Τεχνικές διόρθωσης και ανίχνευσης σφαλµάτων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τεχνικές διόρθωσης και ανίχνευσης σφαλµάτων"

Transcript

1 Τεχνικές διόρθωσης και ανίχνευσης σφαλµάτων Εντοπισµός σφαλµάτων Εντοπισµός ιόρθωση Προστίθενται bit πλεονασµού Αν µπορεί διορθώνει, (forward error correction) αλλιώς ζητά επανεκποµπή (backward error correction) Bit Error Rate (BER)

2 Έλεγχος ισοτιµίας (parity) Προστίθεται ένα bit ισοτιµίας Αν το πλήθος των 1 είναι µονός αριθµός: περιττή ισοτιµία (odd parity) Αν το πλήθος των 1 είναι ζυγός αριθµός: άρτια ισοτιµία (even parity) Έστω: άρτια ισοτιµία parity bit µήνυµα Η ισοτιµία έχει προσυµφωνηθεί Μπορεί να ελέγξει µόνο περιττό αριθµό σφαλµάτων Πλέον χρησιµοποιείται µόνο για λόγους συµβατότητας ισδιάστατος έλεγχος ισοτιµίας b 11 b 21 b 31 b 41 b ν1 P b1 bit ισοτιµίας χαρακτήρες b 12 b 22 b 32 b 42 b ν2 P b2 b 13 b 23 b 33 b 43 b ν3 P b3. b 1k b 2k b 3k b 4k b νk P bk VRC P 1 P 2 P 3 P 4 P ν P 0 Longitudinal redundancy check (LRC) ή Block Check Character (BCC) Πάντα ανιχνεύεται περιττός αριθµός σφαλµάτων Άρτιος αριθµός σφαλµάτων ανιχνεύεται ικανοποιητικά και συνήθως βελτιώνεται ο εντοπισµός σφαλµάτων κατά 100 έως 1000 φορές

3 Απόσταση Hamming Έστω ότι τα µηνύµατά µας αποτελούνται από m bits. Έστω, επίσης, ότι χρησιµοποιούµε r bits ελέγχου (πλεονασµού) για να ανιχνεύουµε τα σφάλµατα. Οι λέξεις µεγέθους n = m + r που µεταδίδονται ονοµάζονται κωδικές λέξεις (codewords). Έστω δύο κωδικές λέξεις, οι και Είναι δυνατόν να πούµε σε πόσα bit διαφέρουν αν τις κάνουµε XOR και µετρήσουµε τα 1 στο αποτέλεσµα: Αυτή η διαφορά τους ονοµάζεται απόσταση Hamming των δύο λέξεων Απόσταση Hamming Ησηµασία της απόστασης Hamming είναι ότι αν δύο λέξεις απέχουν d bits, τότε αρκούν d σφάλµατα για να µετατρέψουν τη µια στην άλλη. Συνήθως και τα 2 m µηνύµατα είναι έγκυρα, όχι όµως όλες οι 2 n κωδικές λέξεις. Αυτές επιλέγονται µε τρόπο που να µεγιστοποιεί την απόσταση Hamming Η απόσταση Hamming µεταξύ των κωδικών λέξεων προσδιορίζει την ικανότητα εντοπισµού σφαλµάτων και την ικανότητα διόρθωσης σφαλµάτων ενός κώδικα Αν έχω απόσταση d+1 µπορώ να ανιχνεύσω d απλά σφάλµατα γιατί τα d σφάλµατα δεν αρκούν να µετατρέψουν µια λέξη σε µια άλλη έγκυρη κωδική λέξη. Άρα το λάθος θα φανεί. Για να διορθώσω d σφάλµατα πρέπει η απόσταση να είναι 2d+1 γιατί τότε ακόµα κι αν συµβούν d σφάλµατα η αρχική κωδική λέξη θα είναι κοντύτερα σε αυτή µε τα σφάλµατα οπότε ο δέκτης µπορεί να τις αντικαταστήσει.

4 Κώδικας Hamming για διόρθωση 1 σφάλµατος Αν ισχύει η σχέση, τότε χρειάζονται τουλάχιστον r bits πλεονασµού για τη διόρθωση ενός σφάλµατος σε µηνύµατα m bits r 2 m+ r+ 1 Έστω ένα block από 9 bit ( ). Χρειάζονται r=4 bits ελέγχου. Τα bit ελέγχου τοποθετούνται στις θέσεις Η, ΗΗ1Η001Η10100 Υπολογισµός κώδικα Hamming Σηµείωσε όλες τις θέσεις που είναι δυνάµεις του 2, ξεκινώντας από αριστερά. Αυτές είναι τα hamming bits. Σε όλες τις υπόλοιπες θα τοποθετηθούν τα bit προς κωδικοποίηση. Κάθε parity bit (hamming bit) ελέγχει κάποια από τα bit της λέξης. π.χ. το 1 ελέγχει τα 1, 3, 5, 7, 9,., το 2 ελέγχει τα 2, 3,.. 6, 7,.. 10, 11,.., το 4 ελέγχει τα 4, 5, 6, 7,..,12, 13, 14, 15,.. κοκ. Το κάθε parity bit ορίζεται έτσι ώστε να υπάρχει

5 Χρήση κώδικα Hamming για διόρθωση σφαλµάτων σε ριπές Για κάθε ακολουθία που φτάνει στο δέκτη, εκείνος αρχικοποιεί έναν µετρητή k. Ελέγχει τα check bits (k=1, 2, 4, 8, ) αν έχουν σωστό parity. Σε περίπτωση προσθέτει την τιµή του k στον µετρητή. Στο τέλος αν k=0 δεν υπάρχουν σφάλµατα, αλλιώς το k περιέχει τη θέση του σφάλµατος. Αν κατασκευαστεί η δισδιάστατη δοµή του σχήµατος και τα δεδοµένα µεταδίδονται σε στήλες (από αριστερά προς τα δεξιά), τότε ο κώδικας µπορεί να ανιχνεύσει και ριπές µέχρι k σφαλµάτων. Θέση 1 Τα bit που βρίσκονται σε θέσεις που µπορούν να εκφραστούν σαν δυνάµεις του 2, είναι bit ελέγχου. Κάθε θέση ελέγχεται από εκείνα τα bit που την προσδιορίζουν, π.χ. το bit 11 ελέγχεται από τα 11= Έλεγχος κυκλικού πλεονασµού (Cyclic Redundancy Check CRC) Αρχικά θα πρέπει να σκεφτόµαστε οποιαδήποτε ακολουθία n-bits ως ένα πολυώνυµο n-1 βαθµού. Ο συντελεστής του κάθε όρου του πολυωνύµου λαµβάνει την τιµή του αντίστοιχου bit της ακολουθίας. Για παράδειγµα, η ακολουθία αντιστοιχεί στο πολυώνυµο. M x x x x x x x ( ) = Τόσο στον αποστολέα κόµβο όσο και στον παραλήπτη είναι γνωστή εκ των προτέρων µια ειδική ακολουθία, η οποία ονοµάζεται πολυώνυµο γεννήτορας και συµβολίζεται µε G(x).

