Διακριτά Μαθηματικά Ι

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διακριτά Μαθηματικά Ι"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διακριτά Μαθηματικά Ι Διακριτή πιθανότητα Διδάσκων: Επίκουρος Καθηγητής Σπύρος Κοντογιάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

2 MYY204 Διακριτά Μαθηματικά 11 η -12 η Eβδομάδα: ΙΑΚΡΙΤΗ ΠΙΘΑΝΟΤΗΤΑ -- Αξιώματα Πιθανοτήτων -- Θώ Θεώρημα του Bayes Reading: EPP, Κεφάλαιο 6 (παρ ) ROSEN, Κεφάλαιο 7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Παν. Ιωαννίνων (2015) ιακριτή Πιθανότητα (Ι) Πείραμα Π: Μια φυσική διαδικασία με ένα συγκεκριμένο (αριθμήσιμα ρ μ άπειρο / πεπερασμένο) ) σύνολο δυνατών αποτελεσμάτων (ή ενδεχόμενα Άλλη χρήση στην ΕΡΡ, ή δείγματα). ιακριτός ειγματικός Χώρος Ω = Ω(Π) ενός πειράματος Π: Το (αριθμήσιμα άπειρο / πεπερασμένο) σύνολο των ενδεχομένων του. ΠΑΡΑ ΕΙΓΜΑ PROB.1: Ο δειγματικός χώρος του πειράματος Π1 = «ρίψη νομίσματος μια φορά» είναι το σύνολο Ω(Π1) = { Κ(ορώνα), Γ(ράμματα) }. Ο δειγματικός χώρος του πειράματος Π2 = «ανεξάρτητες ρίψεις νομίσματος μέχρι να έρθει Κορώνα» είναι το άπειρα αριθμήσιμο σύνολο: Ω(Π2) = { Κ, ΓΚ, ΓΓΚ, ΓΓΓΚ, ΓΓΓΓΚ,... } 2

3 ιακριτή Πιθανότητα (ΙΙ) ΟΡΙΣΜΟΣ PROB.1 [ ΙΑΚΡΙΤΗ ΠΙΘΑΝΟΤΗΤΑ ]: ιακριτή Συνάρτηση Πιθανότητας για ένα πείραμα Π: Οποιαδήποτε συνάρτηση ρ : Ω R 0 ( Ω=Ω(Π) είναι ο διακριτός δειγματικός χώρος του Π ) τέτοια ώστε: 1. Κάθε σημείο του Ω έχει μη αρνητική τιμή, που καλείται μάζα πιθανότητας του ω : ω Ω, ρ(ω) Η μάζα πιθανότητας του Ω είναι μονάδα: Σ ω Ω ρ(ω) = 1. Ποιοτικά: Αν εκτελούσαμε το πείραμα ΑΠΕΙΡΕΣ φορές, τότε για κάθε δείγμα ω Ω, η μάζα πιθανότητας p(ω) θα έπρεπε να ισούται με τη συχνότητα εμφανίσεων του ω ως αποτέλεσμα του πειράματος. ΠΑΡΑ ΕΙΓΜΑ PROB.1 Για το πείραμα «ρίψη ΙΚΑΙΟΥ νομίσματος», η συνάρτηση πιθανότητας θα ήταν: ρ(k) = ρ(γ) = ½. Για το πείραμα «ανεξάρτητες ρίψεις ΙΚΑΙΟΥ νομίσματος μέχρι να έρθει Κορώνα» οι μάζες πιθανότητας είναι ρ(κ)= 1/2, ρ(γκ) = 1/4, ρ(γγκ) = 1/8,... 3 Γεγονότα και ιακριτή Πιθανότητα Γεγονός (στο βιβλίο της ΕΡΡ: ενδεχόμενο) ως προς πείραμα Π: Μια συλλογή αποτελεσμάτων του Π,, δλδ ένα υποσύνολο του Ω(Π) για το οποίο μας ενδιαφέρει να συμβεί ΚΑΠΟΙΟ από τα ενδεχόμενα που περιλαμβάνει. Πιθανότητα ρ(γ) γεγονότος γ Ω(Π): Το άθροισμα μαζών πιθανότητας των δειγμάτων που απαρτίζουν το γ (τα «καλά δείγματα» που μας ενδιαφέρουν): ρ(γ) = Σ ω γ ρ(ω). ΠΑΡΑ ΕΙΓΜΑ PROB.2: Για Π =«Ρίψη δίκαιου ζαριού» : (1) Ποια η πιθανότητα να έρθει περιττός αριθμός? (2) Ποια η πιθανότητα να έρθει «πρώτος» αριθμός? (3) Τι θα απαντούσατε στα (1,2), αν το ζάρι ήταν «πειραγμένο», ρ ώστε να φέρνει φρ με πιθανότητα 2/5 τον αριθμό 6, και ισοπίθανα τα υπόλοιπα δείγματα? 4

4 Αξιώματα Kolmogorov για ιακριτή Πιθανότητα ΑΞΙΩΜΑ PROB.1: Έστω Ω ένας δειγματικός χώρος και Α,Β Ω(Π) οποιαδήποτε γεγονότα (ενδεχόμενα). Για κάθε διακριτή πιθανότητα ρ : Ω [0,1] ισχύουν τα εξής: 1. 0 ρ(α) ρ( ) = 0, ρ(ω) = ΑΝ Α Β = ΤΟΤΕ ρ(α Β) = ρ(α) + ρ(β). 5 Μερικές Ιδιότητες Πιθανοτήτων ΠΑΡΑ ΕΙΓΜΑ PROB.3: Ποια είναι η πιθανότητα εμφάνισης, για ένα οποιοδήποτε πείραμα Π, των εξής γεγονότων: 1. γ 1 =. 2. γ 2 = Ω(Π). 3. γ 3 = A Β Ω(Π), όπου Α Β =. 4. γ 4 =C D Ω(Π), όπου C D. 5. γ 5 = Α c, όπου Α Ω(Π). 6. γ 6 = Α Β, όπου Β Α Ω(Π). 1. ρ( ) = ρ(ω(π)) = ρ(γ 3 ) = ρ(a) +ρ(β) ρ(β). 4. ρ(γ 4 ) = ρ(c) + ρ(d) ρ(c D). 5. ρ(α c ) = 1 ρ(α). 6. ρ(γ 6 ) = ρ(α) ρ(β). 6

