ΥΨΟΜΕΤΡΗΣΗ. hab = ο - ε.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΥΨΟΜΕΤΡΗΣΗ. hab = ο - ε."

Transcript

1 ΒΙΒΛΙΟΓΡΑΦΙΑ: Π. Σαββαΐδης, Ι. Υφαντής, Κ. Λακάκης, ΣΗΜΕΙΩΣΕΙΣ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΘΕΜΑΤΙΚΗΣ ΧΑΡΤΟΓΡΑΦΙΑΣ ΓΙΑ ΤΟ ΤΜΗΜΑ ΑΡΧΙΤΕΚΤΟΝΩΝ Α. Π. Θ., Θεσσαλονίκη 2007 ΥΨΟΜΕΤΡΗΣΗ 1. H γεωµετρική χωροστάθµηση Στη γεωµετρική χωροστάθµηση ο προσδιορισµός των υψοµετρικών διαφορών γίνεται µε οριζόντιες σκοπεύσεις σε κατακόρυφες σταδίες. Για το σκοπό αυτό χρησιµοποιούνται ο χωροβάτης και οι σταδίες. Οι σταδίες κατασκευάζονται από ξερό ξύλο και χρωµατίζονται µε πολλές στρώσεις ελαιοχρώµατος, για να προστατεύονται από την επίδραση των καιρικών συνθηκών ή από αλουµίνιο. 'Eχουν διατοµή ορθογωνική ή - για να έχουν µεγαλύτερη αντοχή - διατοµή σε σχήµα Τ ή διπλού Τ. 'Eχουν µήκος (ύψος) µέχρι 5 m, πλάτος µέχρι 12 cm και πάχος 2 µέχρι 3 cm. Μπορεί να είναι ενιαίες ή πτυσσόµενες και φέρουν διαιρέσεις σε εκατοστά του µέτρου και αρίθµηση ανά 10 cm. Για την εκτέλεση της γεωµετρικής χωροστάθµησης ακολουθείται η παρακάτω διαδικασία: 'Eστω δύο σηµεία A και B στα οποία είναι τοποθετηµένες κατακόρυφα σταδίες (σχ. 2.28). Τα σηµεία Α και Β δεν πρέπει να απέχουν περισσότερο από m. Στη µέση περίπου µεταξύ των σηµείων τοποθετείται ένας χωροβάτης. Eστω ακόµα ότι έχουµε τη δυνατότητα να πάρουµε την οριζόντια σκόπευση ΣΣ. Aν στη σταδία που βρίσκεται στο σηµείο A η ανάγνωση (τοµή του οριζόντιου νήµατος του σταυρονήµατος του τηλεσκοπίου του χωροβάτη µε τις ενδείξεις της σταδίας) είναι ο και στη σταδία που βρίσκεται στο σηµείο B είναι ε, τότε η υψοµετρική διαφορά των δύο αυτών σηµείων είναι hab = ο - ε. H υψοµετρική αυτή διαφορά είναι ορισµένη ως προς το µέγεθος και το πρόσηµο. H σκόπευση προς το σηµείο A ονοµάζεται οπισθοσκόπευση (ο) και η σκόπευση προς το σηµείο B εµπροσθοσκόπευση (ε). 1

2 Για να έχουµε καλύτερα αποτελέσµατα, οι σταδίες πρέπει να τοποθετούνται κατά τη χρήση τους πάνω σε κατάλληλες βάσεις (χελώνες) σε όλη τη διάρκεια των µετρήσεων (σχ. 2.29). Οι χελώνες είναι κατασκευασµένες από σίδηρο ή αλουµίνιο και πιέζονται µε το πόδι πάνω στο έδαφος από τον στοχοφόρο προτού τοποθετηθούν πάνω σε αυτές οι σταδίες. Σχ H αρχή της γεωµετρικής χωροστάθµησης Σχ Χελώνες Στην περίπτωση που η απόσταση µεταξύ των σηµείων Α και Β είναι µεγάλη και η υψοµετρική διαφορά µεταξύ τους δεν µπορεί να προσδιοριστεί µε µια µόνο στάση του οργάνου, εκτελούµε χωροστάθµηση "καθ' όδευση". Στην περίπτωση αυτή εργαζόµαστε µε τον ακόλουθο τρόπο: 'Εστω ότι έχουµε δύο σηµεία Α και Β πάνω στη επιφάνεια του εδάφους που απέχουν µεταξύ τους µεγάλη απόσταση και ζητούµε να προσδιορίσουµε, µε τη βοήθεια της γεωµετρικής χωροστάθµησης, την υψοµετρική διαφορά hαβ µεταξύ τους (σχ. 2.30). 'Εστω ότι αρχίζουµε τη χωροστάθµηση από το Α προς το Β. Η διαδροµή αυτή ονοµάζεται µετάβαση. 2

3 3 Για το σκοπό αυτό τοποθετούµε κατακόρυφα την πρώτη σταδία πάνω από το σηµείο Α και το χωροβάτη πάνω από ένα σηµείο Σ1, που βρίσκεται περίπου στην ευθυγραµµία ΑΒ. Στη συνέχεια οριζοντιώνουµε το χωροβάτη και λαµβάνουµε την ένδειξη στη σταδία, που τη συµβολίζουµε µε το ο1 (οπισθοσκόπευση). Η απόσταση σταδίας χωροβάτη εξαρτάται από την κλίση του εδάφους και την ακρίβεια που επιδιώκουµε, προσδιορίζεται δε συνήθως µε βήµατα. Για χωροσταθµήσεις µεγάλης ακριβείας και σε οµαλό έδαφος δεν υπερβαίνει τα 20 µε 30 m. Σχ Χωροστάθµηση καθ όδευση Μετά στρέφουµε το τηλεσκόπιο του χωροβάτη κατά 200 gon περίπου και τοποθετούµε τη δεύτερη σταδία κατακόρυφα πάνω από ένα σηµείο Α1 έτσι, ώστε η απόστασή της από το χωροβάτη να είναι πάλι περίπου ίση µε την προηγούµενη. Μετά, αφού αποκαταστήσουµε και πάλι την οριζοντιότητα του χωροβάτη, που µε τη στροφή του τηλεσκοπίου θα έχει διαταραχτεί, λαµβάνουµε την ένδειξη ε1 (εµπροσθοσκόπευση) πάνω στη σταδία που αντιστοιχεί στο οριζόντιο νήµα του σταυρονήµατος. Εύκολα φαίνεται ότι η υψοµετρική διαφορά των σηµείων Α και Α1 παρέχεται από τη σχέση haα1 = ο - ε1 Στη συνέχεια επαναλαµβάνουµε ακριβώς τα ίδια, αφού θεωρήσουµε ως πρώτη σταδία εκείνη που τοποθετήσαµε ήδη πάνω από το σηµείο Α1, που τώρα έχει στραφεί κατά 200 gon. Η στροφή αυτή διευκολύνεται πολύ, γιατί κάτω ακριβώς από τη σταδία υπάρχει συνήθως η χελώνα. Ο χωροβάτης και η πρώτη σταδία τοποθετούνται τώρα σε νέες κατάλληλες θέσεις Σ2 και Α2 αντίστοιχα. 'Ετσι, αφού εργαστούµε µε τον ίδιο τρόπο, καταλήγουµε στο σηµείο Β. Αν οi και εi (i = 1, 2,..., n) είναι οι διαδοχικές τιµές των οπισθοσκοπεύσεων και εµπροσθοσκοπεύσεων και haiai+1 είναι οι µερικές υψοµετρικές διαφορές, τότε η υψοµετρική διαφορά µεταξύ των σηµείων Α και Β θα υπολογίζεται από τη σχέση

