Μπράτιτσης Παιδαγωγικό Τμήμα Νηπιαγωγών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙI. Ενότητα 4: Ευστάθεια και όρια λειτουργίας Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

Ηλεκτρικές Μηχανές ΙI. Ενότητα 4: Ευστάθεια και όρια λειτουργίας Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Ηλεκτρικές Μηχανές ΙI Ενότητα 4: Ευστάθεια και όρια λειτουργίας Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ήπιες και νέες μορφές ενέργειας

Ήπιες και νέες μορφές ενέργειας Τμήμα Μηχανολόγων Μηχανικών Ήπιες και νέες μορφές ενέργειας Ενότητα : Ωκεάνια Θερμική Ενέργεια II Ενέργεια από την διαφορά θερμοκρασίας Σκόδρας Γεώργιος, Αν. Καθηγητής gskodras@uowm.gr Τμήμα Μηχανολόγων

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΚΑΙ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΟΜΑ Α Β ) ΕΥΤΕΡΑ 6

Διαβάστε περισσότερα

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής Τεχνολογίας Το περιεχόμενο του

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Μάθημα ασκήσεων 6: Μακριά γραμμή μεταφοράς -Τετράπολα Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Δούκας Δημήτριος

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 9: ΔΙΟΡΘΩΣΗ ΣΥΝΤΕΛΕΣΤΗ ΙΣΧΥΟΣ Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 5 η ΑΣΥΓΧΡΟΝΟΣ ΤΡΙΦΑΣΙΚΟΣ ΚΙΝΗΤΗΡΑΣ. 1. Η μελέτη της δομής και της αρχής λειτουργίας ενός ασύγχρονου τριφασικού κινητήρα.

ΑΣΚΗΣΗ 5 η ΑΣΥΓΧΡΟΝΟΣ ΤΡΙΦΑΣΙΚΟΣ ΚΙΝΗΤΗΡΑΣ. 1. Η μελέτη της δομής και της αρχής λειτουργίας ενός ασύγχρονου τριφασικού κινητήρα. Σκοπός της άσκησης: ΑΣΚΗΣΗ 5 η ΑΣΥΓΧΡΟΝΟΣ ΤΡΙΦΑΣΙΚΟΣ ΚΙΝΗΤΗΡΑΣ Σκοπός της εργαστηριακής άσκησης είναι: 1. Η μελέτη της δομής και της αρχής λειτουργίας ενός ασύγχρονου τριφασικού κινητήρα. 1. Γενικά Οι

Διαβάστε περισσότερα

Έννοιες φυσικών επιστημών Ι και αναπαραστάσεις

Έννοιες φυσικών επιστημών Ι και αναπαραστάσεις Πανεπιστήμιο Δυτικής Μακεδονίας Παιδαγωγικό Τμήμα Νηπιαγωγών Έννοιες φυσικών επιστημών Ι και αναπαραστάσεις Ενότητα 8: Άνωση, Πλεύση/Βύθιση, Πίεση. Καθηγητής: Καριώτογλου Πέτρος (pkariotog@uowm.gr) Παιδαγωγικό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΙΙΙ. Ενότητα: Μαγνητοστατική ΜΑΪΝΤΑΣ ΞΑΝΘΟΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ

ΦΥΣΙΚΗ ΙΙΙ. Ενότητα: Μαγνητοστατική ΜΑΪΝΤΑΣ ΞΑΝΘΟΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ ΙΙΙ Ενότητα: Μαγνητοστατική ΜΑΪΝΤΑΣ ΞΑΝΘΟΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Σελίδα 2 ΑΣΚΗΣΕΙΣ... 4 Σελίδα 3 ΑΣΚΗΣΕΙΣ Μαγνητοστατική. Σωματίδιο μάζας m φορτίου Q βρίσκεται αρχικά ακίνητο μέσα σε ομογενές μαγνητικό

Διαβάστε περισσότερα

Προστασία Σ.Η.Ε. Ενότητα 3: Ηλεκτρονόμοι απόστασης. Νικόλαος Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Προστασία Σ.Η.Ε. Ενότητα 3: Ηλεκτρονόμοι απόστασης. Νικόλαος Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Προστασία Σ.Η.Ε Ενότητα 3: Ηλεκτρονόμοι απόστασης Νικόλαος Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους

Διαβάστε περισσότερα

Γενική Φυσική Ενότητα: Ταλαντώσεις

Γενική Φυσική Ενότητα: Ταλαντώσεις Γενική Φυσική Ενότητα: Ταλαντώσεις Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Ταλαντώσεων... 4 1.1 Ερώτηση 1... 4 2. Ασκήσεις Ταλαντώσεων... 4 2.1 Άσκηση 1... 4 2.2 Άσκηση

Διαβάστε περισσότερα

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα 7: Universal motor Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 4: Τομές ΙΙ Όνομα Καθηγητή: Γιώργος Ανδρεάδης Τμήμα: Μηχανολόγων Μηχ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 8: Συντονισμός Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΙΙΙ. Ενότητα: Ηλεκτροστατική ΜΑΪΝΤΑΣ ΞΑΝΘΟΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ

ΦΥΣΙΚΗ ΙΙΙ. Ενότητα: Ηλεκτροστατική ΜΑΪΝΤΑΣ ΞΑΝΘΟΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ ΙΙΙ Ενότητα: Ηλεκτροστατική ΜΑΪΝΤΑΣ ΞΑΝΘΟΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Σελίδα 2 ΑΣΚΗΣΕΙΣ... 4 Σελίδα 3 ΑΣΚΗΣΕΙΣ Ηλεκτροστατική 1. Στις κορυφές κανονικού n-πλεύρου τοποθετούνται ίδια φορτία q. Να δειχθεί ότι η

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ

ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ Σκοπός της Άσκησης: Σκοπός της εργαστηριακής άσκησης είναι α) η κατανόηση της αρχής λειτουργίας των μηχανών συνεχούς ρεύματος, β) η ανάλυση της κατασκευαστικών

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙΙ

Ηλεκτρικές Μηχανές ΙΙ Ηλεκτρικές Μηχανές ΙΙ Ενότητα 1: Χαρακτηριστικές-Τύπος του Klo Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Φυσική ΙΙΙ. Ενότητα 3: Επαγωγή. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Φυσική ΙΙΙ. Ενότητα 3: Επαγωγή. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Φυσική ΙΙΙ Ενότητα 3: Επαγωγή Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Χρονικά μεταβαλλόμενο πεδίο. Κυκλικό πηνίο με 100 σπείρες και αντίσταση =5 Ω, τοποθετείται γύρω από σωληνοειδές όπως

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6: Ανάδραση Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Στοιχεία Ηλεκτρικών Κυκλωμάτων

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Στοιχεία Ηλεκτρικών Κυκλωμάτων Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Στοιχεία Ηλεκτρικών Κυκλωμάτων Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Νόμος Ampere Το ολοκλήρωμα του μαγνητικού

Διαβάστε περισσότερα

Ηλεκτρικά Κινητήρια Συστήματα

Ηλεκτρικά Κινητήρια Συστήματα Ηλεκτρικά Κινητήρια Συστήματα Ενότητα 5: Απώλειες και ψύξη Ηλεκτρικών Κινητήρων σε μεταβατικές και μόνιμες καταστάσεις Επαμεινώνδας Μητρονίκας Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 8: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 8: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 8: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Μαθηματική Ανάλυση ΙI

Μαθηματική Ανάλυση ΙI Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση ΙI Ενότητα 3: Συναρτήσεις πολλών μεταβλητών Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 2

ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 2 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα : Κυκλώματα ανόρθωσης - δίοδοι zener Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών

Διαβάστε περισσότερα

Φυσική ΙΙ (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 3: Μετρήσεις με βαττόμετρο. Ιωάννης Βαμβακάς. Τμήμα Ναυπηγών Μηχανικών Τ.Ε.

Φυσική ΙΙ (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 3: Μετρήσεις με βαττόμετρο. Ιωάννης Βαμβακάς. Τμήμα Ναυπηγών Μηχανικών Τ.Ε. Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική ΙΙ (Ε) Ενότητα 3: Μετρήσεις με βαττόμετρο Ιωάννης Βαμβακάς Τμήμα Ναυπηγών Μηχανικών Τ.Ε. Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 4: ΚΙΝΗΣΗ ΣΕ 2 ΔΙΑΣΤΑΣΕΙΣ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 4: ΚΙΝΗΣΗ ΣΕ 2 ΔΙΑΣΤΑΣΕΙΣ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 4: ΚΙΝΗΣΗ ΣΕ 2 ΔΙΑΣΤΑΣΕΙΣ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΟΝΟΜ/ΝΥΜΟ: ΜΠΑΛΑΜΠΑΝΗ ΓΕΩΡΓΙΑ ΑΜ:6105 ΜΑΘΗΜΑ: ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ: ΤΡΟΠΟΣ ΛΕΙΤΟΥΡΓΙΑΣ ΜΙΑΣ ΣΥΓΧΡΟΝΗΣ ΓΕΝΗΤΡΙΑΣ

ΟΝΟΜ/ΝΥΜΟ: ΜΠΑΛΑΜΠΑΝΗ ΓΕΩΡΓΙΑ ΑΜ:6105 ΜΑΘΗΜΑ: ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ: ΤΡΟΠΟΣ ΛΕΙΤΟΥΡΓΙΑΣ ΜΙΑΣ ΣΥΓΧΡΟΝΗΣ ΓΕΝΗΤΡΙΑΣ ΟΝΟΜ/ΝΥΜΟ: ΜΠΑΛΑΜΠΑΝΗ ΓΕΩΡΓΙΑ ΑΜ:6105 ΜΑΘΗΜΑ: ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ: ΤΡΟΠΟΣ ΛΕΙΤΟΥΡΓΙΑΣ ΜΙΑΣ ΣΥΓΧΡΟΝΗΣ ΓΕΝΗΤΡΙΑΣ 1 Η γεννήτρια ή ηλεκτρογεννήτρια είναι μηχανή που βασίζεται στους νόμους της

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙΙ Εργαστήριο

Ηλεκτρικές Μηχανές ΙΙ Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ηλεκτρικές Μηχανές ΙΙ Εργαστήριο Ενότητα 6: Χαρακτηριστική Φόρτισης Σύγχρονης Γεννήτριας Ηρακλής Βυλλιώτης Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙΙ

Ηλεκτρικές Μηχανές ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ηλεκτρικές Μηχανές ΙΙ Ενότητα 2: Ασύγχρονος Τριφασικός Κινητήρας Αρχή Λειτουργίας Ηρακλής Βυλλιώτης Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα