Fizika 2. Dr. sc. Damir Lelas. Predavanje 2 Matematičko i fizikalno njihalo. Fazorski prikaz titranja i zbrajanje titranja. Uvod u mehaničke valove.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Fizika 2. Dr. sc. Damir Lelas. Predavanje 2 Matematičko i fizikalno njihalo. Fazorski prikaz titranja i zbrajanje titranja. Uvod u mehaničke valove."

Transcript

1 Školska godina 008./009. Fakultet elektrotehnike, strojarstva i brodogradnje Razlikovni studiji (90/90/930/940/950) Fizika Predavanje Matematičko i fizikalno njihalo. Fazorski prikaz titranja i zbrajanje titranja. Uvod u mehaničke valove. Dr. sc. Damir Lelas (Damir.Lelas@fesb.hr, damir.lelas@cern.ch)

2 Literatura Damir Lelas: ured - B 70 (7. kat), tel Preporučena literatura: D. Lelas, M. Grbac, I. Sorić: On-line materijali, E-learning portal FESB-a V. Henč-Bartolić, P. Kulišić: Valovi i optika, Školska knjiga Zagreb, 989. V. Henč-Bartolić i suradnici: Riješeni zadaci iz valova i optike, Školska knjiga, Zagreb 99. J. Vuletin: Zadaci iz Fizike (Titraji i valovi, Toplina, Atomi), FESB, Split, 996. Dopunska literatura: N. Cindro: Fizika, Školska knjiga, Zagreb, 99. D. Halliday, R. Resnick, J. Walker: Fundamentals of Physics, 7th Edition, John Wiley & Sons, Inc., 005. E. M. Purcell: Elektricitet i magnetizam, udžbenik fizike Sveučilišta u Berkeley, svezak., Tehnička knjiga, Zagreb, 988. E.V. Wichmann: Kvantna Fizika, udžbenik fizike Sveučilišta u Berkeley, svezak 4., Tehnička knjiga, Zagreb, 988. Razlikovni studiji, Fizika, Predavanje

3 Danas ćemo raditi: (V. Henč-Bartolić i P. Kulišić: Valovi i optika, poglavlje & ) Harmoničko titranje Matematičko njihalo Fizikalno njihalo Zbrajanje harmoničkih titranja Uvod u mehaničke valove Razlikovni studiji, Fizika, Predavanje 3

4 Matematičko njihalo Matematičko njihalo je sitno tijelo, materijalna točka, obješeno na nerastezljivu nit zanemarive mase. Kada njihalo miruje u ravnotežnom položaju, napetost niti uravnotežuje silu teže. Ako je njihalo za neki kut θ pomaknuto izvan položaja ravnoteže, normalnu komponentu sile teže uravnotežuje napetost niti T mg cosθ, a tangencijalna je komponenta sile teže usmjerena prema ravnotežnom položaju. l F g mg x l θ Razlikovni studiji, Fizika, Predavanje 4

5 Matematičko njihalo () Zbroj svih sila jednak je tangencijalnoj komponenti sile teže mg sinθ. Ova sila nije proporcionalna pomaku θ, pa ni gibanje njihala nije harmoničko. Kad materijalnu točku mase m odmaknemo od položaja ravnoteže za relativno mali kut θ (toliko mali da vrijedi sinθ θ (kut izražen u radijanima)), gibanje tijela je analogno gibanju harmoničkog oscilatora. l x l θ F g mg ma mx && mg sinθ mgθ x lθ; && x l&& θ nit je nerastezljiva i bez mase ml && θ mgθ && g θ + θ 0 l && θ + ω θ 0 θ() t θ sin( ωt+ ϕ) ω o jednadžba gibanja g l π ; T π ω l g Razlikovni studiji, Fizika, Predavanje 5

6 sinθ ~ θ, za mali kut θ T Period matematičkog njihala, koje se njiše malim amplitudama ovisi jedino o duljini njihala l i akceleraciji sile teže g. Za veće amplitude sinus kuta ne može se aproksimirati kutom i jednadžba gibanja ima složenije rješenje. Period njihala u tom slučaju ovisi o amplitudi θ 0 i dan je izrazom: T sin T 0 ϑ 0 π l g sin 4 ϑ ; θ (stupanj) θ (radijan) sin θ Τ/Τ Računarstvo, Fizika, Predavanje

