ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη01Εισαγωγή

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη01Εισαγωγή"

Transcript

1 ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη01Εισαγωγή

2 Η πληροφορία είναι ζωτική Τεχνητή Γονιμοποίηση Συλλογή ωαρίων Γονιμοποίηση με σπέρμα συντρόφου ή δότη Παράγονται αρκετά έμβρυα, κάποιο από αυτά μεταφέρεται στη μήτρα Το πρόβλημα: επιλογή βέλτιστου (με μεγαλύτερη πιθανότητα επιβίωσης) εμβρίου Ηεπιλογήβασίζεταισε60 καταγεγραμμένα χαρακτηριστικά του εμβρύου (μορφολογία, ωάριο, σπέρμα, λεμφικό θυλάκιο κ.ά.). Ένας εμβρυολόγος αδυνατεί να λάβει υπ όψιν το σύνολο των χαρακτηριστικών. Λύση: Αλγόριθμος Εξόρυξης Πληροφορίας Ερευνητική ομάδα στη Μ. Βρετανία αναζητεί μεθόδους αυτοματοποίησης της διαδικασίας επιλογής, βασισμένη σε εκτενές αρχείο ιστορικών δεδομένων. 2

3 Η πληροφορία είναι ζωτική Κτηνοτροφία Παραγωγή γάλακτος και κρέατος Τυπικά, το 1/5 τωναγελάδωνενόςκοπαδιούθανατώνεταικάθεχρόνο Το πρόβλημα: επιλογή χείριστου συνόλου προς σφαγή Η απόφαση στηρίζεται σε χαρακτηριστικά παραγωγικότητας, φυλής, γονιμότητας, υγείας, συμπεριφοράς κ.ά. Περίπου 700 χαρακτηριστικά για κάθε μονάδα παραγωγής γάλακτος συλλέγονται από εταιρεία στη Νέα Ζηλανδία, η οποία διατηρεί αρχείο για εκατομμύρια μονάδες. Λύση: Αλγόριθμος Εξόρυξης Πληροφορίας Επιχειρείται η εξακρίβωση των κανόνων εκείνων που χρησιμοποιούνται από επιτυχημένους κτηνοτρόφους, ώστε να διαδοθεί η γνώση και εμπειρία τους. 3

4 Τα δεδομένα αφθονούν Cost Data per day generated and collected (implicit) Data Storage Communication of Data The data gap understood (explicit) 1990 Time Time 2010 Malthus Law of Information: Το νέο πληροφοριακό περιεχόμενο διπλασιάζεται κάθε χρόνο Ο χρόνος που δαπανάται για την κατανάλωση πληροφοριών παραμένει σταθερός 4

5 Τα δεδομένα αφθονούν Μόνο ένα μικρό ποσοστό (5-10%) των συλλεγόμενων δεδομένων τυγχάνει ανάλυσης Μία τυπική επιχειρησιακή βάση δεδομένων σήμερα περιέχει συχνά μεγάλο αριθμό εγγραφών ( ) δεδομένων πολλών διαστάσεων ( μεταβλητές) Τελικά: We are drowning in data, but starving for knowledge! Πώς μπορούν να εξερευνηθούν εκατομμύρια εγγραφών εκατοντάδων μεταβλητών, ώστε να ανακαλυφθούν πρότυπα (patterns)? 5

6 Απόταδεδομέναστην πληροφορία και τη γνώση 6

7 Εξόρυξη πληροφορίας και γνώσης από δεδομένα Data mining: όρος που χρησιμοποιείται λανθασμένα γιαναπεριγράψειτοσύνολοτης διαδικασίας εξόρυξης γνώσης από βάσεις δεδομένων (Knowledge Discovery in Databases) Ορισμός: The nontrivial extraction of implicit, previously unknown, and potentially useful information from data. Εναλλακτικά: Statistics at scale, speed and simplicity. Στο εξής: Εξόρυξη Πληροφορίας / Γνώσης από Δεδομένα Data Mining 7

8 Αφετηρία Το ερευνητικό πεδίο αποτελεί τομή μεθόδων και εργαλείων που πηγάζουν από Στατιστική Μηχανική Μάθηση Βάσεις & αποθήκες δεδομένων Αποτελεί σύγχρονη εξέλιξη, το πρώτο σχετικό συνέδριο πραγματοποιήθηκε το Πειραματική επιστήμη! Statistics Artificial Intelligence & Machine Learning Databases & Data Warehouses 8

9 Περιεχόμενα μαθήματος Διάλεξη01: Εισαγωγή Διάλεξη02: Συνιστώσες δεδομένων, οπτικοποίηση & εξερεύνηση Διάλεξη03: Προεπεξεργασία & επιλογή δεδομένων Διάλεξη04: Απεικόνιση γνώσης, αξιοπιστία & αποτίμηση Διάλεξη05: Αλγόριθμοι εκμάθησης (κανόνες ταξινόμησης, δένδρα αποφάσεων) Διάλεξη06: Αλγόριθμοι εκμάθησης (αλγόριθμοι ομαδοποίησης, κανόνες συσχέτισης) 9

10 Περιεχόμενα μαθήματος Διάλεξη07: Αλγόριθμοι εκμάθησης (κανόνες Bayes, νευρωνικά δίκτυα) Διάλεξη08: Αλγόριθμοι εκμάθησης (μετα-μαθησιακοί αλγόριθμοι) Διάλεξη09: Παρουσίαση Εργασιών Διάλεξη10: Εισαγωγή στο Σημασιολογικό Ιστό (Σ.Πόνης) Διάλεξη11: Εισαγωγή στις Οντολογίες (Σ.Πόνης) Διάλεξη12: Λογισμικό Επιχειρηματικής Ευφυΐας SAP (Σ.Πόνης) 10

11 Βιβλίο Οι διαλέξεις στηρίζονται στο Data Mining, Practical Machine Learning Tools and Techniques, Witten & Frank, Morgan Kaufmann, Ιούνιος

12 Λογισμικό WEKA: Waikato Environment for Knowledge Analysis 12

13 blog blogspot.com/ 13

14 Πρόβλημα: Ασθενής καταναλωτική πίστη Ισχυρά ανταγωνιστική αγορά Βάση δεδομένων πελατών με χαρακτηριστικά επιλογών και προφίλ τους Ανάλυση προτύπων συμπεριφοράς παλαιών πελατών Εντοπισμός κρίσιμων διακριτών χαρακτηριστικών πιστών ή πρώην πελατών Ανάδειξη πελατών υψηλής πιθανότητας διακοπής συνεργασίας Ειδικός χειρισμός συγκεκριμένων ομάδων πελατών, υπερβολικά κοστοβόρος για εφαρμογή του στο σύνολο των πελατών Άλλες εφαρμογές "In today s highly competitive, customer-centered, service-oriented economy, data is the raw material that fuels business growth if only it can be mined." 14

15 Πρότυπα Επομένως αναζητούνται αλγόριθμοι εντοπισμού προτύπων (patterns) και κανονικοτήτων σε δεδομένα Το πρόβλημα είναι κάθε άλλο παρά καινούργιο, ωστόσο σήμερα Τα δεδομένα είναι αποθηκευμένα σε ηλεκτρονική μορφή Ο όγκος δεδομένων και επομένως ο αριθμός πιθανός προτύπων είναι τεράστιος Η αναζήτηση είναι (ημι)αυτοματοποιημένη Ισχυρά πρότυπα αξιόπιστες προβλέψεις Πρόβλημα 1: τα περισσότερα πρότυπα είναι χαμηλού βαθμού ενδιαφέροντος Πρόβλημα 2: τα πρότυπα είναι πιθανόν ανακριβή ή πλαστά Πρόβλημα 3: τα δεδομένα είναι διαστρεβλωμένα ή ελλιπή 15

16 Περιγραφή προτύπων Περιγραφή προτύπων Μαύρο κουτί: μη κατανοητοί μηχανισμοί Διαφανές κουτί: αποκαλύπτει τη δομή του προτύπου δομική περιγραφή Οι δομικές (structural) περιγραφές αναπαριστούν τα πρότυπα με σαφώς ορισμένο (ρητό, explicit) τρόπο, με σκοπό την Πρόβλεψη Κατανόηση και επεξήγηση πρόβλεψης Θα πραγματευτούμε την εύρεση και περιγραφή δομικών προτύπων σε δεδομένα με τεχνικές που ανήκουν στο πεδίο της Μηχανικής Μάθησης (Machine Learning) 16

