1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων"

Transcript

1 . Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων Tα διάφορα επιστημονικά μοντέλα ή πειράματα ή γενικότερα τα φυσικά φαινόμενα μπορεί να θεωρηθεί ότι εντάσσονται σε δύο μεγάλες κατηγορίες: τα προσδιοριστικά ή αιτιοκρατικά deterministic μοντέλα στα οποία οι γνωστές μεταβλητές π.χ. αρχικές συνθήκες αρκούν για την ακριβή πρόβλεψη των αποτελεσμάτων τους, και τα στοχαστικά stochastic, probabilistic μοντέλα στα οποία οι γνωστές μεταβλητές δεν είναι αρκετές για την ακριβή πρόβλεψη των αποτελεσμάτων τους επηρεάζονται από τον παράγοντα «τύχη»

2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Δειγματικός Χώρος ή δειγματοχώρος Ω : Το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος τύχης Π.χ. Ω {Κ,Γ}, {,,3,4,5,6}, [0,], R. Ενδεχόμενα του Ω: Μια «συλλογή» F από υποσύνολα του Ω που έχουν τις ακόλουθες ιδιότητες σ-άλγεβρα: i Ω F. ii Αν Α F τότε και Α c F. iii Αν Α, Α, F τότε και U F. i i Π.χ. αν Ω {,,3} το F {, {}, {,3}, {,,3}} είναι ένα σύνολο ενδεχομένων. το F {, {}, {}, {3}, {,,3}} δεν είναι.

3 ν F είναι σύνολο ενδεχομένων τότε F και Α, Α, F F. i i Η μικρότερη σ-άλγεβρα είναι η F {, Ω} και Η μεγαλύτερη είναι το δυναμοσύνολο F Ω του Ω. Αν ο Ω είναι πεπερασμένο σύνολο π.χ. {,,3} ή άπειρα αριθμήσιμο σύνολο π.χ. {0,,,.} τότε συνήθως ως ενδεχόμενα του Ω θεωρούμε όλα τα υποσύνολα του Ω δηλαδή F Ω. Αν ο Ω είναι ο R ή ο R ή κάποιο διάστημά του τότε ως ενδεχομενα του συνήθως θεωρούμε όλα τα υποσύνολά του που «κατασκευάζονται» μέσω τομών, ενώσεων, συμπληρωμάτων ανοικτών διαστημάτων * * καλούνται σύνολα orel και είναι «λιγότερα» από το R. 3

4 Σχέσεις - Πράξεις μεταξύ ενδεχομένων: Α ή Β Α και Β Όχι Α Α και όχι Β Α Β, Α Β, Α c Α \ Β Α Β c Μερικές γνωστές ιδιότητες: Α Α Α Α Α Α Α Β Β Α Α Β Β Α αντιμεταθετική ιδιότητα Α Β Γ Α Β Γ Α Β Γ Α Β Γ προσεταιριστική ιδιότητα Α Α Α Ω Ω Ω Α Α Β Γ Α Β Α Γ Α Β Γ Α Β Α Γ επιμεριστική ιδιότητα Α Β C Α C Β C Α Β C Α C Β C τύποι De Morgan 4

5 «Πιθανότητα» σε ένα Δειγματικό Χώρο Ιστορικά αναφέρονται 3 «ορισμοί» της έννοιας της πιθανότητας : Ορισμός πιθανότητας κατά Von Mises «στατιστικός»: η πιθανότητα Α ενός ενδεχομένου Α είναι η οριακή σχετική συχνότητα εμφάνισης του Α. Αν πραγματοποιήσουμε το ίδιο πείραμα n φορές και f n Α πλήθος των εμφανίσεων του ενδεχομένου Α στα n πειράματα τότε lim n Ορισμός πιθανότητας κατά Laplace «κλασικός»: ν Α πλήθος των στοιχείων ενός ενδεχομένου Α τότε f n n Ω Πλήθος ευνοϊκών αποτελεσμάτων για το Α Συνολικό πλήθος δυνατών αποτελεσμάτων - ο παραπάνω ορισμός προϋποθέτει ότι τα στοιχειώδη ενδεχόμενα του δειγματικού χώρου Ω είναι ισοπίθανα και ο Ω πεπερασμένος. Π.χ. έχουμε την ρίψη ενός ζαριού τότε π.χ. {} /6, {,3,5}3/6. 5

6 3 Αξιωματικός ορισμός πιθανότητας Kolmogorov: Η θεμελίωση που πρότεινε ο Kolmogorov δεν πραγματοποιείται μέσω κάποιου τύπου υπολογισμού της αλλά περιγράφοντας τις ιδιότητες που πρέπει να έχει μία συνολοσυνάρτηση ώστε να μπορεί να θεωρηθεί ως «πιθανότητα». Μία συνολοσυνάρτηση από το F [0, η οποία απεικονίζει κάθε ενδεχόμενο Α στο [0, θα καλείται «πιθανότητα» αν ισχύουν Ω. Εάν Α,Α, είναι μία ακολουθία ξένων ανά δύο ενδεχομένων του Ω τότε U i i i i Η τριάδα Ω, F, καλείται και χώρος πιθανότητας. 6

7 Παράδειγμα. Θεωρούμε το παράδειγμα της ρίψης ενός ζαριού με Ω {,,3,4,5,6}. - Αν θεωρήσουμε ότι ισοπίθανα δυνατά αποτελέσματα τότε Ω{,,3,4,5,6} και Ω {,,3,4,5,6} 6 U i { i} Άρα p /6, δηλαδή όσο θα προέκυπτε και με τον κλασικό ορισμό Laplace. 6 i { i} 6 p Είναι εύκολο να αποδειχθεί γενικότερα ότι αν ο Ω είναι πεπερασμένος και αποτελείται από ισοπίθανα στοιχειώδη ενδεχόμενα τότε, από τα αξιώματα Kolmogorov, Ω Επομένως ο κλασικός ορισμός της πιθανότητας αποτελεί απλή συνέπεια των αξιωμάτων Kolmogorov όταν ο Ω είναι πεπερασμένος με ισοπίθανα στοιχειώδη ενδεχόμενα. Και ο ορισμός της πιθανότητας κατά Von Mises προκύπτει από τα αξιώματα Kolmogorov και μάλιστα από τον γνωστό ως νόμο των μεγάλων αριθμών. Επομένως στη συνέχεια θα θεωρήσουμε μόνο τον αξιωματικό ορισμό. 7

8 8 Βασικές ιδιότητες των πιθανοτήτων. Αν Α, Β δύο ενδεχόμενα ενός δειγματικού χώρου Ω τότε C U 6 U ανισότητα oole ή ιδιότητα υποπροσθετικότητας 7 C C ανισότητα onferroni 8 Αν Β Α τότε Β Α. μονοτονία της πιθανότητας Οι ιδιότητες 5, 6 και 7 μπορούν να γενικευτούν για περισσότερα από δύο ενδεχόμενα. Π.χ. τύπος oincare ή κανόνας εγκλεισμού - αποκλεισμού C C C C C U U

9 ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Έστω Β{b,b,,b ν } ένα σύνολο με ν στοιχεία. ΔΙΑΤΑΞΗ των ν στοιχείων ανά : Μια διατεταγμένη -άδα a, a,, a η οποία αποτελείται από ν διαφορετικά στοιχεία του Β Μετάθεση ν στοιχείων: μία διάταξη των ν στοιχείων ανά ν. Παράδειγμα. Οι δυνατές διατάξεις των 3 γραμμάτων {α,β,γ} ανά δύο είναι οι εξής α,β, α,γ, β,α, β,γ, γ,α, γ,β ενώ οι δυνατές μεταθέσεις των 3 γραμμάτων {α,β,γ} είναι α,β,γ, α,γ,β, β,α,γ, β,γ,α, γ,α,β, γ,β,α. Το πλήθος των διατάξεων των ν ανά είναι v v v... v v Το πλήθος των μεταθέσεων ν στοιχείων είναι ίσο με v v... ν! 9

10 ΔΙΑΤΑΞΗ ΜΕ ΕΠΑΝΑΛΗΨΗ των ν στοιχείων ανά : Μια διατεταγμένη -άδα a, a,, a η οποία αποτελείται από στοιχεία του Β. Παράδειγμα Οι δυνατές διατάξεις των 4 γραμμάτων {α,β,γ,δ} ανά με επανάληψη είναι οι εξής: α,α, α,β, α,γ, α,δ, β,α, β,β, β,γ, β,δ, γ,α, γ,β, γ,γ, γ,δ, δ,α, δ,β, δ,γ, δ,δ Το πλήθος των διατάξεων των ν ανά με επανάληψη είναι ίσο με v. 0

11 ΣΥΝΔΥΑΣΜΟΣ των ν στοιχείων ανά.: Μια -άδα {a,a,,a } η οποία αποτελείται από διαφορετικά στοιχεία του Β Παράδειγμα. Οι δυνατοί συνδυασμοί των 4 γραμμάτων {α,β,γ,δ} ανά δύο είναι {α,β}, {α,γ}, {α,δ}, {β,γ}, {β,δ}, {γ,δ}. Το πλήθος των συνδυασμών των ν ανά είναι ίσο με * v * σε κάθε συνδυασμό αντιστοιχούν! Διατάξεις v! v!! v!

12 ΣΥΝΔΥΑΣΜΟΣ ΜΕ ΕΠΑΝΑΛΗΨΗ των ν στοιχείων ανά : Μια -άδα {a, a,, a } η οποία αποτελείται από στοιχεία του Β Παράδειγμα Οι δυνατοί συνδυασμοί των 4 γραμμάτων {α,β,γ,δ} ανά με επανάληψη: {α,α}, {α,β}, {α,γ}, {α,δ}, {β,β}, {β,γ}, {β,δ}, {γ,γ}, {γ,δ}, {δ,δ} Το πλήθος των συνδυασμών των ν στοιχείων ανά με επανάληψη είναι ίσο με v

