Τεχνικές διόρθωσης και ανίχνευσης σφαλµάτων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τεχνικές διόρθωσης και ανίχνευσης σφαλµάτων"

Transcript

1 Τεχνικές διόρθωσης και ανίχνευσης σφαλµάτων Εντοπισµός σφαλµάτων Εντοπισµός ιόρθωση Προστίθενται bit πλεονασµού Αν µπορεί διορθώνει, (forward error correction) αλλιώς ζητά επανεκποµπή (backward error correction) Bit Error Rate (BER)

2 Έλεγχος ισοτιµίας (parity) Προστίθεται ένα bit ισοτιµίας Αν το πλήθος των 1 είναι µονός αριθµός: περιττή ισοτιµία (odd parity) Αν το πλήθος των 1 είναι ζυγός αριθµός: άρτια ισοτιµία (even parity) Έστω: άρτια ισοτιµία parity bit µήνυµα Η ισοτιµία έχει προσυµφωνηθεί Μπορεί να ελέγξει µόνο περιττό αριθµό σφαλµάτων Πλέον χρησιµοποιείται µόνο για λόγους συµβατότητας ισδιάστατος έλεγχος ισοτιµίας b 11 b 21 b 31 b 41 b ν1 P b1 bit ισοτιµίας χαρακτήρες b 12 b 22 b 32 b 42 b ν2 P b2 b 13 b 23 b 33 b 43 b ν3 P b3. b 1k b 2k b 3k b 4k b νk P bk VRC P 1 P 2 P 3 P 4 P ν P 0 Longitudinal redundancy check (LRC) ή Block Check Character (BCC) Πάντα ανιχνεύεται περιττός αριθµός σφαλµάτων Άρτιος αριθµός σφαλµάτων ανιχνεύεται ικανοποιητικά και συνήθως βελτιώνεται ο εντοπισµός σφαλµάτων κατά 100 έως 1000 φορές

3 Απόσταση Hamming Έστω ότι τα µηνύµατά µας αποτελούνται από m bits. Έστω, επίσης, ότι χρησιµοποιούµε r bits ελέγχου (πλεονασµού) για να ανιχνεύουµε τα σφάλµατα. Οι λέξεις µεγέθους n = m + r που µεταδίδονται ονοµάζονται κωδικές λέξεις (codewords). Έστω δύο κωδικές λέξεις, οι και Είναι δυνατόν να πούµε σε πόσα bit διαφέρουν αν τις κάνουµε XOR και µετρήσουµε τα 1 στο αποτέλεσµα: Αυτή η διαφορά τους ονοµάζεται απόσταση Hamming των δύο λέξεων Απόσταση Hamming Ησηµασία της απόστασης Hamming είναι ότι αν δύο λέξεις απέχουν d bits, τότε αρκούν d σφάλµατα για να µετατρέψουν τη µια στην άλλη. Συνήθως και τα 2 m µηνύµατα είναι έγκυρα, όχι όµως όλες οι 2 n κωδικές λέξεις. Αυτές επιλέγονται µε τρόπο που να µεγιστοποιεί την απόσταση Hamming Η απόσταση Hamming µεταξύ των κωδικών λέξεων προσδιορίζει την ικανότητα εντοπισµού σφαλµάτων και την ικανότητα διόρθωσης σφαλµάτων ενός κώδικα Αν έχω απόσταση d+1 µπορώ να ανιχνεύσω d απλά σφάλµατα γιατί τα d σφάλµατα δεν αρκούν να µετατρέψουν µια λέξη σε µια άλλη έγκυρη κωδική λέξη. Άρα το λάθος θα φανεί. Για να διορθώσω d σφάλµατα πρέπει η απόσταση να είναι 2d+1 γιατί τότε ακόµα κι αν συµβούν d σφάλµατα η αρχική κωδική λέξη θα είναι κοντύτερα σε αυτή µε τα σφάλµατα οπότε ο δέκτης µπορεί να τις αντικαταστήσει.

4 Κώδικας Hamming για διόρθωση 1 σφάλµατος Αν ισχύει η σχέση, τότε χρειάζονται τουλάχιστον r bits πλεονασµού για τη διόρθωση ενός σφάλµατος σε µηνύµατα m bits r 2 m+ r+ 1 Έστω ένα block από 9 bit ( ). Χρειάζονται r=4 bits ελέγχου. Τα bit ελέγχου τοποθετούνται στις θέσεις Η, ΗΗ1Η001Η10100 Υπολογισµός κώδικα Hamming Σηµείωσε όλες τις θέσεις που είναι δυνάµεις του 2, ξεκινώντας από αριστερά. Αυτές είναι τα hamming bits. Σε όλες τις υπόλοιπες θα τοποθετηθούν τα bit προς κωδικοποίηση. Κάθε parity bit (hamming bit) ελέγχει κάποια από τα bit της λέξης. π.χ. το 1 ελέγχει τα 1, 3, 5, 7, 9,., το 2 ελέγχει τα 2, 3,.. 6, 7,.. 10, 11,.., το 4 ελέγχει τα 4, 5, 6, 7,..,12, 13, 14, 15,.. κοκ. Το κάθε parity bit ορίζεται έτσι ώστε να υπάρχει