17 Περιγραφή δομικών προτύπων Παράδειγμα: κανόνες if-then για τη σύσταση περί φακών επαφής Age Spectacle prescription Astigmatism Tear production rate Recommended lenses Young Myope No Reduced None Young Hypermetrope No Normal Soft Pre-presbyopic Hypermetrope No Reduced None Presbyopic Myope Yes Normal Hard If tear production rate = reduced then recommendation = none Otherwise, if age = young and astigmatic = no then recommendation = soft 17

18 Παραδείγματα Οι διαλέξεις αφορούν τη (μηχανική) μάθηση μέσω παραδειγμάτων, επομένως δε θα μπορούσαν παρά να περιέχουν πλήθος παραδειγμάτων. Χρησιμοποιούνται διάφορα σύνολα δεδομένων (datasets) από ποικιλία πεδίων αναφοράς Η έκταση των παραδειγμάτων είναι μη ρεαλιστική Ωστόσο είναι ικανή για τη λεπτομερειακή μελέτη και κατανόηση των αλγορίθμων 18

19 Πρόβλημα Καιρού Συνθήκες διεξαγωγής ενός ορισμένου παιχνιδιού Outlook Temperature Humidity Windy Play Sunny Hot High False No Sunny Hot High True No Overcast Hot High False Yes Rainy Mild Normal False Yes If outlook = sunny and humidity = high then play = no If outlook = rainy and windy = true then play = no If outlook = overcast then play = yes If humidity = normal then play = yes If none of the above then play = yes 19

20 Κανόνες Ταξινόμησης & Συσχέτισης Κανόνες Ταξινόμησης (Classification rules) If outlook = sunny and humidity = high then play = no Προβλέπουν την κατηγορία στην οποία ανήκει το συγκεκριμένο παράδειγμα (instance, example), πχ play/no play. Κανόνες Συσχέτισης (Association rules) If temperature = cool then humidity = normal If windy = false and play = no then outlook = sunny and humidity = high Συσχετίζουν τις τιμές των διάφορων χαρακτηριστικών (attributes) μεταξύ τους 20

21 Πρόβλημα Καιρού με μικτά χαρακτηριστικά Τα χαρακτηριστικά λαμβάνουν πιθανόν αριθμητικές τιμές Outlook Temperature Humidity Windy Play Sunny False No Sunny True No Overcast False Yes Rainy False Yes If outlook = sunny and humidity > 83 then play = no If outlook = rainy and windy = true then play = no If outlook = overcast then play = yes If humidity < 85 then play = yes If none of the above then play = yes 21

22 Πρόβλημα Φακών Επαφής Age Spectacle prescription Astigmatism Tear production rate Recommended lenses Young Myope No Reduced None Young Myope No Normal Soft Young Myope Yes Reduced None Young Myope Yes Normal Hard Young Hypermetrope No Reduced None Young Hypermetrope No Normal Soft Young Hypermetrope Yes Reduced None Young Hypermetrope Yes Normal Hard Pre-presbyopic Myope No Reduced None Pre-presbyopic Myope No Normal Soft Pre-presbyopic Myope Yes Reduced None Pre-presbyopic Myope Yes Normal Hard Pre-presbyopic Hypermetrope No Reduced None Pre-presbyopic Hypermetrope No Normal Soft Pre-presbyopic Hypermetrope Yes Reduced None Pre-presbyopic Hypermetrope Yes Normal None Presbyopic Myope No Reduced None Presbyopic Myope No Normal None Presbyopic Myope Yes Reduced None Presbyopic Myope Yes Normal Hard Presbyopic Hypermetrope No Reduced None Presbyopic Hypermetrope No Normal Soft Presbyopic Hypermetrope Yes Reduced None Presbyopic Hypermetrope Yes Normal None 22

23 Σύνολο κανόνων If tear production rate = reduced then recommendation = none If age = young and astigmatic = no and tear production rate = normal then recommendation = soft If age = pre-presbyopic and astigmatic = no and tear production rate = normal then recommendation = soft If age = presbyopic and spectacle prescription = myope and astigmatic = no then recommendation = none If spectacle prescription = hypermetrope and astigmatic = no and tear production rate = normal then recommendation = soft If spectacle prescription = myope and astigmatic = yes and tear production rate = normal then recommendation = hard If age young and astigmatic = yes and tear production rate = normal then recommendation = hard If age = pre-presbyopic and spectacle prescription = hypermetrope and astigmatic = yes then recommendation = none If age = presbyopic and spectacle prescription = hypermetrope and astigmatic = yes then recommendation = none 23

24 Δένδρο κανόνων 24

25 Πρόβλημα ταξινόμησης λουλουδιών Ίρις Sepal length Sepal width Petal length Petal width Type Iris setosa Iris setosa Iris versicolor Iris versicolor Iris virginica Iris virginica If petal length < 2.45 then Iris setosa If sepal width < 2.10 then Iris versicolor... 25

26 Πρόβλημα πρόβλεψης απόδοσης CPU Cycle time (ns) MYCT Main memory (Kb) MMI N Cache (Kb) Channels Performance MMAX CACH CHMIN CHMAX PRP PRP = MYCT MMIN MMAX CACH CHMIN CHMAX 26

27 Πρόβλημα εργασιακών διαπραγματεύσεων Attribute Type Duration (Number of years) Wage increase first year Percentage 2% 4% 4.3% 4.5 Wage increase second year Percentage? 5% 4.4% 4.0 Wage increase third year Percentage???? Cost of living adjustment {none,tcf,tc} none tcf? none Working hours per week (Number of hours) Pension {none,ret-allw, empl-cntr} none??? Standby pay Percentage? 13%?? Shift-work supplement Percentage? 5% 4% 4 Education allowance {yes,no} yes??? Statutory holidays (Number of days) Vacation {below-avg,avg,gen} avg gen gen avg Long-term disability assistance {yes,no} no?? yes Dental plan contribution {none,half,full} none? full full Bereavement assistance {yes,no} no?? yes Health plan contribution {none,half,full} none? full half Acceptability of contract {good,bad} bad good good good 27

28 Δένδρα απόφασης 28

29 Ταξινόμηση σόγιας Attribute Number of values Sample value Environment Time of occurrence 7 July Precipitation 3 Above normal Seed Condition 2 Normal Mold growth 2 Absent Fruit Condition of fruit pods 4 Normal Fruit spots 5? Leaves Condition 2 Abnormal Leaf spot size 3? Stem Condition 2 Abnormal Stem lodging 2 Yes Roots Condition 3 Normal Diagnosis 19 Diaporthe stem canker 29

30 Κανόνες If leaf condition is normal and stem condition is abnormal and stem cankers is below soil line and canker lesion color is brown then diagnosis is rhizoctonia root rot If leaf malformation is absent and stem condition is abnormal and stem cankers is below soil line and canker lesion color is brown then diagnosis is rhizoctonia root rot Ησημασίατης γνώσης πεδίου (domain knowledge): Ισχύει ότι, εάν leaf condition is normal, τότε leaf malformation is absent, επομένως οι δύο κανόνες ταυτίζονται. 30

31 Εφαρμογές Τα προηγούμενα παραδείγματα είναι εξωπραγματικάαπλάκαιέχουνπερισσότερο διδακτικό παρά επιδεικτικό χαρακτήρα. Στην πράξη; Τυπικές εφαρμογές αλγορίθμων εξόρυξης δεδομένων είναι 31

32 Παροχή δανείου Ερωτηματολόγιο για σχετικές οικονομικές και προσωπικές πληροφορίες Αποδοχή / απόρριψη αίτησης δανειοδότησης Συνήθης στατιστικές τεχνικές καλύπτουν αποτελεσματικά το 90% των περιπτώσεων Οι υπόλοιπες ασαφείς περιπτώσεις αξιολογούνται από ειδικούς Ωστόσο το 50% των αποδεκτών ασαφών περιπτώσεων δεν αποπληρώνουν Λύση: απόρριψη όλων των ασαφών περιπτώσεων Υποβέλτιστη, καθώς οι ασαφείς πελάτες είναι σημαντικοί από άποψη ρευστότητας για τον τραπεζικό οργανισμό 32