5 Εξάσκηση (Ι) ΠΑΡΑ ΕΙΓΜΑ PROB.4: Έστω ότι από μια τράπουλα τραβάμε με εντελώς τυχαίο τρόπο (δηλαδή, η ισοπίθανα) ) ένα από τα 52 φύλλα της. Ποια είναι η πιθανότητα να τραβήξουμε φιγούρα φγ ή κόκκινο φύλλο? Ω = το σύνολο ο των 52 φύλλων. Κ = το σύνολο των 26 κόκκινων φύλλων. Φ = το σύνολο των 12 φιγούρων. ΖΗΤΟΥΜΕΝΟ = ρ(κ Φ) = ρ(κ) + ρ(φ) ρ(κ Φ). Όλα τα φύλλα ισοπίθανα: Για κάθε ω Ω, ρ(ω) = 1/52. ρ(κ) = Σ ω Κ ρ(ω) = 26 * 1/52 = 1/2 ρ(φ) = Σ ω Φ ρ(ω) = 12 * 1/52 = 3/13 ρ(κ Φ) = Σ ω Κ Φ ρ(ω) = 6 * 1/52 = 3/26 ρ(κ Φ) = 13/26 + 6/26 3/26 = 16/26 = 8/13 ~ 61,54% 7 Εξάσκηση (ΙΙ) ΠΑΡΑ ΕΙΓΜΑ PROB.5: Έστω τυχών δειγματικός χώρος Ω και διακριτή πιθανότητα ρ: Ω [0,1]. Νδο κάθε ζεύγος ενδεχομένων Α,Β Ω ισχύει ότι: ρ(α Β) = ρ(α) ρ(α Β). ρ(α Β) = ρ(α Β c ) // Α Β = Α Β c = ρ(a) ρ(α) + ρ(α Β c ) = ρ(a) [ ρ(α) ρ(α Β c )] = ρ(a) ) [ ρ(α Β c ) + ρ(α Β c ) ρ(α Β c )] // A = (Α B c ) (Α Β c ) = ρ(a) ρ(α Β c ) = ρ(a) ρ( Α (Β c ) c ) // Α B c = Α (Β c ) c = ρ(a) ρ(α Β) Εναλλακτική εξήγηση: Τα σύνολα Α Β = Α Β c και Α Β απαρτίζουν μια διαμέριση του Α, άρα: ρ(α) = ρ(α Β) + ρ(α Β) 8

6 Αναμενόμενη Τιμή (Ι) ΟΡΙΣΜΟΣ PROB.2 [ Αναμενόμενη Τιμή ]: Έστω πείραμα Π του οποίου o διακριτός δειγματοχώρος Ω(Π) είναι ένα αριθμήσιμο υποσύνολο των πραγματικών αριθμών. Για οποιαδήοποτε διακριτή συνάρτηση πιθανότητας ρ : Ω [0,1], η αναμενόμενη τιμή του (αποτελέσματος του) πειράματος Π ορίζεται ως εξής: Ε ρ (Π) = Σ ω Ω ω * ρ(ω). ΠΑΡΑ ΕΙΓΜΑ PROB.6: Η αναμενόμενη τιμή του Π είναι ένας πραγματικός αριθμός, που όμως ενδέχεται να ΜΗΝ ανήκει στο Ω. Πχ, να υπολογίσετε την αναμενόμενη τιμή του πειράματος Π1 «μια ρίψη δίκαιου ζαριού». Τι γίνεται για το πείραμα Π2 όπου το ζάρι είναι «πειραγμένο» ώστε να φέρνει με πιθανότητα 2/5 τον αριθμό 6, και ισοπίθανα τα υπόλοιπα δείγματα? Ε(Π1) = 1 * 1/6 + 2 * 1/6 + 3 * 1/6 + 4 * 1/6 + 5 * 1/6 + 6 * 1/6 = 7/2 Ε(Π2) = 1*3/25 + 2*3/25 + 3*3/25 + 4*3/25 + 5*3/25 + 6*2/5 = 21/5 9 Αναμενόμενη Τιμή (ΙΙ) ΠΑΡΑ ΕΙΓΜΑ PROB.7: Έστω ότι άνθρωποι παίζουν σε μια λοταρία λαχνούς αξίας 5 Ευρώ ο καθένας. Τα έπαθλα είναι τα εξής: 1 λαχνός κερδίζει Ευρώ. 10 (διαφορετικοί) λαχνοί κερδίζουν Ευρώ ο καθένας (διαφορετικοί) λαχνοί κερδίζουν 500 Ευρώ ο καθένας (διαφορετικοί) λαχνοί κερδίζουν 10 Ευρώ ο καθένας. Ποιο είναι το αναμενόμενο κέρδος για κάθε παίκτη? Της εταιρείας? Ω ={ 1x Ευρώ, 10x995 Ευρώ, 1.000x495 Εύρω, x5000x5 Ευρώ, x(-5) Ευρώ } ρ 1 = 1/ : Η πιθανότητα του ενός υπερτυχερού. ρ ρ 2 = 10/ = 1/ : Η πιθανότητα των 10 τυχερών. ρ 3 = 1.000/ = 1/500 : Η πιθανότητα των τυχερών. ρ 4 = / = 1/50 : Η πιθανότητα των τυχερών. ρ 5 = / : Η πιθανότητα των «άτυχων». ΑΡΑ: Ε(Π) =ρ ρ 1 * ρ 2 *995 + ρ 3 *495 + ρ 4 *5 +ρ ρ 5 *(-5) = -1,78 178Ευρώ. Η εταιρεία ΣΙΓΟΥΡΑ θα κερδίσει ευρώ (αποδείξτε το). 10