6 Λειτουργία αλγορίθµου CRC Αποστολέας κόµβος: Πολλαπλασίασε το M(x) µε το x k, όπου k είναι ο βαθµός του προκαθορισµένου πολυωνύµου G(x). Αυτό ουσιαστικά αντιστοιχεί σε αύξηση του µήκους των δεδοµένων κατά k bits, µε αριστερή ολίσθηση (left shift) κατά k των αρχικών bits και ταυτόχρονη πλήρωση των κενών θέσεων µε µηδενικά. ιαίρεσε το M(x). x k µε το G(x). Από αυτή τη διαίρεση προκύπτουν το πηλίκο Q(x) και το υπόλοιπο R(x). Σύνθεσε το µήνυµα T(x), το οποίο θα αποστείλεις στο δίκτυο προς µεταφορά, όπου T ( x) = M ( x) x k + R( x) Παραλήπτης κόµβος: ιαίρεσε το ληφθέν µήνυµα µε τοg(x). Εάν το υπόλοιπο είναι µηδέν, δεν υπάρχει σφάλµα µεταφοράς. Προσοχή! Σε περίπτωση που το πρώτο ψηφίο είναι το 0 κάνουµε XOR µε το και όχι µε το G(x)

7 Οι κώδικες CRC µήκους k bits έχουν τις ακόλουθες δυνατότητες εντοπισµού σφαλµάτων µεταφοράς: Όλα τα σφάλµατα µονού bit, αρκεί οι όροι x k και x 0 να έχουν µη µηδενικούς συντελεστές. Όλα τα σφάλµατα διπλού bit, αρκεί το πολυώνυµο να περιέχει τρεις τουλάχιστον όρους. Όλα τα σφάλµατα περιττού πλήθους, αρκεί το πολυώνυµο να περιέχει ως παράγοντα τον όρο (x+1). Όλα τα σφάλµατα σε δέσµη bits µε µήκος µικρότερο από k bits, όπου ως δέσµη ονοµάζουµε ένα πλήθος από διαδοχικά bits. Επίσης, εντοπίζονται τα περισσότερα από τα σφάλµατα µεταφοράς σε δέσµες µε µήκος µεγαλύτερο από k bits. Απλή και οικονοµική υλοποίηση. Μόνο shift και XOR. Συχνά χρησιµοποιούµενοι κώδικες CRC CRC-8 (ATM): CRC-10 (ATM): CRC-ITU-T (HDLC): CRC-32 (ethernet): x + x + x + x + x + x + x + x x + x + x + x + x + x+ 8 2 x x x x x x x x x + x + x

8 Άσκηση Έστω ότι θέλετε να µεταφέρετε τα δεδοµένα: προστατεύοντάς τα µε αλγόριθµο CRC µε πολυώνυµο γεννήτορα το CRC Ποιο µήνυµα θα στέλνατε στο δίκτυο; 2. Αν αλλοιωθούν τα bits 2, και 9 ποιο θα είναι το υπόλοιπο της διαίρεσης; Πως θα εξακριβώσει ο παραλήπτης τα σφάλµατα µεταφοράς;

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 10 : Κωδικοποίηση καναλιού Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Απόσταση και βάρος Hamming Τεχνικές και κώδικες ανίχνευσης &

Διαβάστε περισσότερα

Εργαστηριακή Ασκηση 2- Κυκλικοί Κώδικες

Εργαστηριακή Ασκηση 2- Κυκλικοί Κώδικες Εργαστηριακή άσκηση 2 Θεωρία ΚΩ ΙΚΕΣ ΑΝΙΧΝΕΥΣΗΣ ΣΦΑΛΜΑΤΩΝ Οι κώδικες διόρθωσης σφαλµάτων χρησιµοποιούνται µερικές φορές για µετάδοση δεδοµένων, για παράδειγµα, όταν το κανάλι είναι µονόδροµο (simplex)

Διαβάστε περισσότερα

Δίκτυα Απευθείας Ζεύξης

Δίκτυα Απευθείας Ζεύξης Δίκτυα Απευθείας Ζεύξης Επικοινωνία μεταξύ δύο υπολογιστώνοιοποίοιείναι απευθείας συνδεδεμένοι. Περίληψη Ζεύξεις σημείου προς σημείο (point-to-point links) Πλαισίωση (framing) Ανίχνευση και διόρθωση σφαλμάτων

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΝΙΧΝΕΥΣΗ ΣΦΑΛΜΑΤΩΝ ΣΕ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΝΙΧΝΕΥΣΗ ΣΦΑΛΜΑΤΩΝ ΣΕ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΝΙΧΝΕΥΣΗ ΣΦΑΛΜΑΤΩΝ ΣΕ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΑΝΙΧΝΕΥΣΗ ΣΦΑΛΜΑΤΩΝ: Κυκλικός Έλεγχος Πλεονασμού CRC codes Cyclic Redundancy Check codes Ο μηχανισμός ανίχνευσης σφαλμάτων στις επικοινωνίες

Διαβάστε περισσότερα

Πακέτα, Πλαίσια και Ανίχνευση Σφαλμάτων

Πακέτα, Πλαίσια και Ανίχνευση Σφαλμάτων ΔΙΚΤΥΑ Π. Φουληράς Πακέτα, Πλαίσια και Ανίχνευση Σφαλμάτων Οποιοδήποτε δικτυακό σύστημα παραχωρεί σε μία εφαρμογή αποκλειστική χρήση των μεριζομένων πόρων θέτει σε εμπλοκή τους άλλους υπολογιστές για απαράδεκτα

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Γιώργος Δημητρίου. Μάθημα 7 και 8: Αναπαραστάσεις. Πανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής

Εισαγωγή στους Η/Υ. Γιώργος Δημητρίου. Μάθημα 7 και 8: Αναπαραστάσεις. Πανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής Γιώργος Δημητρίου Μάθημα 7 και 8: Αναπαραστάσεις Αναπαράσταση Πληροφορίας Η/Υ Αριθμητικά δεδομένα Σταθερής υποδιαστολής Κινητής υποδιαστολής Μη αριθμητικά δεδομένα Χαρακτήρες Ειδικοί κώδικες Εντολές Γλώσσα

Διαβάστε περισσότερα

Δίκτυα Απευθείας Ζεύξης. Επικοινωνία µεταξύ δύο υπολογιστών οι οποίοι είναι απευθείας συνδεδεµένοι.

Δίκτυα Απευθείας Ζεύξης. Επικοινωνία µεταξύ δύο υπολογιστών οι οποίοι είναι απευθείας συνδεδεµένοι. Δίκτυα Απευθείας Ζεύξης Επικοινωνία µεταξύ δύο υπολογιστών οι οποίοι είναι απευθείας συνδεδεµένοι. Περίληψη Ζεύξεις σηµείου προς σηµείο (point-to-point links) Πλαισίωση (framing) Ανίχνευση και διόρθωση

Διαβάστε περισσότερα

ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΙΟΡΘΩΣΗ ΣΦΑΛΜΑΤΩΝ

ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΙΟΡΘΩΣΗ ΣΦΑΛΜΑΤΩΝ Θεωρία-Εισαγωγή ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΙΟΡΘΩΣΗ ΣΦΑΛΜΑΤΩΝ Τα σφάλµατα µετάδοσης στις τηλεπικοινωνιακές γραµµές προκαλούνται από µία ποικιλία φυσικών φαινοµένων. Ένα φαινόµενο το οποίο είναι πάντοτε παρόν είναι ο

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν

Διαβάστε περισσότερα

Απαντήσεις σε απορίες

Απαντήσεις σε απορίες Ερώτηση 1 Αν έχουµε ένα πολυώνυµο G(x) π.χ. 10010101 αυτό είναι βαθµού k=7 και έχει k+1=8 bits και γράφεται : x^7 +x^4 +x^2 +1. Τι συµβαίνει στην περίπτωση που το G(x) έχει x^k=0, π.χ. το 01010101. Αυτό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 Περίοδος 2012-2013 ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ # 3 Στόχος Βασικό στόχο της 3 ης εργασίας αποτελεί η κατανόηση των συστατικών στοιχείων των δικτύων Η/Υ (Κεφάλαιο 1), η εξοικείωση με τις αρχιτεκτονικές δικτύων

Διαβάστε περισσότερα

Κεφάλαιο 6 Συστήµατα Επικοινωνίας

Κεφάλαιο 6 Συστήµατα Επικοινωνίας Κεφάλαιο 6 Συστήµατα Επικοινωνίας Δεδοµένων Άµεση ιασύνδεση Συσκευών ιασύνδεση Συσκευών σε Μακρινή Απόσταση MODEM ιαχείριση σφαλµάτων ίκτυα εδοµένων Κ.Κυριακόπουλος Εισαγωγή στους Η/Υ 1 Σταθµοί στην Εξέλιξη

Διαβάστε περισσότερα

7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Μονάδες Μνήµης

7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Μονάδες Μνήµης 7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Εισαγωγή Καταχωρητής: είναι µία οµάδα από δυαδικά κύτταρα αποθήκευσης και από λογικές πύλες που διεκπεραιώνουν την µεταφορά πληροφοριών. Οι µετρητές είναι

Διαβάστε περισσότερα

Επίπεδο ύνδεσης Δεδομένων (Data Link Layer DLL)

Επίπεδο ύνδεσης Δεδομένων (Data Link Layer DLL) 101001 101001 Επίπεδο ύνδεσης Δεδομένων (Data Link Layer DLL) Είναι το δεύτερο επίπεδο στη διαστρωμάτωση του OSI (μετρώντας από κάτω) Ασχολείται με την αποδοτική και αξιόπιστη επικοινωνία μεταξύ δύο γειτονικών

Διαβάστε περισσότερα

Ερώτηση 1 η : Τι είναι πληροφορία και τι δεδομένα σε ένα πληροφοριακό σύστημα? Ποιες μορφές μπορεί να έχει η πληροφορία?

Ερώτηση 1 η : Τι είναι πληροφορία και τι δεδομένα σε ένα πληροφοριακό σύστημα? Ποιες μορφές μπορεί να έχει η πληροφορία? Μετάδοση Δεδομένων Δίκτυα Υπολογιστών 22 Ερώτηση 1 η : Τι είναι πληροφορία και τι δεδομένα σε ένα πληροφοριακό σύστημα? Ποιες μορφές μπορεί να έχει η πληροφορία? Απάντηση : Τα δεδομένα (data) αποτελούν

Διαβάστε περισσότερα

Ενότητα 3. Στρώµα Ζεύξης: Αρχές Λειτουργίας & Το Υπόδειγµα του Ethernet

Ενότητα 3. Στρώµα Ζεύξης: Αρχές Λειτουργίας & Το Υπόδειγµα του Ethernet Ενότητα 3 Στρώµα Ζεύξης: Αρχές Λειτουργίας & Το Υπόδειγµα του Ethernet Εισαγωγή στις βασικές έννοιες του στρώµατος Ζεύξης (Data Link Layer) στα δίκτυα ΗΥ Γενικές Αρχές Λειτουργίας ηµιουργία Πλαισίων Έλεγχος

Διαβάστε περισσότερα

Αναπαράσταση Δεδομένων (2 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική

Αναπαράσταση Δεδομένων (2 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Αναπαράσταση Δεδομένων (2 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική «Λογικές» πράξεις, μάσκες Πώς βρίσκουμε το υπόλοιπο μιας διαίρεσης με το 4; διαίρεση με 4 = δεξιά ολίσθηση 2 bits Το υπόλοιπο

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες

Εισαγωγή στις Τηλεπικοινωνίες Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στις Τηλεπικοινωνίες Ενότητα 6: Εισαγωγή στα Τηλεπικοινωνιακά Συστήματα Αν. καθηγήτρια Μαλαματή Λούτα e-mail: louta@uowm.gr Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 Περίοδος 2012-2013. ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #3 Στόχος Βασικό στόχο της 3 ης εργασίας αποτελεί η κατανόηση των συστατικών στοιχείων των δικτύων Η/Υ (Κεφάλαιο 1), η εξοικείωση με τις αρχιτεκτονικές δικτύων