4 Αν ΗΑ είναι το απόλυτο υψόµετρο του σηµείου Α, τότε το απόλυτο υψόµετρο HB του σηµείου Β θα υπολογίζεται από τη σχέση HB = HA + hαβ Τα σηµεία Σ1, Σ2,..., Σn είναι οι διαδοχικές στάσεις του χωροβάτη κατά τη µετάβαση και ονοµάζονται σηµεία στάσης. Τα σηµεία Α1, Α2,..., Αn είναι οι διαδοχικές θέσεις των ενδιάµεσων σταδιών και ονοµάζονται σηµεία αλλαγής. Κατά την αλλαγή των σηµείων στάσης ο χωροβάτης µεταφέρεται πάνω στον τρίποδά του και δεν αποσυνδέεται. Αυτό γίνεται για να αποφεύγεται η απώλεια χρόνου. Μετά επαναλαµβάνεται η χωροστάθµηση κατά τον ίδιο τρόπο από το Β προς το Α. Η διαδροµή αυτή, που ονοµάζεται επιστροφή, γίνεται από διαφορετικά σηµεία στάσης και αλλαγής. Έτσι έχουµε µια νέα τιµή hβα για την υψοµετρική διαφορά των σηµείων Α και Β. Η τιµή αυτή θα έχει αντίθετο πρόσηµο και δεν πρέπει να διαφέρει από την προηγούµενη κατά ποσότητα µεγαλύτερη από εκείνη που επιτρέπουν οι κανονισµοί. Αν η συνθήκη αυτή δεν εφαρµόζεται, η χωροστάθµηση επαναλαµβάνεται από την αρχή. Όταν τελικά η συνθήκη εφαρµόζεται, λαµβάνουµε ως τελική τιµή της υψοµετρικής διαφοράς των σηµείων Α και Β τον (κεντροβαρικό) µέσο όρο των δύο τιµών που αντιστοιχούν στη χωροστάθµηση κατά µετάβαση και στη χωροστάθµηση κατά επιστροφή. Τα βάρη, εάν χρησιµοποιηθούν, εκλέγονται αντιστρόφως ανάλογα µε τα µήκη των αντίστοιχων διαδροµών. Η διαδικασία µιας χωροστάθµησης «καθ όδευση» περιγράφεται αναλυτικά στον πίνακα 2.1. Σε πολλές περιπτώσεις (π.χ. στις κατασκευές δρόµων, σιδηροδροµικών γραµµών, µελέτες αστικής οδοποιΐας κ.λπ.) παρουσιάζεται συνήθως η ανάγκη να προσδιορίσουµε τα υψόµετρα πολλών βοηθητικών (ενδιάµεσων σηµείων, τα οποία δεν µπορούν να χρησιµοποιηθούν ως σηµεία αλλαγής). Στην περίπτωση αυτή χρησιµο- 4

5 5 ποιείται η ακτινοειδής χωροστάθµηση κατά την οποία ο χωροβάτης τοποθετείται έξω από την ευθυγραµµία που ορίζουν τα σηµεία αλλαγής. Στον πίνακα 2.2 περιγράφεται αναλυτικά η διαδικασία µιας ακτινοειδούς χωροστάθµησης. Στον πίνακα 2.2, η υψοµετρική διαφορά µεταξύ των γνωστών υψοµετρικών σηµείων R1 = m και R2 = m είναι m. Η διαφορά αυτή είναι αυτό που σηµειώνεται ως "πρέπει" R2 - R1 = m. Από τη γεωµετρική χωροστάθµηση όµως προκύπτει ότι η υψοµετρική διαφορά µεταξύ των ίδιων σηµείων είναι ο - ε = m. Στον ίδιο πίνακα η διαφορά αυτή είναι αυτό που σηµειώνεται ως "είναι". 'Αρα το σφάλµα είναι w = "πρέπει" - "είναι" = m. Οι υψοµετρικές διαφορές h προκύπτουν µε αφαίρεση των ενδείξεων "έµπροσθεν" και "µεταξύ" από τις ενδείξεις "όπισθεν". Το σφάλµα w= m ισοκατανέµεται ( = m). Για µεγαλύτερη ακρίβεια, θα πρέπει να κατανέµεται ανάλογα µε την απόσταση µεταξύ των σταθερών σηµείων. Στη συνέχεια προκύπτουν οι οριστικές τιµές των υψοµετρικών διαφορών µεταξύ των σταθερών σηµείων. Κατά τη γεωµετρική χωροστάθµηση σε σχετικά µικρές αποστάσεις υπεισέρχονται διάφορα συστηµατικά και τυχαία σφάλµατα. Τα περισσότερα συστηµατικά σφάλµατα εξουδετερώνονται, όταν το σηµείο στάσης του οργάνου βρίσκεται στη µέση της απόστασης των δύο διαδοχικών σηµείων αλλαγής (καµπυλότητα της Γης, συστηµατικά σφάλµατα του χωροβάτη και υποδιαιρέσεων της σταδίας) και αποφεύγουµε σκοπεύσεις σε ύψος µικρότερο από 0.50 m από την επιφάνεια του εδάφους (µη συµµετρική διάθλαση των οπτικών ακτίνων). Στα τυχαία σφάλµατα περιλαµβάνονται η ατέλεια του παρατηρητή, η λήψη λανθασµένων αναγνώσεων, η ατελής οριζοντίωση του οργάνου ή η ατελής κατακορύφωση της σταδίας κ.λπ.