13 Συνοψίζοντας θα έχουμε τον επόμενο πίνακα Διατάξεις ν ανά Διατάξεις ν ανά με επανάληψη Συνδυασμοί ν ανά Συνδυασμοί ν ανά με επανάληψη οι - άδες αποτελούνται από: πλήθος : διατεταγμένα, v! v διαφορετικά στοιχεία v! διατεταγμένα, v όχι απαραίτητα διαφορετικά στοιχεία μη διατεταγμένα, v v! διαφορετικά στοιχεία! v! μη διατεταγμένα, v όχι απαραίτητα διαφορετικά στοιχεία Προσεγγιστικός υπολογισμός του n! μέσω του τύπου του Stirling. n n n! n e πn. 3

14 ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω και Β > 0. Η πιθανότητα να πραγματοποιηθεί το ενδεχόμενο Α δεδομένου ότι έχει ή ότι θα πραγματοποιηθεί το ενδεχόμενο Β ορίζεται. Η καλείται και δεσμευμένη πιθανότητα του Α δοθέντος του Β. Παράδειγμα. Μία οικογένεια έχει δύο παιδιά. Ποια είναι η πιθανότητα να είναι και τα δύο αγόρια δεδομένου ότι τουλάχιστον ένα από αυτά είναι αγόρι; Εδώ Ω{α,α,α,κ,κ,α,κ,κ} και θεωρούμε τα ενδεχόμενα Ζητείται η Α{και τα δύο παιδιά είναι αγόρια}{α,α} Β{τουλάχιστον ένα από τα παιδιά είναι αγόρι}{α,α,α,κ,{κ,α} { a, a} / 4 { a, a, a,,, a} 3/

15 Για συγκεκριμένο σταθερό η συνολοσυνάρτηση η οποία απεικονίζει κάθε ενδεχόμενο Α του Ω στο Α ικανοποιεί τα αξιώματα Kolmogorov και άρα είναι πιθανότητα. Συνεπώς ισχύουν και για τη δεσμευμένη πιθανότητα όλα τα θεωρήματα και οι ιδιότητες που ισχύουν για πιθανότητες. : C C C 0 C 3 C 0 4 C C C 5 U C C C C 6 U C C C ανισότητα oole για δεσμευμένες πιθανότητες 7 C C C ανισότητα onferroni για δεσμευμένες πιθ. 8 Αν Β Α τότε ΒC ΑC μονοτονία της δεσμευμένης πιθανότητας Δεν ισχύει το ίδιο και για τη συνάρτηση Α για σταθερό Α. Δηλαδή γενικά δεν ισχύουν εκφράσεις της μορφής Α Γ Β Γ Β Γ κ.ο.κ. 5

16 ΑΝΕΞΑΡΤΗΤΑ ΕΝΔΕΧΟΜΕΝΑ Δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω θα καλούνται στοχαστικά ανεξάρτητα αν ισχύει ότι. Σε αυτή την περίπτωση : ΑΒ. Τα ενδεχόμενα Α,Α,...,Α n θα καλούνται στοχαστικά ανεξάρτητα αν......, a a a a a a για κάθε διαφορετικούς δείκτες a,a,...,a {,,...,n} και για κάθε, 3,..., n. - Π.χ. για να είναι 4 ενδεχόμενα Α, Α, Α 3, Α 4 ανεξάρτητα θα πρέπει η παραπάνω ισότητα να ισχύει για κάθε δύο, για κάθε τρία και για κάθε τέσσερα διαφορετικά Α i. για να είναι n ενδεχόμενα στοχαστικά ανεξάρτητα, δεν αρκεί να είναι ανά δύο ανεξάρτητα. 6

17 7 Πολλαπλασιαστικός κανόνας για την πιθανότητα τομής ενδεχομένων: Αν Α, Α,..., Α είναι οποιαδήποτε ενδεχόμενα ενός δειγματικού χώρου τότε Παράδειγμα. Τραβάμε τρία χαρτιά χωρίς επανάθεση από μια τράπουλα με 5 χαρτιά. Ποια είναι η πιθανότητα να τραβήξουμε 3 άσσους. Έστω ότι επιλέγουμε ένα-ένα τα τρία χαρτιά και έστω Α i {i χαρτί άσσος}, i,,3. Θα ισχύει ότι τα παραπάνω ενδεχόμενα δεν είναι ανεξάρτητα

18 8 ΘΕΩΡΗΜΑ ΟΛΙΚΗΣ ΠΙΘΑΝΟΤΗΤΑΣ - ΤΥΠΟΣ ΤΟΥ YES Έστω,,..., n ξένα ανά δύο ενδεχόμενα του Ω και Α Α... Α n Ω. Τότε... n n. και... n n i i i, i,,...,. Για κάθε ενδεχόμενο Β του Ω Απόδειξη. α Τα ενδεχόμενα Β, Β,..., Β n είναι ξένα ανά δύο. Επομένως, από τα αξιώματα Kolmogorov, n n U U U U Ω n n n. β Προκύπτει από το i i i i και το α.