Διαβάστε περισσότερα

Διάρθρωση. Δίκτυα Υπολογιστών Αξιόπιστη επικοινωνία μέσα από ένα σύνδεσμο. Αναγκαιότητα και ορισμός λογικής σύνδεσης. Διάρθρωση

Διάρθρωση. Δίκτυα Υπολογιστών Αξιόπιστη επικοινωνία μέσα από ένα σύνδεσμο. Αναγκαιότητα και ορισμός λογικής σύνδεσης. Διάρθρωση Δίκτυα Υπολογιστών Αξιόπιστη επικοινωνία μέσα από ένα σύνδεσμο Ευάγγελος Παπαπέτρου Τμ Μηχ Η/Υ & Πληροφορικής, Παν Ιωαννίνων 1 Λογική σύνδεση 2 Πλαισίωση 3 Ανίχνευση και διόρθωση σφαλμάτων 4 5 Έλεγχος

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 8: Μετάδοση Δεδομένων. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Εισαγωγή στους Η/Υ. Ενότητα 8: Μετάδοση Δεδομένων. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Εισαγωγή στους Η/Υ Ενότητα 8: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Κατανόηση του τρόπου με τον οποίο στέλνεται ένα πακέτο δεδομένων

Διαβάστε περισσότερα

Ενότητα 1η. Μοντέέλο επικοινωνιώών δεδοµμέένων - συνέέχεια

Ενότητα 1η. Μοντέέλο επικοινωνιώών δεδοµμέένων - συνέέχεια Ενότητα 1η Μοντέέλο επικοινωνιώών δεδοµμέένων - συνέέχεια Πηγέές - Βιβλιογραφίία 1. Τεχνολογία Δικτύων Επικοινωνιών, Βιβλίο Α τάξης 2 ου Κύκλου ΤΕΕ, ΥΠΕΠΘ 2. Μετάδοση Δεδοµένων & Δίκτυα Υπολογιστών Ι &

Διαβάστε περισσότερα

Δίκτυα Υπολογιστών. Αξιόπιστη επικοινωνία μέσα από ένα σύνδεσμο. Ευάγγελος Παπαπέτρου. Τμ. Μηχ. Η/Υ & Πληροφορικής, Παν. Ιωαννίνων

Δίκτυα Υπολογιστών. Αξιόπιστη επικοινωνία μέσα από ένα σύνδεσμο. Ευάγγελος Παπαπέτρου. Τμ. Μηχ. Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δίκτυα Υπολογιστών Αξιόπιστη επικοινωνία μέσα από ένα σύνδεσμο Ευάγγελος Παπαπέτρου Τμ. Μηχ. Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Ε.Παπαπέτρου (Τμ.Μηχ. Η/Υ & Πληροφορικής) ΠΛΥ606: Δίκτυα Υπολογιστών 1 /

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Μάθημα 4 ο Πράξεις με bits Δρ. Γκόγκος Χρήστος Κατηγορίες πράξεων με bits Πράξεις με δυαδικά ψηφία Αριθμητικές πράξεις

Διαβάστε περισσότερα

Κινητές Επικοινωνίες & Τηλεπικοινωνιακά Δίκτυα

Κινητές Επικοινωνίες & Τηλεπικοινωνιακά Δίκτυα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Κινητές Επικοινωνίες & Τηλεπικοινωνιακά Δίκτυα Ενότητα : Στρώμα Ζεύξης στα Δίκτυα ΗΥ- Ethernet MAC Στρώμα Σαββαΐδης Στυλιανός

Διαβάστε περισσότερα

ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ (ΠΜΣ) ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ Ι ΑΚΤΙΚΗ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ (ΠΜΣ) ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ Ι ΑΚΤΙΚΗ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ (ΠΜΣ) ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ Ι ΑΚΤΙΚΗ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΤΕΥΘΥΝΣΗ : ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΙΚΤΥΑ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Εφαρµογές της Θεωρίας Πληροφορίας

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Οργάνωση Δεδομένων (1/2) Bits: Η μικρότερη αριθμητική μονάδα ενός υπολογιστικού συστήματος, η οποία δείχνει δύο καταστάσεις, 0 ή 1 (αληθές η ψευδές). Nibbles: Μονάδα 4 bit που παριστά

Διαβάστε περισσότερα

Ενότητα 8 Η ΠΥΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ

Ενότητα 8 Η ΠΥΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ Ενότητα 8 Η ΠΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ Γενικές Γραμμές Πύλες XOR και XNOR λοποιήσεις με AND-OR-INV Κώδικας Ισοτιμίας (Parity) Άρτια και Περιττή Συνάρτηση Κυκλώματα ανίχνευσης λαθών Συγκριτές

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα 9: Ψηφιακή Αριθμητική Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Ψηφιακή Αριθμητική Σκοποί ενότητας 2 Περιεχόμενα ενότητας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Δίκτυα Υπολογιστών Αξιόπιστη επικοινωνία μέσα από ένα σύνδεσμο Διδάσκων : Επίκουρος Καθηγητής Ε. Παπαπέτρου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΘΕΜΑ. Προσομοίωση Φυσικού Επιπέδου και Επιπέδου Σύνδεσης Δεδομένων Ασύρματου Δικτύου Ιατρικών Αισθητήρων

ΘΕΜΑ. Προσομοίωση Φυσικού Επιπέδου και Επιπέδου Σύνδεσης Δεδομένων Ασύρματου Δικτύου Ιατρικών Αισθητήρων Πανεπιστήµιο Πατρών Σχολή Επιστηµών Υγείας Τµήµα Ιατρικής Εθνικό Μετσόβιο Πολυτεχνείο Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τµήµα Μηχανολόγων Μηχανικών ΔΙΑΤΜΗΜΑΤΙΚΟ

Διαβάστε περισσότερα

Στρώμα Ζεύξης Δεδομένων και Πρωτόκολλα αναμετάδοσης. Εισαγωγή στα Δίκτυα Επικοινωνιών 2008 Στρώμα ζεύξης δεδομένων Μ.Ε. Θεολόγου

Στρώμα Ζεύξης Δεδομένων και Πρωτόκολλα αναμετάδοσης. Εισαγωγή στα Δίκτυα Επικοινωνιών 2008 Στρώμα ζεύξης δεδομένων Μ.Ε. Θεολόγου Στρώμα Ζεύξης Δεδομένων και Πρωτόκολλα αναμετάδοσης Περίληψη Μεταγωγή κυκλώματος μεταγωγή πακέτου Αρχές λειτουργίας και υπηρεσίες του στρώματος ζεύξης δεδομένων Βασικές λειτουργίες Αί Ανίχνευση και δό

Διαβάστε περισσότερα

Καναλιού. Καναλιού. Προχωρημένα Θέματα Τηλεπικοινωνιών. Κατηγορίες Κωδικών Καναλιού. Τι πετυχαίνει η Κωδ. Καναλιού. Κωδικοποίηση Καναλιού.