5 Χρήση κώδικα Hamming για διόρθωση σφαλµάτων σε ριπές Για κάθε ακολουθία που φτάνει στο δέκτη, εκείνος αρχικοποιεί έναν µετρητή k. Ελέγχει τα check bits (k=1, 2, 4, 8, ) αν έχουν σωστό parity. Σε περίπτωση προσθέτει την τιµή του k στον µετρητή. Στο τέλος αν k=0 δεν υπάρχουν σφάλµατα, αλλιώς το k περιέχει τη θέση του σφάλµατος. Αν κατασκευαστεί η δισδιάστατη δοµή του σχήµατος και τα δεδοµένα µεταδίδονται σε στήλες (από αριστερά προς τα δεξιά), τότε ο κώδικας µπορεί να ανιχνεύσει και ριπές µέχρι k σφαλµάτων. Θέση 1 Τα bit που βρίσκονται σε θέσεις που µπορούν να εκφραστούν σαν δυνάµεις του 2, είναι bit ελέγχου. Κάθε θέση ελέγχεται από εκείνα τα bit που την προσδιορίζουν, π.χ. το bit 11 ελέγχεται από τα 11= Έλεγχος κυκλικού πλεονασµού (Cyclic Redundancy Check CRC) Αρχικά θα πρέπει να σκεφτόµαστε οποιαδήποτε ακολουθία n-bits ως ένα πολυώνυµο n-1 βαθµού. Ο συντελεστής του κάθε όρου του πολυωνύµου λαµβάνει την τιµή του αντίστοιχου bit της ακολουθίας. Για παράδειγµα, η ακολουθία αντιστοιχεί στο πολυώνυµο. M x x x x x x x ( ) = Τόσο στον αποστολέα κόµβο όσο και στον παραλήπτη είναι γνωστή εκ των προτέρων µια ειδική ακολουθία, η οποία ονοµάζεται πολυώνυµο γεννήτορας και συµβολίζεται µε G(x).

6 Λειτουργία αλγορίθµου CRC Αποστολέας κόµβος: Πολλαπλασίασε το M(x) µε το x k, όπου k είναι ο βαθµός του προκαθορισµένου πολυωνύµου G(x). Αυτό ουσιαστικά αντιστοιχεί σε αύξηση του µήκους των δεδοµένων κατά k bits, µε αριστερή ολίσθηση (left shift) κατά k των αρχικών bits και ταυτόχρονη πλήρωση των κενών θέσεων µε µηδενικά. ιαίρεσε το M(x). x k µε το G(x). Από αυτή τη διαίρεση προκύπτουν το πηλίκο Q(x) και το υπόλοιπο R(x). Σύνθεσε το µήνυµα T(x), το οποίο θα αποστείλεις στο δίκτυο προς µεταφορά, όπου T ( x) = M ( x) x k + R( x) Παραλήπτης κόµβος: ιαίρεσε το ληφθέν µήνυµα µε τοg(x). Εάν το υπόλοιπο είναι µηδέν, δεν υπάρχει σφάλµα µεταφοράς. Προσοχή! Σε περίπτωση που το πρώτο ψηφίο είναι το 0 κάνουµε XOR µε το και όχι µε το G(x)

7 Οι κώδικες CRC µήκους k bits έχουν τις ακόλουθες δυνατότητες εντοπισµού σφαλµάτων µεταφοράς: Όλα τα σφάλµατα µονού bit, αρκεί οι όροι x k και x 0 να έχουν µη µηδενικούς συντελεστές. Όλα τα σφάλµατα διπλού bit, αρκεί το πολυώνυµο να περιέχει τρεις τουλάχιστον όρους. Όλα τα σφάλµατα περιττού πλήθους, αρκεί το πολυώνυµο να περιέχει ως παράγοντα τον όρο (x+1). Όλα τα σφάλµατα σε δέσµη bits µε µήκος µικρότερο από k bits, όπου ως δέσµη ονοµάζουµε ένα πλήθος από διαδοχικά bits. Επίσης, εντοπίζονται τα περισσότερα από τα σφάλµατα µεταφοράς σε δέσµες µε µήκος µεγαλύτερο από k bits. Απλή και οικονοµική υλοποίηση. Μόνο shift και XOR. Συχνά χρησιµοποιούµενοι κώδικες CRC CRC-8 (ATM): CRC-10 (ATM): CRC-ITU-T (HDLC): CRC-32 (ethernet): x + x + x + x + x + x + x + x x + x + x + x + x + x+ 8 2 x x x x x x x x x + x + x

8 Άσκηση Έστω ότι θέλετε να µεταφέρετε τα δεδοµένα: προστατεύοντάς τα µε αλγόριθµο CRC µε πολυώνυµο γεννήτορα το CRC Ποιο µήνυµα θα στέλνατε στο δίκτυο; 2. Αν αλλοιωθούν τα bits 2, και 9 ποιο θα είναι το υπόλοιπο της διαίρεσης; Πως θα εξακριβώσει ο παραλήπτης τα σφάλµατα µεταφοράς;

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 10 : Κωδικοποίηση καναλιού Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Απόσταση και βάρος Hamming Τεχνικές και κώδικες ανίχνευσης &

Διαβάστε περισσότερα

Εργαστηριακή Ασκηση 2- Κυκλικοί Κώδικες

Εργαστηριακή Ασκηση 2- Κυκλικοί Κώδικες Εργαστηριακή άσκηση 2 Θεωρία ΚΩ ΙΚΕΣ ΑΝΙΧΝΕΥΣΗΣ ΣΦΑΛΜΑΤΩΝ Οι κώδικες διόρθωσης σφαλµάτων χρησιµοποιούνται µερικές φορές για µετάδοση δεδοµένων, για παράδειγµα, όταν το κανάλι είναι µονόδροµο (simplex)