33 Παροχή δανείου 1000 παραδείγματα εκπαίδευσης ασαφών περιπτώσεων 20 χαρακτηριστικά Ηλικία Οικογενειακή κατάσταση Διάρκεια εργασίας υπό τον ίδιο εργοδότη Διάρκεια συνεργασίας με την τράπεζα Άλλα δάνεια Οι κανόνες που προέκυψαν αποδείχθηκαν σωστοί στο 70% των περιπτώσεων Οι ειδικοί επιτύγχαναν μόνο στο 50% Οι κανόνες είναι ίσως χρήσιμοι για την απόκτηση γνώσης και την παροχή εξηγήσεων στους πελάτες 33

34 Πωλήσεις & Marketing Άμεσο Marketing: οι προσφορές προώθησης προϊόντος είναι συχνά κοστοβόρες και έχουν ένα πολύ χαμηλό αλλά ιδιαίτερα προσοδοφόρο ποσοστό απόκρισης Οι βάσεις δεδομένων καταναλωτών περιέχουν πλήθος στοιχείων αγοραστικής συμπεριφοράς Η άντληση κανόνων από τις βάσεις αυτές έχει πλήθος εφαρμογών στο άμεσο marketing Οι στοχευμένες προωθητικές ενέργειες κοστίζουν λιγότερο και αποδίδουν περισσότερα 34

35 Πωλήσεις & Marketing Ανάλυση καλαθιού αγοράς μέσω εύρεσης κανόνων συσχέτισης για την ανάδειξη ομάδων προϊόντων που συχνά αγοράζονται μαζί Τυπικά πραγματοποιείται σε βάσεις δεδομένων super market Μπορεί να αναδείξει πχ ότι Οι πελάτες που αγοράζουν μπύρα συχνά προμηθεύονται και πίτσα Κάθε Πέμπτη, οι πελάτες που αγοράζουν μπύρα αγοράζουν επίσης πάνες Τέτοιες πληροφορίες έχουν δυνητικά μεγάλη προστιθέμενη αξία Αποδοτική αναδιάταξη προϊόντων, Διαχείριση αποθεμάτων Συχνά τα δεδομένα αγοραστικής συμπεριφοράς που αποκτώνται μέσω προσωπικών εκπτωτικών καρτών είναι μεγαλύτερης αξίας από την παρεχόμενη έκπτωση 35

36 Η εξόρυξη γνώσης ως αναζήτηση & γενίκευση Επαγωγική μάθηση: εύρεση "αντίληψης" (concept, το αποτέλεσμα της μαθησιακής διαδικασίας) που περιγράφει τα δεδομένα Παράδειγμα: σύνολα κανόνων ως περιγραφική γλώσσα Εύρεση κανόνων: Το πρόβλημα εύρεσης κανόνων μπορεί να θεωρηθεί ως αναζήτηση σε έναν τεράστιο, πλην όμως πεπερασμένο, χώρο αναζήτησης Καταγραφή όλων των πιθανών συνόλων κανόνων Απόρριψη περιγραφών που δεν ταιριάζουν στα παραδείγματα Επιλογή περιγραφών που εμπεριέχουν την επιθυμητή αντίληψη 36

37 Η εξόρυξη γνώσης ως αναζήτηση & γενίκευση Έστω το προαναφερθέν πρόβλημα καιρού (διαφάνεια 19) Πιθανά σύνολα κανόνων: Άπειρα; Όχι! Ωστόσο, τεράστιος αριθμός 4 x 4 x 3 x 3 x 2 = 288 πιθανοί κανόνες, Αν κάθε σύνολο περιέχει το πολύ 14 κανόνες, όσα και τα παραδείγματα, προκύπτουν 2,7 x πιθανά σύνολα κανόνων Λύση: αλγόριθμοι περικοπής υποψηφίων συνόλων Πρακτικά προβλήματα: Περισσότερες από μία λύσεις επιβιώνουν Καμία λύση δεν επιβιώνει Η γλώσσα περιγραφής που επιλέχθηκε είναι ακατάλληλη Θόρυβος στα δεδομένα 37

38 Μεροληψία Υιοθετώνταςτηνοπτικήτηςεξόρυξηςγνώσηςως αναζήτηση & γενίκευση, οι ακόλουθες αποφάσεις ανακύπτουν ως οι πλέον σημαντικές για τα συστήματα μηχανικής μάθησης Γλώσσα περιγραφής πληροφορίας Μέθοδος σάρωσης χώρου αναζήτησης Μέθοδος αποφυγής υπερπροσαρμογής στα δεδομένα εκπαίδευσης Μεροληψία (bias) κατά την αναζήτηση Μεροληψία γλώσσας περιγραφής Μεροληψία αναζήτησης Μεροληψία αποφυγής υπερπροσαρμογής 38

39 Μεροληψία Μεροληψία γλώσσας περιγραφής Είναι η γλώσσα περιγραφής οικουμενική ή θέτει περιορισμούς στο ποια γνώση μπορεί να αποκτηθεί; Η γνώση πεδίου μπορεί να αποκλείσει a priori κάποιες περιγραφές από την αναζήτηση Μεροληψία αναζήτησης Η αναζήτηση είναι ευρετική (πχ greedy / beam search) Κατεύθυνση αναζήτησης (απότογενικόστοειδικό/ από το ειδικό στο γενικό) Μεροληψία αποφυγής υπερπροσαρμογής Κριτήριο αποτίμησης, ισορροπεί ανάμεσα σε απλότητα και αριθμό λαθών Διάφορες τεχνικές, πχ κλάδεμα προς τα εμπρός / πίσω 39

40 Ηθικά ζητήματα Ηθικά ζητήματα ανακύπτουν στις πρακτικές εφαρμογές εξόρυξης πληροφορίας από βάσεις δεδομένων Η εξόρυξη γνώσης χρησιμοποιείται συχνά για διακρίσεις Για παράδειγμα, απόφανση περί δανειοδότησης, χρησιμοποιώντας δεδομένα όπως φύλο, θρησκεία, εθνικότητα με μη ηθικό ή και παράνομο τρόπο Εξαρτάται από την εφαρμογή Για παράδειγμα, η χρήση των ίδιων δεδομένων σε ιατρικές εφαρμογές είναι αποδεκτή Ο αποκλεισμός των ευαίσθητων δεδομένων δεν είναι εύκολος Για παράδειγμα, ο ταχυδρομικός κώδικας μπορεί να συσχετίζεται με μία συγκεκριμένη εθνικότητα 40

41 Ηθικά ζητήματα Ερωτήσεις υψηλής σημαντικότητας Ποιος έχει πρόσβαση στα δεδομένα; Για ποιο σκοπό έχουν συλλεγεί τα δεδομένα; Τι είδους συμπεράσματα μπορούν να εξαχθούν νομίμως από αυτά; Πιθανές προειδοποιήσεις πρέπει να συνοδεύουν τα αποτελέσματα Οι αλγόριθμοι εξόρυξης πληροφορίας είναι απλώς ένα εργαλείο, η αξιολόγηση και χρήση των αποτελεσμάτων τουςείναιζήτημαανθρωπίνωναποφάσεωνκαιόχι μηχανικής μάθησης 41

42 Τέλος Επόμενη διάλεξη: Συνιστώσες Δεδομένων, Οπτικοποίηση & Εξερεύνηση 42

Εισαγωγή στο Data Mining Από τα δεδομένα στη γνώση

Εισαγωγή στο Data Mining Από τα δεδομένα στη γνώση Εισαγωγή στο Data Mining Από τα δεδομένα στη γνώση Η πληροφορία στη σύγχρονη επιχείρηση Η Ανάγκη Διαδικασία Ορισμός Αφετηρία Πρότυπα Πέραν του ανθρώπινου δυναμικού, η πληροφορία αποτελεί τον πλέον πολύτιμο

Διαβάστε περισσότερα

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη02 ΣυνιστώσεςΔεδομένων Οπτικοποίηση&Εξερεύνηση

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη02 ΣυνιστώσεςΔεδομένων Οπτικοποίηση&Εξερεύνηση ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη02 ΣυνιστώσεςΔεδομένων Οπτικοποίηση&Εξερεύνηση Η μορφή των δεδομένων και η σημασία της Δεδομένα input Αλγόριθμοι Εξόρυξης

Διαβάστε περισσότερα

«Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα

«Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα «Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα Σεμινάριο 8: Χρήση Μηχανικής Μάθησης στην Εξαγωγή Πληροφορίας Ευάγγελος Καρκαλέτσης, Γεώργιος Πετάσης Εργαστήριο Τεχνολογίας Γνώσεων & Λογισμικού, Ινστιτούτο

Διαβάστε περισσότερα

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 05: Αλγόριθμοι εκμάθησης Μέρος Α Δένδρα&Κανόνες

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 05: Αλγόριθμοι εκμάθησης Μέρος Α Δένδρα&Κανόνες ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη 05: Αλγόριθμοι εκμάθησης Μέρος Α Δένδρα&Κανόνες Αλγόριθμοι Δεδομένα input Αλγόριθμοι Εξόρυξης Πληροφορίας Εξαγόμενα output

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ : DATASET WEATHER ΕΙΡΗΝΗ ΛΥΓΚΩΝΗ

ΕΡΓΑΣΙΑ : DATASET WEATHER ΕΙΡΗΝΗ ΛΥΓΚΩΝΗ ΕΡΓΑΣΙΑ : DATASET WEATHER ΕΙΡΗΝΗ ΛΥΓΚΩΝΗ Το dataset weather περιέχει 4 μεταβλητές (outlook, temperature, humidity, windy) και 14 καταχωρήσεις για το καθένα από αυτά. Με βάση αυτές εξετάζεται το γεγονός

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ Δ.Π.Μ.Σ: «Εφαρμοσμένες Μαθηματικές Επιστήμες» 2008

Διαβάστε περισσότερα

Ανακάλυψη κανόνων συσχέτισης από εκπαιδευτικά δεδομένα

Ανακάλυψη κανόνων συσχέτισης από εκπαιδευτικά δεδομένα 6ο Πανελλήνιο Συνέδριο των Εκπαιδευτικών για τις ΤΠΕ «Αξιοποίηση των Τεχνολογιών της Πληροφορίας και της Επικοινωνίας στη Διδακτική Πράξη» Σύρος 6-8 Μαϊου 2011 Ανακάλυψη κανόνων συσχέτισης από εκπαιδευτικά

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 15η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 15η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 15η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται σε ύλη του βιβλίου Artificial Intelligence A Modern Approach των

Διαβάστε περισσότερα

Κεφάλαιο 20. Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 20. Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 20 Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Τεχνητή Νοηµοσύνη, B' Έκδοση - 1 - Ανακάλυψη Γνώσης σε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Ευφυής Προγραμματισμός

Ευφυής Προγραμματισμός Ευφυής Προγραμματισμός Ενότητα 10: Δημιουργία Βάσεων Κανόνων Από Δεδομένα-Προετοιμασία συνόλου δεδομένων Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δημιουργία Βάσεων Κανόνων

Διαβάστε περισσότερα

Κατηγοριοποίηση. Εξόρυξη Δεδομένων και Αλγόριθμοι Μάθησης. 2 ο Φροντιστήριο. Σκούρα Αγγελική

Κατηγοριοποίηση. Εξόρυξη Δεδομένων και Αλγόριθμοι Μάθησης. 2 ο Φροντιστήριο. Σκούρα Αγγελική Κατηγοριοποίηση Εξόρυξη Δεδομένων και Αλγόριθμοι Μάθησης 2 ο Φροντιστήριο Σκούρα Αγγελική skoura@ceid.upatras.gr Μηχανική Μάθηση Η μηχανική μάθηση είναι μια περιοχή της τεχνητής νοημοσύνης η οποία αφορά

Διαβάστε περισσότερα

Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα Τεχνητή Νοημοσύνη (Artificial Intelligence) Ανάπτυξη μεθόδων και τεχνολογιών για την επίλυση προβλημάτων στα οποία ο άνθρωπος υπερέχει (?) του υπολογιστή Συλλογισμοί

Διαβάστε περισσότερα

Data Mining: Στοχεύοντας στους σωστούς πελάτες. Αριστομένης Μακρής

Data Mining: Στοχεύοντας στους σωστούς πελάτες. Αριστομένης Μακρής Data Mining: Στοχεύοντας στους σωστούς πελάτες To CRM front-office πελατών Οι Προμηθευτές Οι Πελάτες ΟΟργανισμός Τροφοδότηση ενεργειών Μάρκετινγκ ΒΙ Απόταδεδομέναστηγνώση Επιχειρηματική Γνώση Επιχειρηματικοί

Διαβάστε περισσότερα

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 04: Απεικόνιση Γνώσης, Αξιοπιστία & Αποτίμηση

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 04: Απεικόνιση Γνώσης, Αξιοπιστία & Αποτίμηση ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη 04: Απεικόνιση Γνώσης, Αξιοπιστία & Αποτίμηση Η μορφή των εξαγομένων και η σημασία της Δεδομένα input Αλγόριθμοι Εξόρυξης

Διαβάστε περισσότερα

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων Δρ. Ε. Χάρου Πρόγραμμα υπολογιστικής ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΔΗΜΟΚΡΙΤΟΣ exarou@iit.demokritos.gr Μηχανική

Διαβάστε περισσότερα

Οικονόμου Παναγιώτης.

Οικονόμου Παναγιώτης. Οικονόμου Παναγιώτης panawths@gmail.com poikonomou@teilam.gr Οικονόμου Παναγιώτης 1 Παπαγεωργίου. 2 Αθήνα-Ελλάδα χρόνου 460 π.χ.? Ένας νεαρός άνδρας σκεπτόμενος το ενδεχόμενο γάμου, ζητά από τον Σωκράτη

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΤΗΣ ΙΚΑΝΟΠΟΙΗΣΗΣ ΤΟΥ ΠΕΛΑΤΗ - ΜΟΝΤΕΛΟ SERVQUAL -ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΡΙΠΤΩΣΙΑΚΗΣ ΜΕΛΕΤΗΣ

ΜΕΤΡΗΣΗ ΤΗΣ ΙΚΑΝΟΠΟΙΗΣΗΣ ΤΟΥ ΠΕΛΑΤΗ - ΜΟΝΤΕΛΟ SERVQUAL -ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΡΙΠΤΩΣΙΑΚΗΣ ΜΕΛΕΤΗΣ ΜΕΤΡΗΣΗ ΤΗΣ ΙΚΑΝΟΠΟΙΗΣΗΣ ΤΟΥ ΠΕΛΑΤΗ - ΜΟΝΤΕΛΟ SERVQUAL -ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΡΙΠΤΩΣΙΑΚΗΣ ΜΕΛΕΤΗΣ Άκης Νικολαΐδης, Προϊστάμενος MIM, ΚΕΠΑ Ζωή Νικολαΐδου, ΜΒΑ ΣΗΜΑΣΙΑ ΤΗΣ ΜΕΤΡΗΣΗΣ Αν δεν μπορείς να μετρήσεις δεν

Διαβάστε περισσότερα

Νοσηλευτική Σεμινάρια

Νοσηλευτική Σεμινάρια Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Νοσηλευτική Σεμινάρια Ενότητα 6: Τρόποι Συγγραφής της Μεθόδου και των Αποτελεσμάτων μιας επιστημονικής εργασίας Μαίρη Γκούβα 1 Ανοιχτά Ακαδημαϊκά

Διαβάστε περισσότερα

Εξόρυξη Γνώσης - το εργαλείο WEKA

Εξόρυξη Γνώσης - το εργαλείο WEKA Εξόρυξη Γνώσης - το εργαλείο WEKA Οµάδα ιαχείρισης εδοµένων, Τµήµα Πληροφορικής, Πανεπιστήµιο Πειραιώς (http:// http://isl.cs.unipi.gr/) Κοτσιφάκος Ευάγγελος ek@unipi.gr Νοέµβριος 2008 Ανακάλυψη και Εξόρυξη

Διαβάστε περισσότερα

Εξαγωγή Μετασχηματισμός Εισαγωγή Δεδομένων στην Αποθήκη Πληροφοριών (ETL) ETL) Αριστομένης Μακρής

Εξαγωγή Μετασχηματισμός Εισαγωγή Δεδομένων στην Αποθήκη Πληροφοριών (ETL) ETL) Αριστομένης Μακρής Εξαγωγή Μετασχηματισμός Εισαγωγή Δεδομένων στην Αποθήκη Πληροφοριών (ETL) ETL) Τεχνολογίες Υποστήριξης Λήψης Διοικητικών Αποφάσεων OLTP (On Line Transaction Processing) Επιχειρηματικές Εφαρμογές (Σχεσιακές

Διαβάστε περισσότερα

Είδη Groupware. Λογισμικό Συνεργασίας Ομάδων (Groupware) Λογισμικό Groupware. Υπάρχουν διάφορα είδη groupware ανάλογα με το αν οι χρήστες εργάζονται:

Είδη Groupware. Λογισμικό Συνεργασίας Ομάδων (Groupware) Λογισμικό Groupware. Υπάρχουν διάφορα είδη groupware ανάλογα με το αν οι χρήστες εργάζονται: Μάθημα 10 Συστήματα Διάχυσης και Διαχείρισης Γνώσης Chapter 10 Knowledge Transfer In The E-world Chapter 13 Knowledge Management Tools and Knowledge Portals Συστήματα Διάχυσης και Διαχείρισης Γνώσης Λογισμικό

Διαβάστε περισσότερα

Ευφυής Προγραμματισμός

Ευφυής Προγραμματισμός Ευφυής Προγραμματισμός Ενότητα 11: Δημιουργία Βάσεων Κανόνων Από Δεδομένα- Εξαγωγή Κανόνων Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δημιουργία Βάσεων Κανόνων Από Δεδομένα-

Διαβάστε περισσότερα

Ηλεκτρονικό εμπόριο. HE 8 Εξατομίκευση

Ηλεκτρονικό εμπόριο. HE 8 Εξατομίκευση Ηλεκτρονικό εμπόριο HE 8 Εξατομίκευση Πληροφοριακός υπερφόρτος (information overload) Αδυναμία διαχείρισης μεγάλου όγκου πληροφοριών και εντοπισμού της χρήσιμης πληροφορίας Η εξατομίκευση στοχεύει στην

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

Μεθοδολογίες Αξιοποίησης Δεδομένων

Μεθοδολογίες Αξιοποίησης Δεδομένων Μεθοδολογίες Αξιοποίησης Δεδομένων Βλάχος Σ. Ιωάννης Λέκτορας 407/80, Ιατρικής Σχολής Πανεπιστημίου Αθηνών Εργαστήριο Πειραματικής Χειρουργικής και Χειρουργικής Ερεύνης «Ν.Σ. Σ Χρηστέας» Στάδια Αξιοποίησης

Διαβάστε περισσότερα

Κατηγοριοποίηση (Εποπτευόμενη μάθηση)

Κατηγοριοποίηση (Εποπτευόμενη μάθηση) Κατηγοριοποίηση (Εποπτευόμενη μάθηση) Αποθήκες και Εξόρυξη Δεδομένων Διδάσκoυσα: Μαρία Χαλκίδη με βάση slides από J. Han and M. Kamber Data Mining: Concepts and Techniques, 2 nd edition Εποπτευόμενη vs.

Διαβάστε περισσότερα

(classification) 2 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.1

(classification) 2 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.1 Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Κατηγοριοποίηση (classification) Γιάννης Θεοδωρίδης, Νίκος Πελέκης Οµάδα ιαχείρισης εδοµένων

Διαβάστε περισσότερα

Συστήματα Πληροφοριών Διοίκησης

Συστήματα Πληροφοριών Διοίκησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Πληροφοριών Διοίκησης Ενότητα 2: Γενική θεώρηση και κατάταξη συστημάτων πληροφοριών διοίκησης Διονύσιος Γιαννακόπουλος, Καθηγητής Τμήμα

Διαβάστε περισσότερα

Δέντρα Απόφασης (Decision(

Δέντρα Απόφασης (Decision( Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ

ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Δ.Π.Μ.Σ. ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΧΟΥΧΟΥΜΗΣ ΙΩΑΝΝΗΣ Το σύνολο των

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Τεχνικές NLP Σχεδιαστικά Θέματα

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Τεχνικές NLP Σχεδιαστικά Θέματα ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ Τεχνικές NLP Σχεδιαστικά Θέματα Natural Language Processing Επεξεργασία δεδομένων σε φυσική γλώσσα Κατανόηση φυσικής γλώσσας από τη μηχανή

Διαβάστε περισσότερα

Περιγραφική Στατιστική. Ακαδ. Έτος 2012-2013 1 ο εξάμηνο. Κ. Πολίτης

Περιγραφική Στατιστική. Ακαδ. Έτος 2012-2013 1 ο εξάμηνο. Κ. Πολίτης Περιγραφική Στατιστική Ακαδ. Έτος 2012-2013 1 ο εξάμηνο Κ. Πολίτης 1 2 Η στατιστική ασχολείται με τη συλλογή, οργάνωση, παρουσίαση και ανάλυση πληροφοριών. Οι πληροφορίες αυτές, πολύ συχνά αριθμητικές,

Διαβάστε περισσότερα

Στόχος της ψυχολογικής έρευνας:

Στόχος της ψυχολογικής έρευνας: Στόχος της ψυχολογικής έρευνας: Συστηματική περιγραφή και κατανόηση των ψυχολογικών φαινομένων. Η ψυχολογική έρευνα χρησιμοποιεί μεθόδους συστηματικής διερεύνησης για τη συλλογή, την ανάλυση και την ερμηνεία

Διαβάστε περισσότερα

Μηχανική Λογισμικού για Διαδικτυακές & Φορητές Εφαρμογές

Μηχανική Λογισμικού για Διαδικτυακές & Φορητές Εφαρμογές Μεταπτυχιακό Δίπλωμα Ειδίκευσης Μηχανική Λογισμικού για Διαδικτυακές & Φορητές Εφαρμογές Δρ. Κακαρόντζας Γεώργιος Επίκουρος Καθηγητής Τμ. Μηχανικών Πληροφορικής Τ.Ε. Μηχανική Λογισμικού για Διαδικτυακές

Διαβάστε περισσότερα

(training data) (test data)

(training data) (test data) Αποθήκες εδοµένων και Εξόρυξη Γνώσης Κατηγοριοποίηση Νίκος Πελέκης, Γιάννης Θεοδωρίδης http://isl.cs.unipi.gr/db/courses/dwdm 1 ΠΑ.ΠΕΙ. Περιεχόµενα Το πρόβληµα της κατηγοριοποίησης Τεχνικές κατηγοριοποίησης

Διαβάστε περισσότερα

Εξόρυξη Γνώσης µε SQL Server 2005 Analysis Services

Εξόρυξη Γνώσης µε SQL Server 2005 Analysis Services Εξόρυξη Γνώσης µε SQL Server 2005 Analysis Services Γεράσιµος Μαρκέτος Οµάδα ιαχείρισης εδοµένων, Τµήµα Πληροφορικής, Πανεπιστήµιο Πειραιώς (http://isl.cs.unipi.gr/db) οµή παρουσίασης SQL Server 2005 Επιχειρηµατική

Διαβάστε περισσότερα

ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013.

ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013. ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013. Πρακτικές και καινοτομίες στην εκπαίδευση και την έρευνα. Άγγελος Μπέλλος Καθηγητής Μαθηματικών

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 7: Ομαδοποίηση Μέρος Α Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 2 Ιουνίου 24 ιάρκεια: 2 ώρες Σχεδιάστε έναν αισθητήρα

Διαβάστε περισσότερα

Αποθήκες και Εξόρυξη Δεδομένων

Αποθήκες και Εξόρυξη Δεδομένων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Αποθήκες και Εξόρυξη Δεδομένων 4 Ο Εργαστήριο WEKA (Association Rules) Στουγιάννου Ελευθερία estoug@unipi.gr -2- Κανόνες Συσχέτισης (Association Rules) Εύρεση

Διαβάστε περισσότερα

Η ΕΠΑΝΑΣΤΑΣΗ ΤΟΥ ΚΡΙΟΥ

Η ΕΠΑΝΑΣΤΑΣΗ ΤΟΥ ΚΡΙΟΥ Βασίλης Γ. Αγγέλης Δρ. Μηχανικός Η/Υ και Πληροφορικής Η ΕΠΑΝΑΣΤΑΣΗ ΤΟΥ ΚΡΙΟΥ Μετατρέψτε τα δεδομένα σας σε κέρδος Αθήνα Κάθε γνήσιο αντίγραφο έχει την υπογραφή του συγγραφέα Έκδοση 1 η, Copyright 2007

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΠΜΣ : ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΡΟΗ ΠΙΘΑΝΟΝΤΗΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΓΑΣΙΑ 08: ΕΙΡΗΝΗ ΛΥΓΚΩΝΗ 1 Ο ΣΤΑΔΙΟ: Πριν εφαρμόσουμε οποιοδήποτε αλγόριθμο

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Α http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