6 2. Η ταχυµετρική υψοµέτρηση µε ηλεκτρονική µέτρηση µήκους Έστω Α και Β τα σηµεία που θέλουµε να προσδιορίσουµε την υψοµετρική τους διαφορά µε ταχυµετρική υψοµέτρηση (σχ. 2.31). Για το σκοπό αυτό, στο σηµείο Α κεντρώνεται και οριζοντιώνεται ένας γεωδαιτικός σταθµός και στο σηµείο Β ράβδος µε ανακλαστήρα. Η υψοµετρική διαφορά δύο σηµείων Α, Β δίνεται από τη σχέση hab = Sκ cos z και το υψόµετρο του σηµείου Β, αν είναι γνωστό το υψόµετρο του Α, δίνεται από τη σχέση HB = HA + Sκ cos z + Yo - Yσ όπου Sκ είναι η µετρηµένη κεκλιµένη απόσταση, z η µετρηµένη ζενίθια γωνία, Υο το ύψος του οργάνου και Υσ είναι το ύψος σκόπευσης. Σχ Ταχυµετρική υψοµέτρηση µε ηλεκτρονική µέτρηση µήκους Το πλεονέκτηµα της ταχυµετρικής υψοµέτρησης σε σχέση µε τη γεωµετρική χωροστάθµηση είναι η άµεση µέτρηση σηµαντικών υψοµετρικών διαφορών, αν και µε σχετικά µικρότερη ακρίβεια. Ωστόσο, η ακρίβεια αυτή είναι απόλυτα επαρκής για µεγάλο αριθµό πρακτικών εφαρµογών και τοπογραφικών εργασιών. Η απόσταση των σηµείων που προσδιορίζουµε την µεταξύ τους υψοµετρική διαφορά µπορεί να είναι µεγάλη, ανάλογα µε την εµβέλεια µέτρησης µηκών του γεωδαιτικού σταθµού. Περιοριστικοί παράγοντες είναι η επίδραση της ατµόσφαιρας κατά τη µέτρηση των ζενίθιων ή κατακόρυφων γωνιών και διάφορα συστηµατικά και τυχαία σφάλµατα του µετρητικού εξοπλισµού και του συνεργείου µέτρησης. 6

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 5 0. Ι.Μ. Δόκας Επικ. Καθηγητής

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 5 0. Ι.Μ. Δόκας Επικ. Καθηγητής ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 5 0 Ι.Μ. Δόκας Επικ. Καθηγητής Υψομετρία Γνωστική περιοχή της Γεωδαισίας που έχει ως αντικείμενο τον προσδιορισμό υψομέτρων σε μεμονωμένα σημεία καθώς και υψομετρικών διαφορών μεταξύ

Διαβάστε περισσότερα

Θεοδόλιχος- ταχύµετρο τύπου WILD T16 ΠΡΟΣΟΧΗ στην ΑΣΦΑΛΕΙΑ ανθρώπων οργάνων οχηµάτων κτιρίων-εγκαταστάσεων φυτών 2

Θεοδόλιχος- ταχύµετρο τύπου WILD T16 ΠΡΟΣΟΧΗ στην ΑΣΦΑΛΕΙΑ ανθρώπων οργάνων οχηµάτων κτιρίων-εγκαταστάσεων φυτών 2 Η βασική τεχνική της Γεωδαισίας Με βάση µετρήσεις αποστάσεων γωνιών υψοµετρικών διαφορών Υπολογίζουµε τις διαστάσεις τη µορφή τη σχετική θέση σχηµάτων-σωµάτων στο επίπεδο/χώρο και τις µεταβολές τους 1

Διαβάστε περισσότερα

Τοπογραφία Γεωµορφολογία (Εργαστήριο) Ενότητα 5: Τοπογραφικά όργανα Γ ρ. Γρηγόριος Βάρρας

Τοπογραφία Γεωµορφολογία (Εργαστήριο) Ενότητα 5: Τοπογραφικά όργανα Γ ρ. Γρηγόριος Βάρρας Τοπογραφία Γεωµορφολογία (Εργαστήριο) Ενότητα 5: Τοπογραφικά όργανα Γ ρ. Γρηγόριος Βάρρας 1.1. ΧΩΡΟΒΑΤΗΣ Ο χωροβάτης είναι το Τοπογραφικό όργανο, που χρησιμοποιείται στη μέτρηση των υψομέτρων σημείων.

Διαβάστε περισσότερα

ίκτυα σηµείων για τοπογραφικές µετρήσεις

ίκτυα σηµείων για τοπογραφικές µετρήσεις ίκτυα σηµείων για τοπογραφικές µετρήσεις Ο προσδιορισµός κατά µέγεθος και µορφή ενός τµήµατος της φυσικής γήινης επιφάνειας µε τις φυσικές και τεχνητές λεπτοµέρειές του γίνεται κατά σηµεία, δηλαδή µε το

Διαβάστε περισσότερα

ΣΥΜΒΟΥΛΕΣ και ΟΔΗΓΙΕΣ ΓΙΑ ΤΟ ΘΕΜΑ ΤΗΣ ΤΟΠΟΓΡΑΦΙΑΣ ΙΙ

ΣΥΜΒΟΥΛΕΣ και ΟΔΗΓΙΕΣ ΓΙΑ ΤΟ ΘΕΜΑ ΤΗΣ ΤΟΠΟΓΡΑΦΙΑΣ ΙΙ Σύνταξη από τη φοιτήτρια Αθηνά Πεϊδου Με τη συμβολή ομάδας φοιτητών του ΤΑΤΜ-ΑΠΘ ΣΥΜΒΟΥΛΕΣ και ΟΔΗΓΙΕΣ ΓΙΑ ΤΟ ΘΕΜΑ ΤΗΣ ΤΟΠΟΓΡΑΦΙΑΣ ΙΙ Όργανο: Ταχύμετρο WILD T16 ΑΝΑΓΝΩΡΙΣΗ ΠΕΔΙΟΥ Επιλέγουμε τα σημεία εξάρτησης

Διαβάστε περισσότερα

Υπολογισµοί συντεταγµένων σηµείων

Υπολογισµοί συντεταγµένων σηµείων ΒΙΒΛΙΟΓΡΑΦΙΑ: Π. Σαββαΐδης, Ι. Υφαντής, Κ. Λακάκης, ΣΗΜΕΙΩΣΕΙΣ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΘΕΜΑΤΙΚΗΣ ΧΑΡΤΟΓΡΑΦΙΑΣ ΓΙΑ ΤΟ ΤΜΗΜΑ ΑΡΧΙΤΕΚΤΟΝΩΝ Α. Π. Θ., Θεσσαλονίκη 2007 1. Ορισµοί Υπολογισµοί συντεταγµένων σηµείων Η

Διαβάστε περισσότερα

Περιεχόµενα. Περιεχόµενα... 7. Ευρετήριο Γραφηµάτων... 11. Ευρετήριο Εικόνων... 18. Κεφάλαιο 1

Περιεχόµενα. Περιεχόµενα... 7. Ευρετήριο Γραφηµάτων... 11. Ευρετήριο Εικόνων... 18. Κεφάλαιο 1 Περιεχόµενα Περιεχόµενα... 7 Ευρετήριο Γραφηµάτων... 11 Ευρετήριο Εικόνων... 18 Κεφάλαιο 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ... 19 Θεωρία... 19 1.1 Έννοιες και ορισµοί... 20 1.2 Μονάδες µέτρησης γωνιών και µηκών...