Καναλιού. Καναλιού. Προχωρημένα Θέματα Τηλεπικοινωνιών. Κατηγορίες Κωδικών Καναλιού. Τι πετυχαίνει η Κωδ. Καναλιού. Κωδικοποίηση Καναλιού. Προχωρημένα Θέματα Τηλεπικοινωνιών Πηγή Δεδομένων Κωδικοποίηση Καναλιού Κώδικας Πηγής Κώδικας Καναλιού Διαμόρφωση Κανάλι Δέκτης Δεδομένων Αποκωδ/ση Πηγής Αποκωδ/ση Καναλιού Αποδιαμόρφωση Κωδικοποίηση Καναλιού

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Κώδικες, 1ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται

Διαβάστε περισσότερα

ΚΩΔΙΚΟΠΟΙΗΣΗ ΕΛΕΓΧΟΥ ΣΦΑΛΜΑΤΟΣ (2)

ΚΩΔΙΚΟΠΟΙΗΣΗ ΕΛΕΓΧΟΥ ΣΦΑΛΜΑΤΟΣ (2) ΚΩΔΙΚΟΠΟΙΗΣΗ ΕΛΕΓΧΟΥ ΣΦΑΛΜΑΤΟΣ () P e συνάρτηση των S/N και r b (B) Συμβάσεις κανονισμοί για τα S, B Φασματική πυκνότητα θορύβου καθορισμένη Πολυπλοκότητα και κόστος συστήματος ΚΩΔΙΚΟΠΟΙΗΣΗ ΚΑΝΑΛΙΟΥ Καλά

Διαβάστε περισσότερα

Ανίχνευση και διόρθωση σφαλμάτων σε συστήματα επικοινωνιών με κωδικοποίηση Reed-Solomon

Ανίχνευση και διόρθωση σφαλμάτων σε συστήματα επικοινωνιών με κωδικοποίηση Reed-Solomon Ανίχνευση και διόρθωση σφαλμάτων σε συστήματα επικοινωνιών με κωδικοποίηση Reed-Solomon Αλέξανδρος Βασιλείου Σεπτέμβριος 2011 Πανεπιστήμιο Πατρών PERIEQŸOMENA Συνεισφορά της εργασίας...........................

Διαβάστε περισσότερα

Κώδικες LDPC (Low Density Parity Check): Ανάλυση της λειτουργίας και προσομοίωσή τους σε Matlab

Κώδικες LDPC (Low Density Parity Check): Ανάλυση της λειτουργίας και προσομοίωσή τους σε Matlab ΑΤΕΙ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Μηχανικών Πληροφορικής ΤΕ Κώδικες LDPC (Low Density Parity Check): Ανάλυση της λειτουργίας και προσομοίωσή τους σε Matlab ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Μαρία Μαυροδήμου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Διαιρετότητα Μαθαίνω Πολλαπλάσια ενός φυσικού αριθμού α είναι όλοι οι αριθμοί που προκύπτουν από τον πολλαπλασιασμό του με όλους τους φυσικούς αριθμούς, δηλαδή οι αριθμοί: 0, α, 2 α, 3 α, 4 α,... Το μηδέν

Διαβάστε περισσότερα

Γαβαλάς αµιανός dgavalas@aegean.gr

Γαβαλάς αµιανός dgavalas@aegean.gr ίκτυα Υπολογιστών (Γ έτος, ΣΤ εξ) ιάλεξη #3: ικτυακά πρότυπα, το µοντέλο αναφοράς OSI, Επίπεδο ζεύξης δεδοµένων (data link layer), Αξιόπιστη Επικοινωνία και Έλεγχος Ροής. ιαγνωστικά εργαλεία δικτύων (ping,

Διαβάστε περισσότερα

Nέες Τεχνολογίες. στις Επικοινωνίες

Nέες Τεχνολογίες. στις Επικοινωνίες Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Nέες Τεχνολογίες στις Επικοινωνίες Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Κώδικες Διόρθωσης Λαθών Τεχνολογικό Εκπαιδευτικό

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑ ΥΠΟΛΟΓΙΣΜΟΥ ΣΥΝΔΡΟΜΟΥ. ΠΑΡΑΔΕΙΓΜΑ ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΗΣ BCC (1) (Υπολογισμός Συνδρόμου)

ΚΥΚΛΩΜΑ ΥΠΟΛΟΓΙΣΜΟΥ ΣΥΝΔΡΟΜΟΥ. ΠΑΡΑΔΕΙΓΜΑ ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΗΣ BCC (1) (Υπολογισμός Συνδρόμου) ΚΥΚΛΩΜΑ ΥΠΟΛΟΓΙΣΜΟΥ ΣΥΝΔΡΟΜΟΥ... Πύλη Ανασύζευξη πριν την ολίσθηση g g g -k- + s o + s +... + S -k- Πύλη Διάνυσμα λήψης R(x) Κύκλωμα ανάλογο με αυτό του κωδικοποιητή Βήματα:. iitializatio s i = πύλη off,

Διαβάστε περισσότερα

Το Επίπεδο Ζεύξης (ή Σύνδεσης) Δεδομένων

Το Επίπεδο Ζεύξης (ή Σύνδεσης) Δεδομένων Το Επίπεδο Ζεύξης (ή Σύνδεσης) Δεδομένων Διαφάνειες στα πλαίσια του μαθήματος: Δίκτυα Υπολογιστών Τμήμα Πληροφορικής και Τεχνολογίας Υπολογιστών, ΤΕΙ Λαμίας Πέτρος Λάμψας 2004 Προτεινόμενη Βιβλιογραφία

Διαβάστε περισσότερα

Βασικές λειτουργίες Ανίχνευση πλαισίων Τι κάνει το επίπεδο ζεύξης Χρησιμοποιεί τις υπηρεσίες του φυσικού επιπέδου, ήτοι την (ανασφαλή) μεταφορά δεδομέ

