Τεχνική Οδηγία 5 Ανάλυση συµπαγών πλακών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τεχνική Οδηγία 5 Ανάλυση συµπαγών πλακών"

Transcript

1 CSI Hellas, εκέµβριος 2003 Τεχνική Οδηία 5 Ανάλυση συµπαών πλακών Η τεχνική οδηία 5 παρέχει βασικές πληροφορίες ια την πλακών. ανάλυση Γενικά. Το Adaptor αναλύει µόνο συµπαείς ορθοωνικές πλάκες, συνεχείς ή µεµονωµένες. Στις περιπτώσεις µη ορθοωνικών πλακών εισάεται από τον χρήστη, µέσα από το ραφικό περιβάλλον του Adaptor, ένα ορθοωνικό προσοµοίωµα ια την υπό µελέτη πλάκα. Ο προσανατολισµός του τοπικού συστήµατος αναφοράς, της πλάκας, ταυτίζεται µε τον προσανατολισµό των πλευρών του ισοδύναµου ορθοωνίου της πλάκας (Σχήµα 1). Προφανώς στις περιπτώσεις µη ορθοωνικών πλακών ο Σχήµα 1 προσανατολισµός του συστήµατος αναφοράς της πλάκας ταυτίζεται µε τον προσανατολισµό των πλευρών της πραµατικής πλάκας. Κανονισµοί. Η ανάλυση των πλακών πραµατοποιείται σύµφωνα µε τις διατάξεις του ΕΚΩΣ (Φ.Ε.Κ Β / ) Γενικά Τεχνική Οδηία 5-1

2 Ανάλυση συµπαών πλακών Μονάδες. Οι µονάδες που χρησιµοποιούνται κατά την ανάλυση των πλακών είναι το κιλονιούτον ( kn ) και το µέτρο ( m ). εδοµένα. Ως δεδοµένα ια την ανάλυση των πλακών λαµβάνονται οι ακόλουθες παράµετροι: Οι διαστάσεις L, L της πλάκας ως προς το τοπικό της σύστηµα -. Στην περίπτωση ορθοωνικής πλάκας οι διαστάσεις αυτές λαµβάνονται αυτόµατα από το Adaptor, ενώ στην περίπτωση µη ορθοωνικής πλάκας εισάονται ραφικά από τον χρήστη. Το πάχος t της πλάκας, όπως προσδιορίσθηκε κατά την εισαωή των δεδοµένων στο ETABS. Τα µόνιµα φορτία πέραν του ιδίου βάρους και κινητά φορτία ανά µονάδα επιφανείας της πλάκας. Τα φορτία αυτά λαµβάνονται αυτόµατα από τα δεδοµένα της ανάλυσης αλλά δίνεται και δυνατότητα αλλαής τους από τον χρήστη. Οι συντελεστές ασφαλείας δράσεων ια τα µόνιµα και κινητά φορτία και αντίστοιχα. Οι συνθήκες στήριξης τις πλάκας σε κάθε πλευρά της, οι οποίες προσδιορίζονται αυτόµατα από το Adaptor, αλλά δίνεται και δυνατότητα τροποποίησης τους από τον χρήστη. Φορτίσεις Σχεδιασµού. Οι πλάκες επιλύονται ια καθολικές φορτίσεις p που δίνονται από τις σχέσεις : p = + (1) 2 Τεχνική Οδηία 5 2 Μονάδες

3 Ανάλυση συµπαών πλακών ή στην περίπτωση που λαµβάνονται υπ όψιν οι δυσµενείς φορτίσεις (Φόρτιση ζατρικίου): p = ± (2) 2 οι προτεινόµενες, από το Adaptor, τιµές ια τους συντελεστές ασφαλείας δράσεων και είναι: = 1,35 = 1,50 στην περίπτωση που η επίλυση δεν ίνεται µε χρήση δυσµενών φορτίσεων, ή = 1,50 = 1,50 στην περίπτωση που η επίλυση ίνεται µε χρήση δυσµενών φορτίσεων. Για τις παραπάνω προτεινόµενες τιµές, οι σχέσεις (1) και (2) στις σχέσεις (9.2) και (9.3) αντίστοιχα του ΕΚΩΣ οδηούν Στατική Λειτουρία. Ανάλοα µε τις συνθήκες στήριξης και τις διαστάσεις της πλάκας το Adaptor αυτόµατα ανανωρίζει τον στατικό τρόπο λειτουρίας της ( ιέρειστη, τετραέρειστη, απλός πρόβολος). Έτσι στις διέρειστες πλάκες και τους απλούς προβόλους ανανωρίζεται αυτόµατα ποία είναι η κύρια και ποια η δευτερεύουσα διεύθυνση κάµψης. Στατική λειτουρία Τεχνική Οδηία 5 3

4 Ανάλυση συµπαών πλακών Οριακή Κατάσταση Λειτουρικότητας από Παραµορφώσεις. Το Adaptor, ια αµφιέρειστες ή τετραέρειστες συµπαείς πλάκες ελέχει αν πληρούνται οι προϋποθέσεις απαλλαής από τον έλεχο βελών κάµψης. Συκεκριµένα, σύµφωνα µε την παράραφο 16.2 του ΕΚΩΣ 2000 ελέχεται αν ικανοποιείται η συνθήκη: l a d 30 (3) όπου: l : Η διάσταση της πλάκας. d : Το στατικό ύψος της πλάκας. a : Ο λόος µεταξύ ιδεατού µήκους και θεωρητικού ανοίµατος. Οι τιµές του a λαµβάνονται από τον πίνακα 16.2 του ΕΚΩΣ Στην περίπτωση που δεν πληρούται η συνθήκη (3) το Adaptor υπολοίζει το ελάχιστο πάχος πλάκας ια το οποίο δεν απαιτείται ο έλεχος βελών κάµψης. Προσδιορισµός Εντατικών Μεεθών Πλακών. Για τον προσδιορισµό των ροπών σχεδιασµού ανοιµάτων και στηρίξεων, συνεχών ή µεµονωµένων πλακών, ορίζονται από τον χρήστη τοµές παράλληλές προς τις διευθύνσεις όπλισης των πλακών. Στις θέσεις αυτές των τοµών ορίζονται από το Adaptor συνεχείς δοκοί πλάτους ενός µέτρου και στατικού ύψους σε κάθε άνοιµα, ίσο µε εκείνο της αντίστοιχης πλάκας. Οι ροπές σχεδιασµού της δοκού αυτής θα είναι ίσες µε τις αντίστοιχες ροπές σχεδιασµού των πλακών κατά την διεύθυνση της δοκού. Για κάθε τοµή, οι προτεινόµενες από το Adaptor συνθήκες στήριξης της δοκού είναι ελεύθερα στρεπτές εδράσεις αλλά δίνεται στον χρήστη δυνατότητα τροποποίησης τους. Τεχνική Οδηία 5 Οριακή κατάσταση λειτουρικότητας από παραµορφώσεις