7 Fizikalno (fizičko) njihalo Kruto tijelo koje se može slobodno okretati oko čvrste horizontalne osi u gravitacijskom polju Zemlje tako da os ne prolazi kroz težište naziva se fizikalno njihalo. Na kruto tijelo izmaknuto iz ravnotežnog položaja za kut θ djeluje zakretni moment sile koji ga nastoji vratiti u ravnotežni položaj. d je udaljenost osi rotacije O od težišta tijela C d F g mg Moment sile teže koji uzrokuje titranje je M mg d sinϑ Razlikovni studiji, Fizika, Predavanje

8 Fizikalno njihalo () Kad kruto tijelo izvedemo iz ravnotežnog položaja za relativno mali kut θ (toliko mali da vrijedi sinθ θ, kut izražen u radijanima) tijelo izvodi harmoničko titranje. d v r r r F g mg M r Fg ; r vektor od osi do hvatišta sile, Fg mg sila teža r r M mg d sinθ zakretni moment ima smjer koji nastoji smanjiti kut θ r r M Iα I & θ jednadzba gibanja krutog tijela koje se rotira oko cvrste osi I - moment tromosti krutog tijela oko osi rotacije jednadžba gibanja mgd sin θ mgd θ I&& θ && mgd θ + θ 0 I && θ + ω θ 0 ω mgd I za mali kut θ Razlikovni studiji, Fizika, Predavanje θ ( t) θ 0 sin( ωt + ϕ) T π ω π I mgd 8

9 Reducirana duljina fizikalnog njihala Reducirana duljina fizikalnog njihala je duljina matematičkog njihala koje ima istu period njihanja kao i fizikalno njihalo. l π π g l r T I md m T f I mgd I m L 3 I moment tromosti štapa L d l r L m I l r 3 md L m 3 L Točka P na štapu koja je od osi udaljena za reduciranu duljinu fizikalnog njihala l r zove se središte titranja (točka C težište tijela). Tijelo obješeno u središtu titranja (točka P) ima isti period titranja kao i kad se njiše oko prvotne osi (oko točke O). Njihalo koje se može objesiti tako da se njiše oko točke O i oko središta titranja P zove se reverziono njihalo. Razlikovni studiji, Fizika, Predavanje 9

10 Jednostavno harmoničko titranje i kružno gibanje Harmoničko titranje možemo povezati s jednolikim gibanjem po kružnici, što nam često može pomoći u proučavanju titrajnih sustava. x Acos θ Acosωt Razlikovni studiji, Fizika, Predavanje 0

11 Jednostavno harmoničko titranje i kružno gibanje Kad se neko tijelo giba po kružnici konstantnom brzinom, projekcija položaja tijela na bilo koji promjer kružnice predstavljena je harmoničkim titranjem. Kutna brzine točke jednaka je kružnoj frekvenciji titranja, a ophodno vrijeme gibanja jednako je periodu titranja. Vektor OP u donjoj lijevoj slici je rotirajući vektor ili fazor. x( t) xm cos( ω t + φ) v( t) ω x sin( ωt + φ ) at ( ) ω x cos( ωt+ φ) m m Razlikovni studiji, Fizika, Predavanje

12 Zbrajanje koherentnih titranja Ako na česticu djeluju istovremeno dvije harmoničke sile, gibanje tijela dano je superpozicijom gibanja (interferencijom) zbog svake pojedine sile. Kad tijelo istovremeno izvodi dva harmonička titranja iste frekvencija i stalne razlike u fazi govorimo o koherentnim titranjima. Titranje se može predočiti rotirajućim vektorom (fazorom), duljina fazora jednaka je amplitudi titranja, kružna frekvencija rotacije fazora jednaka je kutnoj frekvenciji titranja, a početna faza se predočuje početnim kutom između fazora i osi na koju se projicira fazor. Predstavljanje titranja fazorom je vrlo korisno, jer kad neko tijelo izvodi istovremeno dva titranja bilo duž istog pravca bilo duž dva okomita pravca, rezultanto gibanje bit će dano projekcijom rezultantnog fazora na odabranu os projekcije. Razlikovni studiji, Fizika, Predavanje