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΝΙΧΝΕΥΣΗ ΣΦΑΛΜΑΤΩΝ ΣΕ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΝΙΧΝΕΥΣΗ ΣΦΑΛΜΑΤΩΝ ΣΕ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΝΙΧΝΕΥΣΗ ΣΦΑΛΜΑΤΩΝ ΣΕ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΑΝΙΧΝΕΥΣΗ ΣΦΑΛΜΑΤΩΝ: Κυκλικός Έλεγχος Πλεονασμού CRC codes Cyclic Redundancy Check codes Ο μηχανισμός ανίχνευσης σφαλμάτων στις επικοινωνίες

Διαβάστε περισσότερα

Πακέτα, Πλαίσια και Ανίχνευση Σφαλμάτων

Πακέτα, Πλαίσια και Ανίχνευση Σφαλμάτων ΔΙΚΤΥΑ Π. Φουληράς Πακέτα, Πλαίσια και Ανίχνευση Σφαλμάτων Οποιοδήποτε δικτυακό σύστημα παραχωρεί σε μία εφαρμογή αποκλειστική χρήση των μεριζομένων πόρων θέτει σε εμπλοκή τους άλλους υπολογιστές για απαράδεκτα

Διαβάστε περισσότερα

Δίκτυα Απευθείας Ζεύξης. Επικοινωνία µεταξύ δύο υπολογιστών οι οποίοι είναι απευθείας συνδεδεµένοι.

Δίκτυα Απευθείας Ζεύξης. Επικοινωνία µεταξύ δύο υπολογιστών οι οποίοι είναι απευθείας συνδεδεµένοι. Δίκτυα Απευθείας Ζεύξης Επικοινωνία µεταξύ δύο υπολογιστών οι οποίοι είναι απευθείας συνδεδεµένοι. Περίληψη Ζεύξεις σηµείου προς σηµείο (point-to-point links) Πλαισίωση (framing) Ανίχνευση και διόρθωση

Διαβάστε περισσότερα

ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΙΟΡΘΩΣΗ ΣΦΑΛΜΑΤΩΝ

ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΙΟΡΘΩΣΗ ΣΦΑΛΜΑΤΩΝ Θεωρία-Εισαγωγή ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΙΟΡΘΩΣΗ ΣΦΑΛΜΑΤΩΝ Τα σφάλµατα µετάδοσης στις τηλεπικοινωνιακές γραµµές προκαλούνται από µία ποικιλία φυσικών φαινοµένων. Ένα φαινόµενο το οποίο είναι πάντοτε παρόν είναι ο

Διαβάστε περισσότερα

Απαντήσεις σε απορίες

Απαντήσεις σε απορίες Ερώτηση 1 Αν έχουµε ένα πολυώνυµο G(x) π.χ. 10010101 αυτό είναι βαθµού k=7 και έχει k+1=8 bits και γράφεται : x^7 +x^4 +x^2 +1. Τι συµβαίνει στην περίπτωση που το G(x) έχει x^k=0, π.χ. το 01010101. Αυτό

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν

Διαβάστε περισσότερα

Ενότητα 3. Στρώµα Ζεύξης: Αρχές Λειτουργίας & Το Υπόδειγµα του Ethernet

Ενότητα 3. Στρώµα Ζεύξης: Αρχές Λειτουργίας & Το Υπόδειγµα του Ethernet Ενότητα 3 Στρώµα Ζεύξης: Αρχές Λειτουργίας & Το Υπόδειγµα του Ethernet Εισαγωγή στις βασικές έννοιες του στρώµατος Ζεύξης (Data Link Layer) στα δίκτυα ΗΥ Γενικές Αρχές Λειτουργίας ηµιουργία Πλαισίων Έλεγχος

Διαβάστε περισσότερα

Ερώτηση 1 η : Τι είναι πληροφορία και τι δεδομένα σε ένα πληροφοριακό σύστημα? Ποιες μορφές μπορεί να έχει η πληροφορία?

Ερώτηση 1 η : Τι είναι πληροφορία και τι δεδομένα σε ένα πληροφοριακό σύστημα? Ποιες μορφές μπορεί να έχει η πληροφορία? Μετάδοση Δεδομένων Δίκτυα Υπολογιστών 22 Ερώτηση 1 η : Τι είναι πληροφορία και τι δεδομένα σε ένα πληροφοριακό σύστημα? Ποιες μορφές μπορεί να έχει η πληροφορία? Απάντηση : Τα δεδομένα (data) αποτελούν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 Περίοδος 2012-2013 ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ # 3 Στόχος Βασικό στόχο της 3 ης εργασίας αποτελεί η κατανόηση των συστατικών στοιχείων των δικτύων Η/Υ (Κεφάλαιο 1), η εξοικείωση με τις αρχιτεκτονικές δικτύων

Διαβάστε περισσότερα

Επίπεδο ύνδεσης Δεδομένων (Data Link Layer DLL)

Επίπεδο ύνδεσης Δεδομένων (Data Link Layer DLL) 101001 101001 Επίπεδο ύνδεσης Δεδομένων (Data Link Layer DLL) Είναι το δεύτερο επίπεδο στη διαστρωμάτωση του OSI (μετρώντας από κάτω) Ασχολείται με την αποδοτική και αξιόπιστη επικοινωνία μεταξύ δύο γειτονικών

Διαβάστε περισσότερα

7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Μονάδες Μνήµης

7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Μονάδες Μνήµης 7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Εισαγωγή Καταχωρητής: είναι µία οµάδα από δυαδικά κύτταρα αποθήκευσης και από λογικές πύλες που διεκπεραιώνουν την µεταφορά πληροφοριών. Οι µετρητές είναι

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες

Εισαγωγή στις Τηλεπικοινωνίες Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στις Τηλεπικοινωνίες Ενότητα 6: Εισαγωγή στα Τηλεπικοινωνιακά Συστήματα Αν. καθηγήτρια Μαλαματή Λούτα e-mail: louta@uowm.gr Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