Ζητήματα ηήμ με τα δεδομένα

Ζητήματα ηήμ με τα δεδομένα Ζητήματα ηήμ με τα δεδομένα Ποιότητα Απαλοιφή θορύβου Εντοπισμός ανωμαλιών λώ Ελλιπείς τιμές Μετασχηματισμός Κβάντωση Μείωση μεγέθους Γραμμών: ειγματοληψία Στηλών: Ιδιοδιανύσματα, Επιλογή χαρακτηριστικών

Διαβάστε περισσότερα

Πληροφορική 2. Τεχνητή νοημοσύνη

Πληροφορική 2. Τεχνητή νοημοσύνη Πληροφορική 2 Τεχνητή νοημοσύνη 1 2 Τι είναι τεχνητή νοημοσύνη; Τεχνητή νοημοσύνη (AI=Artificial Intelligence) είναι η μελέτη προγραμματισμένων συστημάτων τα οποία μπορούν να προσομοιώνουν μέχρι κάποιο

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

κώστας βεργίδης εισαγωγή στις βασικές έννοιες των επιχειρησιακών διεργασιών γραφείο 322 κτίριο Γ kvergidis@uom.gr 2310 891 637

κώστας βεργίδης εισαγωγή στις βασικές έννοιες των επιχειρησιακών διεργασιών γραφείο 322 κτίριο Γ kvergidis@uom.gr 2310 891 637 εισαγωγή στις βασικές έννοιες των επιχειρησιακών διεργασιών κώστας βεργίδης λέκτορας τμ. Εφαρμοσμένης Πληροφορικής γραφείο 322 κτίριο Γ kvergidis@uom.gr 2310 891 637 διαχείριση επιχειρηματικών διαδικασιών

Διαβάστε περισσότερα

ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εισαγωγή

ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εισαγωγή ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ Εισαγωγή Συστάσεις Ι Ποιός είμαι εγώ: Email: tsap@cs.uoi.gr Γραφείο: Β.3 Προτιμώμενες ώρες γραφείου: 11:00-18:00 Ενδιαφέροντα Web mining, Social networks, User Generated Content Mobile

Διαβάστε περισσότερα

Διάλεξη 06: Αλγόριθμοι εκμάθησης ΜέροςΒ Bayes, ΚανόνεςΣυσχέτισης, ΑδρανήςΕκμάθηση & Ομαδοποίηση

Διάλεξη 06: Αλγόριθμοι εκμάθησης ΜέροςΒ Bayes, ΚανόνεςΣυσχέτισης, ΑδρανήςΕκμάθηση & Ομαδοποίηση ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη 06: Αλγόριθμοι εκμάθησης ΜέροςΒ Bayes, ΚανόνεςΣυσχέτισης, ΑδρανήςΕκμάθηση & Ομαδοποίηση Αλγόριθμοι Δεδομένα input Αλγόριθμοι

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Managing Information. Lecturer: N. Kyritsis, MBA, Ph.D. Candidate Athens University of Economics and Business. e-mail: kyritsis@ist.edu.

Managing Information. Lecturer: N. Kyritsis, MBA, Ph.D. Candidate Athens University of Economics and Business. e-mail: kyritsis@ist.edu. Managing Information Lecturer: N. Kyritsis, MBA, Ph.D. Candidate Athens University of Economics and Business e-mail: kyritsis@ist.edu.gr Διαχείριση Γνώσης Knowledge Management Learning Objectives Ποιοί

Διαβάστε περισσότερα

Πληροφορική και Τεχνολογίες Πληροφορίας & Επικοινωνιών: Συνύπαρξη και παιδαγωγική πρακτική. Τάσος Μικρόπουλος Ιωάννα Μπέλλου Πανεπιστήμιο Ιωαννίνων

Πληροφορική και Τεχνολογίες Πληροφορίας & Επικοινωνιών: Συνύπαρξη και παιδαγωγική πρακτική. Τάσος Μικρόπουλος Ιωάννα Μπέλλου Πανεπιστήμιο Ιωαννίνων Πληροφορική και Τεχνολογίες Πληροφορίας & Επικοινωνιών: Συνύπαρξη και παιδαγωγική πρακτική Τάσος Μικρόπουλος Ιωάννα Μπέλλου Πανεπιστήμιο Ιωαννίνων Πληροφορική και ΤΠΕ Η Πληροφορική και οι Τεχνολογίες της

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 1: Εισαγωγή Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΚΙΝΔΥΝΟΥ ΕΠΙΤΟΚΙΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΚΙΝΔΥΝΟΥ ΕΠΙΤΟΚΙΩΝ Ενότητα κύκλου «Διαχείριση κινδύνων χρηματοπιστωτικών ιδρυμάτων» 10 12 Ιουνίου 2009 Ο κίνδυνος επιτοκίων είναι ένας από τους πιο σημαντικούς κινδύνους, καθώς συνδέεται με όλες σχεδόν τις πτυχές της δραστηριότητας

Διαβάστε περισσότερα

Διδάσκουσα: Χάλκου Χαρά,

Διδάσκουσα: Χάλκου Χαρά, Διδάσκουσα: Χάλκου Χαρά, Διπλωματούχος Ηλεκτρολόγος Μηχανικός & Τεχνολογίας Η/Υ, MSc e-mail: chalkou@upatras.gr Επιβλεπόμενοι Μη Επιβλεπόμενοι Ομάδα Κατηγορία Κανονικοποίηση Δεδομένων Συμπλήρωση Ελλιπών

Διαβάστε περισσότερα

Ευφυής Προγραμματισμός

Ευφυής Προγραμματισμός Ευφυής Προγραμματισμός Ενότητα 9: Ανάπτυξη Έμπειρων Συστημάτων Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Ανάπτυξη Έμπειρων Συστημάτων Ορισμός-Χαρακτηριστικά ΕΣ (1) Ορισμός

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

Ο ΚΑΤΑΝΑΛΩΤΗΣ ΣΤΟ INTERNET

Ο ΚΑΤΑΝΑΛΩΤΗΣ ΣΤΟ INTERNET Ο ΚΑΤΑΝΑΛΩΤΗΣ ΣΤΟ INTERNET Το Μοντέλο της Συμπεριφοράς των Καταναλωτών στο Η.Ε. Τύποι Καταναλωτών ανεξάρτητοι και μεμονωμένοι καταναλωτές, στους οποίους στοχεύουν τα ΜΜΕ οργανισμοί-αγοραστές αγοραστές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

Εισαγωγή στο Marketing (βασικές έννοιες) ΑΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ Τμήμα Δημοσίων Σχέσεων & Επικοινωνίας Α. Κουμπαρέλης Καθηγητής Εφαρμογών

Εισαγωγή στο Marketing (βασικές έννοιες) ΑΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ Τμήμα Δημοσίων Σχέσεων & Επικοινωνίας Α. Κουμπαρέλης Καθηγητής Εφαρμογών Εισαγωγή στο Marketing (βασικές έννοιες) ΑΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ Τμήμα Δημοσίων Σχέσεων & Επικοινωνίας Α. Κουμπαρέλης Καθηγητής Εφαρμογών 1 Ορίζοντας το Μάρκετινγκ Το marketing είναι η επιστήμη των αποφάσεων

Διαβάστε περισσότερα

Τεχνολογία Ψυχαγωγικού Λογισμικού και Εικονικοί Κόσμοι Ενότητα 8η - Εικονικοί Κόσμοι και Πολιτιστικό Περιεχόμενο

Τεχνολογία Ψυχαγωγικού Λογισμικού και Εικονικοί Κόσμοι Ενότητα 8η - Εικονικοί Κόσμοι και Πολιτιστικό Περιεχόμενο Τεχνολογία Ψυχαγωγικού Λογισμικού και Εικονικοί Κόσμοι Ενότητα 8η - Εικονικοί Κόσμοι και Πολιτιστικό Περιεχόμενο Ιόνιο Πανεπιστήμιο, Τμήμα Πληροφορικής, 2015 Κωνσταντίνος Οικονόμου, Επίκουρος Καθηγητής

Διαβάστε περισσότερα

ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ, ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ, ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ, ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ, ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ, ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ, ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Α' ΕΞΑΜΗΝΟ 1 Α.1010 Μικροοικονομική (Microeconomics) ΜΓΥ Υ 2 2 4 8 5 2 Α.1020 Χρηματοοικονομική Λογιστική (Financial Accounting) ΜΓΥ Υ 2 2 2 6 10 6 3 Α.1030 Αρχές Οργάνωσης και Διοίκησης Επιχειρήσεων (Principles