19 Παράδειγμα. Όταν κάποιος παίρνει λεωφορείο για τη δουλειά του πηγαίνει καθυστερημένος στο 30% των περιπτώσεων και όταν παίρνει ταξί πηγαίνει καθυστερημένος στο 0% των περιπτώσεων. Προτιμά λεωφορείο στο 80% και ταξί στο 0% των περιπτώσεων. α Ποια η πιθανότητα να πάει καθυστερημένος στη δουλειά του μια ημέρα; β Αν μία ημέρα πήγε καθυστερημένος στη δουλειά του, ποια η πιθανότητα να πήγε με λεωφορείο; Λύση. Ας ορίσουμε τα ενδεχόμενα K: καθυστερημένος, Λ: παίρνει λεωφορείο, Τ: παίρνει ταξί. Η πιθανότητα να πάει καθυστερημένος στη δουλειά του μια ημέρα είναι K K Λ Λ K T T Η πιθανότητα να πήγε με λεωφορείο δεδομένου ότι πήγε καθυστερημένος είναι K Λ Λ Λ K 0.9 K

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων . Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων Με σκοπό την καλύτερη μελέτη τους και ανάλογα με τα χαρακτηριστικά τους, τα διάφορα επιστημονικά μοντέλα ή πειράματα ή γενικότερα τα φυσικά φαινόμενα μπορεί

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016 Βιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 06 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολο υποθέσεων και του οποίου

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156

Βιομαθηματικά BIO-156 ιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 03 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολουποθέσεωνκαιτουοποίουτο αποτέλεσμα

Διαβάστε περισσότερα

Εισαγωγή στο μάθημα Πιθανότητες - Στατιστική. Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας

Εισαγωγή στο μάθημα Πιθανότητες - Στατιστική. Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας Εισαγωγή στο μάθημα Πιθανότητες - Στατιστική Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας 1 Πειραματικά Μοντέλα Μοντέλα:» Καθοριστικά» (π.χ. ο νόμος του Ohm)» Στοχαστικά ή πιθανοτικά» (π.χ. ένταση

Διαβάστε περισσότερα

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ 1 ΣΤΟΙΧΕΙ ΠΟ ΤΗ ΘΕΩΡΙ ΠΙΘΝΟΤΗΤΩΝ 1. Πείραμα τύχης Πείραμα τύχης (π.τ.) ονομάζουμε κάθε πείραμα που μπορεί να επαναληφθεί όσες φορές επιθυμούμε υπό τις ίδιες συνθήκες και του οποίου το αποτέλεσμα είναι

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Θεωρία Συνόλων Σύνολο: Το σύνολο εκφράζει μία συλλογή διακριτών μονάδων οποιασδήποτε φύσης.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

1.7 Διατάξεις 1. Στην ελληνική βιβλιογραφία επικρατεί ο συμβολισμός. Permutations

1.7 Διατάξεις 1. Στην ελληνική βιβλιογραφία επικρατεί ο συμβολισμός. Permutations .7 Διατάξεις Είναι το σύνολο των συμπλεγμάτων που μπορεί να προκύψουν όταν επιλέγονται υποσύνολα που περιέχουν διακεκριμένα στοιχεία από ένα υπερσύνολο διακεκριμένων στοιχείων. Εδώ δεν ενδιαφέρουν οι θέσεις

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 5o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }. 3 ΠΙΘΑΝΟΤΗΤΕΣ 3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Ένα πείραμα του οποίου δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνεται φαινομενικά τουλάχιστον κάτω από

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

δ β β γ δ ββ γ α β α α α α α α α α δ δ γ γ δ δ δ δ β β α α α α α α α α β γδ α β γ δ α βγδ αβγδ δγ βα α β γ δ O α β γ δ αγ α γ α γ δ αγδ α αγ γ γ δ γ α γ β β β β β β β α γ β β β β β μ μ β β

Διαβάστε περισσότερα

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 2 Πιθανότητες Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 2-2 2 Πιθανότητες Χρησιμοποιώντας την Στατιστική Βασικοί ορισμοί: Ενδεχόμενα, Δειγματικός χώρος και Πιθανότητες

Διαβάστε περισσότερα

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πιθανότητες Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 2 Ενότητα 2 η Πιθανότητες Σκοπός Ο σκοπός της 2 ης ενότητας είναι οι μαθητές να αναγνωρίζουν ένα πείραμα τύχης

Διαβάστε περισσότερα

Στην Ξένια και στην Μαίρη

Στην Ξένια και στην Μαίρη Στην Ξένια και στην Μαίρη Περιεχόμενα 3 ΠΡΟΛΟΓΟΣ Πολλές φορές θέλουμε να μελετήσουμε φαινόμενα ή συστήματα τα οποία εξελλίσονται, κυρίως αναφορικά με τον χρόνο, και των οποίων η μελλοντική συμπεριφορά

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. Ερωτήσεις του τύπου «Σωστό - Λάθος»

ΠΙΘΑΝΟΤΗΤΕΣ. Ερωτήσεις του τύπου «Σωστό - Λάθος» ΠΙΘΑΝΟΤΗΤΕ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν είναι δειγματικός χώρος ενός πειράματος τύχης, τότε Ρ () = 1. 2. * Αν Α είναι ενδεχόμενο ενός πειράματος τύχης τότε, 0 Ρ (Α) 1. 3. * Για το αδύνατο

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 2ο Κανόνες Απαρίθμησης (συνέχεια) 2 ΙΣΤΟΣΕΛΙΔΑ ΜΕ ΔΙΑΦΑΝΕΙΕΣ, ΒΙΒΛΙΟ & ΔΕΙΓΜΑ ΘΕΜΑΤΩΝ www.unipi.gr/faculty/mkoutras/index.htm