Διάρθρωση. Δίκτυα Υπολογιστών Αξιόπιστη επικοινωνία μέσα από ένα σύνδεσμο. Αναγκαιότητα και ορισμός λογικής σύνδεσης. Διάρθρωση

Διάρθρωση. Δίκτυα Υπολογιστών Αξιόπιστη επικοινωνία μέσα από ένα σύνδεσμο. Αναγκαιότητα και ορισμός λογικής σύνδεσης. Διάρθρωση Δίκτυα Υπολογιστών Αξιόπιστη επικοινωνία μέσα από ένα σύνδεσμο Ευάγγελος Παπαπέτρου Τμ Μηχ Η/Υ & Πληροφορικής, Παν Ιωαννίνων 1 Λογική σύνδεση 2 Πλαισίωση 3 Ανίχνευση και διόρθωση σφαλμάτων 4 5 Έλεγχος

Διαβάστε περισσότερα

Δίκτυα Υπολογιστών. Αξιόπιστη επικοινωνία μέσα από ένα σύνδεσμο. Ευάγγελος Παπαπέτρου. Τμ. Μηχ. Η/Υ & Πληροφορικής, Παν. Ιωαννίνων

Δίκτυα Υπολογιστών. Αξιόπιστη επικοινωνία μέσα από ένα σύνδεσμο. Ευάγγελος Παπαπέτρου. Τμ. Μηχ. Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δίκτυα Υπολογιστών Αξιόπιστη επικοινωνία μέσα από ένα σύνδεσμο Ευάγγελος Παπαπέτρου Τμ. Μηχ. Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Ε.Παπαπέτρου (Τμ.Μηχ. Η/Υ & Πληροφορικής) ΠΛΥ606: Δίκτυα Υπολογιστών 1 /

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 8: Μετάδοση Δεδομένων. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Εισαγωγή στους Η/Υ. Ενότητα 8: Μετάδοση Δεδομένων. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Εισαγωγή στους Η/Υ Ενότητα 8: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Κατανόηση του τρόπου με τον οποίο στέλνεται ένα πακέτο δεδομένων

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Μάθημα 4 ο Πράξεις με bits Δρ. Γκόγκος Χρήστος Κατηγορίες πράξεων με bits Πράξεις με δυαδικά ψηφία Αριθμητικές πράξεις

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Οργάνωση Δεδομένων (1/2) Bits: Η μικρότερη αριθμητική μονάδα ενός υπολογιστικού συστήματος, η οποία δείχνει δύο καταστάσεις, 0 ή 1 (αληθές η ψευδές). Nibbles: Μονάδα 4 bit που παριστά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Δίκτυα Υπολογιστών Αξιόπιστη επικοινωνία μέσα από ένα σύνδεσμο Διδάσκων : Επίκουρος Καθηγητής Ε. Παπαπέτρου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ (ΠΜΣ) ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ Ι ΑΚΤΙΚΗ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ (ΠΜΣ) ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ Ι ΑΚΤΙΚΗ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ (ΠΜΣ) ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ Ι ΑΚΤΙΚΗ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΤΕΥΘΥΝΣΗ : ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΙΚΤΥΑ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Εφαρµογές της Θεωρίας Πληροφορίας

Διαβάστε περισσότερα

ΘΕΜΑ. Προσομοίωση Φυσικού Επιπέδου και Επιπέδου Σύνδεσης Δεδομένων Ασύρματου Δικτύου Ιατρικών Αισθητήρων

ΘΕΜΑ. Προσομοίωση Φυσικού Επιπέδου και Επιπέδου Σύνδεσης Δεδομένων Ασύρματου Δικτύου Ιατρικών Αισθητήρων Πανεπιστήµιο Πατρών Σχολή Επιστηµών Υγείας Τµήµα Ιατρικής Εθνικό Μετσόβιο Πολυτεχνείο Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τµήµα Μηχανολόγων Μηχανικών ΔΙΑΤΜΗΜΑΤΙΚΟ

Διαβάστε περισσότερα

Στρώμα Ζεύξης Δεδομένων και Πρωτόκολλα αναμετάδοσης. Εισαγωγή στα Δίκτυα Επικοινωνιών 2008 Στρώμα ζεύξης δεδομένων Μ.Ε. Θεολόγου

Στρώμα Ζεύξης Δεδομένων και Πρωτόκολλα αναμετάδοσης. Εισαγωγή στα Δίκτυα Επικοινωνιών 2008 Στρώμα ζεύξης δεδομένων Μ.Ε. Θεολόγου Στρώμα Ζεύξης Δεδομένων και Πρωτόκολλα αναμετάδοσης Περίληψη Μεταγωγή κυκλώματος μεταγωγή πακέτου Αρχές λειτουργίας και υπηρεσίες του στρώματος ζεύξης δεδομένων Βασικές λειτουργίες Αί Ανίχνευση και δό

Διαβάστε περισσότερα

Ανίχνευση και διόρθωση σφαλμάτων σε συστήματα επικοινωνιών με κωδικοποίηση Reed-Solomon

Ανίχνευση και διόρθωση σφαλμάτων σε συστήματα επικοινωνιών με κωδικοποίηση Reed-Solomon Ανίχνευση και διόρθωση σφαλμάτων σε συστήματα επικοινωνιών με κωδικοποίηση Reed-Solomon Αλέξανδρος Βασιλείου Σεπτέμβριος 2011 Πανεπιστήμιο Πατρών PERIEQŸOMENA Συνεισφορά της εργασίας...........................