13 Zbrajanje koherentnih titranja duž istog pravca Oba titranja imaju jednaku frekvenciju i među njima postoji razlika u fazi koja se ne mijenja cijelo vrijeme gibanja (koherentna titranja). Titranja ćemo zbrojiti metodom rotirajućeg vektora Prvo titranje može se prikazati rotirajućim vektorom A r, a drugo titranje rotirajućim vektorom A r r r r Rezultantno titranje je gibanje projekcije vrha vektorskog zbroja A A + A, frekvencije jednake frekvenciji početnih titranja. A sinϕ A cosϕ A r ϕ r A A r ϕ x ( t) x( t) A A sin( ω t + ϕ ) x ( t) + x A x ( t) A ( t) Asin( ωt + ϕ) A? ϕ? r r r A A + A + A + sin( ωt + ϕ ) A A cos( ϕ ϕ ) A sinϕ ϕ A r ϕ arctg A sinϕ A cosϕ + + A A sinϕ cosϕ A cosϕ Razlikovni studiji, Fizika, Predavanje 3

14 Zbrajanje koherentnih titranja duž istog pravca () Amplituda rezultantnog titranja ovisi o amplitudama pojedinih titranja i razlici u fazi između ta dva titranja Δϕ ϕ ϕ Konstruktivna interferencija je pojava kad je amplituda rezultantnog titranja maksimalna A A, a to je ispunjeno kad je Δϕ ϕ ϕ n π, n 0, ±, ±,... + A Destruktivna interferencija je pojava kad je amplituda rezultantnog titranja minimalna A, a to je ispunjeno kad je Δϕ ϕ ϕ (n + ) π, n 0, ±,,... A A ± Konstruktivna interferencija Destruktivna interferencija (A A ) Razlikovni studiji, Fizika, Predavanje 4

15 Razlikovni studiji, Fizika, Predavanje Zbrajanje dvaju paralelnih harmoničkih titranja različitih frekvencija Interferencija dvaju jednostavnih harmoničkih titranja različitih frekvencija na istom pravcu: Nakon transformacije izraz poprima oblik: Iz izraza se vidi da čestica titra kružnom frekvencijom i amplitudom: [ ] ) sin( ) sin( ) ( ) ( ) ( ) sin( ) ( ); sin( ) ( ϕ ω ϕ ω ϕ ω ϕ ω t t A t x t x t x t A t x t A t x sin cos ) ( ϕ ϕ ω ω ϕ ϕ ω ω t t A t x ) ( ω ω + + cos ϕ ϕ ω ω t A a

16 Zbrajanje dvaju paralelnih harmoničkih titranja različitih frekvencija. Udari Amplituda rezultantnog vala je modulirana i mijenja se od maksimalne A do nule. Frekvencija kojom se maksimalna amplituda ponavlja je: ω ω f f π f Kad dvije glazbene viljuške titraju malo različitim frekvencijama, uho čuje niz zvučnih maksimuma ili udara frekvencije f f f. Ova pojava može poslužiti za ugađanje muzičkih instrumenata. Razlikovni studiji, Fizika, Predavanje

17 Pitanja za provjeru znanja. Što je matematičko a što fizikalno njihalo? Što je to fazorski prikaz titranja (prikaz pomoću rotirajućeg vektora)?. Napišite jednadžbu gibanja matematičkog njihala, i nađite njena rješenja za mali kut otklona od ravnotežnog položaja te izraz za period titranja. 3. Napišite jednadžbu gibanja fizikalnog njihala, i nađite njena rješenja za mali kut otklona od ravnotežnog položaja te izraz za period titranja. 4. Što je to reducirana dužina fizikalnog njihala, a što središte titranja fizikalnog njihala? 5. Objasnite vezu između jednolikog kružnog gibanja i harmoničkog titranja, što je to fazor. 6. Kad su dva titranja koherentna? 7. Izvedite izraz za rezultantno titranje dvaju koherentnih titranja duž istog pravaca pomoću fazorskog (metoda rotirajućih vektora) prikaza. I diskutirajte pojavu i uvjete konstruktivne i destruktivne interferencije. 8. Što su udari, nađite frekvenciju udara. Razlikovni studiji, Fizika, Predavanje 7