7 Αναμενόμενη Τιμή (ΙΙΙ) ΠΑΡΑ ΕΙΓΜΑ PROB.8: Έστω ότι κάποιος πληρώνει 1 ευρώ για να συμμετάσχει σε τυχερό παιχνίδι, όπου γίνονται 4 ανεξάρτητες ρίψεις ενός δίκαιου νομίσματος, και : Αν έρθουν (ακριβώς) 4xΓ, τότε πληρώνει επιπλέον 2 ευρώ. Αν έρθουν 3xΓ, Γ τότε πληρώνει επιπλέον 1 ευρώ. Αν έρθουν 2xΓ, τότε δεν πληρώνει (ούτε κερδίζει) τίποτε επιπλέον. Αν έρθει 1xΓ, τότε κερδίζει 3 ευρώ. Αν έρθουν 4xΚ, τότε κερδίζει 4 ευρώ. Ποια είναι η αναμενόμενη ωφέλεια (ή ζημιά) του παίκτη? Για κάθε αποτέλεσμα (διατ. τετράδα ρίψεων) Χ, ρ(χ) =1/2 4 =1/16 1/16. ρ(4xγ) = ρ(0-k) = ρ(0-γ) = ρ(4-η) = 1/16 ρ(3xγ) = ρ(1-k) = ρ(1-γ) = ρ(3-η) = C(4,1) * (1/2)^4 = 4/16 = 1/4 ρ(2xγ) = ρ(2-k) = C(4,2) * (1/6)^4 = 6 / 16 Ε(ωφέλεια) ε = -1 + (-2)*1/16 + (-1)*4/16 + 3*4/16 + 4*1/16 = -1 + [ ] / 16 = - 6/16 11 Το Παράδοξο των Γενεθλίων... ΠΑΡΑ ΕΙΓΜΑ PROB.9: Έστω ότι σε μια κοινωνία ανθρώπων, όλες οι μάζες πιθανότητας να γεννηθεί κάποιος μια συγκεκριμένη μέρα είναι ίσες. Νδο ο ελάχιστος αριθμός ανθρώπων που πρέπει τυχαία να διαλέξουμε, έτσι ώστε για το γεγονός: «υπάρχουν τουλάχιστον δυο από τους γ ανθρώπους που επιλέξαμε που γεννήθηκαν την Ι ΙΑ μέρα» να ισχύει ότι ρ(k) > 0.5, είναι K= 23 άνθρωποι. Πείραμα = Επιλογή (ΜΕ επανάληψη) Κ (ημέρες γέννησης) από Ν = 365 διακεκριμένα αντικείμενα (ημέρες του χρόνου) Ω = 365 K δείγματα. Όλες οι μέρες ισοπίθανες για γέννηση. ω Ω, Ρ(ω) = 1 / 365 K «Κακά» είγματα: γ ΙΑΦΟΡΕΤΙΚΕΣ μέρες γέννησης. Επιλογή ΧΩΡΙΣ επανάληψη Κ από Ν = 365 διακεκριμένα αντικείμενα. Ρ(365,K) «κακά» δείγματα. «Καλά» είγματα: Ζ = Ω #«κακά» δείγματα = 365 K Ρ(365,K) ρ(k) = [365 K Ρ(365,γ)] * (1/365 K ) = 1 Ρ(365,K) / 365 K // αύξουσα συνάρτηση του γ ρ(22) ) = 1 Ρ(365,22) (, ) / < 1 0,5243 = 0,4757. ρ(23) = 1 Ρ(365,23) / > 1 0,49271 = 0,

8 Υπολογισμός ιακριτής Πιθανότητας (Ι) ΠΑΡΑ ΕΙΓΜΑ PROB.10: 8 φοιτητές τετραετούς σχολής περιμένουν στην ουρά για να πάρουν φοιτητική ταυτότητα. Ποια η πιθανότητα στην ουρά αυτή να βρίσκονται 2 φοιτητές από κάθε έτος, αν σε κάθε έτος υπάρχουν ακριβώς το ίδιο πλήθος φοιτητών και όλοι θέλουν να πάρουν ταυτότητα? ειγματοχώρος Ω: Περιλαμβάνει Ω = 4 8 δείγματα. Όλα τα δείγματα είναι ισοπίθανα: ΓΙΑ ΚΑΘΕ ω Ω, ρ(ω) = 1/4 8. Γεγονός γ : «εμφανίζεται καλό δείγμα» υο φοιτητές από κάθε έτος. Μετάθεση ( = τοποθέτηση στην ουρά ) 8 διακεκριμένων αντικειμένων, που χωρίζονται σε 4 ομάδες: { πρ, πρ, δε, δε, τρ, τρ, τε, τε }. γ = 8! / [2!] 4 ΚΑΛΑ δείγματα. α ρ(γ) = Ρ(εμφανίζεται καλό δείγμα) = Σ ω γ ρ(ω) = 1/ Ω * γ = (1 / 4 8 ) * 8! / [2!] 4 = Υπολογισμός ιακριτής Πιθανότητας (ΙΙ) ΠΑΡΑ ΕΙΓΜΑ PROB.11: 5 άνθρωποι πηγαίνουν σε ένα πάρτι και αφήνουν στην είσοδο τα καπέλα τους. Φεύγοντας, τα καπέλα τους επιστράφηκαν με εντελώς τυχαίο τρόπο. Ποια η πιθανότητα να μην έχει πάρει κανένας άνδρας το δικό του καπέλο? ειγματικός χώρος: Ω = 5! = 120 τρόποι επιστροφής των καπέλων (διακεκριμένα σφαιρίδια) στους 5 ανθρώπους (διακεκριμένες υποδοχές χςχωρητικότητας η 1). Πιθανότητα κάθε δείγματος: 1/ Ω = 1 / 5! (ισοπίθανα όλα τα δί δείγματα). ) Α K : Το υποσύνολο δειγμάτων (δηλαδή, το γεγονός) όπου ο άνθρωπος K παίρνει πίσω το καπέλο του. «Κακά» δείγματα: Α 1 A 2 A 3 A 4 A 5 14