5 Το φορτίο i Ανάλυση συµπαών πλακών που αντιστοιχεί στο i-οστό άνοιµα της δοκού υπολοίζεται από το καθολικό φορτίο p της αντίστοιχης πλάκας κατά την µέθοδο Markus. Σύµφωνά µε την οποία αν, το τοπικό σύστηµά αναφοράς της πλάκας τα κατανεµηµένα φορτία ανά µέτρο πλάτους που αντιστοιχούν σε κάθε µία από τις παραπάνω διευθύνσεις, αντίστοιχα, θα δίνονται από τις σχέσεις : = K = K p p Όπου K, K συντελεστές κατανοµής κατά Markus, οι τιµές των οποίων συναρτήσει των διαστάσεων και των συνθηκών στήριξης της πλάκας δίνονται από τον παρακάτω πίνακα (Πίνακας 1): L ε = L K ε 2.5 ε 0. ε 0.2 ε 1 5 ε 2 ε ε K ( 1+ ε ) 1 ( ε ) 1 ( ε ) 1 ( ε ) 1 ( 1+ 5 ε ) 1 ( 1+ 2 ε ) 1 ( ε ) 1 Πίνακας 1 Στον παραπάνω πίνακα µε απλή ραµµή συµβολίζονται οι ελεύθερα στρεπτές εδράσεις και µε διπλή ραµµή οι πακτώσεις. Σύµφωνα µε την µέθοδο Markus µε πάκτωση προσοµοιώνονται οι εδράσεις στις οποίες υπάρχει συνέχεια µε ειτονικές πλάκες. Όλες οι υπόλοιπες περιπτώσεις προσοµοιώνονται µε ελεύθερα στρεπτές εδράσεις. Για τοµή η οποία σχηµατίζει ωνία φ ως προς το τοπικό σύστηµα - πλάκας, το φορτίο σχεδιασµού της δοκού ια το άνοιµα που αντιστοιχεί στην υπό αναφορά πλάκα θα δίνεται από την σχέση: sd = cosφ + sinφ Προσδιορισµός εντάσεων πλακών Τεχνική Οδηία 5 5

6 Ανάλυση συµπαών πλακών Στην περίπτωση που επιλέεται ο προσδιορισµός των εντάσεων των πλακών να ίνει µε την χρήση δυσµενών φορτίσεων η µέιστη ροπή ανοίµατος υπολοίζεται ια φόρτιση του εν λόω ανοίµατος µε το δυσµενές του φορτίο, φόρτιση των ειτονικών του ανοιµάτων µε το ευµενές τους φορτίο, φόρτιση των ειτονικών προς αυτά ανοιµάτων µε τα δυσµενή τους φορτία και ούτω καθ εξής. Για την εύρεση της ελάχιστης ροπής ανοίµατος εφαρµόζεται µια όµοια εναλλασσόµενη φόρτιση µόνο που στην περίπτωση αυτή το υπό µελέτη άνοιµα φορτίζεται µε το ευµενές του φορτίο. Η ελάχιστη ροπή ανοίµατος υπολοίζεται ια να ελεχθεί αν απαιτείται οπλισµός άνω παρειάς. Για τον προσδιορισµό της µέιστης ροπής στήριξης εφαρµόζεται το δυσµενές φορτίο στα δύο ειτονικά της ανοίµατα και στην συνέχεια εφαρµόζεται η εναλλασσόµενη φόρτιση ευµενούς δυσµενούς φορτίου που περιράφηκε παραπάνω. Εποπτικά στο σχήµα 2 φαίνονται οι απαιτούµενες φορτίσεις ια την εύρεση των εντάσεων συνεχούς πλάκας τεσσάρων ανοιµάτων µε την χρήση δυσµενών φορτίσεων. Συκεκριµένα από την φόρτιση (I ) υπολοίζεται η µέιστη ροπή των ανοιµάτων 1 και 3,η µέιστη ροπή της στήριξης 1 και η ελάχιστες ροπές των ανοιµάτων 2 και. Από την φόρτιση (II ) υπολοίζεται η µέιστη ροπή των ανοιµάτων 2 και,η µέιστη ροπή της στήριξης 5 και η ελάχιστες ροπές των ανοιµάτων 1 και 3. Τέλος από τις φορτίσεις (III ), (IV ) και (V ) υπολοίζονται οι µέιστες ροπές ια τις στηρίξεις 2, 3 και αντίστοιχα. Σχήµα 2 Τεχνική Οδηία 5 6 Προσδιορισµός εντατικών µεεθών πλακών

Τεχνική Οδηγία 6 Όπλιση πλακών

Τεχνική Οδηγία 6 Όπλιση πλακών CSI Hella, εκέµβριος 2003 Τεχνική Οδηγία 6 Όπλιση πλακών Η τεχνική οδηγία 6 παρέχει βασικές πληροφορίες για την όπλιση πλακών. Κανονισµοί. Η όπλιση των πλακών πραγµατοποιείται σύµφωνα µε τις διατάξεις

Διαβάστε περισσότερα

Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα.

Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα. CSI Hellas, Φεβρουάριος 2004 Τεχνική Οδηγία 1 Πέδιλα στα οποία εδράζονται υποστυλώµατα ορθογωνικής διατοµής Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί

Διαβάστε περισσότερα

Άσκηση 2. Παράδειγμα μονοπροέχουσας απλά οπλισμένης πλάκας

Άσκηση 2. Παράδειγμα μονοπροέχουσας απλά οπλισμένης πλάκας Άσκηση. Παράδειγμα μονοπροέχουσας απλά οπλισμένης πλάκας Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών,

Διαβάστε περισσότερα

ΠΛΑΙΣΙΟ ver.1. Φακής Κωνσταντίνος, Πολιτικός μηχανικός 1/8

ΠΛΑΙΣΙΟ ver.1. Φακής Κωνσταντίνος, Πολιτικός μηχανικός 1/8 ΠΛΑΙΣΙΟ ver. Πρόκειται ια ένα υπολοιστικό φύλλο που εφαρμόζει διαδικασία στατικού υπολοισμού ενός πλαισιωτού αμφίπακτου φορέα (συνήθως οδικές κάτω διαβάσεις αρτηριών ή οχετοί εκτόνωσης ρεμμάτων). Η στατική

Διαβάστε περισσότερα

25x30. 25x30. Π2 Πρ1. Π1 Πρ2. Άσκηση 3 η

25x30. 25x30. Π2 Πρ1. Π1 Πρ2. Άσκηση 3 η Πλάκες ο εργαστήριο 1 Άσκηση 3 η Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα: Η εκλογή

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο:

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 6-6-009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο Δίνεται ο ξυλότυπος