18 Mehanički valovi (V. Henč-Bartolić i P. Kulišić: Valovi i optika, poglavlje ) Razlikovni studiji, Fizika, Predavanje 8

19 Valovi - Priča Kada se buba kreće na pijesku unutar nekoliko desetaka centimetara od ovog pješčanog škorpiona, škorpion se u trenu okrene prema bubi namjeravajući je uhvatiti. Škorpion može napraviti ovo bez da bubu vidi ili čuje. Na koji način škorpion može tako precizno uočiti svoj plijen? Odgovor ćete saznati nešto kasnije... Razlikovni studiji, Fizika, Predavanje 9

20 Valovi vrste valova Energija se može prenositi od jednog mjesta na drugo na dva načina, gibanjem čestica (tijela) i valovitim gibanjem. Val je poremećaj sredstva koji se određenom brzinom širi kroz prostor Vrste valova: Mehanički valovi Primjeri: vodeni valovi, zvučni valovi, seizmički valovi... Osnovna svojstva: ponašaju se prema Newtonovim zakonima i mogu postojati samo unutar nekog sredstva, kao npr. voda, zrak, stijene... Elektromagnetski valovi Primjeri: svjetlost, radio i TV valovi, mikrovalovi, X-zrake... Osnovna svojstva: ne zahtijevaju medij za prenošenje (šire se i u vakuumu), svi elektromagnetski valovi putuju kroz vakuum brzinom svjetlosti Valovi materije Valovi pridruženi elektronima, protonima atomima, molekulama... Razlikovni studiji, Fizika, Predavanje 0

21 Podjele valova. podjela: Transverzalni valovi čestice sredstva titraju okomito na smjer širenja vala Longitudinalni valovi čestice sredstva titraju u smjeru širenja vala.. podjela: Putujući valovi gibaju se u određenom smjeru i pri tom se energija prenosi sa čestice na česticu Stojni valovi neke čestice titraju, a neke stalno miruju; valna slika se ne mijenja s vremenom; energija se ne širi prostorom. 3. podjela: Linearni (jednodimenzionalan) valovi npr. val na žici, Površinski valovi npr. val na vodi, Prostorni val npr. zvučni val. Razlikovni studiji, Fizika, Predavanje

22 Kako nastaje val Izvor vala koji izaziva deformaciju (poremećaj) Sredina koja je elastična Neki fizikalni mehanizam preko kojeg djelići sredine utječu jedan na drugi. Valnim gibanjem se prenosi energija. Tvar se ne prenosi valnim gibanjem. količina prenesene energije i mehanizam odgovoran za transport su različiti za različite tipove valova. Razlikovni studiji, Fizika, Predavanje

23 Transverzalni i longitudinalni val Transverzalni val Izvor harmonijskog vala y A sin ωt Longitudinali val Razlikovni studiji, Fizika, Predavanje 3

24 Jednodimenzionalni val (opće rješenje) Puls u trenutku to f ( x 0, t 0) A Puls u trenutku t f ( x vt 0, t t) A Jednodimenzionalni val putuje na desno brzinom v. U trenutku t0 oblik deformacije je f(x). Za kasnija vremena t, oblik deformacije se ne mijenja i deformacija u bilo kojoj točci P je y(x,t)f(x-vt) za širenje vala na desno. Za širenje vala na lijevo y(x,t)g(x+vt). y( x, t) f ( x vt) y ( x, t) g( x + vt) Oblik funkcije koji opisuje širenje vala na desno duž + x osi Oblik funkcije koji opisuje širenje vala na lijevo duž x osi Razlikovni studiji, Fizika, Predavanje 4

25 Najjednostavniji val - harmonički val Najjednostavniji valni oblik je harmonički val koji je predstavljen funkcijom sinusa ili kosinusa. Smeđa krivulja predstavlja val u trenutku t0, a plava u nešto kasnijem vremenu t. Svaki djelić sredstva harmonički titra s različitim amplitudama. Treba razlikovati brzinu širenja vala od brzine titranja čestica oko svojih ravnotežnih položaja. Superpozicijom harmoničkih valova može se izgraditi bilo koji valni oblik. Razlikovni studiji, Fizika, Predavanje 5

26 Harmonički val matematički zapis Pretpostavimo da u izvoru vala, u kojem odaberemo ishodište koordinatnog sustava, čestica harmonički titra: y ( x 0, t ) ω t Titranje će se širiti iz ishodišta i do neke će točke P, udaljene za x od ishodišta, val doći nakon vremena (v je brzina vala): x t v Kada val dođe do čestice na mjestu x, ona će početi harmonički titrati istom frekvencijom ω, ali s razlikom u fazi u odnosu prema titranju čestice u izvoru: A sin x ω y ( x, t ) A sin ω ( t t ) A sin ω ( t ) A sin( ω t x ) v v (pri tom smo pretpostavili da se pri širenju vala amplituda ne mijenja) Razlikovni studiji, Fizika, Predavanje 6

27 Harmonički val matematički zapis () x ω y ( x, t ) A sin ω ( t t ) A sin ω ( t ) A sin( ω t x ) v v k ω πf π π v v vt λ rad m -valni broj ϕ ( x, t) ω ωt x ωt v kx - faza vala, ωt kx konst; d dt ( ωt kx) ω k dx dt 0 v dx dt ω λ λf k T brzina vala ili fazna brzina tj. brzina kojom se giba pojedina faza vala Razlikovni studiji, Fizika, Predavanje 7

28 Matematički opis harmoničkog vala Valno gibanje ima prostornu i vremensku periodičnost. Valna duljina λ opisuje prostornu periodičnost, čestice sredstva udaljene za λ imaju istu elongaciju i brzinu u svakom trenutku. Vremenska periodičnost definirana je periodom T, to je period titranja pojedine čestice sredstva. π y( x, t) Asin( ωt kx) Asin ( vt x) λ π π y( x, t) Asin ( vt x) y( x+ λ, t) Asin ( vt x λ) λ λ π π Asin( vt x π ) prostorna periodicno st vala λ λ π π y( x, t) Asin ( vt x) y( x, t + T) Asin ( v( t + T) x) λ λ π π π π Asin( vt+ ( vt λ) x) Asin ( vt+ π x) λ λ λ λ π Asin ( vt x) vremenska periodicno st vala λ λ vt m [ λ ] valna duljina Razlikovni studiji, Fizika, Predavanje 8

29 Harmonički val na užetu Jedan kraj užeta pričvršćen za točku koja harmonički titra izvor vala. Svaka čestica užeta harmonički titra, frekvencijom koja je jednaka frekvenciji kojom titra izvor vala, okomito na smjer širenja vala transverzalni val. Brzina titranja pojedine čestice užeta je: v y y t x konst. Aω cos( ωt kx ) y( x, t) A sin( ωt kx) Akceleracija čestice užeta na mjestu x: a y y t x konst. v y t x konst. Aω sin( ωt kx ) Razlikovni studiji, Fizika, Predavanje 9

30 Harmonički val: period, valna duljina, početna faza Prostorna periodičnost Valna duljina, λ, je prostorna periodičnost, to je udaljenost između dviju najbližih čestica sredstva u istom mehaničkom stanju, npr. udaljenost između dviju amplituda. opći oblik harmoničkog vala y( x, t) A sin ( ω t kx + ϕ ) 443 faza valna duljina [ ] m λ vt ; λ ω π k ; [ k ] v λ početna faza ϕ rad m A sin( ωt kx ) Vremenska periodičnost A sin( ω t kx + ϕ π 5 π ) 5 Razlikovni studiji, Fizika, Predavanje 30

31 Primjer Sinusni val širi se duž pozitivnog smjera x-osi, ima frekvenciju f8hz i valnu duljinu iznosa 40 cm. Maksimalni vertikalni pomak sredstva u trenutku t0 na mjestu x0 je 5 cm. a) Nađite valni broj k, period T, kutnu frekvenciju ω i brzine propagacije vala Amplituda je maksimalni otklon čestice sredstva, kojim se širi val, od ravnotežnog položaja Valna duljina, λ, je 40.0 cm Amplituda, A, je 5.0 cm Jednadžba ovog harmoničkog jednodimenzionalnog vala je: y Asin(ωt-kx+π/) Acos(ωt-kx) π π rad k 0,57 λ 40( cm ) m rad ω πf π 8( ) 50,3 s s T 0,5 s f 8( s ) v λf 40 cm 8 s 30 cm s Razlikovni studiji, Fizika, Predavanje 3

32 Objašnjenje priče Pješčani škorpion upotrebljava i longitudinalne i transverzalne valove kako bi precizno uočio svoj plijen. Kada se buba pokrene (makar i vrlo malo), pošalje kratke pulseve duž površine pijeska. Jedan dio pulseva su longitudinalni, s većom brzinom, dok je drugi dio dio transverzalan s manjom brzinom širenja. Škorpion, sa svojih 8 nogu raširenih u krugu promjera oko 5 cm, presretne najprije brži longitudinalni puls i zaključi u kojem se smjeru nalazi buba; to je u smjeru noge koja je najprije uočila puls. Nakon toga škorpion izmjeri vremenski razmak između primijećenog prvog pulsa i kasnijeg pulsa koji dolazi od transverzalnog vala i taj vremenski razmak upotrebi za određivanje udaljenosti bube Razlikovni studiji, Fizika, Predavanje 3

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Fizika 2. Fizikalna optika 2008/09

Fizika 2. Fizikalna optika 2008/09 Fizika 2 Fizikalna optika 2008/09 Što je svjetlost; što je priroda svjetlosti? U geometrijskoj optici: Svjetlost je pravocrtna pojava određene brzine u nekom sredstvu (optičkom sredstvu). U fizikalnoj

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Rotacija krutog tijela

Rotacija krutog tijela Rotacija krutog tijela 6. Rotacija krutog tijela Djelovanje sile na tijelo promjena oblika tijela (deformacija) promjena stanja gibanja tijela Kruto tijelo pod djelovanjem vanjskih sila ne mijenja svoj

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Val je gibanje poremećaja nekog medija

Val je gibanje poremećaja nekog medija Valovi Što je val? - Svijet je pun valova: valovi na vodi, zvučni valovi, valovi na žici, seizmički valovi, elektromagnetski valovi - svjetlost, rentgenske zrake, gama zrake, uljatraljubičasta svjetlost,

Διαβάστε περισσότερα

7. Titranje, prigušeno titranje, harmonijsko titranje

7. Titranje, prigušeno titranje, harmonijsko titranje 7. itranje, prigušeno titranje, harmonijsko titranje IRANJE Općenito je titranje mijenjanje bilo koje mjerne veličine u nekom sustavu oko srednje vrijednosti. U tehnici titranje podrazumijeva takvo gibanje

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1 Zadatak, Štap B duljine i mase m pridržan užetom u točki B, miruje u vertikalnoj ravnini kako je prikazano na skii. reba odrediti reakiju u ležaju u trenutku kad se presječe uže u točki B. B Rješenje:

Διαβάστε περισσότερα

Što je svjetlost? Svjetlost je elektromagnetski val

Što je svjetlost? Svjetlost je elektromagnetski val Optika Što je svjetlost? Svjetlost je elektromagnetski val Transvezalan Boja ovisi o valnoj duljini idljiva svjetlost (od 400 nm do 700 nm) Ljubičasta ( 400 nm) ima kradu valnu duljinu od crvene (700 nm)

Διαβάστε περισσότερα

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici. Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika

Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika 1. Kinematika Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika Kinematika (grč. kinein = gibati) je dio mehanike koji

Διαβάστε περισσότερα

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa Claudius Ptolemeus (100-170) - geocentrični sustav Nikola Kopernik (1473-1543) - heliocentrični sustav Tycho Brahe (1546-1601) precizno bilježio putanje nebeskih tijela 1600. Johannes Kepler (1571-1630)

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske Algebra Vektora 1 Algebra vektora 1.1 Definicija vektora pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske veličine za opis skalarne veličine trebamo zadati samo njezin iznos (npr.