9 ιακριτή Πιθανότητα (VΙ) ΠΑΡΑ ΕΙΓΜΑ PROB.11 (συνέχεια): ΕΓΚΛΕΙΣΜΟΣ ΑΠΟΚΛΕΙΣΜΟΣ Α 1 A 2 A 3 A 4 A 5 = Α A A A A 5 5 Α 1 A 2 Α 1 A 3... A 4 A 5 + Α 1 A 2 A Α 3 A 4 A 5 Α 1 A 2 Α 3 A 4... A 2 Α 3 A 4 A 5 + Α 1 A 2 Α 3 A 4 A 5 = C(5,1)*4! C(5,2)*3! + C(5,3)*2! C(5,4)*1! + C(5,5)*0! = 76 P(κανείς δεν παίρνει το καπέλο του) = Σ ω : καλό δείγμα ρ(ω) = (#καλών δειγμάτων) * 1 / Ω = [120 76] * (1/120) ~ Πιθανότητα Σύγκρουσης σε Συναρτήσεις Κατακερματισμού μ Συνάρτηση κατακερματισμού: Αντιστοίχιση των «κλειδιών» ενός (συνήθως μεγάλου) πλήθους αντικειμένων σε (συνήθως λίγες) θέσεις αποθήκευσης (κάδους). ΠΑΡΑ ΕΙΓΜΑ: Η συνάρτηση mod2 : N {0,1} είναι μια στοιχειώδης συνάρτηση κατακερματισμού που διαχωρίζει τους φυσικούς αριθμούς σε (δυο κάδους με) άρτιους και περιττούς. Τα κλειδιά Χκαι Υ συγκρούονται σύμφωνα με τη συνάρτηση ρη η κατακερματισμού Η, ΑΝΝ Η(Χ) = Η(Υ). ΑΣΚΗΣΗ: Να υπολογιστεί η πιθανότητα να μην υπάρχει ζεύγος κλειδιών που να συγκρούονται, σε μια τυχαια και ομοιόμορφα επιλεγμένη συλλογή από Κ κλειδιά (Χ 1,ΧΧ 2,...,ΧΧ Κ ), όταν η συνάρτηση κατακερματισμού Ηαποφασίζει για καθένα από τα Ν κλειδιά τυχαία και ομοιόμορφα τη θέση του, μεταξύ Μ διαθέσιμων θέσεων. ΑΠ.: Αν Κ Μ, τότε Ρ(Μ,Κ) / Μ Κ. Για Κ > Μ, Ρ(Κ) = 0. 16

10 Μέθοδος Monte Carlo (MC) Έστω Πμια ιδιότητα (πχ, διαπίστωση ύπαρξης ακατάλληλων τσιπς σε μια παρτίδα παραγγελίας) που μπορούμε να ελέγξουμε κάνοντας κάποιους ελέγχους (μέσω ενός αλγορίθμου) που απαντούν: Α(λήθεια): Ισχύει η ιδιότητα Π (πχ, διαπίστωσα καμμένο τσιπ). (εν ξέρω): ) εν γνωρίζω αν ισχύει η ιδιότητα Π (ο έλεγχος που έκανα δε βρήκε καμμένο τσιπ, αλλά δεν ξέρω τι γίνεται με τα άλλα τσιπς). ΣΥΜΒΑΣΗ: Ένα τυχαίο δείγμα του στιγμιοτύπου (τσιπ της παρτίδας) έχει πιθανότητα γνα άποδεικτικό της Π, κι 1-γ να μην είναι. Ρ[ ΑΛΓ(γ,Ι) = Α ] = γ, Ρ[ ΑΛΓ(γ,Ι) = ] = 1 γ, 0 < γ < 1. Μέθοδος Monte Carlo MC(Κ): Εκτέλεση Κ ανεξάρτητωνελέγχων ΑΛΓ(γ,Ι) στο ίδιο στιγμιότυπο Ι. Η MC(Κ) απαντά Α, αν ΤΟΥΛΑΧΙΣΤΟΝ ένας έλεγχος απαντά Α. Ψ, αν όλοι οι έλεγχοι επιστρέφουν. Ποια η πιθανότητα η MC(Κ) να απαντήσει ΟΡΘΑ, δλδ Α αν όντως 17 α(π) = Α, ή Ψ αν α(π)=ψ? Μέθοδος Monte Carlo (MC) ΠΑΡΑ ΕΙΓΜΑ: Ένας κατασκευαστής υπολογιστών κάνει μαζικές παραγγελίες τσιπς, που έρχονται σε παρτίδες των Ν κομματιών, και θέλει να ελέγξει μόνο λίγα (Κ) τυχαία επιλεγμένα τσιπς της επόμενης Ν-άδας που στέλνει ο προμηθευτής τσιπς προκειμένου να «σιγουρευτεί» ότι η Ν-άδα δεν περιλαμβάνει ελαττωματικά τσιπς. Από προηγούμενες Ν-άδες διαπιστώθηκε ότι υπήρχαν 10% χαλασμένα τσιπς σε κάθε Ν-άδα. Αν βρεθεί έστω ένα κακό δείγμα, επιστρεφει την παρτίδα. ιαφορετικά την κρατάει. Ποια η πιθανότητα ρνα μην επιστρέψει παρτίδα με κατεστραμένα τσιπς? ΑΝ μόνο καλά τσιπς στη Ν-άδα ΤΟΤΕ Ρ = 0 (γιατί?) ΕΣΤΩ ότι δεν βελτιώθηκε η παραγωγή παρτίδων 10% χαλασμένα τσιπς Ρ[ένας έλεγχος βρίσκει καλό τσιπ] = Ρ[ένας έλεγχος βρίσκει κακό τσιπ] = 0.9 Ρ[επιστρέφεται σ α η παρτίδα] = Ρ[οι Κ έλεγχοι επιστρέφουν καλό τσίπ] 18