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων «πειράματος» ή «γεγονότος» (με συνδυαστικά επιχειρήματα). «Πείραμα» ή «γεγονός»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Σηµειώσεις για το µάθηµα ΣΥΝ ΥΑΣΤΙΚΗ Θεοδόσης ηµητράκος e-mail: dimitheo@aegean.gr

Διαβάστε περισσότερα

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ . ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Ασκήσεις σχ. βιβλίου σελίδας 7 9 Α ΟΜΑΔΑΣ. Από μία τράπουλα με 5 φύλλα παίρνουμε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχομένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν

Διαβάστε περισσότερα

Βασικές Έννοιες Πιθανότητας

Βασικές Έννοιες Πιθανότητας Βασικές Έννοιες Πιθανότητας 0 ΠΕΡΙΓΡΑΦΗ ΚΕΦΑΛΑΙΟΥ. ΑΒΕΒΑΙΟΤΗΤΑ, ΤΥΧΑΙΑ ΔΙΑΔΙΚΑΣΙΑ, ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ... Αβεβαιότητα και Τυχαίο Πείραμα.. Δειγματοχώρος και Δειγματοσημεία..3 Σύνθετος Δειγματοχώρος...4

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ (ημιτελές Version )

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ (ημιτελές Version ) ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ (ημιτελές Version 24-3-2016) 2001 2001 επαναληπτικές 2002 2002 επαναληπτικές 2003 2003 επαναληπτικές 2006 2006 επαναληπτικές 2005 2005 επαναληπτικές 2006 2006 επαναληπτικές 2007 2007

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Στοιχεία Θεωρίας Συνόλων Θεωρούµε Ω το σύνολο αναφοράς. σ-άλγεβρα Εστω A είναι µια κλάση υποσυνόλων του Ω. τ.ω. A είναι µη κενή. 2 A A A c A. 3 A, A 2,... A A A 2...

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΓΕΡΓΙΟΣ Ε. ΚΑΡΑΦΕΡΗΣ ΠΕ03 ΜΑΘΗΜΑΤΙΚΟΣ [] ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΡΙΑ: Πείραμα Τύχης Κάθε πείραμα κατά στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 4ο Συνδυασμοί 2 2.3 ΣΥΝΔΥΑΣΜΟΙ Έστω Χ= {x 1, x 2,..., x ν } ένα πεπερασμένο σύνολο με ν στοιχεία x 1, x 2,...,

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Βασικές Έννοιες Πιθανότητας. Πράξεις και Σχέσεις Γεγονότων. Χώρος Γεγονότων Δυναμοσύνολο. Αξιώματα και Θεωρήματα Πιθανότητας

Βασικές Έννοιες Πιθανότητας. Πράξεις και Σχέσεις Γεγονότων. Χώρος Γεγονότων Δυναμοσύνολο. Αξιώματα και Θεωρήματα Πιθανότητας Κεφάλαιο 2 Βασικές Έννοιες Πιθανότητας Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες Πράξεις και Σχέσεις Γεγονότων Χώρος Γεγονότων Δυναμοσύνολο Η Έννοια της Πιθανότητας Αξιώματα και Θεωρήματα Πιθανότητας

Διαβάστε περισσότερα

και η εκλογή του ενός αποκλείει την ταυτόχρονη εκλογή του άλλου, ΤΟΤΕ

και η εκλογή του ενός αποκλείει την ταυτόχρονη εκλογή του άλλου, ΤΟΤΕ 7/10/010 ΑΡΧΗ ΤΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΝ ένα αντιείμενο A1 μπορεί να επιλεγεί με k1 αι ένα αντιείμενο A μπορεί να επιλεγεί με k αι η ελογή του ενός απολείει την ταυτόχρονη ελογή του άλλου, ΤΟΤΕ ένα οποιοδήποτε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Πιθανότητες και βακτηριουρία πυελονεφρίτιδα Πιθανότητες και ο καρκίνος της μήτρας Ιατρική διάγνωση με υπολογιστές

Πιθανότητες και βακτηριουρία πυελονεφρίτιδα Πιθανότητες και ο καρκίνος της μήτρας Ιατρική διάγνωση με υπολογιστές ΠΙΘΑΝΟΤΗΤΕΣ Πιθανότητες και Στατιστική ειγματικός χώρος Ενδεχόμενα Ορισμοί και νόμοι των πιθανοτήτων εσμευμένη πιθανότητα Ολική πιθανότητα Κανόνας του Bayes Υποκειμενική πιθανότητα Πιθανότητες και βακτηριουρία

Διαβάστε περισσότερα

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο ΣΥΝΟΛΑ Τι είναι σύνολο; Ένας ορισμός «Μια συλλογή αντικειμένων διακεκριμένων και πλήρως καθορισμένων που λαμβάνονται από τον κόσμο είτε της εμπειρίας μας είτε της σκέψης μας» (Cantor, 19 ος αιώνας) Ο ορισμός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. Στοιχεία Θεωρίας Μέτρου - Πιθανοτήτων