Βασικές λειτουργίες Ανίχνευση πλαισίων Τι κάνει το επίπεδο ζεύξης Χρησιμοποιεί τις υπηρεσίες του φυσικού επιπέδου, ήτοι την (ανασφαλή) μεταφορά δεδομέ Αρχές σχεδιασμού, μοντέλα αναφοράς, τυποποίηση Μιλτιάδης Αναγνώστου 19 Μαΐου 2011 1/41 Βασικές λειτουργίες Ανίχνευση πλαισίων Επίδραση του θορύβου Παραδείγματα 2/41 Βασικές λειτουργίες Ανίχνευση πλαισίων

Διαβάστε περισσότερα

ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 22/1/ :11 Όνομα: Λεκάκης Κωνσταντίνος καθ. Τεχνολογίας

ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 22/1/ :11 Όνομα: Λεκάκης Κωνσταντίνος καθ. Τεχνολογίας ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ ΔΙΑΡΚΕΙΑ: 1 περιόδους 22/1/2010 10:11 καθ. Τεχνολογίας 22/1/2010 10:12 Παραδείγματα Τι ονομάζουμε αριθμητικό σύστημα? Το σύνολο από ψηφία (αριθμοί & χαρακτήρες). Που χρησιμεύουν

Διαβάστε περισσότερα

Ενότητα 8.1. Σειριακή και παράλληλη μετάδοση δεδομένων

Ενότητα 8.1. Σειριακή και παράλληλη μετάδοση δεδομένων Ενότητα 8.1 Σειριακή και παράλληλη μετάδοση δεδομένων 1 2 Η μετάδοση δεδομένων μεταξύ δύο συσκευών μπορεί να γίνει με παράλληλο ή με σειριακό τρόπο Παράλληλη μετάδοση δεδομένων Στην παράλληλη μετάδοση

Διαβάστε περισσότερα

//009 Βασικές εργασίες του επιπέδου ζεύξης ηµιουργία πλαισίων Έλεγχος σφαλµάτων Έλεγχος ροής Σχέση µεταξύ πακέτων (επιπέδου δικτύου) και πλαισίων (επι

//009 Βασικές εργασίες του επιπέδου ζεύξης ηµιουργία πλαισίων Έλεγχος σφαλµάτων Έλεγχος ροής Σχέση µεταξύ πακέτων (επιπέδου δικτύου) και πλαισίων (επι //009 Επίπεδο ζεύξης δεδοµένων Εφαρµογών Παρουσίασης Συνόδου ιακίνησης ικτύου Ζεύξης Ζεύξης Φυσικό Τι κάνει το επίπεδο ζεύξης Χρησιµοποιεί τις υπηρεσίες του φυσικού επιπέδου, ήτοι την (ανασφαλή) µεταφορά

Διαβάστε περισσότερα

3/40. (acknowledged connectionless), (acknowledged connection oriented) 4/40

3/40. (acknowledged connectionless), (acknowledged connection oriented) 4/40 Το επίπεδο συνδέσμου μετάδοσης δεδομένων Μιλτιάδης Αναγνώστου 5 Απριλίου 2013 1/40 Επίδραση του θορύβου Παραδείγματα 2/40 Τι κάνει το επίπεδο ζεύξης ή συνδέσμου μετάδοσης δεδομένων Χρησιμοποιεί τις υπηρεσίες

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η ΟΣΣ/ Κώδικες ελέγχου Σφαλμάτων /

ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η ΟΣΣ/ Κώδικες ελέγχου Σφαλμάτων / βλ. αρχείο PLH22_OSS4_slides διαφάνειες 47-57 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η ΟΣΣ/ Κώδικες ελέγχου Σφαλμάτων/ Ν.Δημητρίου σελ. 1 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η ΟΣΣ/ Κώδικες ελέγχου Σφαλμάτων/ Ν.Δημητρίου σελ. 2 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η

Διαβάστε περισσότερα

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση

Διαβάστε περισσότερα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα 1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα Δεκαδικοί Αριθµοί Βάση : 10 Ψηφία : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Αριθµοί: Συντελεστές Χ δυνάµεις του 10 7392.25 = 7x10 3 + 3x10 2 + 9x10 1 + 2x10 0 + 2x10-1 + 5x10-2

Διαβάστε περισσότερα

Παράσταση αριθμών «κινητής υποδιαστολής» floating point

Παράσταση αριθμών «κινητής υποδιαστολής» floating point Παράσταση αριθμών «κινητής υποδιαστολής» floating point Με n bits μπορούμε να παραστήσουμε 2 n διαφορετικούς αριθμούς π.χ. με n=32 μπορούμε να παραστήσουμε τους αριθμούς από έως 2 32 -= 4,294,967,295 4

Διαβάστε περισσότερα

W i. Subset Sum Μια παραλλαγή του προβλήματος knapsack είναι το πρόβλημα Subset Sum, το οποίο δεν λαμβάνει υπόψιν την αξία των αντικειμένων:

W i. Subset Sum Μια παραλλαγή του προβλήματος knapsack είναι το πρόβλημα Subset Sum, το οποίο δεν λαμβάνει υπόψιν την αξία των αντικειμένων: 6/4/2017 Μετά την πρόταση των ασύρματων πρωτοκόλλων από τους Diffie-Hellman το 1976, το 1978 προτάθηκε ένα πρωτόκολλο από τους Merkle-Hellman το οποίο βασίστηκε στο ότι δεν μπορούμε να λύσουμε γρήγορα

Διαβάστε περισσότερα

Ν!=1*2*3* *(N-1) * N => N! = (Ν-1)! * N έτσι 55! = 54! * 55

Ν!=1*2*3* *(N-1) * N => N! = (Ν-1)! * N έτσι 55! = 54! * 55 ΑΝΑ ΡΟΜΗ- ΑΣΚΗΣΕΙΣ Μια µέθοδος είναι αναδροµική όταν καλεί τον εαυτό της και έχει µια συνθήκη τερµατισµού π.χ. το παραγοντικό ενός αριθµού Ν, µπορεί να καλεί το παραγοντικό του αριθµού Ν-1 το παραγοντικό