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE):

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE): Repetitorij-Dinamika Dinamika materijalne točke Sila: F p = m a = lim t 0 t = d p dt m a = i F i Zakon očuvanja impulsa (ZOI): i p i = j p j i p ix = j p jx te i p iy = j p jy u 2D sustavu Zakon očuvanja

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

F = k x. Uloga povratne sile. Terminologija titranja

F = k x. Uloga povratne sile. Terminologija titranja Titranje_intro Periodičko gibanje i mehaničko titranje, uloga povratne sile, terminologija titranja, grafički prikazi titranja, odnos između akceleracije i elongacije, vlastita frekvencija i energija harmoničkog

Διαβάστε περισσότερα

Slika 2. Valna duljina i amplituda vala

Slika 2. Valna duljina i amplituda vala Valovi i zvuk_intro Postanak i širenje vala u sredstvu, transverzalni i longitudinalni valovi, ovisnost brzine vala o svojstvima sredstva, faza točke vala i razlika u fazi dviju točaka vala, jednadžba

Διαβάστε περισσότερα

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri

Διαβάστε περισσότερα

Prostorni spojeni sistemi

Prostorni spojeni sistemi Prostorni spojeni sistemi K. F. (poopćeni) pomaci i stupnjevi slobode tijela u prostoru: 1. pomak po pravcu (translacija): dva kuta kojima je odreden orijentirani pravac (os) i orijentirana duljina pomaka

Διαβάστε περισσότερα

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Školska godina 2006/2007 Fizika 1 Auditorne vježbe 5 Dinamika: Newtonovi zakoni 12. prosinca 2008. Dunja Polić (dunja.polic@fesb.hr)

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

V A L O V I. * pregled osnovnih pojmova *

V A L O V I. * pregled osnovnih pojmova * V A L O V I * pregled osnovnih pojmova * Val predstavlja prijenos energije titranja kroz prostor. Izvor vala svojim oscilacijama emitira energiju u okolinu. U prirodi postoje dvije vrste valova, mehanički

Διαβάστε περισσότερα

Elektron u magnetskom polju

Elektron u magnetskom polju Quantum mechanics 1 - Lecture 13 UJJS, Dept. of Physics, Osijek 4. lipnja 2013. Sadržaj 1 Bohrov magneton Stern-Gerlachov pokus Vrtnja elektrona u magnetskom polju 2 Nuklearna magnetska rezonancija (NMR)

Διαβάστε περισσότερα

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule) FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Fizika 1. Auditorne vježbe 3 Kružna gibanja. Dunja Polić. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva. 17. listopada 2008.

Fizika 1. Auditorne vježbe 3 Kružna gibanja. Dunja Polić. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva. 17. listopada 2008. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Školska godina 008/009 Fizika 1 Auditorne vježbe 3 Kružna gibanja 17. listopada 008. Dunja Polić dunja.polic@fesb.hr Ponavljanje jednoliko

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

f(x) = a x, 0<a<1 (funkcija strogo pada)

f(x) = a x, 0<a<1 (funkcija strogo pada) Eksponencijalna funkcija (baze a) f() a, a > 0, a domena D(f) R; slika funkcije f(d) (0,+ ); nema nultočaka, jer je a > 0, za sve R; graf G(f) je krivulja u ravnini prikazana na slici desno; f() a, 0

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

šupanijsko natjecanje iz zike 2017/2018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova)

šupanijsko natjecanje iz zike 2017/2018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova) šupanijsko natjecanje iz zike 017/018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova) U prvom vremenskom intervalu t 1 = 7 s automobil se giba jednoliko ubrzano ubrzanjem

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku.

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku. . Na brojevnoj kružnici označi točke: A (05π), A 2 ( 007π 2 ), A 3 ( 553π 3 ) i A 4 ( 40 o ). 2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u.zadatku. 3.

Διαβάστε περισσότερα

Princip inercije. Ako tijelo ostavimo na nekom mjestu ono će ostati mirovati ili se gibati jednolikom brzinom po pravcu.