Διαβάστε περισσότερα

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος

Διαβάστε περισσότερα

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει:

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει: Ενότητα Ζ ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ 1.1 Περιγραφή Δοκιδωτών Πλακών Δοκιδωτές πλάκες, γνωστές και ως πλάκες με νευρώσεις, (σε αντιδιαστολή με τις συνήθεις πλάκες οι οποίες δηλώνονται

Διαβάστε περισσότερα

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0) Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 26-6-2009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

Διαβάστε περισσότερα

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ

ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Ασκήσεις ιδάσκων: Παναγόπουλος Γεώργιος Ονοµατεπώνυµο: Σέρρες 29-1-2010 Εξάµηνο Α Βαθµολογία: ΖΗΤΗΜΑ 1 ο (µονάδες 6.0) Στο

Διαβάστε περισσότερα

XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73

XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 20 1 XΑΛΥΒΔΌΦΥΛΛΟ SYMDECK 73 ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ Σύμμικτες πλάκες ονομάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούνται από χαλυβδόφυλλα και επί τόπου έγχυτο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8. Διαστασιολόγηση πλακών

ΚΕΦΑΛΑΙΟ 8. Διαστασιολόγηση πλακών ΚΕΦΑΛΑΙΟ 8 Διαστασιολόγηση πλακών 8.1 Γενικά Με τον όρο «πλάκες» αναφερόμαστε συνήθως σε επίπεδους φορείς σχετικά λεπτού πάχους που φορτίζονται κυρίως κάθετα στο επίπεδό τους και στηρίζονται γραμμικά (π.χ.

Διαβάστε περισσότερα

Λειτουργία της πλάκας Επίδραση στο σχεδιασμό της δοκού. Φορτία Συνεργαζόμενο πλάτος. Προκατασκευή

Λειτουργία της πλάκας Επίδραση στο σχεδιασμό της δοκού. Φορτία Συνεργαζόμενο πλάτος. Προκατασκευή Λειτουργία της πλάκας Επίδραση στο σχεδιασμό της δοκού Φορτία Συνεργαζόμενο πλάτος Προκατασκευή 2 Δοκός Δοκός Δοκός Δοκός Δ1 25/50 Δοκός Μορφή Ολόσωμες Δοκός α) Αμφιέρειστη β) Τετραέρειστη Με νευρώσεις

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Ασκήσεις ιδάσκων: Παναγόπουλος Γεώργιος Ονοµατεπώνυµο: Σέρρες 18-6-2010 Εξάµηνο Α Βαθµολογία: ΖΗΤΗΜΑ 1 ο (µονάδες 4.0) ίνεται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * 1 η σειρά ΑΣΚΗΣΗ 1 Ζητείται ο έλεγχος σε κάμψη μιάς δοκού ορθογωνικής διατομής 250/600 (δηλ. Πλάτους 250 mm και ύψους 600 mm) για εντατικά μεγέθη: Md = 100 KNm Nd = 12 KN Προσδιορίστε

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. Οι γραμμικοί φορείς. 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων

ΚΕΦΑΛΑΙΟ. Οι γραμμικοί φορείς. 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων ΚΕΦΑΛΑΙΟ 1 Οι γραμμικοί φορείς 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων 2 1. Οι γραμμικοί φορείς 1.1 Εισαγωγή 3 1.1 Εισαγωγή Για να γίνει ο υπολογισμός μιας κατασκευής, θα πρέπει ο μελετητής μηχανικός

Διαβάστε περισσότερα

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών Πλάκες με νευρώσεις Πλάκες με νευρώσεις Οι πλάκες με νευρώσεις αποτελούνται από διαδοχικές πλακοδοκούς

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: ΘΕΜΑ 1 Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα Μ, Q, N (3.5 μονάδες) β) η κατακόρυφη βύθιση του κόμβου 7 λόγω της φόρτισης και μιας ομοιόμορφης μείωσης της θερμοκρασίας

Διαβάστε περισσότερα

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0) Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 11-9-2009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 3 Ανάλυση της Φέρουσας Ικανότητας Επιφανειακών Θεμελιώσεων κατά τον Ευρωκώδικα 7 8.0.2005 Έλεχος επάρκειας επιφανειακών

Διαβάστε περισσότερα

Βασικές Αρχές Σχεδιασμού Δράσεις

Βασικές Αρχές Σχεδιασμού Δράσεις Βασικές Αρχές Σχεδιασμού Δράσεις Δομική Μηχανική ΙΙΙ Χρ. Ζέρης Σχολή Πολιτικών Μηχανικών, ΕΜΠ Εξέλιξη των Κανονισμών 1959 Κανονισμός Έργων από Σκυρόδεμα και Αντισεισμικός Κανονισμός (ΒΔ 59) Επιτρεπόμενες

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,

Διαβάστε περισσότερα

ADAPTOR. Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης. Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα

ADAPTOR. Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης. Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα ADAPTOR Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα Version 1.0 Ιανουάριος 004 ΠΝΕΥΜΑΤΙΚΑ ΙΚΑΙΩΜΑΤΑ Το λογισµικό Adaptor και όλα τα

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 2. Δικτυώματα/ Μηχανική Υλικών 1 Σκοποί ενότητας Να είναι σε θέση ο φοιτητής να μπορεί να ελέγχει την ισο-στατικότητα

Διαβάστε περισσότερα

Σέρρες 20-1-2006. Βαθμολογία:

Σέρρες 20-1-2006. Βαθμολογία: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι (Εργαστήριο) Διδάσκοντες: Λιαλιαμπής Ι., Μελισσανίδης Σ., Παναγόπουλος Γ. A Σέρρες 20-1-2006 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία:

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 3 Ανάλυση της Φέρουσας Ικανότητας Επιφανειακών Θεμελιώσεων κατά τον Ευρωκώδικα 7 8.0.2005 Έλεχος επάρκειας επιφανειακών

Διαβάστε περισσότερα

Κατασκευές Οπλισμένου Σκυροδέματος Ι

Κατασκευές Οπλισμένου Σκυροδέματος Ι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχ/κών και Μηχ/κών Τοπογραφίας και Γεωπληροφορικής Τ.Ε. Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ

ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ Σύµµικτες πλάκες ονοµάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούντα από χαλυβδόφυλλα και επί τόπου έγχυτο σκυρόδεµα. Η σύµµικτη µέθοδος κατασκευής πλακών

Διαβάστε περισσότερα

Πλαστική Κατάρρευση Δοκών

Πλαστική Κατάρρευση Δοκών Πλαστική Κατάρρευση Δοκών ΠΕΡΙΕΧΟΜΕΝΑ Σταδιακή Μελέτη Πλαστικής Κατάρρευσης o Παράδειγμα 1 (ισοστατικός φορέας) o Παράδειγμα 2 (υπερστατικός φορέας) Αμεταβλητότητα Φορτίου Πλαστικής Κατάρρευσης Προσδιορισμός