11 Μέθοδος Monte Carlo (MC) (συνέχεια) Υπολογισμός της Ρ[οι Κ έλεγχοι επιστρέφουν καλό τσίπ]... ΑΝ επιλογές Κ-άδας τσιπς (για έλεγχο) με επανάληψη (δλδ, κάθε τσιπ που ελέγχεται ΕΠΙΣΤΡΕΦΕΤΑΙ στην παρτίδα) // Αυτή είναι η MC(K)... ΤΟΤΕ ρ 1 = (0,9*Ν) Κ / Ν Κ = 0,9 Κ ΑΝ επιλογές Κ-άδας τσιπς (για έλεγχο) δίχως επανάληψη ΤΟΤΕ ρ 2 = P(0,9*Ν,K) / Ρ(Ν,Κ) = 09*(09 0,9 (0,9 1)/(N 1) *(09 (0,9 2)/(N 2) * ** (0,9 K+1)/(N Κ+1) Πχ, για Κ=10 δείγματα ελέγχου, σε μια παρτίδα Ν=100 τσιπς, έχουμε: ρ = ,9 = 0, ~ 34,87% ρ 2 = (90/100) * (89/99) * (88/98) * (87/97)* (86/96)* (85/95)* (84/94)* (83/93)* (82/92)* (81/91) = 0, ~33,05% 19 Πιθανοτική Μέθοδος (Ι) Αξιοποίηση της θεωρίας πιθανοτήτων για μη κατασκευαστική απόδειξη ύπαρξης δομών ΘΕΩΡΗΜΑ (Rosen, σελ. 427): Αν η πιθανότητα ενός τυχαία επιλεγμένου στοιχείου από ένα σύνολο Σ να μην έχει κάποια ιδιότητα Π είναι μικρότερη από 1, τότε (σίγουρα) υπάρχει τουλάχιστον ένα στοιχείο του Σ που επαληθεύει την ιδιότητα Π. Αριθμός Ramsey R(Κ,Κ): Κ): Το ελάχιστο πλήθος Ν ανθρώπων σε μια κοινωνία ανθρώπων, ώστε τουλάχιστον Καπό αυτούς να είναι μεταξύ τους είτε ΟΛΟΙ φίλοι, ή ΟΛΟΙ εχθροί, αν θεωρήσουμε ότι για κάθε ζεύγος ανθρώπων στην κοινωνία αυτή ισχύει πως είτε είναι φίλοι, ή είναι εχθροί (δλδ, δεν μπορεί να είναι αδιάφοροι ο ένας για τον άλλον, ούτε να είναι και τα δυο). 20

12 Πιθανοτική Μέθοδος (ΙΙ) ΘΕΩΡΗΜΑ (Rosen, σελ. 427): Αν Κ >= 2 είναι φυσικός αριθμός, τότε R(Κ,Κ) >= 2 Κ/2. ΑΠΟ ΕΙΞΗ Χρειάζονται πάντοτε τουλάχιστον Ν >= Κ άνθρωποι. Κ=2: Ισχύει ότι R(2,2) = Ν >= 2 2/2 = 2. Κ=3: Απαιτούνται (αλλά και επαρκούν) τουλάχιστον Ν=6 άνθρωποι. Αντιπαραδείγματα για Ν = 3,4,5. Για Ν=6, ζητείται ύπαρξη είτε μπλε τριγώνου (φιλίες) ή κόκκινου τριγώνου (εχθρότητες) στο γράφημα που αναπαριστά τη σχέση φιλιών και τη (συμπληρωματική) σχέση εχθρότητας. Κ >= 4: Έστω ότι για ΚΑΘΕ ζεύγος διαφορετικών ανθρώπων α,β: o Ρ[ {(α,β),(β,α)} ΦΙΛΙΕΣ ] = ½ o Ρ[ {(α,β),(β,α)} ΦΙΛΙΕΣ = ] = ½ Θδο: ΑΝ Ν < 2 Κ/2 ΤΟΤΕ υπάρχει δείγμα στο Ω (δηλαδή, συγκεκριμένος ορισμός της σχέσης ΦΙΛΙΕΣ) που δεν έχει ΚΑΜΙΑ Κ-άδα ανθρώπων που να είναι ΟΛΟΙ φίλοι ή ΟΛΟΙ εχθροί. 21 ΑΠΟ ΕΙΞΗ (συνέχεια) Πόσα διαφορετικά Κ-υποσύνολα ανθρώπων? Για συγκεκριμένο Κ-υποσύνολο, έστω Α: Ρ[όλοι φίλοι στο Α] =? Πιθανοτική Μέθοδος (ΙΙΙ) Ρ[όλοι εχθροί στο Α] =? Ρ[όλοι εχθροί, ή όλοι φίλοι στο Α] = 2 / 2 Κ(Κ-1)/2. UNION BOUND: ρ = Ρ[υπάρχει Κ-υποσύνολο όπου όλοι εχθροί, ή όλοι φίλοι] =< C(N,K) * 2 / 2 Κ(Κ-1)/2 (Πώς εξηγείται το φράγμα?) ΙΣΧΥΡΙΣΜΟΣ: C(N,K) =< N K / 2 K-1. (αποδείξτε το!) ρ =< N K / 2 K-1 * 2 / 2 Κ(Κ-1)/2 =< (2 Κ/2 ) Κ /2 (Κ^2 Κ)/2 + Κ 1 1 = 1 / 2 Κ/2 2 < 1, για Κ >= 4. Υπάρχει δείγμα (δλδ, ορισμός της σχέσης ΦΙΛΙΕΣ) που δεν πληρεί την ιδιότητα, όταν Ν < 2 Κ/2. 22

13 εσμευμένη Πιθανότητα (Ι) ΠΑΡΑ ΕΙΓΜΑ PROB.12: Έστω ότι επιλέγουμε εντελώς τυχαία και ανεξάρτητα δυο φοιτητές / φοιτήτριες από το 1 ο και το 2 ο έτος του Τμήματος Πληροφορικής. Θεωρούμε ότι το ποσοστό των αγοριών είναι 1/3 στο πρώτο έτος και 1/2 στο 2 ο έτος. Να υπολογιστούν: (ι) Η πιθανότητα επιλογής δυο αγοριών. (ιι) Η πιθανότητα επιλογής δυο αγοριών, αν ξέρουμε σίγουρα ότι σε μια μααπό τις δυο επιλογές προέκυψε αγόρι. (ι) Ο δειγματικός χώρος είναι Ω = { α 1α 2 2, α 1κ 2 2, κ 1α 2 2, κ 1κ 2 }. Παρατηρούμε ότι: P[ επιλογή 1 ου έτους = α 1 ]= 1/3 P[ επιλογή 2 ου έτους = α 2 ]= 1/2 Υπολογίζουμε τις μάζες πιθανότητας για όλα τα δείγματα του Ω: Ρ[ α 1 α 2 ] = 1/3 * 1/2 = 1/6 ΖΗΤΟΥΜΕΝΟ Ρ[ α 1 κ 2 ] = 1/3 * 1/2 = 1/6 Ρ[ κ 1 α 2 ] = 2/3 * 1/2 = 1/3 Ρ[ κ 1 κ 2 ] = 2/3 * 1/2 = 1/3 23 εσμευμένη Πιθανότητα (ΙΙ) (ιι) Ποια η πιθανότητα να επιλεγούν δυο αγόρια, Ε ΟΜΕΝΟΥ ότι επιλέγεται τουλάχιστον ένα αγόρι? ειγματικός Χώρος: Ω = { α 1 α 2, α 1 κ 2, κ 1 α 2, κ 1 κ 2 } 1/6 1/6 1/3 1/3 // συχνότητες εμφάνισης Ω = { α 1 α 2, α 1 κ 2, κ 1 α 2, κ 1 κ 2 } 1/6 1/6 1/3 1/3 // συχνότητες εμφάνισης Ζητούμενο: Ρ[ { α 1 α 2 } Ω { κ 1 κ 2 } ] =? ΝΕΑ συνάρτηση πιθανότητας (για το χώρο Ω πλέον): ρ (α 1 α 2 )=1/6/Χ / Χ ρ (α 1 κ 2 ) = 1/6 / Χ ρ (κ 1 α 2 )=1/3/Χ / Χ // Χ = παράγοντας κανονικοποίησης Συνάρτηση πιθανότητας : (1/6 + 1/6 + 1/3) / Χ = 1 Χ = 2/3. ΑΡΑ: ρ (α 1 α 2 )=ρ (α ρ 1 κ 2 )=1/4 1/4, ρ (κ 1 α 2 )=1/2 1/2. 24 Ζητούμενο: Ρ[ { α 1 α 2 } Ω { κ 1 κ 2 } ] = ρ (α 1 α 2 ) = 1/4.

14 εσμευμένη Πιθανότητα (ΙΙΙ) Πείραμα Π: «Ρίψη (δίκαιου) ζαριού» Πιθανότητα να έχει έρθει 2? Πιθανότητα να έχει έρθει 2, Ε ΟΜΕΝΟΥ ΟΤΙ ήρθε άρτιος? Πιθανότητα να έχει έρθει 2, Ε ΟΜΕΝΟΥ ΟΤΙ ήρθε πρώτος? Πιθανότητα να έχει έρθει 2, Ε ΟΜΕΝΟΥ ΟΤΙ ήρθε περιττός? ΟΡΙΣΜΟΣ PROB.3 3[ ΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ ]: Έστω Ω ο διακριτός δειγματικός χώρος ενός πειράματος και Α,Β Ω δυο οποιαδήποτε γεγονότα, όπου το Β έχει ΜΗ ΜΗ ΕΝΙΚΗ μάζα πιθανότητας : ρ(β) > 0. Η πιθανότητα να συμβεί το γεγονός Α δεδομένου ότι έχει συμβεί το γεγονός Β συμβολίζεται με ρ(α Β) ) και ονομάζεται δεσμευμένη μ πιθανότητα του Α δεδομένου του Β. 25 εσμευμένη Πιθανότητα (ΙV) ΠΡΟΤΑΣΗ PROB.1 [Υπολογισμός εσμευμένης Πιθανότητας]: Έστω Ω ο διακριτός δειγματοχώρος ενός πειράματος Π, ρ : Ω [0,1] μια διακριτή συνάρτηση πιθανότητας στο Ω, και Α, Β δυο τυχόντα γεγονότα τέτοια ώστε ρ(β) > 0. ={ ω Ω, ρ Β (ω) ρ({ω} Β) = 0 αν ω Β. ρ({ω} Β) = ρ(ω) / ρ(β), αν ω Β, Α Ω,, ρ(α Β) ) = ρ(α Β) ) / ρ(β). ) 26

15 ΠΑΡΑ ΕΙΓΜΑ PROB.13: Ένα πράσινο κι ένα κόκκινο ζάρι ρίχνονται, ανεξάρτητα το ένα από το άλλο, μια φορά. Ποια η πιθανότητα τα δυο ζάρια να φέρουν αποτέλεσμα που αθροίζει σε 8? Τι γίνεται αν ξέρουμε ότι και τα δυο ζάρια έφεραν άρτιο αριθμό? ΠΑΡΑ ΕΙΓΜΑ PROB.14: Ένα δοχείο περιέχει 5 μπλε και 7 κόκκινες μπάλες. Επιλέγουμε (χωρίς επανατοποθέτηση) δυο από αυτές τις μπάλες. M 1 = Πρώτη επιλογή μπλε. M 2 = εύτερη επιλογή μπλε. Κ 1 = Πρώτη επιλογή κόκκινη. Κ 2 = εύτερη επιλογή κόκκινη. α. P[ M 1 M 2 ] =? P[ Κ 1 M 2 ] =? β. P[M 2 ] =? γ. P[ M 1 ή Μ 2 ] =? δ. Ε[ #μπλε μπάλες ] =? 27 Κανόνας του Bayes (Ι) ΠΑΡΑ ΕΙΓΜΑ PROB.15: Ρίχνουμε τρία «δίκαια», διαφορετικού χρώματος ζάρια, ανεξάρτητα το ένα από το άλλο. Θεωρούμε τα εξής γεγονότα: Α = «εμφανίστηκε ακριβώς ένας άσσος», και Β =«εμφανίστηκαν τρεις διαφορετικοί αριθμοί».. Να υπολογιστεί το ρ(α Β), καθώς και το ρ(β Α). Ω = 6 3 = 216 ρ(α) =? 3 * 5 2 /6 3 = 25 / 72 ρ(β) =? Ρ(6,3) / 6 3 = 5/9 ρ(α Β) =? 3*(1*5*4) / 6 3 = 5 / 18 ρ(α Β) =? ρ(α Β) / ρ(β) = (5 / 18) / (5 / 9) = 1/2 28 ρ(β Α) =? ρ(α Β) / ρ(α) = (5 / 18) / (25 / 72) = 4/5

16 Κανόνας του Bayes (ΙΙ) ΠΡΟΤΑΣΗ PROB.2 [Θεώρημα του Bayes ]: Έστω Ω ο διακριτός δειγματοχώρος ενός πειράματος Π, ρ : Ω R 0 μια διακριτή συνάρτηση πιθανότητας πάνω στο Ω, και Α,Β δυο γεγονότα με ΜΗ ΜΗ ΕΝΙΚΕΣ μάζες πιθανότητας : ρ(a)*ρ(β) > 0. Τότε: ρ(α Β) = ρ(β Α) * ρ(α) /ρ(β) ρ(β). ΠΑΡΑ ΕΙΓΜΑ PROB.15 (συνέχεια): ρ(β Α) = ρ(α Β) * ρ(β) / ρ(α) = (1/2) * (5/9) / (25/72)= 4/5 ρ(α Β) = ρ(β Α) * ρ(α) / ρ(β) = (4/5) * (25/72) / (5/9) = 1/2 29

17 Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

18 Σημειώματα Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.0. Έχουν προηγηθεί οι κάτωθι εκδόσεις: Έκδοση 1.0 διαθέσιμη εδώ.

19 Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων: Επίκουρος Καθηγητής. «Διακριτά Μαθηματικά Ι. Διακριτή πιθανότητα». Έκδοση: 1.0. Ιωάννινα Διαθέσιμο από τη δικτυακή διεύθυνση: Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Μη Εμπορική Χρήση Όχι Παράγωγα Έργα, Διεθνής Έκδοση 4.0 [1] ή μεταγενέστερη. [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο. που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο. που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο. Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.

Πείραμα Π: Μια φυσική διαδικασία με ένα συγκεκριμένο (αριθμήσιμα ρ μ άπειρο / πεπερασμένο) ) σύνολο δυνατών

Πείραμα Π: Μια φυσική διαδικασία με ένα συγκεκριμένο (αριθμήσιμα ρ μ άπειρο / πεπερασμένο) ) σύνολο δυνατών MYY204 Διακριτά Μαθηματικά 11 η -12 η Eβδομάδα: ΙΑΚΡΙΤΗ ΠΙΘΑΝΟΤΗΤΑ -- Αξιώματα Πιθανοτήτων -- Θώ Θεώρημα του Bayes Reading: EPP, Κεφάλαιο 6 (παρ. 6.8-6.9) ROSEN, Κεφάλαιο 7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Ι

Διακριτά Μαθηματικά Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διακριτά Μαθηματικά Ι Θεωρία συνόλων Διδάσκων: Επίκουρος Καθηγητής Σπύρος Κοντογιάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

P (B) P (B A) = P (AB) = P (B). P (A)

P (B) P (B A) = P (AB) = P (B). P (A) Πιθανότητες και Στατιστική Ενότητα 2: Δεσμευμένη πιθανότητα και στοχαστική ανεξαρτησία Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Διαισθητική έννοια ανεξαρτησίας Διαισθητική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 6: Πιθανότητες Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 3: Πιθανότητες. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 3: Πιθανότητες. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 3: Πιθανότητες Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 1 η : Βασικές Έννοιες Πιθανότητας Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ. Άδειες

Διαβάστε περισσότερα

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017. HY118-Διακριτά Μαθηματικά Τρίτη, 02/05/2017 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 04-May-17 1 1 04-May-17 2 2 Γιατί πιθανότητες; Γιατί πιθανότητες; Στον προτασιακό και κατηγορηματικό

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 2: Τυχαίες Μεταβλητές. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 2: Τυχαίες Μεταβλητές. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 2: Τυχαίες Μεταβλητές Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Πιθανότητες και Στατιστική Ενότητα 2: Δεσμευμένη πιθανότητα και στοχαστική ανεξαρτησία Αντώνιος Οικονόμου Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής κ

Πιθανότητες και Στατιστική Ενότητα 2: Δεσμευμένη πιθανότητα και στοχαστική ανεξαρτησία Αντώνιος Οικονόμου Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής κ Πιθανότητες και Στατιστική Ενότητα 2: Δεσμευμένη πιθανότητα και στοχαστική ανεξαρτησία Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Παράδειγμα δεσμευμένης κλασικής πιθανότητας

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 7: Ανεξάρτητα ενδεχόμενα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Ι

Διακριτά Μαθηματικά Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διακριτά Μαθηματικά Ι Θεωρία συνόλων Διδάσκων: Επίκουρος Καθηγητής Σπύρος Κοντογιάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 4.1: Πιθανότητα Δεσμευμένη Πιθανότητα- Όρια (Ι). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 3: Ασκήσεις Bayes Περιοχές Απόφασης Διακρίνουσες Συναρτήσεις Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 1: Στοιχεία Πιθανοθεωρίας Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 6: Ασκήσεις, 3 η γενική εργασία. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα Πιθανότητες και Αρχές Στατιστικής (2η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 54 Περιεχόμενα

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Στοχαστικές Στρατηγικές

Στοχαστικές Στρατηγικές Στοχαστικές Στρατηγικές 3 η ενότητα: Εισαγωγή στα στοχαστικά προβλήματα διαδρομής Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 2 η : Δεσμευμένη Πιθανότητα. Ολική Πιθανότητα-Θεώρημα Bayes, Ανεξαρτησία και Συναφείς Έννοιες. Γεώργιος Ζιούτας Τμήμα

Διαβάστε περισσότερα

Μαθηματικά και Φυσική με Υπολογιστές

Μαθηματικά και Φυσική με Υπολογιστές ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Εφαρμογές στα Μαθηματικά Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Ενότητα 7: Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός Αποκλεισμός

Διακριτά Μαθηματικά. Ενότητα 7: Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός Αποκλεισμός Διακριτά Μαθηματικά Ενότητα 7: Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός Αποκλεισμός Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 4.4 : Πιθανότητα Δεσμευμένη Πιθανότητα- Όρια (ΙV). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 2: Θεωρία Απόφασης του Bayes Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Θεωρία

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Ενότητα 5: Απαρίθμηση: Διωνυμικοί συντελεστές

Διακριτά Μαθηματικά. Ενότητα 5: Απαρίθμηση: Διωνυμικοί συντελεστές Διακριτά Μαθηματικά Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Παρουσίαση βασικών εννοιών από: Απαρίθμηση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 5o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης

Διαβάστε περισσότερα

Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Φυσική ΙΙΙ Ενότητα 4: Ηλεκτρικά Κυκλώματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Ασκήσεις ΦΙΙΙ Ασκήσεις κυκλωμάτων συνεχούς ρεύματος. Κανόνες Kirchhoff. Γ. Βούλγαρης 2 Ο Νόμος των Ρευμάτων

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 5: Αρχή Εγκλεισμού - Αποκλεισμού Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Ι

Διακριτά Μαθηματικά Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διακριτά Μαθηματικά Ι Μαθηματική λογική και αποδεικτικές τεχνικές Διδάσκων: Επίκουρος Καθηγητής Σπύρος Κοντογιάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

2 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

2 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 2 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων Περιεχόμενα η Άσκηση... 3 2 η Άσκηση... 4 3 η Άσκηση... 5 4 η Άσκηση... 7 Χρηματοδότηση... 9 Σημείωμα Αναφοράς... 0 Σημείωμα Αδειοδότησης... 2 Ενδεικτικές λύσεις

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 3: Στοχαστικές Ανελίξεις. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 3: Στοχαστικές Ανελίξεις. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 3: Στοχαστικές Ανελίξεις Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 4.3 : Πιθανότητα Δεσμευμένη Πιθανότητα- Όρια (ΙΙΙ). Θεόδωρος Χατζηπαντελής Άδειες

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Ι

Διακριτά Μαθηματικά Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διακριτά Μαθηματικά Ι Μαθηματική λογική και αποδεικτικές τεχνικές Διδάσκων: Επίκουρος Καθηγητής Σπύρος Κοντογιάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

3 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

3 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 3 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων Περιεχόμενα η Άσκηση... 3 2 η Άσκηση... 5 3 η Άσκηση... 6 4 η Άσκηση... 8 Χρηματοδότηση... Σημείωμα Αναφοράς... 2 Σημείωμα Αδειοδότησης... 3 2 Ενδεικτικές λύσεις

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 2: Θεωρία Πιθανοτήτων Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra Εισαγωγή στους Αλγορίθμους Ενότητα 1η Άσκηση Αλγόριθμος Dijkra Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upara.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 3.2 : Απαρίθμηση Συνδυαστική (ΙΙ). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Στατιστική. Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.

Στατιστική. Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία Γεώργιος Ζιούτας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 3 η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα

Διαβάστε περισσότερα

Στατιστική. 6 ο Μάθημα: Διαστήματα Εμπιστοσύνης και Έλεγχοι Υποθέσεων. Γεώργιος Μενεξές Τμήμα Γεωπονίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Στατιστική. 6 ο Μάθημα: Διαστήματα Εμπιστοσύνης και Έλεγχοι Υποθέσεων. Γεώργιος Μενεξές Τμήμα Γεωπονίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Στατιστική 6 ο Μάθημα: Διαστήματα Εμπιστοσύνης και Έλεγχοι Υποθέσεων Γεώργιος Μενεξές Τμήμα Γεωπονίας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικά και Φυσική με Υπολογιστές

Μαθηματικά και Φυσική με Υπολογιστές ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Σύνθετοι αναλυτικοί - αριθμητικοί υπολογισμοί Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskl Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 2: Τυχαίες Μεταβλητές Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Ενότητα: Επαναληπτικές Ασκήσεις Ενότητας 4 Όνομα Καθηγητή: Γεωργά Σταυρούλα Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Λύσεις 1ης Ομάδας Ασκήσεων

Λύσεις 1ης Ομάδας Ασκήσεων ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ. ΚΟΝΤΟΓΙΑΝΝΗΣ Λύσεις ης Ομάδας Ασκήσεων Τμήμα Α Λ. Ισότητα συνόλων Έστω C = A i= B i και D = i= A B i. Θα αποδείξουμε ότι τα C, D ταυτίζονται,

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 9: Ανέλιξη Γέννησης - Θανάτου. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 9: Ανέλιξη Γέννησης - Θανάτου. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 9: Ανέλιξη Γέννησης - Θανάτου Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 9: Ολοκληρώματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

10 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

10 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 0 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων Περιεχόμενα η Άσκηση... 3 2 η Άσκηση... 4 3 η Άσκηση... 5 Χρηματοδότηση... 8 Σημείωμα Αναφοράς... 9 Σημείωμα Αδειοδότησης... 0 2 Ενδεικτικές λύσεις ασκήσεων 0 ης

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση

Διαβάστε περισσότερα

Στατιστική. 5 ο Μάθημα: Βασικές Έννοιες Εκτιμητικής. Γεώργιος Μενεξές Τμήμα Γεωπονίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Στατιστική. 5 ο Μάθημα: Βασικές Έννοιες Εκτιμητικής. Γεώργιος Μενεξές Τμήμα Γεωπονίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Στατιστική 5 ο Μάθημα: Βασικές Έννοιες Εκτιμητικής Γεώργιος Μενεξές Τμήμα Γεωπονίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 8: Εφαρμογές παραγώγων Μελέτη και βελτιστοποίηση συναρτήσεων μιας μεταβλητής (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 2ο Κανόνες Απαρίθμησης (συνέχεια) 2 ΙΣΤΟΣΕΛΙΔΑ ΜΕ ΔΙΑΦΑΝΕΙΕΣ, ΒΙΒΛΙΟ & ΔΕΙΓΜΑ ΘΕΜΑΤΩΝ www.unipi.gr/faculty/mkoutras/index.htm

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 4

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 4 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 4 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 4: Εισαγωγή / Σύνολα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 6: Όριο και συνέχεια συναρτήσεων (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Ι

Διακριτά Μαθηματικά Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διακριτά Μαθηματικά Ι Θεωρία συνόλων Διδάσκων: Επίκουρος Καθηγητής Σπύρος Κοντογιάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΚΑΛΑΘΟΣΦΑΙΡΙΣΗΣ ΙΙ

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΚΑΛΑΘΟΣΦΑΙΡΙΣΗΣ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΚΑΛΑΘΟΣΦΑΙΡΙΣΗΣ ΙΙ Ενότητα 23. Επίθεση εναντίον ζώνης Γαλαζούλας Χρήστος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B) Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Οικονομική Γεωργικών Εκμεταλλεύσεων

Οικονομική Γεωργικών Εκμεταλλεύσεων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οικονομική Γεωργικών Εκμεταλλεύσεων Ενότητα 4 η : Αγρότης και Λήψη αποφάσεων Θωμάς Μπουρνάρης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

Επεξεργασία Στοχαστικών Σημάτων

Επεξεργασία Στοχαστικών Σημάτων Επεξεργασία Στοχαστικών Σημάτων Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Η Έννοια της τυχαίας Διαδικασίας Η έννοια της τυχαίας διαδικασίας βασίζεται στην επέκταση

Διαβάστε περισσότερα

Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.3: Μεθοδολογία εφαρμογής προγράμματος Ολικής Ποιότητας

Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.3: Μεθοδολογία εφαρμογής προγράμματος Ολικής Ποιότητας Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.3: Ψωμάς Ευάγγελος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Υποενότητα

Διαβάστε περισσότερα