Διαβάστε περισσότερα

ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ

ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Υ.ΠΕ.ΧΩ..Ε. ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ ΠΕΤΕΠ 07-03-01-50 07 Σιδηροδροµικά έργα 03 Στρώση Γραµµών 01 Γενικά περί στρώσεως 50 Οριζοντιογραφική και υψοµετρική τακτοποίηση

Διαβάστε περισσότερα

Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού

Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Υψομετρικές τεχνικές

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο ΠΑΛΙΟ http://eclass.survey.teiath.gr NEO

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

Τοπογραφία Γεωµορφολογία (Εργαστήριο) Ενότητα 3: Τοπογραφικά όργανα Α ρ. Γρηγόριος Βάρρας

Τοπογραφία Γεωµορφολογία (Εργαστήριο) Ενότητα 3: Τοπογραφικά όργανα Α ρ. Γρηγόριος Βάρρας Τοπογραφία Γεωµορφολογία (Εργαστήριο) Ενότητα 3: Τοπογραφικά όργανα Α ρ. Γρηγόριος Βάρρας 1. ΤΟΠΟΓΡΑΦΙΚΑ ΟΡΓΑΝΑ Ο σκοπός της Τοπογραφίας επιτυγχάνεται με τη χρήση των Τοπογραφικών οργάνων. Για τη διεκπεραίωση

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 3 0. Ι.Μ. Δόκας Επικ. Καθηγητής

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 3 0. Ι.Μ. Δόκας Επικ. Καθηγητής ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 3 0 Ι.Μ. Δόκας Επικ. Καθηγητής Επίγειες Γεωδαιτικές Μετρήσεις Μήκη Γωνίες Υψομετρικές διαφορές Παράμετροι οργάνων μέτρησης Ανάγνωση/Μέτρηση Σφάλμα/Αβεβαιότητα Μήκη Μέτρηση Μήκους Άμεση

Διαβάστε περισσότερα

8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ

8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ 69 8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ 8.1 Εισαγωγή Υπενθυμίζεται ότι το αστρονομικό πλάτος ενός τόπου είναι η γωνία μεταξύ της διεύθυνσης της κατακορύφου του τόπου και του επιπέδου του ουράνιου Ισημερινού. Ο προσδιορισμός

Διαβάστε περισσότερα

ύο λόγια από τους συγγραφείς.

ύο λόγια από τους συγγραφείς. ύο λόγια από τους συγγραφείς. Το βιβλίο αυτό γράφτηκε από τους συγγραφείς με σκοπό να συμβάλουν στην εκπαιδευτική διαδικασία του μαθήματος της Τοπογραφίας Ι. Το βιβλίο είναι γραμμένο με τον απλούστερο

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr

Διαβάστε περισσότερα

Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών

Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών Ενημερωτικό σεμινάριο για το μάθημα των Ασκήσεων Υπαίθρου Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών (θεματικές ενότητες 4, 5, 6, 7) Χ. Κωτσάκης Τμήμα Αγρονόμων και

Διαβάστε περισσότερα

Για την άρτια εκτέλεση του θέματος θα πρέπει να γίνουν οι παρακάτω εργασίες:

Για την άρτια εκτέλεση του θέματος θα πρέπει να γίνουν οι παρακάτω εργασίες: Το αντικείμενο του θέματος είναι η ταχυμετρική αποτύπωση σε κλίμακα 1:200 της περιοχής που ορίζεται από τo Σκαρίφημα Λιμνίου με Συντεταγμένες Σημείων το οποίο παραδόθηκε στο μάθημα και βρίσκεται στο eclass.

Διαβάστε περισσότερα

Πρόλογος 5. Πρόλογος

Πρόλογος 5. Πρόλογος Πρόλογος 5 Πρόλογος Η Τοπογραφία είναι ο επιστημονικός χώρος μέσω του οποίου κατόρθωσε να επιτύχει ο άνθρωπος την απεικόνιση τμημάτων της γήινης επιφάνειας στο επίπεδο. Ενδιάμεσο και απαραίτητο στάδιο

Διαβάστε περισσότερα

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ 63 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του

Διαβάστε περισσότερα

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΚ. ΕΤΟΣ 2006-2007 ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ Ηρώων Πολυτεχνείου 9, 157 80 Ζωγράφος Αθήνα Τηλ.: 210 772 2666 2668, Fax: 210 772 2670 ΓΕΩΔΑΙΤΙΚΗ

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΧΩΡΟΤΑΞΙΑΣ ΚΑΙ ΗΜΟΣΙΩΝ ΕΡΓΩΝ ΓΡΑΦΕΙΟ ΜΕΛΕΤΩΝ ΓΙΑ ΑΤΟΜΑ ΜΕ ΑΝΑΠΗΡΙΕΣ ΣΧΕ ΙΑΖΟΝΤΑΣ ΓΙΑ ΟΛΟΥΣ Ο ΗΓΙΕΣ ΣΧΕ ΙΑΣΜΟΥ

ΥΠΟΥΡΓΕΙΟ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΧΩΡΟΤΑΞΙΑΣ ΚΑΙ ΗΜΟΣΙΩΝ ΕΡΓΩΝ ΓΡΑΦΕΙΟ ΜΕΛΕΤΩΝ ΓΙΑ ΑΤΟΜΑ ΜΕ ΑΝΑΠΗΡΙΕΣ ΣΧΕ ΙΑΖΟΝΤΑΣ ΓΙΑ ΟΛΟΥΣ Ο ΗΓΙΕΣ ΣΧΕ ΙΑΣΜΟΥ ΥΠΟΥΡΓΕΙΟ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΧΩΡΟΤΑΞΙΑΣ ΚΑΙ ΗΜΟΣΙΩΝ ΕΡΓΩΝ ΓΡΑΦΕΙΟ ΜΕΛΕΤΩΝ ΓΙΑ ΑΤΟΜΑ ΜΕ ΑΝΑΠΗΡΙΕΣ ΣΧΕ ΙΑΖΟΝΤΑΣ ΓΙΑ ΟΛΟΥΣ Ο ΗΓΙΕΣ ΣΧΕ ΙΑΣΜΟΥ Κεφάλαιο 4. ΚΛΙΜΑΚΕΣ Ή ΣΚΑΛΕΣ 1. ΓΕΝΙΚΑ ΚΛΙΜΑΚΑ ή ΣΚΑΛΑ ονοµάζεται

Διαβάστε περισσότερα

Αποτυπώσεις Μνημείων και Αρχαιολογικών Χώρων

Αποτυπώσεις Μνημείων και Αρχαιολογικών Χώρων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποτυπώσεις Μνημείων και Αρχαιολογικών Χώρων Ενότητα 3 : Τοπογραφία και Μνημεία Τοκμακίδης Κωνσταντίνος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1 ΠΡΟΟΠΤΙΚΟ ΑΝΑΓΛΥΦΟ Το προοπτικό ανάγλυφο, όπως το επίπεδο προοπτικό, η στερεοσκοπική εικόνα κ.λπ. είναι τρόποι παρουσίασης και απεικόνισης των αρχιτεκτονικών συνθέσεων. Το προοπτικό ανάγλυφο είναι ένα

Διαβάστε περισσότερα

20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ

20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Αφιερωµένη στη µνήµη της Φυσικού Σύλβιας Γιασουµή Κυριακή, 19 Μαρτίου, 2006 Ώρα: 10:30-13:30 Οδηγίες: 1) Το δοκίµιο αποτελείται από έξι

Διαβάστε περισσότερα

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών Μ7 Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών 1. Σκοπός Τα διαστημόμετρα, τα μικρόμετρα και τα σφαιρόμετρα είναι όργανα που χρησιμοποιούνται για την μέτρηση της διάστασης του μήκους, του

Διαβάστε περισσότερα

Στροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή.

Στροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή. Στροφορµή Έστω ένα υλικό σηµείο που κινείται µε ταχύτητα υ και έστω ένα σηµείο Ο. Ορίζουµε στροφορµή του υλικού σηµείου ως προς το Ο, το εξωτερικό γινόµενο: L= r p= m r υ Όπου r η απόσταση του υλικού σηµείου

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα

ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα - &. ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου: Να µετρήσουµε την πυκνότητα

Διαβάστε περισσότερα

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και

Διαβάστε περισσότερα

Εισαγωγή στο Πεδίο Βαρύτητας

Εισαγωγή στο Πεδίο Βαρύτητας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 3: Συστήματα Υψών Η.Ν. Τζιαβός - Γ.Σ. Βέργος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Εισαγωγή στο

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΦΑΛΜΑΤΩΝ ΤΟΠΟΓΡΑΦΙΚΩΝ ΟΡΓΑΝΩΝ ΤΜΗΜΑΤΟΣ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ - ΙΟΡΘΩΣΕΙΣ

ΕΛΕΓΧΟΣ ΣΦΑΛΜΑΤΩΝ ΤΟΠΟΓΡΑΦΙΚΩΝ ΟΡΓΑΝΩΝ ΤΜΗΜΑΤΟΣ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ - ΙΟΡΘΩΣΕΙΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΟΠΟΓΡΑΦΙΑΣ ΕΛΕΓΧΟΣ ΣΦΑΛΜΑΤΩΝ ΤΟΠΟΓΡΑΦΙΚΩΝ ΟΡΓΑΝΩΝ ΤΜΗΜΑΤΟΣ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ - ΙΟΡΘΩΣΕΙΣ ΚΥΡΙΑΚΙ ΟΥ ΣΟΦΙΑ Πτυχιακή εργασία

Διαβάστε περισσότερα

Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο.

Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο. ΓΕΩΛΟΓΙΚΗ ΤΟΜΗ ΚΕΚΛΙΜΕΝΑ ΣΤΡΩΜΜΑΤΑ 6.1 ΚΛΙΣΗ ΣΤΡΩΜΑΤΟΣ Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο. Πραγματική κλίση στρώματος Η διεύθυνση μέγιστης κλίσης,

Διαβάστε περισσότερα

Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου

Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ

Διαβάστε περισσότερα

8. Υπολογισµός Α.Υ. επαφής σε τυχαία θέση: Το «πρόβληµα» της γεώτρησης

8. Υπολογισµός Α.Υ. επαφής σε τυχαία θέση: Το «πρόβληµα» της γεώτρησης 8. Υπολογισµός Α.Υ. επαφής σε τυχαία θέση: Το «πρόβληµα» της γεώτρησης 1. Γενικά... 78 2. Γεώτρηση σε απλά κεκλιµένα στρώµατα... 78 3. Γεώτρηση σε διερρηγµένα στρώµατα... 81 4. Γεώτρηση σε ασύµφωνα στρώµατα...

Διαβάστε περισσότερα

υψών διαφορετικού τύπου. Προσδιορίζονται είτε γεωµετρικά, είτε δυναµικά

υψών διαφορετικού τύπου. Προσδιορίζονται είτε γεωµετρικά, είτε δυναµικά Συστήµατα υψών ΣΥΣΤΗΜΑΤΑ ΥΨΩΝ Η βαρύτητα εξαρτάται από το ύψος, εποµένως τα συστήµατα υψών είναι ιδιαίτερα σηµαντικά για το πεδίο βαρύτητας. ιάφορες τεχνικές µετρήσεων οδηγούν στον προσδιορισµό υψών διαφορετικού

Διαβάστε περισσότερα

ΠΟΛΙΚΗ ΕΥΘΥΓΡΑΜΜΙΣΗ ΤΗΛΕΣΚΟΠΙΟΥ. Για έναν ερασιτέχνη αστρονόµο το πρώτο πράγµα που πιθανόν θα θελήσει

ΠΟΛΙΚΗ ΕΥΘΥΓΡΑΜΜΙΣΗ ΤΗΛΕΣΚΟΠΙΟΥ. Για έναν ερασιτέχνη αστρονόµο το πρώτο πράγµα που πιθανόν θα θελήσει ΠΟΛΙΚΗ ΕΥΘΥΓΡΑΜΜΙΣΗ ΤΗΛΕΣΚΟΠΙΟΥ Γενικά Για έναν ερασιτέχνη αστρονόµο το πρώτο πράγµα που πιθανόν θα θελήσει να κάνει, αφού στήσει το τηλεσκόπιό του, είναι να τοποθετήσει ένα προσοφθάλµιο και να κοιτάξει

Διαβάστε περισσότερα

1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα)

1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 20 1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 1.3.1 Ορισµός- Είδη - Χρήση Σκαρίφηµα καλείται η εικόνα ενός αντικειµένου ή εξαρτήµατος που µεταφέρεται σε χαρτί µε ελεύθερο χέρι (χωρίς όργανα σχεδίασης ή

Διαβάστε περισσότερα

ιατµηµατικό µεταπτυχιακό πρόγραµµα «Οπτική και Όραση» Ασκήσεις Οπτική Ι ιδάσκων: ηµήτρης Παπάζογλου Email: dpapa@iesl.forth.gr

ιατµηµατικό µεταπτυχιακό πρόγραµµα «Οπτική και Όραση» Ασκήσεις Οπτική Ι ιδάσκων: ηµήτρης Παπάζογλου Email: dpapa@iesl.forth.gr ιατµηµατικό µεταπτυχιακό πρόγραµµα «Οπτική και Όραση» Ασκήσεις Οπτική Ι ιδάσκων: ηµήτρης Παπάζογλου Email: dpapa@iesl.forth.gr 1. Να σχεδιάσετε την διάδοση των ακτίνων στα παρακάτω οπτικά συστήµατα F F

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0. Ι.Μ. Δόκας Επικ. Καθηγητής

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0. Ι.Μ. Δόκας Επικ. Καθηγητής ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0 Ι.Μ. Δόκας Επικ. Καθηγητής Γεωδαισία Μοιράζω τη γη (Γη + δαίομαι) Ακριβής Έννοια: Διαίρεση, διανομή /μέτρηση της Γής. Αντικείμενο της γεωδαισίας: Ο προσδιορισμός της μορφής, του

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου να: Να µετρήσουµε την πυκνότητα

Διαβάστε περισσότερα

Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση.

Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Τις προηγούµενες µέρες έγινε στο δίκτυο µια συζήτηση µε θέµα «Πόση είναι η κεντροµόλος επιτάχυνση;» Θεωρώ αναγκαίο να διατυπώσω µε απλό τρόπο κάποια

Διαβάστε περισσότερα

ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ

ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ Η προοπτική εικόνα, είναι, όπως είναι γνωστό, η προβολή ενός χωρικού αντικειμένου, σε ένα επίπεδο, με κέντρο προβολής, το μάτι του παρατηρητή. Η εικόνα αυτή, θεωρούμε ότι αντιστοιχεί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ Σάββατο, Απριλίου 008 Ώρα : :00-4:00 Οδηγίες: ) Το δοκίµιο αποτελείται από οκτώ (8) θέµατα. ) Να απαντήσετε σε όλα τα θέµατα. 3) Επιτρέπεται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 Ηµεροµηνία αποστολής στον φοιτητή: 9 Φεβρουαρίου 5. Τελική ηµεροµηνία αποστολής από τον φοιτητή: Μαρτίου 5.

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΘΕΜΑΤΟΣ ΑΠΟΤΥΠΩΣΗ ΟΙΚΟ ΟΜΙΚΟΥ ΤΕΤΡΑΓΩΝΟΥ ΚΑΙ ΟΜΟΡΩΝ ΑΥΤΟΥ ΗΜΟΣ ΕΥΟΣΜΟΥ ΝΟΜΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΤΙΤΛΟΣ ΘΕΜΑΤΟΣ ΑΠΟΤΥΠΩΣΗ ΟΙΚΟ ΟΜΙΚΟΥ ΤΕΤΡΑΓΩΝΟΥ ΚΑΙ ΟΜΟΡΩΝ ΑΥΤΟΥ ΗΜΟΣ ΕΥΟΣΜΟΥ ΝΟΜΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΙΤΛΟΣ ΘΕΜΑΤΟΣ ΑΠΟΤΥΠΩΣΗ ΟΙΚΟ ΟΜΙΚΟΥ ΤΕΤΡΑΓΩΝΟΥ ΚΑΙ ΟΜΟΡΩΝ ΑΥΤΟΥ ΗΜΟΣ ΕΥΟΣΜΟΥ ΝΟΜΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ ΦΟΙΤΗΤΕΣ Κοκολιός Στυλιανός Μυρίτης Λεονάρδος 05 ΝΟΕΜΒΡΙΟΥ 2009 ΚΑΘΗΓΗΤΗΣ Βακαλφώτης Κωνσταντίνος ΠΙΝΑΚΑΣ

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 5: Προ επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού

Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Δίκτυο

Διαβάστε περισσότερα

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση Γεωµετρική θεώρηση του Φωτός Ανάκλαση ηµιουργίαειδώλουαπόκάτοπτρα. είκτης ιάθλασης Νόµος του Snell Ορατό Φάσµα και ιασπορά Εσωτερική ανάκλαση Οπτικές ίνες ιάθλαση σε

Διαβάστε περισσότερα

Προδιαγραφές για την κατασκευή χώρων στάθµευσης αυτοκινήτων που εξυπηρετούν τα κτίρια. (ΦΕΚ 167/ /2-3-93)

Προδιαγραφές για την κατασκευή χώρων στάθµευσης αυτοκινήτων που εξυπηρετούν τα κτίρια. (ΦΕΚ 167/ /2-3-93) ΥΠΟΥΡΓΙΚΗ ΑΠΟΦΑΣΗ: Αριθµός 98728/7722/93 Προδιαγραφές για την κατασκευή χώρων στάθµευσης αυτοκινήτων που εξυπηρετούν τα κτίρια. (ΦΕΚ 167/ /2-3-93) Ο ΥΠΟΥΡΓΟΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΧΩΡΟΤΑΞΙΑΣ ΚΑΙ ΗΜΟΣΙΩΝ ΕΡΓΩΝ

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.pmoira.weebly.com ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ V Ροπή Αδράνειας Στερεού Σώµατος

ΠΕΙΡΑΜΑ V Ροπή Αδράνειας Στερεού Σώµατος ΠΕΙΡΑΜΑ V Ροπή Αδράνειας Στερεού Σώµατος Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την περιστροφική κίνηση που εκτελεί ένα υλικό σηµείο ή ένα στερεό σώµα, σταθερού µεγέθους και σχήµατος, υπό την

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΜΙΚΡΟΣΚΟΠΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ «ΒΙΟΛΟΓΙΑΣ ΚΥΤΤΑΡΟΥ» Ονοµατεπώνυµο...ΑΜ...

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΜΙΚΡΟΣΚΟΠΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ «ΒΙΟΛΟΓΙΑΣ ΚΥΤΤΑΡΟΥ» Ονοµατεπώνυµο...ΑΜ... ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΜΙΚΡΟΣΚΟΠΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ «ΒΙΟΛΟΓΙΑΣ ΚΥΤΤΑΡΟΥ» ΑΣΚΗΣΗ 2 η Μετρήσεις µε το µικροσκόπιο Κ. Φασσέας. Ονοµατεπώνυµο...ΑΜ... Σκοπός της άσκησης είναι: Να µάθουµε πώς γίνεται η

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω

Διαβάστε περισσότερα

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3 ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3 1. Θέλουµε να µετακινήσουµε ένα κιβώτιο κατά µήκος ενός λείου κεκλιµένου επιπέδου γωνίας κλίσης 20 ο µε την οριζόντια διεύθυνση. Δίνουµε στο κιβώτιο µια αρχική ταχύτητα 5.0m/s και

Διαβάστε περισσότερα

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3 ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3 1. Θέλουµε να µετακινήσουµε ένα κιβώτιο κατά µήκος ενός λείου κεκλιµένου επιπέδου γωνίας κλίσης 20 ο µε την οριζόντια διεύθυνση. Δίνουµε στο κιβώτιο µια αρχική ταχύτητα 5.0m/s και

Διαβάστε περισσότερα

Σύντομος οδηγός του προγράμματος DEROS

Σύντομος οδηγός του προγράμματος DEROS Τοπογραφικά Δίκτυα και Υπολογισμοί Σύντομος οδηγός του προγράμματος DEROS Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Πολυτεχνική Σχολή ΑΠΘ SUPPLEMENTARY COURSE NOTES Για περισσότερες λεπτομέρειες

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση =0.0 mm είναι τοποθετημένο σε απόσταση =1,0 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές φωτίζεται

Διαβάστε περισσότερα

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1 Στη συνέχεια θεωρούµε ένα τυχαίο διάνυσµα Σ 1 γράφεται ως, το οποίο στο σύστηµα Το ίδιο διάνυσµα µπορεί να γραφεί στο Σ 1 ως ένας άλλος συνδυασµός τριών γραµµικώς ανεξαρτήτων διανυσµάτων (τα οποία αποτελούν

Διαβάστε περισσότερα

Εντάξεις δικτύων GPS. 6.1 Εισαγωγή

Εντάξεις δικτύων GPS. 6.1 Εισαγωγή 6 Εντάξεις δικτύων GPS 6.1 Εισαγωγή Oι απόλυτες (X, Y, Z ή σχετικές (ΔX, ΔY, ΔZ θέσεις των σηµείων, έτσι όπως προσδιορίζονται από τις µετρήσεις GPS, αναφέρονται στο γεωκεντρικό σύστηµα WGS 84 (Wrld Gedetic

Διαβάστε περισσότερα

8. ΔΙΚΤΥΩΜΑΤΑ. 8.1 Ορισμοί:

8. ΔΙΚΤΥΩΜΑΤΑ. 8.1 Ορισμοί: 8. ΔΙΚΤΥΩΜΑΤΑ Σχ. 8.1 Παραδείγματα δικτυωμάτων 8.1 Ορισμοί: Δικτύωμα θα λέγεται ένας σύνθετος φορέας που όλα τα μέλη του είναι ράβδοι. Παραδείγματα δικτυωμάτων δίνονται στο σχήμα παραπάνω. Πλεονέκτημα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2012

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ 0 ΕΚΦΩΝΗΕΙ ΘΕΜΑ Α τις ηµιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα το γράµµα που αντιστοιχεί στη φράση η οποία τη συµπληρώνει σωστά. Α. Κατά τη

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

6.1 ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤΟ ΕΠΙΠΕ Ο

6.1 ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤΟ ΕΠΙΠΕ Ο 6. ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤ ΕΠΙΠΕ ΘΕΩΡΙΑ. Σύστηµα καθέτων ηµιαξόνων: Είναι δύο κάθετες µεταξύ τους ηµιευθείες µία οριζόντια και µία κατακόρυφη. Την οριζόντια την ονοµάζουµε και την λέµε ηµιάξονα των ή ηµιάξονα

Διαβάστε περισσότερα

Ερµηνεία Τοπογραφικού Υποβάθρου στη Σύνταξη και Χρήση Γεωλoγικών Χαρτών

Ερµηνεία Τοπογραφικού Υποβάθρου στη Σύνταξη και Χρήση Γεωλoγικών Χαρτών ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ Επιµέλεια: ηµάδη Αγόρω Ερµηνεία Τοπογραφικού Υποβάθρου στη Σύνταξη και Χρήση Γεωλoγικών Χαρτών ΙΣΟΫΨΕΙΣ ΚΑΜΠΥΛΕΣ: είναι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 3: ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 3: ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 3: ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ ΔΙΔΑΣΚΩΝ : Ι. ΖΑΧΑΡΙΑΣ ΑΓΡΙΝΙΟ, 2016 ΕΡΓΑΣΤΗΡΙΟ 3:

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

Υπολογισµός της ισχύος συστήµατος λεπτών φακών σε επαφή

Υπολογισµός της ισχύος συστήµατος λεπτών φακών σε επαφή Ο6 Υπογισµός της ισχύος συστήµατος λεπτών φακών σε επαφή. Σκοπός Στην άσκηση αυτή θα προσδιορίσουµε την εστιακή απόσταση που διαµορφώνει ένα σύστηµα λεπτών φακών που βρίσκονται σε επαφή µεταξύ τους και

Διαβάστε περισσότερα

Έκδοση 2.0 Ελληνικά. Leica NA720/724/ 728/730/730 plus Εγχειρίδιο Χρήσης

Έκδοση 2.0 Ελληνικά. Leica NA720/724/ 728/730/730 plus Εγχειρίδιο Χρήσης Έκδοση 2.0 Ελληνικά Leica NA720/724/ 728/730/730 plus Εγχειρίδιο Χρήσης NA720/724/728/730/730 plus, Εισαγωγή Εισαγωγή 2 Αγορά Συγχαρητήρια για την αγορά του Leica NA720/724/728/730/730 plus. Το εγχειρίδιο

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Φύλλο Εργασίας. Θέμα : Περπατώντας στο Πήλιο Θέλετε να οργανώσετε έναν ορειβατικό περίπατο από την Αγριά στην Δράκεια Πηλίου.

Φύλλο Εργασίας. Θέμα : Περπατώντας στο Πήλιο Θέλετε να οργανώσετε έναν ορειβατικό περίπατο από την Αγριά στην Δράκεια Πηλίου. Ενότητα Χάρτες Φύλλο Εργασίας Μελέτη χαρτών Τάξη Α Γυμνασίου Ονοματεπώνυμο.Τμήμα..Ημερομηνία. Σκοποί του φύλλου εργασίας Η εξοικείωση 1. Με την χρήση των χαρτών 2. Με την χρήση της πυξίδας 3. Με την εργασία

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά Κυµατική ΦΥΕ4 5/7/8 Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ4 Ιούλιος 8 KYMATIKH ιάρκεια: λεπτά Θέµα ο (Μονάδες:.5) A) Θεωρούµε τις αποστάσεις

Διαβάστε περισσότερα

3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου ΘΕΜΑ 1 (Μονάδες 7)

3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου ΘΕΜΑ 1 (Μονάδες 7) 3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου 2007 ΘΕΜΑ 1 (Μονάδες 7) Η θέση ενός σωματίου που κινείται στον άξονα x εξαρτάται από το χρόνο σύμφωνα με την εξίσωση: x (t) = ct 2 -bt 3 (1) όπου x σε μέτρα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003 ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Παραδείγματα στα θεμελιώδη προβλήματα.

Παραδείγματα στα θεμελιώδη προβλήματα. Θεμελιώδη προβλήματα της Τοπογραφίας 1 Παραδείγματα στα θεμελιώδη προβλήματα Παράδειγμα 1 ο Γνωρίζουμε τις συντεταγμένες των σημείων Α με Χ Α =19,71, Ψ Α =0,5 και Β με Χ Β =181,37 και Ψ Β =53,63 Θα υπολογίσουμε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003 ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

Οπτική και κύματα. Δημήτρης Παπάζογλου Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης

Οπτική και κύματα. Δημήτρης Παπάζογλου Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Οπτική και κύματα Δημήτρης Παπάζογλου dpapa@materal.uoc.gr Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Θεωρία πινάκων Διάνυσμα ακτίνας Παραξονική προσέγγιση ta διάνυσμα ακτίνας y αριθμητικό

Διαβάστε περισσότερα

ΘΕΜΑ 1 0. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-5 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 0. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-5 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικό διαγώνισµα Φυσικής Κατεύθυνσης Γ λυκείου 009 ΘΕΜΑ 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -5 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σώµα

Διαβάστε περισσότερα

TOPCON ΤΟΠΟΓΡΑΦΙΚΑ ΟΡΓΑΝΑ Tree Company Corporation A.E.B.E.