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 1. Εισαγωγικές έννοιες... 17 1.1 Φορτία... 17 1.2 Η φέρουσα συμπεριφορά των βασικών υλικών... 22 1.2.1 Χάλυβας... 23 1.2.2 Σκυρόδεμα... 27 1.3 Η φέρουσα συμπεριφορά

Διαβάστε περισσότερα

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 016 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής

Διαβάστε περισσότερα

Εγχειρίδιο Χρήσης ❺ Πλάκες

Εγχειρίδιο Χρήσης ❺ Πλάκες Εγχειρίδιο Χρήσης ❺ Πλάκες 2 ΠΕΡΙΕΧΟΜΕΝΑ I. ΤΟ ΝΕΟ ΑΝΑΒΑΘΜΙΣΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟΥ SCADA Pro 4 II. ΑΝΑΛΥΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΙΑΣ 5 1. Πλάκες 5 1.1 Εισαγωγή 6 1.2 Τροποποίηση 10 1.3 Τομές

Διαβάστε περισσότερα

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες)

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΘΕΜΑ ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΕΠΙΛΥΣΗ: Ο φορέας χωρίζεται στα τμήματα Α και Β. Το τμήμα Α είναι τριαρθρωτό τόξο. Απομονώνοντας το Α και

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 0 Θεμελιώσεις με πασσάλους : Ανάλυση φέρουσας ικανότητας κατά τον Ευρωκώδικα 7 2.2.2005 ΘΕΜΕΛΙΩΣΕΙΣ ΜΕ ΠΑΣΣΑΛΟΥΣ.

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

Χ. ΖΕΡΗΣ Απρίλιος

Χ. ΖΕΡΗΣ Απρίλιος Χ. ΖΕΡΗΣ Απρίλιος 2016 1 Κατά την παραλαβή φορτίων στα υποστυλώματα υπάρχουν πρόσθετες παραμορφώσεις: Μονολιθικότητα Κατασκευαστικές εκκεντρότητες (ανοχές) Στατικές ροπές λόγω κατακορύφων Ηθελημένα έκκεντρα

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ

Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σιδηρές Κατασκευές Ι Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης

Διαβάστε περισσότερα

Η επικάλυψη των ΕΠΙΚΑΛΥΨΗΣ οπλισμών υπολογίζεται ΠΛΑΚΩΝ σύμφωνα με την 4.2(σχήμα 4.1) και από

Η επικάλυψη των ΕΠΙΚΑΛΥΨΗΣ οπλισμών υπολογίζεται ΠΛΑΚΩΝ σύμφωνα με την 4.2(σχήμα 4.1) και από Τ.Ε.Ι. Τμήμα Κατασκευές ΣΕΡΡΩΝ Πολιτικών Οπλισμένου Δομικών Σκυροδέματος Έργων ΥΠΟΛΟΓΙΣΜΟΣ Ι Η επικάλυψη των ΕΠΙΚΑΛΥΨΗΣ οπλισμών υπολογίζεται ΠΛΑΚΩΝ σύμφωνα με την 4.(σχήμα 4.1) και από Β προκύπτει d1cnom+øw+øl/

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΙΕΥΤΙΚΟ ΙΡΥΜ ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική Ι 15 Φεβρουαρίου 1 ιδάσκων:, Ph.D. ιάρκεια εξέτασης : ΛΥΣΕΙΣ ΘΕΜΤΩΝ ΡΠΤΗ ΕΞΕΤΣΗ (1 η περίοδος χειμερινού

Διαβάστε περισσότερα

Διερεύνηση της επίδρασης του προσομοιώματος στην ανάλυση κτηρίου Ο/Σ κατά ΕΚ8 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διερεύνηση της επίδρασης του προσομοιώματος στην ανάλυση κτηρίου Ο/Σ κατά ΕΚ8 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ Διερεύνηση της επίδρασης του προσομοιώματος στην ανάλυση κτηρίου Ο/Σ κατά ΕΚ8 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του ΠΑΠΑΝΔΡΕΟΥ Σ ΝΙΚΟΛΑΟΥ Επιβλέπων:

Διαβάστε περισσότερα

Υ Π Ο Μ Ο Ν Α Δ Α «Κ Λ Ι Μ Α Κ Ε Σ»

Υ Π Ο Μ Ο Ν Α Δ Α «Κ Λ Ι Μ Α Κ Ε Σ» Σ Τ Α Τ Ι Κ Ε Σ Μ Ε Λ Ε Τ Ε Σ Κ Τ Η Ρ Ι Ω Ν Υ Π Ο Μ Ο Ν Α Δ Α «Κ Λ Ι Μ Α Κ Ε Σ» Ο Δ Η Γ Ο Σ Χ Ρ Η Σ Η Σ ΤΕΧΝΙΚΟΣ ΟΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ www.tol.com.gr Οκτώβριος 2012 ΤΕΧΝΙΚΟΣ ΟΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ Καρτερού 60, 71201

Διαβάστε περισσότερα

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ] Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1

Διαβάστε περισσότερα

Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα

Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα Εισαγωγικές Έννοιες Ισοστατικότητα Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2 Ισοστατικός (ή στατικά ορισμένος) λέγεται ο φορέας που ο προσδιορισμός της εντατικής του κατάστασης είναι δυνατός βάσει μόνο των

Διαβάστε περισσότερα

3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 3.1 ΑΝΟΧΕΣ ΔΙΑΣΤΑΣΕΩΝ [ΕΚΟΣ 5.2] Ισχύουν μόνο για οικοδομικά έργα. Απαιτούνται ιδιαίτερες προδιαγραφές για μη οικοδομικά έργα l: Ονομαστική τιμή διάστασης Δl: Επιτρεπόμενη

Διαβάστε περισσότερα

2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ ΧΩΡΙΚΟΥ ΚΤΙΡΙΑΚΟΥ ΦΟΡΕΑ ΜΕ ΤΟ ΠΡΟΓΡΑΜΜΑ SAP-2000

2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ ΧΩΡΙΚΟΥ ΚΤΙΡΙΑΚΟΥ ΦΟΡΕΑ ΜΕ ΤΟ ΠΡΟΓΡΑΜΜΑ SAP-2000 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ ΚΑΙ ΥΝΑΜΙΚΗΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ 2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ

Διαβάστε περισσότερα

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Ευρωκώδικες Εγχειρίδιο αναφοράς Αθήνα, Μάρτιος 01 Version 1.0.3 Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Με το Fespa έχετε τη δυνατότητα να μελετήσετε

Διαβάστε περισσότερα

Θέματα (& Λύσεις) Εξετάσεων Φεβρουαρίου 2014:

Θέματα (& Λύσεις) Εξετάσεων Φεβρουαρίου 2014: ΔΙΔΑΣΚΩΝ: ΚΧ ΓΙΑΝΝΑΚΟΓΛΟΥ, Καθηητής ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ 04 Θέματα (& Λύσεις) Εξετάσεων Φεβρουαρίου 04: ΘΕΜΑ (6 μονάδες) Συμπιέζουμε αέρα (τέλειο αέριο) από τις συνθήκες (Τ t, t ) στις

Διαβάστε περισσότερα

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΡΓΟ : ΝΟΜΙΜΟΠΟΙΗΣΗ ΒΑΣΕΙ ΑΡΘ.23 (ΝΟΚ) ΑΛΛΑΓΩΝ ΩΣ ΠΡΟΣ ΤΑ ΑΡΧΙΤΕΚΤΟΝΙΚΑ ΚΑΙ ΣΤΑΤΙΚΑ ΤΗΣ 529/03 ΟΙΚ. ΑΔΕΙΑΣ ΚΑΙ ΜΕΤΑΤΡΟΠΗΣ ΑΥΛΙΟΥ ΧΩΡΟΥ ΣΕ ΠΡΟΘΑΛΑΜΟ ΑΛΛΑΓΗ ΧΡΗΣΗΣ ΙΣΟΓΕΙΟΥ ΑΠΟ ΑΠΟΘΗΚΗ ΣΕ ΧΩΡΟ ΣΥΝΑΘΡΟΙΣΗΣ

Διαβάστε περισσότερα

Παράρτημα Η Έκδοση Βελτιωμένοι σεισμικοί συνδυασμοί Μέθοδος «Κατάλοιπης ιδιομορφής» Διαστασιολόγηση πεδιλοδοκών

Παράρτημα Η Έκδοση Βελτιωμένοι σεισμικοί συνδυασμοί Μέθοδος «Κατάλοιπης ιδιομορφής» Διαστασιολόγηση πεδιλοδοκών Παράρτημα Η Έκδοση 2011 Βελτιωμένοι σεισμικοί συνδυασμοί Μέθοδος «Κατάλοιπης ιδιομορφής» Διαστασιολόγηση πεδιλοδοκών ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή...2 2. Βελτιωμένη χωρική επαλληλία σεισμικών συνδυασμών...3

Διαβάστε περισσότερα

ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q. Διδάσκων: Γιάννης Χουλιάρας

ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q. Διδάσκων: Γιάννης Χουλιάρας ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Διδάσκων: Γιάννης Χουλιάρας Διάφοροι τύποι ολόσωμων ισοστατικών πλαισίων Ισορροπία κόμβων ΣF x = 0 N 1 + N 2 cosθ + Q 2 sinθ N 3

Διαβάστε περισσότερα

ΕΥΕΛΙΚΤΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΗΜΥ 499

ΕΥΕΛΙΚΤΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΗΜΥ 499 ΕΥΕΛΙΚΤΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΗΜΥ 499 ΓΡΑΜΜΕΣ ΜΕΤΑΦΟΡΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ρ Ανδρέας Σταύρου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τα Θέµατα Γραµµές

Διαβάστε περισσότερα

ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι

ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι Ακαδηµαϊκό Έτος 2004 Χειµερινό Εξάµηνο Τελική Εξέταση 8:30-11:30 π.µ.

Διαβάστε περισσότερα

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος Μικρή επανάληψη 2 Βασικές παράμετροι : Γεωμετρία Εντατικά μεγέθη στο ΚΒ Καταστατικές σχέσεις υλικού Μετατόπιση του σημείου εφαρμογής των εξωτερικών δράσεων: Γενική περίπτωση Μας διευκολύνει στην αντιμετώπιση

Διαβάστε περισσότερα

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Διατμητική αστοχία τοιχώματος ισογείου Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Ανάλογα με τη στατική φόρτιση δημιουργούνται περιοχές στο φορέα όπου έχουμε καθαρή κάμψη ή καμπτοδιάτμηση. m(x)

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή Διδάσκων: Γιάννης Χουλιάρας Επίλυση υπερστατικών φορέων Για την επίλυση των ισοστατικών φορέων (εύρεση αντιδράσεων και μεγεθών έντασης) αρκούν

Διαβάστε περισσότερα

Βασικές Αρχές Σχεδιασμού Υλικά

Βασικές Αρχές Σχεδιασμού Υλικά Βασικές Αρχές Σχεδιασμού Υλικά Δομική Μηχανική ΙΙΙ Χρ. Ζέρης Σχολή Πολιτικών Μηχανικών, ΕΜΠ Το Ευρωπαϊκό πλαίσιο Μελετών και Εκτέλεσης έργων ΕΝ 10080 Χάλυβας οπλισμού Νοέμ. 2013 Χ. Ζέρης 2 ΕΚΩΣ, ΕΝ1992:

Διαβάστε περισσότερα

Τα θεµέλια είναι τα δοµικά στοιχεία ή φορείς που µεταφέρουν µε επάρκεια τα φορτία του κτιρίου (µόνιµα, κινητά, σεισµός, άλλοι συνδυασµοί) στο έδαφος.

Τα θεµέλια είναι τα δοµικά στοιχεία ή φορείς που µεταφέρουν µε επάρκεια τα φορτία του κτιρίου (µόνιµα, κινητά, σεισµός, άλλοι συνδυασµοί) στο έδαφος. Τα θεµέλια είναι τα δοµικά στοιχεία ή φορείς που µεταφέρουν µε επάρκεια τα φορτία του κτιρίου (µόνιµα, κινητά, σεισµός, άλλοι συνδυασµοί) στο έδαφος. Προβλέπεται άρα Έλεγχος του φορέα: σχεδιασµός και όπλιση

Διαβάστε περισσότερα

ΟΧΕΤΟΣ ver.1. Φακής Κωνσταντίνος, Πολιτικός μηχανικός 1/9

ΟΧΕΤΟΣ ver.1. Φακής Κωνσταντίνος, Πολιτικός μηχανικός 1/9 ΟΧΕΤΟΣ ver. Πρόκειται για ένα υπολογιστικό φύλλο που εφαρμόζει διαδικασία στατικού και υδραυλικού υπολογισμού ενός κιβωτιοειδούς φορέα (συνήθως οδικές κάτω διαβάσεις αρτηριών ή οχετοί εκτόνωσης ρεμμάτων).

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 005-06 ΔΙΑΛΕΞΗ Φέρουσα Ικανότητα Επιφανειακών Θεμελιώσεων 0.03.007 P Καμπύλες τάσεωνπαραμορφώσεων του εδάφους Γραμμική συμπεριφορά

Διαβάστε περισσότερα

Μοντέλο Προσοµοίωσης οκού Οπλισµένου Σκυροδέµατος µε Πεπερασµένα Στοιχεία για έλεγχο αστοχίας από τέµνουσα.

Μοντέλο Προσοµοίωσης οκού Οπλισµένου Σκυροδέµατος µε Πεπερασµένα Στοιχεία για έλεγχο αστοχίας από τέµνουσα. Μοντέλο Προσοµοίωσης οκού Οπλισµένου Σκυροδέµατος µε Πεπερασµένα Στοιχεία για έλεγχο αστοχίας από τέµνουσα. Γ. Ν. ΒΑ ΑΛΟΥΚΑΣ Πολιτικός Μηχανικός, 4Μ-VK Προγράµµατα Πολιτικού Μηχανικού, Ε.Π.Ε. Α. Γ. ΠΑΠΑΧΡΗΣΤΙ

Διαβάστε περισσότερα

ΑΝΩ ΔΙΑΒΑΣΗ ver.1. Φακής Κωνσταντίνος, Πολιτικός μηχανικός 1/14

ΑΝΩ ΔΙΑΒΑΣΗ ver.1. Φακής Κωνσταντίνος, Πολιτικός μηχανικός 1/14 ΑΝΩ ΔΙΑΒΑΣΗ ver. Πρόκειται για ένα υπολογιστικό φύλλο που εφαρμόζει διαδικασία στατικού και αντισεισμικού υπολογισμού ενός φορέα 3 ανοιγμάτων με συνεχές προεντεταμένο κατάστρωμα (συνήθως αφορά οδικές άνω

Διαβάστε περισσότερα

Σχεδιασµός κτηρίων Με και Χωρίς Αυξηµένες Απαιτήσεις Πλαστιµότητας: Συγκριτική Αξιολόγηση των δύο επιλύσεων

Σχεδιασµός κτηρίων Με και Χωρίς Αυξηµένες Απαιτήσεις Πλαστιµότητας: Συγκριτική Αξιολόγηση των δύο επιλύσεων Σχεδιασµός κτηρίων Με και Χωρίς Αυξηµένες Απαιτήσεις Πλαστιµότητας: Συγκριτική Αξιολόγηση των δύο επιλύσεων (βάσει των ΕΑΚ-ΕΚΩΣ) Μ.Λ. Μωρέττη ρ. Πολιτικός Μηχανικός. ιδάσκουσα Παν. Θεσσαλίας.. Παπαλοϊζου

Διαβάστε περισσότερα

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΕΡΓΟ : ΡΥΘΜΙΣΗ ΒΑΣΕΙ Ν.4178/2013 ΚΑΤΑΣΚΕΥΗΣ ΜΕΤΑΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΘΕΣΗ : Λεωφόρος Χαλανδρίου και οδός Παλαιών Λατομείων, στα Μελίσσια του Δήμου Πεντέλης ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

Διαβάστε περισσότερα

Σχεδίαση Σ.Α.Ε: Σύγχρονες Μέθοδοι Σχεδίασης Σ.Α.Ε

Σχεδίαση Σ.Α.Ε: Σύγχρονες Μέθοδοι Σχεδίασης Σ.Α.Ε ΚΕΣ : Αυτόµατος Έλεχος ΚΕΣ Αυτόµατος Έλεχος Σχεδίαση Σ.Α.Ε: Σύχρονες Μέθοδοι Σχεδίασης Σ.Α.Ε 6 Niol Tpouli ΚΕΣ : Αυτόµατος Έλεχος Βιβλιοραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο : Ενότητες.-.3 Παρασκευόπουλος

Διαβάστε περισσότερα

BETONexpress, www.runet.gr

BETONexpress, www.runet.gr Πέδιλα ΠΕΡΙΕΧΟΜΕΝΑ 1. Υπ ολογισμοί τμήματος κατασκευής : ΠΕΔΙΛΟ-001, Μεμονωμένο, κεντρικό πέδιλο, με ροπ ή και σεισμό 1.1. Διαστάσεις-Υλικά-Φορτία 1.2. Κανονισμοί 1.3. Ελεγχοι φέρουσας ικανότητας εδάφους

Διαβάστε περισσότερα

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών Δεξαμενές Ο/Σ (Μέρος 2 ο ) -Σιλό Ορθογωνικές δεξαμενές Διάκριση ως προς την ύπαρξη ή μη επικάλυψης

Διαβάστε περισσότερα

Ενότητα ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ

Ενότητα ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ Ενότητα Β ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ ΜΕΘΟ ΟΛΟΓΙΑ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΩΝ ΡΑΣΕΩΝ ΕΝΤΟΠΙΣΜΟΣ ΣΤΑΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΙΑΚΡΙΣΗ ΦΟΡΤΙΩΝ-ΣΤΗΡΙΞΕΩΝ-ΕΠΙΠΟΝΗΣΕΩΝ ΣΤΑΤΙΚΗ ΕΠΙΛΥΣΗ ΜΕΘΟ ΟΛΟΓΙΑ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ

Διαβάστε περισσότερα

Εγχειρίδιο Χρήσης ❽ Αποτελέσματα

Εγχειρίδιο Χρήσης ❽ Αποτελέσματα Εγχειρίδιο Χρήσης ❽ Αποτελέσματα 2 ΠΕΡΙΕΧΟΜΕΝΑ I.ΤΟ ΝΕΟ ΑΝΑΒΑΘΜΙΣΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟΥ SCADA Pro 4 II.ΑΝΑΛΥΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΙΑΣ 5 1.Αποτελέσματα 5 1.1 Διαγράμματα Παραμορφώσεις 6 1.2

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Σχήμα 2 Παραγόμενη Μονάδες S.I. όνομα σύμβολο Εμβαδό Τετραγωνικό μέτρο m 2 Όγκος Κυβικό μέτρο m 3 Ταχύτητα Μέτρο ανά δευτερόλεπτο m/s Επιτάχυνση Μέτρο ανά δευτ/το στο τετράγωνο m/s 2 Γωνία Ακτίνιο

Διαβάστε περισσότερα

Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής 3 για συνδυασμό. Λύση. Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις 3 περιπτώσεις

Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής 3 για συνδυασμό. Λύση. Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις 3 περιπτώσεις Εφαρμογή 9 Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής για συνδυασμό φόρτισης.5g.5q. Xάλυβας συνδετήρων S400 Λύση Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις περιπτώσεις φόρτισης που αναφέρονται

Διαβάστε περισσότερα

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ: ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : 8-9-, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......

Διαβάστε περισσότερα

Περιεχόμενα. 1 Εισαγωγή... 17

Περιεχόμενα. 1 Εισαγωγή... 17 Περιεχόμενα 1 Εισαγωγή... 17 1.1 Αντικείμενο... 17 1. Δομικά στοιχεία με σύμμικτη δράση... 17 1.3 Κτίρια από σύμμικτη κατασκευή... 19 1.4 Περιορισμοί... 19 Βάσεις σχεδιασμού... 1.1 Δομικά υλικά... 1.1.1

Διαβάστε περισσότερα

Fespa 10 EC. For Windows. Προσθήκη ορόφου και ενισχύσεις σε υφιστάμενη κατασκευή. Αποτίμηση

Fespa 10 EC. For Windows. Προσθήκη ορόφου και ενισχύσεις σε υφιστάμενη κατασκευή. Αποτίμηση Fespa 10 EC For Windows Προσθήκη ορόφου και ενισχύσεις σε υφιστάμενη κατασκευή Αποτίμηση της φέρουσας ικανότητας του κτιρίου στη νέα κατάσταση σύμφωνα με τον ΚΑΝ.ΕΠΕ 2012 Αθήνα, εκέμβριος 2012 Version

Διαβάστε περισσότερα

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1)

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1) Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1) ΠΕΡΙΕΧΟΜΕΝΑ Πλαστική Κατάρρευση Υπερστατικής Δοκού Πλαστική Κατάρρευση Συνεχούς Δοκού Η Εξίσωση Δυνατών Εργων Θεωρήματα Πλαστικής Αναλυσης Θεωρία Μηχανισμών

Διαβάστε περισσότερα

4.5.3 Τένοντες με συνάφεια

4.5.3 Τένοντες με συνάφεια 18118 ΕΦΗΜΕΡΙΣΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣΔΕΥΤΕΡΟ) προσωρινώς μεν τένοντες οι οποίοι πρόκειται να συνδεθούν με το σκυρόδεμα μέσω τσιμεντενέματος (οι τένοντες υπάγονται σε αυτήν την κατηγορία πριν από την ενεργοποίηση

Διαβάστε περισσότερα

Γιώργος Μπουκοβάλας. Φεβρουάριος 2015. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 3.1

Γιώργος Μπουκοβάλας. Φεβρουάριος 2015. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 3.1 3. Ανάλυση & Σχεδιασμός ΕΥΚΑΜΠΤΩΝ ΑΝΤΙΣΤΗΡΙΞΕΩΝ Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. Φεβρουάριος 2015 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 3.1 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής

Διαβάστε περισσότερα

Ενότητα Ι ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΕΙΣΤΩΝ ΚΑΙ ΤΕΤΡΑΕΡΕΙΣΤΩΝ ΠΛΑΚΩΝ

Ενότητα Ι ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΕΙΣΤΩΝ ΚΑΙ ΤΕΤΡΑΕΡΕΙΣΤΩΝ ΠΛΑΚΩΝ Ενότητα Ι ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΕΙΣΤΩΝ ΚΑΙ ΤΕΤΡΑΕΡΕΙΣΤΩΝ ΠΛΑΚΩΝ 1. ΣΤΟΧΟΙ ΚΑΙ ΚΡΙΤΗΡΙΑ ΟΡΘΟΥ ΣΧΕΔΙΑΣΜΟΥ Ο στόχος του σχεδιασμού των φορέων σε κατάσταση αστοχίας είναι, όπως εντοπίστηκε στην ενότητα Α και Ζ διττός:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Οριακές Καταστάσεις Σχεδιασµού - Συντελεστές Ασφαλείας - ράσεις Σχεδιασµού - Συνδυασµοί ράσεων - Εντατικές Καταστάσεις

ΚΕΦΑΛΑΙΟ 1 Οριακές Καταστάσεις Σχεδιασµού - Συντελεστές Ασφαλείας - ράσεις Σχεδιασµού - Συνδυασµοί ράσεων - Εντατικές Καταστάσεις ΚΕΦΑΛΑΙΟ 1 Οριακές Καταστάσεις Σχεδιασµού - Συντελεστές Ασφαλείας - ράσεις Σχεδιασµού - Συνδυασµοί ράσεων - Εντατικές Καταστάσεις 1.1. Οριακές καταστάσεις σχεδιασµού (Limit States) Κατά τη διάρκεια ζωής

Διαβάστε περισσότερα

ΕΝΙΣΧΥΣΗ ΠΡΟΒΟΛΟΥ ΠΟΥ ΕΧΕΙ ΥΠΟΣΤΕΙ ΒΕΛΟΣ ΚΑΜΨΗΣ

ΕΝΙΣΧΥΣΗ ΠΡΟΒΟΛΟΥ ΠΟΥ ΕΧΕΙ ΥΠΟΣΤΕΙ ΒΕΛΟΣ ΚΑΜΨΗΣ Ενίσχυση Προβόλου που έχει Υποστεί Βέλος Κάμψης ΕΝΙΣΧΥΣΗ ΠΡΟΒΟΛΟΥ ΠΟΥ ΕΧΕΙ ΥΠΟΣΤΕΙ ΒΕΛΟΣ ΚΑΜΨΗΣ ΒΕΝΙΟΣ ΚΥΡΙΑΚΟΣ ΚΟΥΦΟΠΟΥΛΟΥ ΣΤΥΛΙΑΝΗ Περίληψη Η παρούσα εργασία εξετάζει την δημιουργία βέλους κάμψης σε

Διαβάστε περισσότερα

Γιώργος ΒΑ ΑΛΟΥΚΑΣ 1, Κρίστης ΧΡΥΣΟΣΤΟΜΟΥ 2. Λέξεις κλειδιά: Ευρωκώδικας 2, CYS159, όγκος σκυροδέµατος, βάρος χάλυβα

Γιώργος ΒΑ ΑΛΟΥΚΑΣ 1, Κρίστης ΧΡΥΣΟΣΤΟΜΟΥ 2. Λέξεις κλειδιά: Ευρωκώδικας 2, CYS159, όγκος σκυροδέµατος, βάρος χάλυβα Συγκριτική µελέτη τυπικών κτιρίων οπλισµένου σκυροδέµατος µε το Ευρωκώδικα 2 και τον CYS 159 Comparative Study of typical reinforced concrete structures according το EC2 and CYS 159 Γιώργος ΒΑ ΑΛΟΥΚΑΣ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15. 10. Εσχάρες... 17

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15. 10. Εσχάρες... 17 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 10. Εσχάρες... 17 Γενικότητες... 17 10.1 Κύρια χαρακτηριστικά της φέρουσας λειτουργίας... 18 10.2 Στατική διάταξη και λειτουργία λοξών γεφυρών... 28 11. Πλάκες...