Διαβάστε περισσότερα

Κώδικες LDPC (Low Density Parity Check): Ανάλυση της λειτουργίας και προσομοίωσή τους σε Matlab

Κώδικες LDPC (Low Density Parity Check): Ανάλυση της λειτουργίας και προσομοίωσή τους σε Matlab ΑΤΕΙ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Μηχανικών Πληροφορικής ΤΕ Κώδικες LDPC (Low Density Parity Check): Ανάλυση της λειτουργίας και προσομοίωσή τους σε Matlab ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Μαρία Μαυροδήμου

Διαβάστε περισσότερα

Γαβαλάς αµιανός dgavalas@aegean.gr

Γαβαλάς αµιανός dgavalas@aegean.gr ίκτυα Υπολογιστών (Γ έτος, ΣΤ εξ) ιάλεξη #3: ικτυακά πρότυπα, το µοντέλο αναφοράς OSI, Επίπεδο ζεύξης δεδοµένων (data link layer), Αξιόπιστη Επικοινωνία και Έλεγχος Ροής. ιαγνωστικά εργαλεία δικτύων (ping,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Διαιρετότητα Μαθαίνω Πολλαπλάσια ενός φυσικού αριθμού α είναι όλοι οι αριθμοί που προκύπτουν από τον πολλαπλασιασμό του με όλους τους φυσικούς αριθμούς, δηλαδή οι αριθμοί: 0, α, 2 α, 3 α, 4 α,... Το μηδέν

Διαβάστε περισσότερα

Καναλιού. Καναλιού. Προχωρημένα Θέματα Τηλεπικοινωνιών. Κατηγορίες Κωδικών Καναλιού. Τι πετυχαίνει η Κωδ. Καναλιού. Κωδικοποίηση Καναλιού.

Καναλιού. Καναλιού. Προχωρημένα Θέματα Τηλεπικοινωνιών. Κατηγορίες Κωδικών Καναλιού. Τι πετυχαίνει η Κωδ. Καναλιού. Κωδικοποίηση Καναλιού. Προχωρημένα Θέματα Τηλεπικοινωνιών Πηγή Δεδομένων Κωδικοποίηση Καναλιού Κώδικας Πηγής Κώδικας Καναλιού Διαμόρφωση Κανάλι Δέκτης Δεδομένων Αποκωδ/ση Πηγής Αποκωδ/ση Καναλιού Αποδιαμόρφωση Κωδικοποίηση Καναλιού

Διαβάστε περισσότερα

Το Επίπεδο Ζεύξης (ή Σύνδεσης) Δεδομένων

Το Επίπεδο Ζεύξης (ή Σύνδεσης) Δεδομένων Το Επίπεδο Ζεύξης (ή Σύνδεσης) Δεδομένων Διαφάνειες στα πλαίσια του μαθήματος: Δίκτυα Υπολογιστών Τμήμα Πληροφορικής και Τεχνολογίας Υπολογιστών, ΤΕΙ Λαμίας Πέτρος Λάμψας 2004 Προτεινόμενη Βιβλιογραφία

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Κώδικες, 1ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται

Διαβάστε περισσότερα

Nέες Τεχνολογίες. στις Επικοινωνίες

Nέες Τεχνολογίες. στις Επικοινωνίες Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Nέες Τεχνολογίες στις Επικοινωνίες Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Κώδικες Διόρθωσης Λαθών Τεχνολογικό Εκπαιδευτικό

Διαβάστε περισσότερα

Μεταγωγή Κυκλωμάτων και Πακέτων και Δίκτυα Απευθείας Ζεύξης

Μεταγωγή Κυκλωμάτων και Πακέτων και Δίκτυα Απευθείας Ζεύξης Μεταγωγή Κυκλωμάτων και Πακέτων και Δίκτυα Απευθείας Ζεύξης Περίληψη Μεταγωγή Κυκλωμάτων (Circuit switching) Μεταγωγή Πακέτων (Packet switching) Μεταγωγή Εικονικών Κυκλωμάτων (Virtual circuit switching)

Διαβάστε περισσότερα

Ενότητα 8.1. Σειριακή και παράλληλη μετάδοση δεδομένων

Ενότητα 8.1. Σειριακή και παράλληλη μετάδοση δεδομένων Ενότητα 8.1 Σειριακή και παράλληλη μετάδοση δεδομένων 1 2 Η μετάδοση δεδομένων μεταξύ δύο συσκευών μπορεί να γίνει με παράλληλο ή με σειριακό τρόπο Παράλληλη μετάδοση δεδομένων Στην παράλληλη μετάδοση

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ Τετάρτη 5-12/11/2014 ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ ΕΚΠΑΙΔΕΥΤΗΣ: ΤΡΟΧΙΔΗΣ ΠΑΝΑΓΙΩΤΗΣ 1. Παράσταση και οργάνωση δεδομένων

Διαβάστε περισσότερα

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΥΛΟΠΟΙΗΣΗ (ΣΕ ΛΟΓΙΣΜΙΚΟ) ΚΩ ΙΚΑ ΤΥΠΟΥ TURBO ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΗΣ ΚΟΥΤΡΟΥΜΑΝΗ ΟΛΓΑΣ του ΑΘΑΝΑΣΙΟΥ

Διαβάστε περισσότερα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα 1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα Δεκαδικοί Αριθµοί Βάση : 10 Ψηφία : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Αριθµοί: Συντελεστές Χ δυνάµεις του 10 7392.25 = 7x10 3 + 3x10 2 + 9x10 1 + 2x10 0 + 2x10-1 + 5x10-2

Διαβάστε περισσότερα

ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η ΟΣΣ/ Κώδικες ελέγχου Σφαλμάτων /

ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η ΟΣΣ/ Κώδικες ελέγχου Σφαλμάτων / βλ. αρχείο PLH22_OSS4_slides διαφάνειες 47-57 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η ΟΣΣ/ Κώδικες ελέγχου Σφαλμάτων/ Ν.Δημητρίου σελ. 1 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η ΟΣΣ/ Κώδικες ελέγχου Σφαλμάτων/ Ν.Δημητρίου σελ. 2 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η

Διαβάστε περισσότερα

Ν!=1*2*3* *(N-1) * N => N! = (Ν-1)! * N έτσι 55! = 54! * 55

Ν!=1*2*3* *(N-1) * N => N! = (Ν-1)! * N έτσι 55! = 54! * 55 ΑΝΑ ΡΟΜΗ- ΑΣΚΗΣΕΙΣ Μια µέθοδος είναι αναδροµική όταν καλεί τον εαυτό της και έχει µια συνθήκη τερµατισµού π.χ. το παραγοντικό ενός αριθµού Ν, µπορεί να καλεί το παραγοντικό του αριθµού Ν-1 το παραγοντικό

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Παράσταση αριθμών «κινητής υποδιαστολής» floating point

Παράσταση αριθμών «κινητής υποδιαστολής» floating point Παράσταση αριθμών «κινητής υποδιαστολής» floating point Με n bits μπορούμε να παραστήσουμε 2 n διαφορετικούς αριθμούς π.χ. με n=32 μπορούμε να παραστήσουμε τους αριθμούς από έως 2 32 -= 4,294,967,295 4

Διαβάστε περισσότερα

4.2 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

4.2 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ . ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ Ασκήσεις σχολικού βιβλίου σελίδας 9 0 A Οµάδας.i) Να κάετε τη διαίρεση ( x + 6x 7x+ 0 ) : ( x+ ) και α γράψετε τη ταυτότητα της διαίρεσης. x + 6x 7x+ 0 x+ x 9x + + x + 9x 8x+ 0 + 8x+

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Λύσεις 1 ης Σειράς Ασκήσεων

ΕΙΣΑΓΩΓΗ ΣΤΑ ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Λύσεις 1 ης Σειράς Ασκήσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΑ ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Λύσεις 1 ης Σειράς Ασκήσεων α) Ο αριθµός Ν των πακέτων που θα προκύψουν από το µήνυµα είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-2 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ

Διαβάστε περισσότερα

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Πολυώνυµα ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Πολυώνυµα ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ Ορισµός Ονοµάζουµε ακέραιο πολυώνυµο του x κάθε έκφραση της µορφής : α ν x ν + α ν-1 x ν-1 + α ν-2 x ν-2 + +α 1 x + α 0 όπου α ν, α ν-1, α ν-2,, α 1, α 0 C και

Διαβάστε περισσότερα

ΚΕΦ. 6 : Επιπεδο Ζεύξης Δεδομένων και Πρωτόκολλα Επαναμετάδοσης

ΚΕΦ. 6 : Επιπεδο Ζεύξης Δεδομένων και Πρωτόκολλα Επαναμετάδοσης ΚΕΦ. 6 : Επιπεδο Ζεύξης Δεδομένων και Πρωτόκολλα Επαναμετάδοσης Σχηματισμός πλαισίων (οργάνωση bits σε πακέτα, κώδικες ελέγχου σφαλμάτων) Πρωτόκολλα επαναμετάδοσης (στο επίπεδο ζεύξης η επίπεδο μεταφοράς)

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Αριθµητικό Σύστηµα! Ορίζει τον τρόπο αναπαράστασης ενός αριθµού µε διακεκριµένα σύµβολα! Ένας αριθµός αναπαρίσταται διαφορετικά σε κάθε σύστηµα,

Διαβάστε περισσότερα

Δίκτυα Υπολογιστών. Επίπεδο Ζεύξης (link layer) Κ. Βασιλάκης

Δίκτυα Υπολογιστών. Επίπεδο Ζεύξης (link layer) Κ. Βασιλάκης Δίκτυα Υπολογιστών Επίπεδο Ζεύξης (link layer) Κ. Βασιλάκης Περίγραμμα ενότητες που εξετάζονται Εισαγωγή - ορολογία Υπηρεσίες επιπέδου ζεύξης Ανίχνευση σφαλμάτων Έλεγχος ισοτιμίας Άθροισμα ελέγχου (checksum)

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ

Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ Εισαγωγή στην Πληροφορική 1 Περιεχόµενα - Κωδικοποιήσεις - Αριθµητικά Συστήµατα 2 Ηλεκτρονικός Υπολογιστής Είπαµε ότι είναι, µία Ηλεκτρονική Μηχανή, που δουλεύει κάτω από τον έλεγχο εντολών αποθηκευµένων

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA

Κινητές επικοινωνίες. Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA Κινητές επικοινωνίες Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA 1 Πολυπλεξία Η πολυπλεξία επιτρέπει την παράλληλη μετάδοση δεδομένων από διαφορετικές πηγές χωρίς αλληλοπαρεμβολές. Τρία βασικά είδη TDM/TDMA

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 5 η Η σειριακή επικοινωνία ΙΙ 1.1 ΣΚΟΠΟΣ Σκοπός της άσκησης αυτής είναι η κατανόηση σε βάθος των λειτουργιών που παρέχονται από το περιβάλλον LabView για τον χειρισµό της σειριακής επικοινωνίας

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1 Δεκαδικό και Δυαδικό Σύστηµα Δύο κυρίαρχα συστήµατα στο χώρο των υπολογιστών Δεκαδικό: Η βάση του συστήµατος