TOPCON ΤΟΠΟΓΡΑΦΙΚΑ ΟΡΓΑΝΑ Tree Company Corporation A.E.B.E. ΓΕΩΔΑΙΤΙΚΟΙ ΣΤΑΘΜΟΙ GPT-3000N series TOPCON REFLECTORLESS Με πλήρες Αλφαριθμητικό Πληκτρολόγιο! H σειρά Γεωδαιτικών Σταθμών GPT-3000Ν NON PRISM με δυνατότητα μέτρησης απόστασης χωρίς πρίσμα περιλαμβάνει

Διαβάστε περισσότερα

ΗΈνταξητουλογισµικού SalsaJσε. σεµιαδιαθεµατική προσέγγισητης Αστρονοµίας. Γρηγόρης Ζυγούρας Φυσικός Τεχνολόγος 2 ο Γυµνάσιο Χαλανδρίου

ΗΈνταξητουλογισµικού SalsaJσε. σεµιαδιαθεµατική προσέγγισητης Αστρονοµίας. Γρηγόρης Ζυγούρας Φυσικός Τεχνολόγος 2 ο Γυµνάσιο Χαλανδρίου ΗΈνταξητουλογισµικού SalsaJσε σεµιαδιαθεµατική προσέγγισητης Αστρονοµίας Γρηγόρης Ζυγούρας Φυσικός Τεχνολόγος 2 ο Γυµνάσιο Χαλανδρίου ΧΡΗΣΗΤΟΥ ΤΟΥΛΟΓΙΣΜΙΚΟΥ SALSAJ ΓΙΑΤΟΝ ΤΟΝΥΠΟΛΟΓΙΣΜΟ ΤΗΣΜΑΖΑΣ ΜΑΖΑΣΤΟΥ

Διαβάστε περισσότερα

Α. 1. Μετρήσεις και Σφάλµατα

Α. 1. Μετρήσεις και Σφάλµατα Α. 1. Μετρήσεις και Σφάλµατα Κάθε πειραµατική µέτρηση υπόκειται σε πειραµατικά σφάλµατα. Με τον όρο αυτό δεν εννοούµε λάθη τα οποία γίνονται κατά την εκτέλεση του πειράµατος ή τη λήψη των µετρήσεων, τα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Τα δύο

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ- Η ΠΑΓΚΥΠΡΙΑΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ- ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 0 Μαΐου 05 Ώρα : 0:0 - :00 ΘΕΜΑ 0 (µονάδες

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Επαναληπτικά Θέµατα ΟΕΦΕ 007 Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ZHTHMA Στις ερωτήσεις έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1 4 η Εργασία 1) ύο δυνάµεις F 1 και F 2 ασκούνται σε σώµα µάζας 5kg. Εάν F 1 =20N και F 2 =15N βρείτε την επιτάχυνση του σώµατος στα σχήµατα (α) και (β). [ 2 µονάδες] F 2 F 2 90 o 60 o (α) F 1 (β) F 1 2)

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ A. Οι δορυφόροι του συστήµατος GPS. GPS Block Ι. GPS Block ΙΙ και ΙΙΑ

ΠΑΡΑΡΤΗΜΑ A. Οι δορυφόροι του συστήµατος GPS. GPS Block Ι. GPS Block ΙΙ και ΙΙΑ ΠΑΡΑΡΤΗΜΑ A Οι δορυφόροι του συστήµατος GPS GPS Block Ι Η σειρά δορυφόρων GPS Block Ι (Demonstration) ήταν η πρώτη σειρά δορυφόρων και είχε δοκιµαστικό χαρακτήρα, ακολουθήθηκε από την επόµενη επιχειρησιακή

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς

ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε το φυσικό εκκρεµές και θα µετρήσουµε την επιτάχυνση της βαρύτητας. Θα εξετάσουµε λοιπόν πειραµατικά τα εξής: Την ταλάντωση

Διαβάστε περισσότερα

Οδοποιία Ι. Ενότητα 8: Στοιχεία μελέτης χάραξης οδού Μηκοτομή σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ)

Οδοποιία Ι. Ενότητα 8: Στοιχεία μελέτης χάραξης οδού Μηκοτομή σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ) ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία Ι Ενότητα 8: Στοιχεία μελέτης χάραξης οδού Μηκοτομή σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ) Γεώργιος Μίντσης Τμήμα Αγρονόμων

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη

ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κυκλική κίνηση µίας σηµειακής µάζας και ιδιαίτερα την εξάρτηση της κεντροµόλου δύναµης από τη µάζα,

Διαβάστε περισσότερα

ΟΡΓΑΝΑ, ΣΥΣΚΕΥΕΣ ΚΑΙ ΥΛΙΚΑ Ηλεκτρονικός υπολογιστής Βιντεοπροβολέας

ΟΡΓΑΝΑ, ΣΥΣΚΕΥΕΣ ΚΑΙ ΥΛΙΚΑ Ηλεκτρονικός υπολογιστής Βιντεοπροβολέας ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Εργαστηριακή άσκηση 4 ΜΕΛΕΤΗ ΤΗΣ ΟΡΙΖΟΝΤΙΑΣ ΒΟΛΗΣ (Προσαρµογή του εργαστηριακού οδηγού - Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου) ΣΤΟΧΟΙ Στόχοι αυτής της εργαστηριακής άσκησης

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. Φροντιστήριο «ΕΠΙΛΟΓΗ» Ιατροπούλου 12 & σιδ. Σταθμού - Καλαμάτα τηλ.: & 96390

ΘΕΜΑ 1 ο. Φροντιστήριο «ΕΠΙΛΟΓΗ» Ιατροπούλου 12 & σιδ. Σταθμού - Καλαμάτα τηλ.: & 96390 ΘΕΜΑ 1 ο ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 1 ΙΟΥΝΙΟΥ 006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

F r. www.ylikonet.gr 1

F r. www.ylikonet.gr 1 3.5. Έργο Ενέργεια. 3.5.1. Έργο δύναµης- ροπής και Κινητική Ενέργεια. Το οµοαξονικό σύστηµα των δύο κυλίνδρων µε ακτίνες R 1 =0,1m και R =0,5m ηρεµεί σε οριζόντιο επίπεδο. Τυλίγουµε γύρω από τον κύλινδρο

Διαβάστε περισσότερα

στατιστική θεωρεία της δειγµατοληψίας

στατιστική θεωρεία της δειγµατοληψίας στατιστική θεωρεία της δειγµατοληψίας ΕΙΓΜΑΤΟΛΗΨΙΑ : Εισαγωγή δειγµατοληψία Τα στοιχεία που απαιτούνται τόσο για την ανάλυση των µεταφορικών συστηµάτων και όσο και για την ανάπτυξη των συγκοινωνιακών µοντέλων

Διαβάστε περισσότερα

Ασκήσεις υναµικής 2 η ενότητα: Κινητική σωµατιδίου: 2 ος νόµος Νεύτωνα

Ασκήσεις υναµικής 2 η ενότητα: Κινητική σωµατιδίου: 2 ος νόµος Νεύτωνα Ασκήσεις υναµικής 2 η ενότητα: Κινητική σωµατιδίου: 2 ος νόµος Νεύτωνα 1. Εάν οι συντελεστές στατικής και κινητικής τριβής µεταξύ του µπλοκ A, µάζας 20 kgr και του αµαξιδίου Β, µάζας100 kgr έχουν τιµή

Διαβάστε περισσότερα