Princip inercije. Ako tijelo ostavimo na nekom mjestu ono će ostati mirovati ili se gibati jednolikom brzinom po pravcu. Princip inercije Ako tijelo ostavimo na nekom mjestu ono će ostati mirovati ili se gibati jednolikom brzinom po pravcu. Razvio koncept dinamike Pretpostavio je da je gibanje tijela nečim uzrokovano Definirao

Διαβάστε περισσότερα

Fizika 2. Auditorne vježbe - 7. Fakultet elektrotehnike, strojarstva i brodogradnje Računarstvo. Elekromagnetski valovi. 15. travnja 2009.

Fizika 2. Auditorne vježbe - 7. Fakultet elektrotehnike, strojarstva i brodogradnje Računarstvo. Elekromagnetski valovi. 15. travnja 2009. Fakule elekoehnike, sojasva i bodogadnje Računasvo Fiika Audione vježbe - 7 lekomagneski valovi 15. avnja 9. Ivica Soić (Ivica.Soic@fesb.h) Mawellove jednadžbe inegalni i difeencijalni oblik 1.. 3. 4.

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

n F Δ s= F d s [ J ] =m g h Kinetičku energiju tijelo posjeduje usljed kretanja na nekom putu. zatranslaciju: E k = (m v² ) 2 za rotaciju: E k

n F Δ s= F d s [ J ] =m g h Kinetičku energiju tijelo posjeduje usljed kretanja na nekom putu. zatranslaciju: E k = (m v² ) 2 za rotaciju: E k 1. Definisati mehanički rad, snagu, energiju i napisati formule u slučaju translacije i rotacije. Rad se određuje proizvodom sile koja djeluje na tijelo i rastojanja koje tijelo pređe usljed djelovanja

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Impuls i količina gibanja

Impuls i količina gibanja FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba 4 Impuls i količina gibanja Ime i prezime prosinac 2008. MEHANIKA

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Podsjetnik za državnu maturu iz fizike značenje formula

Podsjetnik za državnu maturu iz fizike značenje formula Podsjetnik za državnu maturu iz fizike značenje formula ukratko je objašnjeno značenje svih slova u formulama koje se dobiju uz ispit [u uglatim zagradama su SI mjerne jedinice] Kinetika v = brzina ( =

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

7. MEHANIČKI VALOVI I ZVUK

7. MEHANIČKI VALOVI I ZVUK ELEKTROTEHNIČKI FAKULTET SARAJEVO INŽENJERSKA FIZIKA I 7. MEHANIČKI VALOVI I ZVUK 7.1 Prostiranje valova u elastičnoj sredini Ako se na jednom mjestu elastične sredine (čvrste, tečne ili plinovite) izazovu

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

Izdavač HINUS Zagreb, Miramarska 13 B tel. (01) , , fax (01)

Izdavač HINUS Zagreb, Miramarska 13 B tel. (01) , , fax (01) Izdavač HINUS Zagreb, Miramarska 3 B tel. (0) 65 4 96, 668738, 6 55 8 fax (0) 6 55 8 e-mail hinus@zg.htnet.hr Urednik Mr. sc. Hrvoje Zrnčić Recenzenti Prof. dr. sc. Ivica Picek Prof. Anđela Gojević ISBN

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Ampèreova i Lorentzova sila zadatci za vježbu

Ampèreova i Lorentzova sila zadatci za vježbu Ampèreova i Lorentzova sila zadatci za vježbu Sila na vodič kojim prolazi električna struja 1. Kroz horizontalno položen štap duljine 0,2 m prolazi električna struja jakosti 15 A. Štap se nalazi u horizontalnom

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Ortogonalne transformacije

Ortogonalne transformacije Promatramo dva koordinatna S i S sa zajedničkim ishodištem z x z k i x k i j j y y jedinične vektore koordinatnog S možemo izraziti pomoću jediničnih vektora koordinatnog S i = ( i i) i + ( i j) j + (

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Oscilacije (podsetnik)

Oscilacije (podsetnik) Oscilacije (podsetnik) -Oscilacije prestavljaju periodično ponavljanje određene fizičke veličine u vremenu. -U mehanici telo osciluje ako periodično prolazi kroz iste položaje tj. kretanje se ponavlja.

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja

Διαβάστε περισσότερα