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΣ ΚΑΤΑΣΚΕΥΗΣ (Ε.Α.Κ Ε.Κ.Ω.Σ. 2000) ΤΕΝΤΟΛΟΥΡΗΣ ΕΥΑΓΓΕΛΟΣ ΚΑΛΟΓΕΡΟΠΟΥΛΟΥ ΓΕΩΡΓΙΑ

ΕΛΕΓΧΟΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΣ ΚΑΤΑΣΚΕΥΗΣ (Ε.Α.Κ Ε.Κ.Ω.Σ. 2000) ΤΕΝΤΟΛΟΥΡΗΣ ΕΥΑΓΓΕΛΟΣ ΚΑΛΟΓΕΡΟΠΟΥΛΟΥ ΓΕΩΡΓΙΑ ΕΛΕΓΧΟΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΣ ΚΑΤΑΣΚΕΥΗΣ (Ε.Α.Κ. 2003 Ε.Κ.Ω.Σ. 2000) ΑΠΟΤΙΜΩΜΕΝΗΣ ΜΕ pushover ΑΝΑΛΥΣΗ ΚΑΤΑ ΚΑΝ.ΕΠΕ. ΤΕΝΤΟΛΟΥΡΗΣ ΕΥΑΓΓΕΛΟΣ ΚΑΛΟΓΕΡΟΠΟΥΛΟΥ ΓΕΩΡΓΙΑ Περίληψη Σκοπός της παρούσης εργασίας είναι

Διαβάστε περισσότερα

Παρουσίαση Ευρωκώδικα 2 Εφαρµογή στο FESPA. Χάρης Μουζάκης Επίκουρος Καθηγητής Ε.Μ.Π

Παρουσίαση Ευρωκώδικα 2 Εφαρµογή στο FESPA. Χάρης Μουζάκης Επίκουρος Καθηγητής Ε.Μ.Π Παρουσίαση Ευρωκώδικα 2 Επίκουρος Καθηγητής Ε.Μ.Π Εισαγωγή Ο Ευρωκώδικας 2 περιλαµβάνει τα ακόλουθα µέρη: Μέρος 1.1: Γενικοί κανόνες και κανόνες για κτίρια Μέρος 1.2: Σχεδιασµός για πυρασφάλεια Μέρος 2:

Διαβάστε περισσότερα

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 5 Ιουνίου 1 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΡΑΠΤΗ

Διαβάστε περισσότερα

Παράρτημα Έκδοση Έδραση με κυκλικές κοιλοδοκούς Συνδετήριες δοκοί στο πρόγραμμα Πέδιλο Ανάλυση κατασκευής με ενημερωμένες διατομές μελών

Παράρτημα Έκδοση Έδραση με κυκλικές κοιλοδοκούς Συνδετήριες δοκοί στο πρόγραμμα Πέδιλο Ανάλυση κατασκευής με ενημερωμένες διατομές μελών Παράρτημα Έκδοση 2015 Έδραση με κυκλικές κοιλοδοκούς Συνδετήριες δοκοί στο πρόγραμμα Πέδιλο Ανάλυση κατασκευής με ενημερωμένες διατομές μελών ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 2 2. Έδραση με κυκλικές κοιλοδοκούς...

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ Έργο Ιδιοκτήτες Θέση ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ Η µελέτη συντάχθηκε µε το πρόγραµµα VK.STEEL 5.2 της Εταιρείας 4M -VK Προγράµµατα Πολιτικού Μηχανικού. Το VK.STEEL είναι πρόγραµµα επίλυσης χωρικού

Διαβάστε περισσότερα

Τ.Ε.Ι. ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ I. Διαγράμματα M, Q, N Ισοστατικών Δοκών

Τ.Ε.Ι. ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ I. Διαγράμματα M, Q, N Ισοστατικών Δοκών Τ.Ε.Ι. ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΣΚΗΣΕΙΣ ΣΤΤΙΚΗΣ I ιαγράμματα M, Q, N Ισοστατικών οκών Κόκκινος Τριαντ., Ph.D. εκέμβριος 2010 σκήσεις Στατικής I 1 Άσκηση 1 60 N/m 180

Διαβάστε περισσότερα

Νέα έκδοση προγράμματος STeel CONnections 2010.354

Νέα έκδοση προγράμματος STeel CONnections 2010.354 http://www.sofistik.gr/ Μεταλλικές και Σύμμικτες Κατασκευές Νέα έκδοση προγράμματος STeel CONnections 2010.354 Aξιότιμοι συνάδελφοι, Κυκλοφόρησε η νέα έκδοση του προγράμματος διαστασιολόγησης κόμβων μεταλλικών

Διαβάστε περισσότερα

3. Ανάλυση & Σχεδιασμός ΕΥΚΑΜΠΤΩΝ ΑΝΤΙΣΤΗΡΙΞΕΩΝ

3. Ανάλυση & Σχεδιασμός ΕΥΚΑΜΠΤΩΝ ΑΝΤΙΣΤΗΡΙΞΕΩΝ 3. Ανάλυση & Σχεδιασμός ΕΥΚΑΜΠΤΩΝ ΑΝΤΙΣΤΗΡΙΞΕΩΝ Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΜΑΡΤΙΟΣ 2009 ΠΕΡΙΕΧΟΜΕΝΑ 3.1 Τύποι αντιστηρίξεων 3.2 Αυτοφερόμενες αντιστηρίξεις (πρόβολοι) 3.3 Αντιστηρίξεις με απλή

Διαβάστε περισσότερα

Το Πρόγραµµα FESPA for Windows

Το Πρόγραµµα FESPA for Windows Το Πρόγραµµα FESPA for Windows Το πρόγραµµα FESPA for Windows αποτελεί ένα πολύ διαδεδοµένο εµπορικό πακέτο λογισµικού, το οποίο δίδει την δυνατότητα ανάλυσης και διαστασιολόγησης κατασκευών καθώς και

Διαβάστε περισσότερα

Στην προσπάθεια της η επιστήμη να περιγράψει την φύση, χρησιμοποιεί μαθηματικά

Στην προσπάθεια της η επιστήμη να περιγράψει την φύση, χρησιμοποιεί μαθηματικά Στην προσπάθεια της η επιστήμη να περιγράψει την φύση, χρησιμοποιεί μαθηματικά προσομοιώματα, τα οποία μέσω συγκεκριμένων παραδοχών πλησιάζουν την πραγματικότητα. Έτσι και στην επιστήμη του πολιτικού μηχανικού,

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΘΕΜΑ 1 ο (35%) Να επιλυθεί ο υπερστατικός φορέας του σχήματος χρησιμοποιώντας τη μέθοδο των παραμορφώσεων.

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΘΕΜΑ 1 ο (35%) Να επιλυθεί ο υπερστατικός φορέας του σχήματος χρησιμοποιώντας τη μέθοδο των παραμορφώσεων. ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΙΔΕΥΤΙΚΟ ΙΔΡΥΜ ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 8 Φεβρουαρίου Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΤΩΝ ΡΠΤΗ ΕΞΕΤΣΗ ( η περίοδος χειμερινού

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 30 Ιουνίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 30 Ιουνίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουνίου 11 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ (1

Διαβάστε περισσότερα