ΚΕΦΑΛΑΙΟ 3. Στοιχεία Θεωρίας Μέτρου - Πιθανοτήτων ΚΕΦΑΛΑΙΟ 3 Στοιχεία Θεωρίας Μέτρου - Πιθανοτήτων Υπενθυμίζουμε συνοπτικά κάποιες βασικές έννοιες που θα μας χρειαστούν σε επόμενα κεφάλαια 3 σ-άλγεβρα: Έστω ένα μη κενό σύνολο Μία κλάση υποσυνόλων F του

Διαβάστε περισσότερα

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου Γ. ΛΥΚΕΙΟΥ ΜΘΗΜΤΙΚ ΓΕΝΙΚΗΣ ΠΙΔΕΙΣ ΠΙΘΝΟΤΗΤΕΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου Π Ι Θ Ν Ο Τ Η Τ Ε Σ ΟΡΙΣΜΟΙ Πείραμα τύχης λέγεται το πείραμα το οποίο όσες φορές και αν επαναληφθεί (φαινομενικά τουλάχιστον

Διαβάστε περισσότερα

3. Η Έννοια και Βασικές Ιδιότητες της Πιθανότητας

3. Η Έννοια και Βασικές Ιδιότητες της Πιθανότητας 3 Η Έννοια και Βασικές Ιδιότητες της Πιθανότητας Όπως ήδη έχουμε αναφέρει στην εισαγωγική ενότητα αλλά και όπως θα διαπιστώσουμε στις ενότητες που ακολουθούν, βεβαιότητες για συμπεράσματα που αφορούν σε

Διαβάστε περισσότερα

3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ

3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ . Ασκήσεις σχ. βιβλίου σελίδας 54 56 Α ΟΜΑ ΑΣ. Από µία τράπουλα µε 5 φύλλα παίρνουµε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχοµένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν είναι 5 i) εχόµαστε

Διαβάστε περισσότερα

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4.

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4. ο Κεφάλαιο : Πιθανότητες. Δειγματικοί χώροι. Διαγράμματα Venn Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. Κλασικός ορισμός πιθανότητας 4. Κανόνες λογισμού πιθανοτήτων η Κατηγορία : Δειγματικοί χώροι ) Ρίχνουμε

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Παραδείγματα Συνδυαστική Απαρίθμηση Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο n θρανία στη σειρά

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

Μάθηµα 1 ο. Πιθανότητα-Έννοιες και Ορισµοί. Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων.

Μάθηµα 1 ο. Πιθανότητα-Έννοιες και Ορισµοί. Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων. Μάθηµα 1 ο Πιθανότητα-Έννοιες και Ορισµοί Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων. http://compus.uom.gr/inf267/index.php 1 Εισαγωγικά Βασικές Έννοιες

Διαβάστε περισσότερα

Εισαγωγή στη διακριτή πιθανότητα

Εισαγωγή στη διακριτή πιθανότητα Κεφάλαιο 11 Εισαγωγή στη διακριτή πιθανότητα Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Ross 1976, Grinstead and Snell 2012 και Hoel, Port, and Stone 1971. 11.1 Πειράματα 11.1.1 Ρίψη

Διαβάστε περισσότερα

8. Να λυθεί η εξίσωση : 10 3 x= Αν ν είναι φυσικός αριθμός, τότε να υπολογίσετε την παράσταση: Α=(-1) ν +3(-1) ν+1-3(-1) 3ν+1.

8. Να λυθεί η εξίσωση : 10 3 x= Αν ν είναι φυσικός αριθμός, τότε να υπολογίσετε την παράσταση: Α=(-1) ν +3(-1) ν+1-3(-1) 3ν+1. Α. ΔΥΝΑΜΕΙΣ. Να γράψετε σε απλούστερη μορφή τις παραστάσεις: α.α.α = 5 : = (-).(-) - = (-0,) 5.(-0,5) 5 = α -.(α ) -.α. Υπολογίστε τις παραστάσεις (i) (ii) (-).(-0,5) - (iii) (0,) : (-0). Να γίνουν οι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση f () είναι παραγωγίσιμη στο R με f () Α Αν είναι οι τιμές μιας μεταβλητής Χ ενός δείγματος παρατηρήσεων μεγέθους ν ( ) να ορίσετε την

Διαβάστε περισσότερα

ιδιαιτεραμαθηματα.gr ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ιδιαιτεραμαθηματα.gr ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ [Δεν είναι σκόπιμο να αποκαλύψεις στο παιδί σου ότι οι μεγάλοι άντρες δεν είχαν ιδέα από άλγεβρα] ΕΠΙΜΕΛΕΙΑ ΣΗΜΕΙΩΣΕΩΝ: ΠΑΠΑΔΟΠΟΥΛΟΣ Μ. ΕΠΙΜΕΛΕΙΑ ΣΗΜΕΙΩΣΕΩΝ: ΠΑΠΑΔΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8 1 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8 5 και Ρ(Β) = Ρ(Α ). Αν τα Α, Β είναι ασυµβίβαστα, να εξετάσετε αν είναι ασυµβίβαστα και τα Α, Β 5 i είξτε ότι Ρ(Α Β)=

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 12 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ).

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ). Υπενθυμίσεις Παραδείγματα Ασκήσεις Μελέτη 31 Οκτωβρίου 2014 Πιθανότητες και Στατιστική Διάλεξη 7 Ασκήσεις ΙΙ Δεσμευμένη πιθανότητα, Συνδυαστικά επιχειρήματα Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 10/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/11/2016 1 1 Θεωρία πιθανοτήτων 5/11/2016 2 2 Γιατί πιθανότητες; Στον προτασιακό και κατηγορηµατικό λογισµό µιλήσαµε

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Θεματολογία. Ένα κλασικό πείραμα. Ένα κλασικό πείραμα. Πειράματα και Δειγματικοί Χώροι. Πειράματα, Αποτελέσματα, και Ενδεχόμενα

Θεματολογία. Ένα κλασικό πείραμα. Ένα κλασικό πείραμα. Πειράματα και Δειγματικοί Χώροι. Πειράματα, Αποτελέσματα, και Ενδεχόμενα νότητα 3η : ισαγωγή στη Θεωρία Θεματολογία Στατιστική Ι νότητα 3: ισαγωγή στη Θεωρία Δρ. Χρήστος μμανουηλίδης πίκουρος αθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Βασικές έννοιες: Τυχαία πειράματα,

Διαβάστε περισσότερα

β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι όμοια και στη συνέχεια να συμπληρώσετε

β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι όμοια και στη συνέχεια να συμπληρώσετε ΘΕΜΑ 4 Στο διπλανό τραπέζιο ΑΒΓΔ η ευθεία ΜΛ είναι παράλληλη στις βάσεις ΑΒ και ΔΓ του τραπεζίου και ισχύει ότι = α) Να αποδείξετε ότι = και = (Μονάδες 8) β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,... Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 96) Άσκηση ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ Έστω οι παρατηρήσεις δυο δειγμάτων αντίστοιχα των μεταβλητών Χ και Ψ Δίνεται ότι η μέση τιμή

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας 07 3. Να αποδείξετε την ταυτότητα + + αβ βγ γα = Να αποδείξετε ότι για όλους τους α, β, γ ισχύει + + αβ + βγ + γα Πότε ισχύει ισότητα; = = + + =

Διαβάστε περισσότερα

Κεφάλαιο 4. Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Έννοια Τυχαίας Μεταβλητής. Συναρτήσεις Μάζας ή Πυκνότητας Πιθανότητας

Κεφάλαιο 4. Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Έννοια Τυχαίας Μεταβλητής. Συναρτήσεις Μάζας ή Πυκνότητας Πιθανότητας Κεφάλαιο 4 Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας Έννοια Τυχαίας Μεταβλητής Συναρτήσεις Μάζας ή Πυκνότητας Πιθανότητας Αθροιστική Συνάρτηση Πιθανότητας Μικτή Τυχαία Μεταβλητή Περίληψη Κεφαλαίου

Διαβάστε περισσότερα

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Οι µηνιαίες αποδοχές, σε, ν υπαλλήλων είναι x, x,, x ν και αυτές αποτελούν οµοιογενές δείγµα µε µέση τιµή 000. Αν το 8% έχει µισθό Α, το 6% Β και οι υπόλοιποι Γ : Να βρείτε το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 ο ΠΙΘΑΝΟΤΗΤΕΣ Συνοπτική Θεωρία Όλες οι αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις από την Τράπεζα Θεμάτων του Υπουργείου και προτεινόμενες Διαγωνίσματα

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Μαθηματικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Μαθηματικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Ομάδα Μαθηματικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Τετάρτη, 0 Μα ου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f,g είναι παραγωγίσιμες στο

Διαβάστε περισσότερα

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g

Διαβάστε περισσότερα

(f(x)+g(x)) =f (x)+g (x), x R

(f(x)+g(x)) =f (x)+g (x), x R ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιµες στο IR, να αποδείξετε ότι (()+g()) ()+g (), R Μονάδες 7 Α.

Διαβάστε περισσότερα

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί. Κεφάλαιο : ιατάξεις και Συνδυασµοί. Περιεχόµενα Εισαγωγή Βασική αρχή απαρίθµησης ιατάξεις µε και χωρίς επανατοποθέτηση Συνδυασµοί Ασκήσεις Εισαγωγή Μέχρι το τέλος αυτού του κεφαλαίου ϑα ϑεωρούµε πειράµατα

Διαβάστε περισσότερα

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης. Παράρτηµα Α Στοιχεία θεωρίας µέτρου και ολοκλήρωσης Α Χώροι µέτρου Πέραν της «διαισθητικής» περιγραφής του µέτρου «σχετικά απλών» συνόλων στο από το µήκος τους (όπως πχ είναι τα διαστήµατα, ενώσεις/τοµές

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 7 ΙΟΥΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

1 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή

1 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή 1 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή Υπάρχει σε πολλούς η εντύπωση ότι το κύριο κίνητρο για την ανάπτυξη της Θεωρίας των Πιθανοτήτων προήλθε από το ενδιαφέρον του ανθρώπου για τα τυχερά παιχνίδια. Σημαντική μάλιστα

Διαβάστε περισσότερα

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Άσκηση Φ8.1 Τρεις λαμπτήρες επιλέγονται τυχαία από ένα σύνολο 15 λαμπτήρων εκ των οποίων οι 5 είναι ελαττωματικοί. (α) Βρέστε την πιθανότητα κανείς από

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 Ε_3.Μλ3Γ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 1 Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Α1. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ Σχολική Χρονιά: 015-016 Ασκήσεις Επανάληψης για την B Γυμνασίου Ενότητα 1: Πραγματικοί Αριθμοί Πυθαγόρειο Θεώρημα 1. Να γράψετε σε μορφή δύναμης τα πιο κάτω: 1) ².³ = ) (³) 5 = 3) 5 : 8 = 4) ( 5. 7 ) :

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ. Δύο ομάδες Ο, Ο παίζουν μεταξύ τους σε μια σχολική ποδοσφαιρική συνάντηση (οι αγώνες δεν τελειώνουν ποτέ με ισοπαλία). Νικήτρια θεωρείται η ομάδα που θα νικήσει

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj klzxcvλοπbnαmqwertyuiopasdfghjklz ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι η παράγωγος της ταυτοτικής συνάρτησης f()= είναι f ()=, για κάθε R Μονάδες 7 Α. Έστω μια συνάρτηση

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #: Επαγωγική Στατιστική - Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ

1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ ΜΕΡΟΣ Α 1.4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ 59 1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ Πολλαπλασιασμός μονωνύμου με πολυώνυμο Ο πολλαπλασιασμός μονώνυμου με πολυώνυμο γίνεται ως εξής: Πολλαπλασιάζουμε το μονώνυμο με

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ ΜΕΡΟΣ Α 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ-ΕΝΔΕΧΟΜΕΝΑ 69 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ Πείραμα τύχης- Δειγματικός χώρος Ένα πείραμα το οποίο όσες φορές και αν το επαναλάβουμε, δεν μπορούμε να προβλέψουμε το αποτέλεσμα

Διαβάστε περισσότερα

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,, 1. i) Να αποδείξετε την ταυτότητα 1 ( ) ( ) ( ) + + = + +. ii) Να αποδείξετε ότι για όλους τους,, ισχύει Πότε ισχύει ισότητα; + + + +.. Λέμε ότι μια τριάδα θετικών ακεραίων (,, ) είναι όταν είναι πλευρές

Διαβάστε περισσότερα

V. Διαφορικός Λογισμός. math-gr

V. Διαφορικός Λογισμός. math-gr V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν

Διαβάστε περισσότερα

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς.

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς. Πιθανότητες Α Λσκείοσ Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς www.askisopolis.gr Πιθανότητες Εφαρμογές στον ορισμό πιθανότητας. Ρίχνουμε ένα νόμισμα τρεις φορές. Ποια είναι η πιθανότητα να φέρουμε και τις

Διαβάστε περισσότερα

Α. ΘΕΩΡΙΑ Εστω μια συνάρτηση f και x. του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x., όταν

Α. ΘΕΩΡΙΑ Εστω μια συνάρτηση f και x. του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x., όταν Α ΘΕΩΡΙΑ Εστω μια συνάρτηση και ένα σημείο του πεδίου ορισμού της Θα λέμε ότι η είναι συνεχής στο όταν Για παράδειγμα η συνάρτηση είναι συνεχής στο αφού Σύμφωνα με τον παραπάνω ορισμό μια συνάρτηση δεν

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) 2 Αν x = -4-7 και y = 7-4 να βρεθεί η τιµή της παράστασης Α = x + y - 2xy ( ) ( )

( ) ( ) ( ) ( ) ( ) 2 Αν x = -4-7 και y = 7-4 να βρεθεί η τιµή της παράστασης Α = x + y - 2xy ( ) ( ) Τηλ 106176-7 /10600 1 Να βρεθούν τα αναπτύγµατα : i i i x x x x x + x x x x + x 16x x + 9 x 16x x + 9 x 8 + 6 8 6 6 i i 6x + x 6x + 6x x + x 6 x + 6 x x + x 6x + 60x + x 6x + 60x + x 6 + + 6 6 6 i i Αν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής;

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; Μαθηµατικά και Στοιχεία Στατιστικής ΚΕΦΑΛΑΙΟ ο 1 : ιαφορικός Λογισµός 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; 2. Έστω µια

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα

( ) ( ) ( ) ( )( ) ( )( ) ( ) ν περνά από σταθερό σημείο. ν περνά από το σταθερό μέσο του επίσης σταθερού ΚΛ. Το διανυσματικό άθροισμα f Μ γράφεται:

( ) ( ) ( ) ( )( ) ( )( ) ( ) ν περνά από σταθερό σημείο. ν περνά από το σταθερό μέσο του επίσης σταθερού ΚΛ. Το διανυσματικό άθροισμα f Μ γράφεται: Το διανυσματικό άθροισμα f Μ γράφεται: f Μ = x ΜΑ+ x ΜΑ+ΑΒ + x ΜΑ+ΑΓ = ΜΑ + ΜΑ + ΜΑ + ΑΒ + ΑΓ ( x) ( x) ( x ) ( x) ( x ) = ( x + x + x ) ΜΑ + ( x) ΑΒ + ( x ) ΑΓ = ( x 4x+ ) ΜΑ+ ( x) ΑΒ+ ( x ) Α Γ f Μ είναι

Διαβάστε περισσότερα