Διαβάστε περισσότερα

Μεταγωγή Κυκλωμάτων και Πακέτων και Δίκτυα Απευθείας Ζεύξης

Μεταγωγή Κυκλωμάτων και Πακέτων και Δίκτυα Απευθείας Ζεύξης Μεταγωγή Κυκλωμάτων και Πακέτων και Δίκτυα Απευθείας Ζεύξης Περίληψη Μεταγωγή Κυκλωμάτων (Circuit switching) Μεταγωγή Πακέτων (Packet switching) Μεταγωγή Εικονικών Κυκλωμάτων (Virtual circuit switching)

Διαβάστε περισσότερα

5. ΚΩ ΙΚΟΠΟΙΗΣΗ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ΜΕ ΘΟΡΥΒΟ

5. ΚΩ ΙΚΟΠΟΙΗΣΗ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ΜΕ ΘΟΡΥΒΟ 5. ΚΩ ΙΚΟΠΟΙΗΣΗ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ΜΕ ΘΟΡΥΒΟ Κατά τη µετάδοση πληροφορίας σε ένα σύστηµα επικοινωνίας συνήθως υπάρχει θόρυβος, δηλαδή κάποια µορφή αλλοίωσης του σήµατος. Στο δυαδικό κανάλι για παράδειγµα, όπου

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }. ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα Αν δηλαδή ω,,, ω2 ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Λύσεις 1 ης Σειράς Ασκήσεων

ΕΙΣΑΓΩΓΗ ΣΤΑ ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Λύσεις 1 ης Σειράς Ασκήσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΑ ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Λύσεις 1 ης Σειράς Ασκήσεων α) Ο αριθµός Ν των πακέτων που θα προκύψουν από το µήνυµα είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-2 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ

Διαβάστε περισσότερα

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ Τετάρτη 5-12/11/2014 ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ ΕΚΠΑΙΔΕΥΤΗΣ: ΤΡΟΧΙΔΗΣ ΠΑΝΑΓΙΩΤΗΣ 1. Παράσταση και οργάνωση δεδομένων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΥΛΟΠΟΙΗΣΗ (ΣΕ ΛΟΓΙΣΜΙΚΟ) ΚΩ ΙΚΑ ΤΥΠΟΥ TURBO ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΗΣ ΚΟΥΤΡΟΥΜΑΝΗ ΟΛΓΑΣ του ΑΘΑΝΑΣΙΟΥ

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 4 : Πράξεις με bits. Δρ. Γκόγκος Χρήστος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 4 : Πράξεις με bits. Δρ. Γκόγκος Χρήστος Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 4 : Πράξεις με bits Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή (ως τρόπος οργάνωσης αρχείου) μέγεθος

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή

Διαβάστε περισσότερα

4.2 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

4.2 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ . ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ Ασκήσεις σχολικού βιβλίου σελίδας 9 0 A Οµάδας.i) Να κάετε τη διαίρεση ( x + 6x 7x+ 0 ) : ( x+ ) και α γράψετε τη ταυτότητα της διαίρεσης. x + 6x 7x+ 0 x+ x 9x + + x + 9x 8x+ 0 + 8x+

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA

Κινητές επικοινωνίες. Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA Κινητές επικοινωνίες Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA 1 Πολυπλεξία Η πολυπλεξία επιτρέπει την παράλληλη μετάδοση δεδομένων από διαφορετικές πηγές χωρίς αλληλοπαρεμβολές. Τρία βασικά είδη TDM/TDMA

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 5 η Η σειριακή επικοινωνία ΙΙ 1.1 ΣΚΟΠΟΣ Σκοπός της άσκησης αυτής είναι η κατανόηση σε βάθος των λειτουργιών που παρέχονται από το περιβάλλον LabView για τον χειρισµό της σειριακής επικοινωνίας

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Σεπτεµβρίου ακαδηµαϊκού έτους 29-2 Τρίτη, 3 Αυγούστου 2 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Αρχιτεκτονική-Ι. Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Αρχιτεκτονική-Ι. Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχιτεκτονική-Ι Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Πολυώνυµα ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Πολυώνυµα ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ Ορισµός Ονοµάζουµε ακέραιο πολυώνυµο του x κάθε έκφραση της µορφής : α ν x ν + α ν-1 x ν-1 + α ν-2 x ν-2 + +α 1 x + α 0 όπου α ν, α ν-1, α ν-2,, α 1, α 0 C και

Διαβάστε περισσότερα

ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΝΑΛΙΟΥ (CHANNEL CODING)

ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΝΑΛΙΟΥ (CHANNEL CODING) ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΝΑΛΙΟΥ (CHANNEL CODING) Ο όρος Κωδικοποίηση Καναλιού αναφέρεται κυρίως σε κώδικες Πρόσθιας ιόρθωσηςσφαλµάτων (Forward Error Correction) και την Σύµπλεξη υαδικών Ψηφίων (Bit Interleaving)

Διαβάστε περισσότερα

ΚΕΦ. 6 : Επιπεδο Ζεύξης Δεδομένων και Πρωτόκολλα Επαναμετάδοσης

ΚΕΦ. 6 : Επιπεδο Ζεύξης Δεδομένων και Πρωτόκολλα Επαναμετάδοσης ΚΕΦ. 6 : Επιπεδο Ζεύξης Δεδομένων και Πρωτόκολλα Επαναμετάδοσης Σχηματισμός πλαισίων (οργάνωση bits σε πακέτα, κώδικες ελέγχου σφαλμάτων) Πρωτόκολλα επαναμετάδοσης (στο επίπεδο ζεύξης η επίπεδο μεταφοράς)

Διαβάστε περισσότερα

Σ ή. : υαδικά. Ε ό. ή Ενότητα

Σ ή. : υαδικά. Ε ό. ή Ενότητα 1η Θεµατική Θ ή Ενότητα Ε ό : υαδικά δ ά Συστήµατα Σ ή Μονάδα Ελέγχου Ψηφιακοί Υπολογιστές Αριθµητική Μονάδα Κρυφή Μνήµη Μονάδα Μνήµης ιαχείριση Μονάδων Ι/Ο ίσκοι Οθόνες ικτυακές Μονάδες Πληκτρολόγιο,

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 37 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Αριθµητικό Σύστηµα! Ορίζει τον τρόπο αναπαράστασης ενός αριθµού µε διακεκριµένα σύµβολα! Ένας αριθµός αναπαρίσταται διαφορετικά σε κάθε σύστηµα,

Διαβάστε περισσότερα

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου 4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή). 2. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