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey

Κρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey Κρυπτογραφία Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey Γενικά χαρακτηριστικά των stream ciphers Keystream Generator K i P i C i Δουλεύουν πάνω σε ένα ρεύμα από

Διαβάστε περισσότερα

Κεφάλαιο Κωδικοποίηση των ψηφίων του δεκαδικού συστήματος

Κεφάλαιο Κωδικοποίηση των ψηφίων του δεκαδικού συστήματος Κεφάλαιο 2 Σύνοψη Στο κεφάλαιο αυτό θα παρουσιαστεί αναλυτικά η κωδικοποίηση των αριθμών μέσω του δυαδικού συστήματος αρίθμησης. Αρχικά περιλαμβάνονται τα ψηφία του δεκαδικού συστήματος κωδικοποιημένα

Διαβάστε περισσότερα

Μ ελέτη της α π ο δ ο τ ικ ό τ η τ α ς» τω νίεπιβραχυμ ένω ν κωδίκων α ^Κ /ευ σ η ς και διόρθω σης σφαλμάτω ν»

Μ ελέτη της α π ο δ ο τ ικ ό τ η τ α ς» τω νίεπιβραχυμ ένω ν κωδίκων α ^Κ /ευ σ η ς και διόρθω σης σφαλμάτω ν» ΑΙ& ΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ η,4 ΠΑΡΑΡΤΗΜΑ ΣΠΑΡΤΗΣ Μ Η Μ Α ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΐ Α Ι ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Μ ελέτη της α π ο δ ο τ ικ ό τ η τ α ς» τω νίεπιβραχυμ ένω ν κωδίκων α ^Κ

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου 4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή). 2. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της

Διαβάστε περισσότερα

Σ ή. : υαδικά. Ε ό. ή Ενότητα

Σ ή. : υαδικά. Ε ό. ή Ενότητα 1η Θεµατική Θ ή Ενότητα Ε ό : υαδικά δ ά Συστήµατα Σ ή Μονάδα Ελέγχου Ψηφιακοί Υπολογιστές Αριθµητική Μονάδα Κρυφή Μνήµη Μονάδα Μνήµης ιαχείριση Μονάδων Ι/Ο ίσκοι Οθόνες ικτυακές Μονάδες Πληκτρολόγιο,

Διαβάστε περισσότερα

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου 4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή).. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της μορφής:

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

Περίληψη ΗΜΥ-210: Λογικός Σχεδιασµός. Λογικές Πύλες. BUFFER, NAND και NOR. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005

Περίληψη ΗΜΥ-210: Λογικός Σχεδιασµός. Λογικές Πύλες. BUFFER, NAND και NOR. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005 ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Φεβ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 2-ii: Συνδυαστικά Λογικά Κυκλώµατα (2.6 2.8, ) Περίληψη Υλοποίηση κυκλωµάτων πολλαπλών επιπέδων (µετασχηµατισµοί)

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 3 Λειτουργίες σε Bits, Αριθμητικά Συστήματα Χρήστος Γκουμόπουλος Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Φύση υπολογιστών Η

Διαβάστε περισσότερα

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (2/2) 1.1 Τα bits και ο τρόπος που αποθηκεύονται 1.2 Κύρια µνήµη 1.3 Αποθηκευτικά µέσα 1.4 Αναπαράσταση πληροφοριών ως σχηµάτων bits

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση

Διαβάστε περισσότερα

Μαθηματικά. Α'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Α'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Α'Γυμνασίου Μαρίνος Παπαδόπουλος ΚΕΦΑΛΑΙΟ 1: ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. ιάταξη φυσικών αριθµών 2. Στρογγυλοποίηση 3. Πρόσθεση-Αφαίρεση-Πολλαπλασιασµός 4. υνάµεις 5. Ευκλείδεια ιαίρεση 6. ιαιρετότητα-μκ

Διαβάστε περισσότερα

Υπολογιστές και Πληροφορία 1

Υπολογιστές και Πληροφορία 1 ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Σκοπός του μαθήματος Λογικός Σχεδιασμός και Σχεδιασμός Η/Υ Εισαγωγή, Υπολογιστές και Πληροφορία Διδάσκουσα: Μαρία Κ. Μιχαήλ Βασικές έννοιες & εργαλεία που χρησιμοποιούνται

Διαβάστε περισσότερα

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Εκθετική Παράσταση (Exponential Notation) Οι επόµενες είναι ισοδύναµες παραστάσεις του 1,234 123,400.0

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π. Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση

Διαβάστε περισσότερα

Τεχνικές Κωδικοποίησης. Κώδικες Hamming

Τεχνικές Κωδικοποίησης. Κώδικες Hamming ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Τεχνικές Κωδικοποίησης ακαδ. Έτος 2- Κώδικες Hamming Βίδρα Μαριάνα ΑΕΜ: 633 Παπαδόπουλος

Διαβάστε περισσότερα

Επίπεδο Σύνδεσης Δεδομένων

Επίπεδο Σύνδεσης Δεδομένων Επίπεδο Σύνδεσης Δεδομένων Είναι το δεύτερο επίπεδο στην διαστρωμάτωση του OSI/ISO (μετρώντας από κάτω πρός τα πάνω) Data Link Layer (DLL). Στόχος του είναι η αποδοτική και αξιόπιστη επικοινωνία γειτονικών

Διαβάστε περισσότερα

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΑΓΩΓΟΙ & ΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΣΥΓΚΡΟΥΣΕΙΣ ΣΕ ΑΓΩΓΟΥΣ & ΜΕΓΙΣΤΟΠΟΙΗΣΗ ΠΑΡΑΓΩΓΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΥΨΗΛΩΝ

Διαβάστε περισσότερα

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: Η/Υ ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ ΜΕΓΑΛΗΣ ΚΛΙΜΑΚΑΣ Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Αριθµοί Διαφόρων Βάσεων Δυαδικά Συστήµατα 2 Υπολογιστική Ακρίβεια Ο αριθµός των δυαδικών ψηφίων αναπαράστασης αριθµών καθορίζει την ακρίβεια των αριθµών σε

Διαβάστε περισσότερα

1. Το σύστημα κινητής υποδιαστολής 2. Αναπαράσταση πραγματικών δυαδικών αριθμών 3. Το πρότυπο 754 της ΙΕΕΕ

1. Το σύστημα κινητής υποδιαστολής 2. Αναπαράσταση πραγματικών δυαδικών αριθμών 3. Το πρότυπο 754 της ΙΕΕΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΟΙ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ (ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ) Γ Τσιατούχας Παράρτηµα Β ιάρθρωση 1 Το σύστημα κινητής υποδιαστολής 2 Αναπαράσταση πραγματικών δυαδικών αριθμών 3 Το πρότυπο

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ )

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ ) Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ. 25 48) Τι είναι αλγόριθμος; Γ ΛΥΚΕΙΟΥ Αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρονικό διάστημα,

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

- Δομή πλαισίου Ethernet - Πλαίσια Ethernet μεγάλου μεγέθους (Jumbo frames)

- Δομή πλαισίου Ethernet - Πλαίσια Ethernet μεγάλου μεγέθους (Jumbo frames) 2.4.2 Διευθύνσεις Ελέγχου πρόσβασης στο Μέσο (MAC) - Δομή πλαισίου Ethernet - Πλαίσια Ethernet μεγάλου μεγέθους (Jumbo frames) 1 / 37 Φυσική διεύθυνση Κάθε κόμβος σε ένα δίκτυο Ethernet έχει μια φυσική

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

ΗΥ335: 7ο Φροντηστήριο. Fontas Fafoutis

ΗΥ335: 7ο Φροντηστήριο. Fontas Fafoutis <fontas@csd.uoc.gr> ΗΥ335: 7ο Φροντηστήριο Fontas Fafoutis Έλεγχος Λαθών Υποθέστε ότι το περιεχόμενο πληροφοριών ενός πακέτου είναι η ομάδα bit 1000101011100011 και ότι χρησιμοποιείται ένα σχήμα άρτιας

Διαβάστε περισσότερα

ΕΠΙΠΕΔΟ ΣΥΝΔΕΣΗΣ ΜΑC

ΕΠΙΠΕΔΟ ΣΥΝΔΕΣΗΣ ΜΑC ΕΠΙΠΕΔΟ ΣΥΝΔΕΣΗΣ Το επίπεδο σύνδεσης αποτελείται από δύο υποεπίπεδα: Το υποεπίπεδο ελέγχου προσπέλασης μέσων (Medium Access Control) Το υποεπίπεδο λογικού ελέγχου σύνδεσης (Logical Link Control) To υποεπίπεδο

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

CAN Bus. Ασβεστοπούλου Θωμαΐς Δόντσιος Δημήτριος Άνοιξη 2014

CAN Bus. Ασβεστοπούλου Θωμαΐς Δόντσιος Δημήτριος Άνοιξη 2014 Ασβεστοπούλου Θωμαΐς Δόντσιος Δημήτριος Άνοιξη 2014 Δίαυλοι Επικοινωνίας Είναι κανάλια επικοινωνίας πάνω στα οποία ρέει η πληροφορία μεταξύ δύο ή περισσοτέρων συσκευών Γιατί δίαυλοι και όχι καλώδια; Μεταφορά

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του

Διαβάστε περισσότερα

Κώδικες Διόρθωσης Σφαλμάτων (Error-Correcting Codes) Σφάλματα που αυτο- διορθώνονται

Κώδικες Διόρθωσης Σφαλμάτων (Error-Correcting Codes) Σφάλματα που αυτο- διορθώνονται Κώδικες Διόρθωσης Σφαλμάτων (Error-Correcting Codes) Σφάλματα που αυτο- διορθώνονται Είναι άλλο πράγμα να δείξεις σε κάποιον ότι κάνει λάθος και άλλο πράγμα να τον κάνεις να αντιληφθεί την αλήθεια 632-74

Διαβάστε περισσότερα

ίκτυα Υπολογιστών I ρ. Παύλος Θεοδώρου Πανεπιστήµιο Αιγαίου Τµήµα Πληροφοριακών & Επικοινωνιακών Συστηµάτων pavlos@aegean.

ίκτυα Υπολογιστών I ρ. Παύλος Θεοδώρου Πανεπιστήµιο Αιγαίου Τµήµα Πληροφοριακών & Επικοινωνιακών Συστηµάτων pavlos@aegean. ίκτυα Υπολογιστών I ρ. Παύλος Θεοδώρου Πανεπιστήµιο Αιγαίου Τµήµα Πληροφοριακών & Επικοινωνιακών Συστηµάτων pavlos@aegean.gr Περιεχόµενα 1. Εισαγωγή 2. Το φυσικό Στρώµα 3. Το στρώµα Ζεύξης εδοµένων 4.

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Ψηφιακοί Υπολογιστές

Ψηφιακοί Υπολογιστές 1 η Θεµατική Ενότητα : υαδικά Συστήµατα Ψηφιακοί Υπολογιστές Παλαιότερα οι υπολογιστές χρησιµοποιούνταν για αριθµητικούς υπολογισµούς Ψηφίο (digit) Ψηφιακοί Υπολογιστές Σήµατα (signals) : διακριτά στοιχεία

Διαβάστε περισσότερα