Διαβάστε περισσότερα

2 Προσωπική Αναφορά Ράπτη Ευάγγελου

2 Προσωπική Αναφορά Ράπτη Ευάγγελου 2 Προσωπική Αναφορά Ράπτη Ευάγγελου Προσωπική Αναφορά Ράπτη Ευάγγελου 3 4 Προσωπική Αναφορά Ράπτη Ευάγγελου Προσωπική Αναφορά για την Επιλογή του Σωστού ΜPΑ και προετοιμασία του φακέλου υποψηφιότητας Προσωπική

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 5 Συλλογή Δεδομένων & Δειγματοληψία

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 5 Συλλογή Δεδομένων & Δειγματοληψία ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΚΑΡΠΟΥΖΙ / WATERMELON a b

ΚΑΡΠΟΥΖΙ / WATERMELON a b ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ REPUBLIC OF GREECE ΥΠΟΥΡΓΕΙΟ AΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΕΡΙΓΡΑΦΙΚΟ ΔΕΛΤΙΟ MINISTRY OF RURAL DEVELOPMENT ΚΑΙ ΤΡΟΦΙΜΩΝ DESCRIPTION FORM AND FOOD ΙΝΣΤΙΤΟΥΤΟ ΕΛΕΓΧΟΥ ΠΟΙΚΙΛΙΩΝ VARIETY RESEARCH

Διαβάστε περισσότερα

Απάντηση 8: Σύμφωνα με την διακήρυξη, απαιτείται η ανάπτυξη ενός συστήματος με υψηλές δυνατότητες αναφορών και συνδυασμού δεδομένων από πολλές πηγές.

Απάντηση 8: Σύμφωνα με την διακήρυξη, απαιτείται η ανάπτυξη ενός συστήματος με υψηλές δυνατότητες αναφορών και συνδυασμού δεδομένων από πολλές πηγές. Ερώτηση 8: Αναφορικά με την ανάπτυξη συστήματος και παραγωγής αναφορών όπως αυτό προδιαγράφεται στο τεύχος διαγωνισμού «Ανάπτυξη Ψηφιακών Εφαρμογών για την συλλογή και αξιοποίηση δεδομένων προώθησης της

Διαβάστε περισσότερα

«ΧΡΗΣΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ (ΤΠΕ) ΓΙΑ ΣΥΓΚΡΙΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΚΑΤΑΝΑΛΩΤΙΚΩΝ ΑΓΑΘΩΝ»

«ΧΡΗΣΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ (ΤΠΕ) ΓΙΑ ΣΥΓΚΡΙΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΚΑΤΑΝΑΛΩΤΙΚΩΝ ΑΓΑΘΩΝ» «ΧΡΗΣΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ (ΤΠΕ) ΓΙΑ ΣΥΓΚΡΙΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΚΑΤΑΝΑΛΩΤΙΚΩΝ ΑΓΑΘΩΝ» Ονοματεπώνυμο: ΒΛΑΧΟΥ ΣΟΦΙΑ Σειρά: 10 Επιβλέπων Καθηγητής: ΒΡΕΧΟΠΟΥΛΟΣ ΑΔΑΜ Δεκέμβριος 2013 ΤΟ ΕΡΕΥΝΗΤΙΚΟ

Διαβάστε περισσότερα

Business Development, SAP Hellas 01/12/2007

Business Development, SAP Hellas 01/12/2007 Επιχειρηµατική Ευφυΐα Απότηνιδέαστηνπράξη Παναγιώτης Θεοφάνους Business Development, SAP Hellas 01/12/2007 Περιεχόµενα 1. SAP Εταιρικόπροφίλ 2. Επιχειρηµατική Ευφυΐα - Η ανάγκη 3. SAP Business Intelligence

Διαβάστε περισσότερα

Οι βασικές αλλαγές που επιδρούν στο επιχειρηματικό περιβάλλον

Οι βασικές αλλαγές που επιδρούν στο επιχειρηματικό περιβάλλον Οι βασικές αλλαγές που επιδρούν στο επιχειρηματικό περιβάλλον Παγκοσμιοποίηση Οικονομία της πληροφορίας Μετασχηματισμός της επιχείρησης Εμφάνιση της ψηφιακής επιχείρησης Παγκοσμιοποίηση Διοίκηση και έλεγχος

Διαβάστε περισσότερα

Αποθήκες και Εξόρυξη Δεδομένων

Αποθήκες και Εξόρυξη Δεδομένων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Αποθήκες και Εξόρυξη Δεδομένων 1 Ο Εργαστήριο Εισαγωγή στο WEKA (Preprocessing Select Attributes) Στουγιάννου Ελευθερία estoug@unipi.gr -2- ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή

Διαβάστε περισσότερα

Προγραμματισμός και Επιλογή Συστημάτων

Προγραμματισμός και Επιλογή Συστημάτων Ενότητα 4 Προγραμματισμός και Επιλογή Συστημάτων Πληροφοριακά Συστήματα Διοίκησης ΙI Νίκος Καρακαπιλίδης 4-1 Μαθησιακοί στόχοι Κατανόηση των διαδικασιών προσδιορισμού και επιλογής έργων ανάπτυξης ΠΣ Κατανόηση

Διαβάστε περισσότερα

Μαθησιακές δραστηριότητες με υπολογιστή

Μαθησιακές δραστηριότητες με υπολογιστή ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθησιακές δραστηριότητες με υπολογιστή Κατευθυντήριες γραμμές σχεδίασης μαθησιακών δραστηριοτήτων Διδάσκων: Καθηγητής Αναστάσιος Α. Μικρόπουλος Άδειες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ31 (2004-5) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #3 Στόχος Στόχος αυτής της εργασίας είναι η απόκτηση δεξιοτήτων σε θέματα που αφορούν τα Τεχνητά Νευρωνικά Δίκτυα και ποιο συγκεκριμένα θέματα εκπαίδευσης και υλοποίησης.

Διαβάστε περισσότερα

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #02 Ιστορική αναδρομή Σχετικές επιστημονικές περιοχές 1 Άδεια χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΚΕΦΑΛΑΙΑ 3 και 9 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΠΙΝΑΚΕΣ Δεδομένα αφαιρετική αναπαράσταση της πραγματικότητας και συνεπώς μία απλοποιημένη όψη της δηλαδή.

Διαβάστε περισσότερα

Εισαγωγή στα Πληροφοριακά Συστήματα. Ενότητα 4:

Εισαγωγή στα Πληροφοριακά Συστήματα. Ενότητα 4: Εισαγωγή στα Πληροφοριακά Συστήματα Ενότητα 4: Η έννοια της ΠΛΗΡΟΦΟΡΙΑΣ - INFORMATION Κωνσταντίνος Ταραμπάνης Τμήμα Οργάνωσης & Διοίκησης Επιχειρήσεων ΕΙΣΑΓΩΓΗ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Κωνσταντίνος Ταραμπάνης

Διαβάστε περισσότερα

Προεπεξεργασία Δεδομένων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκουσα: Μαρία Χαλκίδη

Προεπεξεργασία Δεδομένων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκουσα: Μαρία Χαλκίδη Προεπεξεργασία Δεδομένων Αποθήκες και Εξόρυξη Δεδομένων Διδάσκουσα: Μαρία Χαλκίδη Η διαδικασίας της ανακάλυψης γνώσης Knowledge Discovery (KDD) Process Εξόρυξη δεδομένων- πυρήνας της διαδικασίας ανακάλυψης

Διαβάστε περισσότερα

Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων»

Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων» Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πρόγραμμα Μεταπτυχιακών Σπουδών Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων» Αργυροπούλου Αιμιλία

Διαβάστε περισσότερα

14Ιαν Νοε

14Ιαν Νοε Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Επανάληψη Γιάννης Θεοδωρίδης, Νίκος Πελέκης Εργαστήριο Πληροφοριακών Συστηµάτων http://infolab.cs.unipi.gr

Διαβάστε περισσότερα

ΟΜΑΔΑ Λ. Αναστασίου Κωνσταντίνος Δεληγιάννη Ισαβέλλα Ζωγοπούλου Άννα Κουκάκης Γιώργος Σταθάκη Αρετιάννα

ΟΜΑΔΑ Λ. Αναστασίου Κωνσταντίνος Δεληγιάννη Ισαβέλλα Ζωγοπούλου Άννα Κουκάκης Γιώργος Σταθάκη Αρετιάννα ΟΜΑΔΑ Λ Αναστασίου Κωνσταντίνος Δεληγιάννη Ισαβέλλα Ζωγοπούλου Άννα Κουκάκης Γιώργος Σταθάκη Αρετιάννα ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ Τι είναι η βιοπληροφορική; Αποκαλείται ο επιστημονικός κλάδος ο οποίος προέκυψε από

Διαβάστε περισσότερα

ΕΑ05: ΚΑΡΚΙΝΟΣ ΠΑΧΕΟΣ ΕΝΤΕΡΟΥ ΣΤΗ ΚΡΗΤΗ: ΝΕΑ ΔΕΔΟΜΕΝΑ ΑΝΑΛΥΣΗΣ ΚΑΙ ΠΡΟΒΛΕΨΗΣ ΤΗΣ ΜΕΛΛΟΝΤΙΚΗΣ ΔΙΑΚΥΜΑΝΣΗΣ

ΕΑ05: ΚΑΡΚΙΝΟΣ ΠΑΧΕΟΣ ΕΝΤΕΡΟΥ ΣΤΗ ΚΡΗΤΗ: ΝΕΑ ΔΕΔΟΜΕΝΑ ΑΝΑΛΥΣΗΣ ΚΑΙ ΠΡΟΒΛΕΨΗΣ ΤΗΣ ΜΕΛΛΟΝΤΙΚΗΣ ΔΙΑΚΥΜΑΝΣΗΣ 11ο Πανελλήνιο Συνέδριο για τη Διοίκηση, τα Οικονομικά και τις Πολιτικές της Υγείας ΕΑ05: ΚΑΡΚΙΝΟΣ ΠΑΧΕΟΣ ΕΝΤΕΡΟΥ ΣΤΗ ΚΡΗΤΗ: ΝΕΑ ΔΕΔΟΜΕΝΑ ΑΝΑΛΥΣΗΣ ΚΑΙ ΠΡΟΒΛΕΨΗΣ ΤΗΣ ΜΕΛΛΟΝΤΙΚΗΣ ΔΙΑΚΥΜΑΝΣΗΣ Αθήνα, 10/12/2015

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ 1. ΓΕΝΙΚΑ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Μεταπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ ΑΥΤΟΤΕΛΕΙΣ

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) 1 Προέλευση και ιστορία της Επιχειρησιακής Έρευνας Αλλαγές στις επιχειρήσεις Τέλος του 19ου αιώνα: βιομηχανική

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100 Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Θεμελιώδεις Αρχές Συστημάτων Βάσεων Δεδομένων

Θεμελιώδεις Αρχές Συστημάτων Βάσεων Δεδομένων Θεμελιώδεις Αρχές Συστημάτων Βάσεων Δεδομένων Β. Μεγαλοοικονόμου Εισαγωγή στην Εξόρυξη Δεδομένων Γενική Επισκόπηση- Σχεσιακό μοντέλο Σχεσιακό Μοντέλο -SQL Συναρτησιακές εξαρτήσεις & Κανονικοποίηση Φυσικός

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Εισαγωγή στα Πληροφοριακά Συστήματα

Εισαγωγή στα Πληροφοριακά Συστήματα Εισαγωγή στα Πληροφοριακά Συστήματα Ενότητα 3: Η έννοια της ΠΛΗΡΟΦΟΡΙΑΣ - INFORMATION Κωνσταντίνος Ταραμπάνης Τμήμα Οργάνωσης & Διοίκησης Επιχειρήσεων ΕΙΣΑΓΩΓΗ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Κωνσταντίνος Ταραμπάνης

Διαβάστε περισσότερα

Privacy - k-anonymity. Πιλαλίδου Αλίκη

Privacy - k-anonymity. Πιλαλίδου Αλίκη Privacy - k-anonymity Πιλαλίδου Αλίκη Γιατί είναι σημαντική η ιδιωτικότητα των βάσεων δεδομένων? Διάφοροι οργανισμοί (νοσοκομεία, δημόσιοι οργανισμοί, ) δημοσιεύουν πίνακες που μπορεί να περιέχουν προσωπικές

Διαβάστε περισσότερα

ΕΠΑΛΗΘΕΥΣΗ (VERIFICATION) ΚΑΙ ΕΓΚΥΡΟΠΟΙΗΣΗ (VALIDATION) ΒΚ

ΕΠΑΛΗΘΕΥΣΗ (VERIFICATION) ΚΑΙ ΕΓΚΥΡΟΠΟΙΗΣΗ (VALIDATION) ΒΚ ΕΠΑΛΗΘΕΥΣΗ (VERIFICATION) ΚΑΙ ΕΓΚΥΡΟΠΟΙΗΣΗ (VALIDATION) ΒΚ Οι V&V αναφέρονται κυρίως τον έλεγχο λαθών (testing) ενός ΕΣΒΚ, δηλ. αν δίνονται σωστές λύσεις στα προβλήματα που διαπραγματεύεται. Αφορούν όμως

Διαβάστε περισσότερα

Αλγόριθμοι Μηχανικής Μάθησης σε Πολυεπεξεργαστικά Περιβάλλοντα

Αλγόριθμοι Μηχανικής Μάθησης σε Πολυεπεξεργαστικά Περιβάλλοντα Αλγόριθμοι Μηχανικής Μάθησης σε Πολυεπεξεργαστικά Περιβάλλοντα Στεργίου Κωνσταντίνος Α.Μ.496 Σχολή Θετικών Επιστημών - Τμήμα Μαθηματικών Μ.Π.Σ. Μαθηματικά και Σύγχρονες Εφαρμογές στα «Υπολογιστικά Μαθηματικά

Διαβάστε περισσότερα

Μάρκετινγκ - Ασκήσεις Πράξης. Αγοραστική συμπεριφορά καταναλωτών

Μάρκετινγκ - Ασκήσεις Πράξης. Αγοραστική συμπεριφορά καταναλωτών Μάρκετινγκ - Ασκήσεις Πράξης Αγοραστική καταναλωτών Αγοραστική καταναλωτών Είναι η των τελικών καταναλωτών και των νοικοκυριών σχετικά με την αγορά αγαθών και υπηρεσιών για προσωπική κατανάλωση Μοντέλα

Διαβάστε περισσότερα

Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα Επιχειρηματικότητας. Eυφυή Πληροφοριακά Συστήματα. Δρ. Κωνσταντίνος Χ.

Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα Επιχειρηματικότητας. Eυφυή Πληροφοριακά Συστήματα. Δρ. Κωνσταντίνος Χ. Βάσεις Δεδομένων και Ευφυή Πληροφοριακά Συστήματα Επιχειρηματικότητας Eυφυή Πληροφοριακά Συστήματα Δρ. Κωνσταντίνος Χ. Γιωτόπουλος Ανάγκη για Ευφυή Πληροφοριακά Συστήματα Η συσσώρευση ολοένα και μεγαλύτερου

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #01

Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #01 Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #01 Διαδικαστικά μαθήματος Εισαγωγικές έννοιες & Ορισμοί Συστήματα ανάκτησης πληροφορίας 1

Διαβάστε περισσότερα

Πως μπορούν να χρησιμοποιηθούν ιστορικά δεδομένα για την κατασκευή

Πως μπορούν να χρησιμοποιηθούν ιστορικά δεδομένα για την κατασκευή ΜΕΡΟΣ Α ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 1 Εξόρυξη Δεδομένων 22 Η επανάσταση του ΚΡΙΟΥ 1.1 Εισαγωγή Το Data Mining αποτελεί μια νέα ερευνητική περιοχή, ραγδαία εξελισσόμενη, που είναι η τομή πολλών θεωριών και επιστημών,

Διαβάστε περισσότερα

DATA QUALITY & ANALYTICS DRIVING BUSINESS GROWTH AT YDROGIOS. Θάνος Αγγελόπουλος

DATA QUALITY & ANALYTICS DRIVING BUSINESS GROWTH AT YDROGIOS. Θάνος Αγγελόπουλος DATA QUALITY & ANALYTICS DRIVING BUSINESS GROWTH AT YDROGIOS Θάνος Αγγελόπουλος ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΙΣ ΥΠΟΛΟΓΙΣΜΟΣ ΚΕΦΑΛΑΙΩΝ ORSA ΠΟΛΙΤΙΚΕΣ ΑΝΑΦΟΡΕΣ DATA POINT MODEL ΠΟΙΟΤΗΤΑ ΔΕΔΟΜΕΝΩΝ Reserves Pricing Marketing

Διαβάστε περισσότερα