Δίκτυα Υπολογιστών. Επίπεδο Ζεύξης (link layer) Κ. Βασιλάκης

Δίκτυα Υπολογιστών. Επίπεδο Ζεύξης (link layer) Κ. Βασιλάκης Δίκτυα Υπολογιστών Επίπεδο Ζεύξης (link layer) Κ. Βασιλάκης Περίγραμμα ενότητες που εξετάζονται Εισαγωγή - ορολογία Υπηρεσίες επιπέδου ζεύξης Ανίχνευση σφαλμάτων Έλεγχος ισοτιμίας Άθροισμα ελέγχου (checksum)

Διαβάστε περισσότερα

Κεφάλαιο Κωδικοποίηση των ψηφίων του δεκαδικού συστήματος

Κεφάλαιο Κωδικοποίηση των ψηφίων του δεκαδικού συστήματος Κεφάλαιο 2 Σύνοψη Στο κεφάλαιο αυτό θα παρουσιαστεί αναλυτικά η κωδικοποίηση των αριθμών μέσω του δυαδικού συστήματος αρίθμησης. Αρχικά περιλαμβάνονται τα ψηφία του δεκαδικού συστήματος κωδικοποιημένα

Διαβάστε περισσότερα

Περίληψη ΗΜΥ-210: Λογικός Σχεδιασµός. Λογικές Πύλες. BUFFER, NAND και NOR. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005

Περίληψη ΗΜΥ-210: Λογικός Σχεδιασµός. Λογικές Πύλες. BUFFER, NAND και NOR. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005 ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Φεβ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 2-ii: Συνδυαστικά Λογικά Κυκλώµατα (2.6 2.8, ) Περίληψη Υλοποίηση κυκλωµάτων πολλαπλών επιπέδων (µετασχηµατισµοί)

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ

Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ Εισαγωγή στην Πληροφορική 1 Περιεχόµενα - Κωδικοποιήσεις - Αριθµητικά Συστήµατα 2 Ηλεκτρονικός Υπολογιστής Είπαµε ότι είναι, µία Ηλεκτρονική Μηχανή, που δουλεύει κάτω από τον έλεγχο εντολών αποθηκευµένων

Διαβάστε περισσότερα

Μ ελέτη της α π ο δ ο τ ικ ό τ η τ α ς» τω νίεπιβραχυμ ένω ν κωδίκων α ^Κ /ευ σ η ς και διόρθω σης σφαλμάτω ν»

Μ ελέτη της α π ο δ ο τ ικ ό τ η τ α ς» τω νίεπιβραχυμ ένω ν κωδίκων α ^Κ /ευ σ η ς και διόρθω σης σφαλμάτω ν» ΑΙ& ΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ η,4 ΠΑΡΑΡΤΗΜΑ ΣΠΑΡΤΗΣ Μ Η Μ Α ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΐ Α Ι ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Μ ελέτη της α π ο δ ο τ ικ ό τ η τ α ς» τω νίεπιβραχυμ ένω ν κωδίκων α ^Κ

Διαβάστε περισσότερα

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου 4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή).. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της μορφής:

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 3 Λειτουργίες σε Bits, Αριθμητικά Συστήματα Χρήστος Γκουμόπουλος Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Φύση υπολογιστών Η

Διαβάστε περισσότερα

Μαθηματικά. Α'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Α'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Α'Γυμνασίου Μαρίνος Παπαδόπουλος ΚΕΦΑΛΑΙΟ 1: ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. ιάταξη φυσικών αριθµών 2. Στρογγυλοποίηση 3. Πρόσθεση-Αφαίρεση-Πολλαπλασιασµός 4. υνάµεις 5. Ευκλείδεια ιαίρεση 6. ιαιρετότητα-μκ

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1 Δεκαδικό και Δυαδικό Σύστηµα Δύο κυρίαρχα συστήµατα στο χώρο των υπολογιστών Δεκαδικό: Η βάση του συστήµατος

Διαβάστε περισσότερα

3.1 εκαδικό και υαδικό

3.1 εκαδικό και υαδικό Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και εδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1 3.1 εκαδικό και υαδικό εκαδικό σύστηµα 2 1 εκαδικό και υαδικό υαδικό Σύστηµα 3 3.2 Μετατροπή Για τη µετατροπή

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey

Κρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey Κρυπτογραφία Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey Γενικά χαρακτηριστικά των stream ciphers Keystream Generator K i P i C i Δουλεύουν πάνω σε ένα ρεύμα από

Διαβάστε περισσότερα

Υπολογιστές και Πληροφορία 1

Υπολογιστές και Πληροφορία 1 ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Σκοπός του μαθήματος Λογικός Σχεδιασμός και Σχεδιασμός Η/Υ Εισαγωγή, Υπολογιστές και Πληροφορία Διδάσκουσα: Μαρία Κ. Μιχαήλ Βασικές έννοιες & εργαλεία που χρησιμοποιούνται

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

ΑΕΠΠ 1o Επαναληπτικό Διαγώνισµα

ΑΕΠΠ 1o Επαναληπτικό Διαγώνισµα ΑΕΠΠ 1o Επαναληπτικό Διαγώνισµα Ονοµατεπώνυµο: ΘΕΜΑ 1 A. Na αναφέρετε τα κριτήρια που πρέπει να πληροί ένας αλγόριθµος (ονοµαστικά) Να αναφέρετε µε τεκµηρίωση ποια από τα κριτήρια δεν πληροί ο παρακάτω

Διαβάστε περισσότερα

Αρχιτεκτονικές VLSI για την Αποκωδικοποίηση Κωδικών LDPC µε Εφαρµογή σε Ασύρµατες Ψηφιακές Επικοινωνίες

Αρχιτεκτονικές VLSI για την Αποκωδικοποίηση Κωδικών LDPC µε Εφαρµογή σε Ασύρµατες Ψηφιακές Επικοινωνίες ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΙΠΛΩΜΑ ΕΙ ΙΚΕΥΣΗΣ «ΟΛΟΚΛΗΡΩΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΥΛΙΚΟΥ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ» Αρχιτεκτονικές VLSI για την Αποκωδικοποίηση Κωδικών LDPC µε Εφαρµογή

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ Θέμα Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2016-2017 Πάτρα 3/5/2017 Ονοματεπώνυμο:.. Α1. Να γράψετε στην κόλλα σας τον αριθμό

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÁÈÇÍÁ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÁÈÇÍÁ ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Κυριακή 19 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Α1.

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα