ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ"

Transcript

1 ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΑΓΩΓΗ () Νυμφοδώρα Παπασιώπη Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-

2 . Αγωγή. ΑΓΩΓΗ (). Γενική εξίσωση ενέργειας για την αγωγή.. Εξίσωση αγωγής θερμότητας σε επίπεδο τοίχωμα.. Εξίσωση αγωγής θερμότητας σε κύλινδρο μεγάλου μήκους..3 Εξίσωση αγωγής θερμότητας σε σφαίρα..4 Εξισώσεις μονοδιάστατης αγωγής (ανακεφαλαίωση). Οριακές και αρχικές συνθήκες για τις εξισώσεις αγωγής.3 Μονοδιάστατη αγωγή σε μόνιμη κατάσταση χωρίς παραγωγή θερμότητας.3. Επίπεδο τοίχωμα.3. Κυλινδρικό τοίχωμα.3.3 Σφαιρικό τοίχωμα.4 Μεταβαλλόμενη αγωγιμότητα Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-

3 . Αγωγή (). ΑΓΩΓΗ ().5 Σύνθετα τοιχώματα - Άθροιση αντιστάσεων.5. Αναλογία αγωγής θερμότητας αγωγής ηλεκτρικού ρεύματος.5. Άθροιση αντιστάσεων σε επίπεδο τοίχωμα.5.3 Άθροιση αντιστάσεων σε κυλινδρικό τοίχωμα.5.4 Κρίσιμο πάχος κυλινδρικού ή σφαιρικού τοιχώματος.5.5 Γενικευμένο δίκτυο αντιστάσεων Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-3

4 . Αγωγή ().5 Σύνθετα τοιχώματα. Άθροιση αντιστάσεων.5. Αναλογία αγωγής θερμότητας αγωγής ηλεκτρικού ρεύματος Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-4

5 . Αγωγή ().5. Άθροιση αντιστάσεων σε επίπεδο τοίχωμα Σύνθετο τοίχωμα από δύο διαφορετικά υλικά & θ θ θ 3 q λαa λβa LΑ LΒ θ L θ q& Α q& λαa θ L θ3 q& Β q& λβa θ Α Β Υποθέσεις: Μονοδιάστατη αγωγή Χωρίς παραγωγή θερμότητας Μόνιμη κατάσταση θ & L [ ] Α B θ3 q + q + B λ A λba Α Α θ θ3 q& L & LΑ L + λ A λ A Β Α + B Α B Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-5

6 . Αγωγή ().5. Άθροιση αντιστάσεων σε επίπεδο τοίχωμα Εναλλαγή θερμότητας μεταξύ δύο ρευστών μέσω ενός τοιχώματος θ θ3 q& ha( θ θ) λa ha( θ3 θ4) L θ θ L q & + + & + [ + ] 4 q 3 ha λa ha Υποθέσεις: Μονοδιάστατη αγωγή Χωρίς παραγωγή θερμότητας Μόνιμη κατάσταση q θ θ θ θ3 θ3 θ4 θ θ & 4 L h A λa 3 h A Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-6

7 . Αγωγή ().5. Άθροιση αντιστάσεων σε επίπεδο τοίχωμα Παράδειγμα.5 Απώλεια θερμότητας μέσα από παράθυρο με μονό τζάμι Δεδομένα: Παράθυρο με μονό τζάμι ύψους 0.8m, πλάτους.5m και πάχους 8mm. Θερμική αγωγιμότητα του τζαμιού, λ0.78 /(m ) Συντελεστής μεταφοράς θερμότητας στην εσωτερική και εξωτερική επιφάνεια του παραθύρου, h 0 /(m ) και h 40 /(m ) Η θερμοκρασία στο δωμάτιο είναι θ 0 ο και η εξωτερική θερμοκρασία είναι θ -0 ο Ζητούνται: Η απώλεια θερμότητας Η θερμοκρασία θ στην εσωτερική επιφάνεια του τζαμιού Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-7

8 . Αγωγή () Παράδειγμα.5 Απώλεια θερμότητας μέσα από παράθυρο με μονό τζάμι Λύση & θ θ q L i + glass h A λa h A Η 0.8m,.5m, L 8mm. λ0.78 /(m ) h 0 /(m ), h 40 /(m ) θ 0 ο, θ -0 ο A H 0.8m.5m.m i / ha (0 / m ) (.m ) L 0.008m glass / λa (0.78 /m ) (.m ) / h A (40 / m ) (.m ) i + glass θ q& Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-8 θ / [0 ( 0)] 0.7 / 66

9 . Αγωγή () Λύση q& Παράδειγμα.5 Απώλεια θερμότητας μέσα από παράθυρο με μονό τζάμι Η θερμοκρασία στην εσωτερική επιφάνεια του τζαμιού, θ : θ θ θ θ i θ θ q& i 0 (66 ) ( / ) θ. Η 0.8m,.5m, L 8mm. λ0.78 /(m ) h 0 /(m ), h 40 /(m ) θ 0 ο, θ -0 ο Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-9

10 . Αγωγή ().5. Άθροιση αντιστάσεων σε επίπεδο τοίχωμα Παράδειγμα.6 Απώλεια θερμότητας μέσα από παράθυρο με διπλό τζάμι Δεδομένα: Παράθυρο ύψους 0.8m και πλάτους.5m, με διπλό τζάμι, το οποίο αποτελείται από δύο στρώματα γυαλιού πάχους 4mm και ένα στρώμα αέρα πάχους 0mm. Θερμική αγωγιμότητα γυαλιού, λ0.78 /(m ) και θερμική αγωγιμότητα αέρα, λ0.06 /(m) Συντελεστής μεταφοράς θερμότητας στην εσωτερική και εξωτερική επιφάνεια του παραθύρου, h 0 /(m ) και h 40 /(m ) Η θερμοκρασία στο δωμάτιο είναι θ 0 ο και η εξωτερική θερμοκρασία είναι θ -0 ο Ζητούνται: Η απώλεια θερμότητας Η θερμοκρασία θ στην εσωτερική επιφάνεια του παραθύρου Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-0

11 . Αγωγή ().5. Άθροιση αντιστάσεων σε επίπεδο τοίχωμα Παράδειγμα.6 Απώλεια θερμότητας μέσα από παράθυρο με διπλό τζάμι Λύση Η 0.8m,.5m L L 3 4mm, L 0mm λ λ /(m ), λ 0.06 /(m ) h 0 /(m ), h 40 /(m ) θ 0 ο, θ -0 ο Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3- A H.m i ha (0 / m ) (.m ) L m 3 glass λa (0.78 /m ) (.m ) L λ A h A 0.00 m (0.06 /m ) (.m ) (40 / m ) (.m ) / / i / θ θ [0 ( 0)] q& / / / 69.

12 . Αγωγή ().5. Άθροιση αντιστάσεων σε επίπεδο τοίχωμα Παράδειγμα.6 Απώλεια θερμότητας μέσα από παράθυρο με διπλό τζάμι Λύση Η θερμοκρασία στην εσωτερική επιφάνεια του τζαμιού, θ : q& θ θ θ θ i θ θ q& i 0 (69.) ( / ) θ 4. Η 0.8m,.5m L L 3 4mm, L 0mm λ λ /(m ), λ 0.06 /(m ) h 0 /(m ), h 40 /(m ) θ 0 ο, θ -0 ο Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-

13 . Αγωγή ().5. Άθροιση αντιστάσεων σε επίπεδο τοίχωμα Θερμική αντίσταση επαφής Δθ διεπιφ Θερμική αντίσταση επαφής, c c (m / ) q & / A Θερμική αγωγιμότητα επαφής, h c h c c q & / A Δθ διεπιφ ( /(m )) Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-3

14 . Αγωγή ().5. Άθροιση αντιστάσεων σε επίπεδο τοίχωμα Θερμική αντίσταση επαφής Πίνακας 3-engel Για να μειωθεί η c γίνεται προσπάθεια αντικατάστασης του αέρα με άλλα αέρια ή άλλα ρευστά υψηλότερης αγωγιμότητας. Η θερμική αντίσταση επαφής προσδιορίζεται συνήθως πειραματικά. Τυπικές τιμές: c : (m /) h c : (/(m )) Η αντίσταση επαφής, c : είναι σημαντική όταν έχουμε καλούς αγωγούς θερμότητας, π.χ. μέταλλα μπορεί να θεωρηθεί αμελητέα όταν έχουμε κακούς αγωγούς θερμότητας, π.χ. μονωτές Η c εξαρτάται από: α) την τραχύτητα των επιφανειών β) την πίεση στην επιφάνεια επαφής γ) το ρευστό που παρεμβάλλεται (συνήθως αέρας) Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-4

15 . Αγωγή ().5. Άθροιση αντιστάσεων σε επίπεδο τοίχωμα Παράδειγμα.7 Αντίσταση επαφής Δεδομένα: Έχουμε δύο πλάκες αλουμινίου πάχους cm Η αγωγιμότητα επαφής, h c, προσδιορίστηκε ότι αντιστοιχεί σε 000 /(m ) Η θερμική αγωγιμότητα του αλουμινίου είναι λ37 /(m ) Ζητούνται: Το πάχος της πλάκας αλουμινίου, της οποίας η θερμική αντίσταση είναι ίση με την αντίσταση της επιφάνειας επαφής μεταξύ των πλακών Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-5

16 . Αγωγή ().5. Άθροιση αντιστάσεων σε επίπεδο τοίχωμα Παράδειγμα.7 Αντίσταση επαφής Λύση c h c 000 ( /(m ) (m / ) Η θερμική αντίσταση μιας πλάκας υπολογίζεται από τη σχέση: L λ A h c 000 /(m ) λ37 /(m ) Για επιφάνεια Α m c L L λ λ L 0.05 m c.5 cm 37( ) m m ( ) Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-6

17 . Αγωγή ().5.3 Άθροιση αντιστάσεων σε κυλινδρικό τοίχωμα (i) Η αντίσταση συναγωγής στο εσωτερικό του αγωγού: ha (ii) Η αντίσταση συναγωγής στο εξωτερικό του αγωγού: ha (Α η εσωτερική και Α η εξωτερική επιφάνεια του κυλίνδρου) (iii) Η αντίσταση αγωγής στο κυλινδρικό τοίχωμα μπορεί να υπολογιστεί από τη σχέση: & θ θ πλl ( θ r ln r qr αγ θ ) ln(r / r ) πλl αγ Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-7 ή r r A αγ A Alm λ A ln(a A lm )

18 . Αγωγή ().5.3 Άθροιση αντιστάσεων σε κυλινδρικό τοίχωμα h A h A αγ r r λ A lm A lm A A ln(a A ) q& r θ θ,a,b r r + + h A λαlm ha Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-8

19 . Αγωγή ().5.3 Άθροιση αντιστάσεων σε κυλινδρικό τοίχωμα Οι αντιστάσεις αγωγής μέσω επιπέδου, κυλινδρικού και σφαιρικού τοιχώματος κατά τη μονοδιάστατη αγωγή σε μόνιμη κατάσταση Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-9

20 . Αγωγή ().5.3 Άθροιση αντιστάσεων σε κυλινδρικό τοίχωμα Παράδειγμα.8 Σύνθετο κυλινδρικό τοίχωμα Δεδομένα: Κορεσμένος ατμός θερμοκρασίας 80 ο ρέει σε χαλύβδινο αγωγό εσωτερικής διαμέτρου cm και εξωτερικής.5 cm. Ο αγωγός είναι μονωμένος με μονωτικό υλικό πάχους cm. Αγωγιμότητα χάλυβα λ I 50 /(m ) Αγωγιμότητα μονωτικού λ ΙΙ 0.04 /(m ) Συντελεστής συναγωγής από τον ατμό στο τοίχωμα h 00 /(m ) και από την εξωτερική επιφάνεια στο περιβάλλον h 0 /(m ) Θερμοκρασία περιβάλλοντος θ π 5 ο. Ζητούνται: Οι θερμικές απώλειες ανά μέτρο μήκους αγωγού: (α) Όταν ο αγωγός είναι γυμνός (β) Όταν είναι μονωμένος με το μονωτικό υλικό Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-0

21 . Αγωγή ().5.3 Άθροιση αντιστάσεων σε κυλινδρικό τοίχωμα Παράδειγμα.8 Σύνθετο κυλινδρικό τοίχωμα Λύση (α) Θερμικές απώλειες χωρίς μόνωση (ανά m μήκους) Τρεις αντιστάσεις εν σειρά: A h A I r r λ A I I,lm B h A L m A πr L π m A πr L π m A A A I,lm ln(a / A) m θ,α 80, θ,b 5 r cm, r.5 cm, λ I 50 /(m ) h 00 /(m ) h 0 /(m ) h A A h A B I r r λ A I I,lm Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-

22 . Αγωγή ().5.3 Άθροιση αντιστάσεων σε κυλινδρικό τοίχωμα Παράδειγμα.8 Σύνθετο κυλινδρικό τοίχωμα Λύση (α) Θερμικές απώλειες χωρίς μόνωση (ανά m μήκους) Τρεις αντιστάσεις εν σειρά: A 0.59 I B A I B.433 θ,α 80, θ,b 5 r cm, r.5 cm, λ I 50 /(m ) h 00 /(m ) h 0 /(m ) q& θ θ ,A,B r 5. q& r 5. Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-

23 . Αγωγή ().5.3 Άθροιση αντιστάσεων σε κυλινδρικό τοίχωμα Παράδειγμα.8 Σύνθετο κυλινδρικό τοίχωμα Λύση (α) Θερμικές απώλειες χωρίς μόνωση (ανά m μήκους) q& r 5. Θερμοκρασίες στις δύο επιφάνειες του αγωγού, θ και θ : q& r θ,a θ,b θ A θ B θ,α 80, θ,b 5 r cm, r.5 cm, λ I 50 /(m ) h 00 /(m ) h 0 /(m ) θ θ,a q& r A 6.7 θ θ,b + q& r B 6.9 Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-3

24 . Αγωγή ().5.3 Άθροιση αντιστάσεων σε κυλινδρικό τοίχωμα Παράδειγμα.8 Σύνθετο κυλινδρικό τοίχωμα Λύση (β) Θερμικές απώλειες με μόνωση (ανά m μήκους) Τέσσερεις αντιστάσεις εν σειρά: A 0.59 I A πr L π m A 3 πr3 L π m A A 3 A II,lm ln(a3 / A) 0.35 m θ,α 80, θ,b 5 r cm, r.5 cm, r cm λ I 50 /(m ) λ ΙΙ 0.04 /(m ) h 00 /(m ) h 0 /(m ) r3 r λ A II II II,lm h A ' B Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-4

25 . Αγωγή ().5.3 Άθροιση αντιστάσεων σε κυλινδρικό τοίχωμα Παράδειγμα.8 Σύνθετο κυλινδρικό τοίχωμα Λύση (β) Θερμικές απώλειες με μόνωση (ανά m μήκους) Τέσσερεις αντιστάσεις εν σειρά: A 0.59 I II 3.80 θ,α 80, θ,b 5 r cm, r.5 cm, r cm λ I 50 /(m ) λ ΙΙ 0.04 /(m ) h 00 /(m ) h 0 /(m ) q & ' θ A θ + I + II + ' B ,A,B r ' ' B q& r Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-5

26 . Αγωγή ().5.3 Άθροιση αντιστάσεων σε κυλινδρικό τοίχωμα Παράδειγμα.8 Σύνθετο κυλινδρικό τοίχωμα Λύση (β) Θερμικές απώλειες με μόνωση (ανά m μήκους) Τέσσερεις αντιστάσεις εν σειρά: q& r 37. Θερμοκρασίες στις θέσεις θ, θ και θ 3 : θ θ,a q& r A 74. θ,α 80, θ,b 5 r cm, r.5 cm, r cm λ I 50 /(m ) λ ΙΙ 0.04 /(m ) h 00 /(m ) h 0 /(m ) θ θ,a q& r ( A + I) 74. θ θ + q& ' 3,B r B 33. Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-6

27 . Αγωγή ().5.4 Κρίσιμο πάχος κυλινδρικού ή σφαιρικού τοιχώματος Η αύξηση του πάχους κυλινδρικού ή σφαιρικού τοιχώματος δεν συνεπάγεται πάντοτε την ελάττωση του ρυθμού ροής θερμότητας q& r (max) q& r (min) ln(r / r ) πλl αγ r r c λ h θ θ + q& r αγ συν συν πhrl d( ) q& r (max) (min) d ( ) 0 και > 0 dr dr r r r c λ h r Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-7

28 . Αγωγή ().5.4 Κρίσιμο πάχος κυλινδρικού ή σφαιρικού τοιχώματος Η αύξηση του πάχους κυλινδρικού ή σφαιρικού τοιχώματος δεν συνεπάγεται πάντοτε την ελάττωση του ρυθμού ροής θερμότητας q& r (max) q& r (min) r r c λ h r r r c λ h r d( dr ) 0 d( αγ + συν ) d ln(r / r ) 0 dr dr + πλl πhrl rl πλ πhr L r r c 0 r c λ h d ( ) d ( ) > 0 + > 0 3 dr dr r r h ( / h) πλ π λ π λ λ λ rc rc h Κρίσιμη ακτίνα για κυλινδρικό τοίχωμα Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-8

29 . Αγωγή ().5.4 Κρίσιμο πάχος κυλινδρικού ή σφαιρικού τοιχώματος Η αύξηση του πάχους κυλινδρικού ή σφαιρικού τοιχώματος δεν συνεπάγεται πάντοτε την ελάττωση του ρυθμού ροής θερμότητας r c λ h r c λ h Κρίσιμη ακτίνα για κυλινδρικό τοίχωμα Κρίσιμη ακτίνα για σφαιρικό τοίχωμα Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-9

30 . Αγωγή ().5.4 Κρίσιμο πάχος κυλινδρικού ή σφαιρικού τοιχώματος Παράδειγμα.9 Κρίσιμο πάχος μόνωσης Δεδομένα: Σε αγωγό ηλεκτρικού ρεύματος D5mm με ηλεκτρική αντίσταση Η 6x0-4 Ohm/(m μήκους) διαβιβάζεται ρεύμα έντασης i500a. Ο αγωγός βρίσκεται σε περιβάλλον θερμοκρασίας 30 Ο συντελεστής συναγωγής μπορεί να θεωρηθεί σταθερός και ίσος με h5 /(m ). Ζητούνται: (α) Η θερμοκρασία στην εξωτερική επιφάνεια του αγωγού όταν δεν υπάρχει μόνωση. (β) Η θερμοκρασία στην εξωτερική επιφάνεια του αγωγού όταν περιβάλλεται από μονωτικό υλικό πάχους mm με συντελεστή θερμικής αγωγιμότητας λ0.5 /(m ). (γ) Θα αυξηθεί η θερμοκρασία της εξωτερικής επιφάνειας αν αυξηθεί το πάχος της μόνωσης πέρα από τα mm; Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-30

31 . Αγωγή ().5.4 Κρίσιμο πάχος κυλινδρικού ή σφαιρικού τοιχώματος Παράδειγμα.9 Κρίσιμο πάχος μόνωσης Λύση: Παραγόμενη θερμότητα ανά μονάδα μήκους αγωγού λόγω ροής ηλεκτρικού ρεύματος: q& i H L r.5 mm, r 4.5 mm H 6x0-4 Ohm /(m μήκους) i 500 A h 5 /(m ) λ0.5 /(m ) θ 30 (α) Όταν ο αγωγός είναι γυμνός η θερμότητα μεταφέρεται με συναγωγή στο περιβάλλον. Υπάρχει μόνο η αντίσταση συναγωγής. θ & q ha( θ θ ) πr Lh( θ θ ) + q& συν ha θ θ συν.546 h πr L 30( ) + 50().546( ) θ συν 4 Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-3

32 . Αγωγή ().5.4 Κρίσιμο πάχος κυλινδρικού ή σφαιρικού τοιχώματος Παράδειγμα.9 Κρίσιμο πάχος μόνωσης Λύση: (β) Όταν προστεθεί μονωτικό υλικό υπάρχουν δύο εν σειρά αντιστάσεις: αγ και συν r.5 mm, r 4.5 mm H 6x0-4 Ohm /(m μήκους) i 500 A h 5 /(m ) λ0.5 /(m ) θ 30 αγ συν ολ ln(r / r ) πλl θ + q& 70 θ ολ ln(0.045 / 0.05) π h πr L 5 π αγ + συν ( ).60 Χωρίς μόνωση θ 4 Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-3

33 . Αγωγή ().5.4 Κρίσιμο πάχος κυλινδρικού ή σφαιρικού τοιχώματος Παράδειγμα.9 Κρίσιμο πάχος μόνωσης Λύση: r.5 mm, r 4.5 mm H 6x0-4 Ohm /(m μήκους) i 500 A h 5 /(m ) λ0.5 /(m ) θ 30 (γ) Θα αυξηθεί ή θα ελαττωθεί η θερμοκρασία της επιφάνειας αν αυξήσουμε το πάχος της μόνωσης; 0.5 λ λ r c r m c 0.0m 0mm h h 5 m Στην κρίσιμη ακτίνα,r c, αντιστοιχεί η ελάχιστη συνολική αντίσταση ολ,min. ολ, min ολ,(r rc ) 0.98 θ,min θ + q& ολ,min 77.5mm < r < 0 mm r ( ) θ ( ) : 4 77 r > 0 mm r ( ) θ ( ) :77 Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-33

34 . Αγωγή ().5.5 Γενικευμένα δίκτυα θερμικής αντίστασης Οι θερμικές αντιστάσεις μπορεί να συνδυάζονται τόσο σε σειρά όσο και σε παράλληλη διάταξη Σε παράλληλη διάταξη έχουμε: q & q& + q& θ θ + θ θ ( θ θ ) + θ θ & q ολ ολ + ολ + Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-34

35 . Αγωγή ().5.5 Γενικευμένα δίκτυα θερμικής αντίστασης Οι θερμικές αντιστάσεις μπορεί να συνδυάζονται τόσο σε σειρά όσο και σε παράλληλη διάταξη Συνδυασμός αντιστάσεων σε σειρά και παράλληλη διάταξη θ θ q& ολ ολ συν συν L λ A L λ A 3 L3 λ A 3 3 συν ha 3 Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-35

36 . Αγωγή ().5.5 Γενικευμένα δίκτυα θερμικής αντίστασης Παράδειγμα.0 Απώλεια θερμότητας διαμέσου ενός σύνθετου τοίχου θ θ Δεδομένα: Τοίχος Η3m και 5m αποτελείται από τούβλα με διατομή 6cm x cm (λ τ 0.7 / (m )), που διαχωρίζονται από στρώματα γύψου πάχους 3cm (λ γ 0. / (m )). Υπάρχουν επίσης στρώματα γύψου πάχους cm σε κάθε πλευρά του τούβλου και στερεός αφρός πάχους 3cm (λ α 0.06 / (m )) στην εσωτερική πλευρά του τοίχου. Η εσωτερική και εξωτερική θερμοκρασία είναι θ 0 και θ -0 Οι συντελεστές συναγωγής στην εσωτερική και εξωτερική πλευρά είναι h 0 /(m ) και h 5 /(m ). Ζητείται: Ο ρυθμός μεταφοράς θερμότητας διαμέσου του τοίχου. Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-36

37 θ Σχ. 3. engel θ. Αγωγή () Παράδειγμα.0 Απώλεια θερμότητας διαμέσου ενός σύνθετου τοίχου Λύση: Στην κατασκευή του τοίχου υπάρχει ένας σχηματισμός που επαναλαμβάνεται κάθε 5cm στην κατακόρυφη διάσταση. Ο υπολογισμός της ροής θερμότητας μπορεί να γίνει για ένα τμήμα τοίχου H 0.5m και m Δίκτυο θερμικών αντιστάσεων ως προς τη διεύθυνση x: h A i συν, (0 /(m )) (0.5.0 m ) 0.4 θ θ L 0.03 m αφ λ A (0.06 /(m )) (0.5.0 m ) α 4.6 Η3m, 5m λ τ 0.7, λ γ 0., λ α 0.06 / (m ) h 0, h 5 /(m ) Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-37

38 . Αγωγή () θ θ θ Η3m, 5m λ τ 0.7, λ γ 0., λ α 0.06 / (m ) h 0, h 5 /(m ) θ Λύση: Παράδειγμα.0 Απώλεια θερμότητας διαμέσου ενός σύνθετου τοίχου Δίκτυο θερμικών αντιστάσεων ως προς τη διεύθυνση x: συν, αφ L 0.0 m 6 γυψ, πλευρ λ A (0. /(m )) (0.5.0 m i γ 0.36 L 0.6 m 3 5 γυψ, κεντρ λ A (0. /(m )) ( m ) γ L 0.6 m 4 τουβ.0 λ A (0.7 /(m )) (0..0 m ) τ ) Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-38

39 . Αγωγή () θ Λύση: Παράδειγμα.0 Απώλεια θερμότητας διαμέσου ενός σύνθετου τοίχου Δίκτυο θερμικών αντιστάσεων ως προς τη διεύθυνση x: θ θ Η3m, 5m λ τ 0.7, λ γ 0., λ α 0.06 / (m ) h 0, h 5 /(m ) θ i Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας συν, h A (5 /(m )) (0.5.0 m ) 0.6 Οι αντιστάσεις 3, 4 και 5 είναι παράλληλες, και η ισοδύναμη τους αντίσταση υπολογίζεται ως εξής: ,4, ,4,5 0.97

40 . Αγωγή () θ Παράδειγμα.0 Απώλεια θερμότητας διαμέσου ενός σύνθετου τοίχου Λύση: Δίκτυο θερμικών αντιστάσεων ως προς τη διεύθυνση x: θ i ,4, θ Η3m, 5m λ τ 0.7, λ γ 0., λ α 0.06 / (m ) h 0, h 5 /(m ) θ Τώρα όλες οι αντιστάσεις είναι σε σειρά: ολ i ,4, q& ολ [ 0 ( 0) ] θ θ q& 4.38 (για εμβαδόν 0.5 m ) 6.85 / ολ 4.38 (3 5)m m Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-40

41 . Αγωγή () Παράδειγμα. Μεταφορά θερμότητας σε σφαιρικό δοχείο με συναγωγή και ακτινοβολία θ Δεδομένα: Σφαιρική δεξαμενή με εσωτερική διάμετρο D3.0m είναι κατασκευασμένη από χάλυβα πάχους cm (λ 5 /(m )). Χρησιμοποιείται για αποθήκευση παγωμένου νερού σε θ 0 και βρίσκεται σε χώρο με θερμοκρασία θ. Η μεταφορά θερμότητας μεταξύ εξωτερικής επιφάνειας και περιβάλλοντος γίνεται με φυσική συναγωγή και ακτινοβολία. Οι συντελεστές συναγωγής στην εσωτερική και εξωτερική επιφάνεια είναι h 80 /(m ) και h 5 /(m ). Συντελεστής εκπομπής με ακτινοβολία ε. Θερμότητα τήξης του πάγου h τ kj/kg Ζητείται: (α) Ο ρυθμός μεταφοράς θερμότητας προς το παγωμένο νερό μέσα στη δεξαμενή (β) Η ποσότητα του πάγου που λειώνει σε 4 ώρες Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-4

42 . Αγωγή () Παράδειγμα. Μεταφορά θερμότητας σε σφαιρικό δοχείο με συναγωγή και ακτινοβολία θ Λύση: Το δίκτυο θερμικής αντίστασης θ θ θ D 3.0m, D 3.04m, λ 5 /(m ) θ 0, θ Mεταφορά θερμότητας με φυσική συναγωγή και ακτινοβολία. h 80 /(m ), h 5 /(m ), ε Θερμότητα τήξης του πάγου h τ kj/kg i συν, αγ. σφ ha r r λ4πr r συν, h A rad ακτ h A ακτ Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-4

43 . Αγωγή () Παράδειγμα. Μεταφορά θερμότητας σε σφαιρικό δοχείο με συναγωγή και ακτινοβολία θ Λύση: Το δίκτυο θερμικής αντίστασης θ θ θ θ D 3.0m, D 3.04m λ 5 /(m ) θ 0, θ Mεταφορά θερμότητας με φυσική συναγωγή και ακτινοβολία. h 80 /(m ), h 5 /(m ), ε Θερμότητα τήξης του πάγου h τ kj/kg i h A 4.4 συν, (80 /(m )) π(3m) r r (.5.50)m αγ. σφ λ4πr r 5 4π(.50.5)m m συν, h A (0 /(m )) π(3.04m) rad ακτ h A ακτ 0 Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-43

44 . Αγωγή () Παράδειγμα. Μεταφορά θερμότητας σε σφαιρικό δοχείο με συναγωγή και ακτινοβολία θ Λύση: Το δίκτυο θερμικής αντίστασης θ θ θ θ D 3.0m, D 3.04m λ 5 /(m ) θ 0, θ Mεταφορά θερμότητας με φυσική συναγωγή και ακτινοβολία. h 80 /(m ), h 5 /(m ), ε Θερμότητα τήξης του πάγου h τ kj/kg i rad ακτ h A ακτ T (73 + θ )K (73 + ) Κ 95K hrad εσ( Τ + T )(T + T ) Η θερμοκρασία θ δεν είναι γνωστή: 0 ο < θ < ο Έστω θ 5 ο T (73 + 5)K 85K Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-44

45 . Αγωγή () Παράδειγμα. Μεταφορά θερμότητας σε σφαιρικό δοχείο με συναγωγή και ακτινοβολία θ Λύση: Το δίκτυο θερμικής αντίστασης θ θ θ D 3.0m, D 3.04m λ 5 /(m ) θ 0, θ Mεταφορά θερμότητας με φυσική συναγωγή και ακτινοβολία. h 80 /(m ), h 5 /(m ), ε Θερμότητα τήξης του πάγου h τ kj/kg h i rad ακτ h A ακτ ()(5.34 m K ) hrad εσ( Τ + T )(T + T ) [(78K) + (95K) ][( )K] rad 4 rad ακτ hακτa (5.34 )(9.0m ) m 5.34 m K Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-45

46 . Αγωγή () Παράδειγμα. Μεταφορά θερμότητας σε σφαιρικό δοχείο με συναγωγή και ακτινοβολία θ Λύση: Το δίκτυο θερμικής αντίστασης θ θ θ D 3.0m, D 3.04m λ 5 /(m ) θ 0, θ Mεταφορά θερμότητας με φυσική συναγωγή και ακτινοβολία. h 80 /(m ), h 5 /(m ), ε Θερμότητα τήξης του πάγου h τ kj/kg i 4.4 0,rad rad rad ,rad Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-46

47 . Αγωγή () Παράδειγμα. Μεταφορά θερμότητας σε σφαιρικό δοχείο με συναγωγή και ακτινοβολία θ D 3.0m, D 3.04m λ 5 /(m ) θ 0, θ Mεταφορά θερμότητας με φυσική συναγωγή και ακτινοβολία. h 80 /(m ), h 5 /(m ), ε Θερμότητα τήξης του πάγου h τ kj/kg Λύση: θ Το δίκτυο θερμικής αντίστασης Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-47 θ ολ i + +,rad ( ) (α) Ο ρυθμός μεταφοράς θερμότητας προς το παγωμένο νερό: θ q& θ ολ [ 0] Έλεγχος της υπόθεσης: θ 5 ο / θ (809)(7.4 0 ) θ i ,rad q & 809 ο θ 4.5 0

48 . Αγωγή () Παράδειγμα. Μεταφορά θερμότητας σε σφαιρικό δοχείο με συναγωγή και ακτινοβολία θ Λύση: Το δίκτυο θερμικής αντίστασης θ θ θ ολ D 3.0m, D 3.04m λ 5 /(m ) θ 0, θ Mεταφορά θερμότητας με φυσική συναγωγή και ακτινοβολία. h 80 /(m ), h 5 /(m ), ε Θερμότητα τήξης του πάγου h τ kj/kg (α) Ο ρυθμός μεταφοράς θερμότητας προς το παγωμένο νερό: q & 809 (β) Η ποσότητα του πάγου που λειώνει σε 4 ώρες : q (4h) q&δ t (8.09 k)( s) kj q(4h) mπ ά γου h τ kj kj / kg mπ ά γου 079 kg Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 3-48

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 3 η : Αγωγή Σύνθετα τοιχώματα Άθροιση αντιστάσεων Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΘEMA ο Επίπεδο κατακόρυφο σώµα από αλουµίνιο, µήκους 430 mm, ύψους 60 mm και πάχους

Διαβάστε περισσότερα

Ανάλυση: όπου, με αντικατάσταση των δεδομένων, οι ζητούμενες απώλειες είναι: o C. 4400W ή 4.4kW 0.30m Συζήτηση: ka ka ka dx x L

Ανάλυση: όπου, με αντικατάσταση των δεδομένων, οι ζητούμενες απώλειες είναι: o C. 4400W ή 4.4kW 0.30m Συζήτηση: ka ka ka dx x L Κεφάλαιο 1 Εισαγωγικές Έννοιες της Μετάδοσης Θερμότητας ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΆΣΚΗΣΗ 1.1 Ένα διαχωριστικό τοίχωμα σκυροδέματος, επιφάνειας 30m, διαθέτει επιφανειακές θερμοκρασίες 5 ο C και 15 ο C, ενώ έχει

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΣΚΗΣΕΙΣ Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 1a-1

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. όπου το κ εξαρτάται από το υλικό και τη θερμοκρασία.

ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. όπου το κ εξαρτάται από το υλικό και τη θερμοκρασία. Εισαγωγή Έστω ιδιότητα Ρ. ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ α) Ρ = Ρ(r, t) => μη μόνιμη, μεταβατική κατάσταση. β) P = P(r), P =/= P(t) => μόνιμη κατάσταση (μη ισορροπίας). γ) P =/= P(r), P(t) σε μακροσκοπικό χωρίο =>

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 2 η : Αγωγή Μονοδιάστατη αγωγή

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 2 η : Αγωγή Μονοδιάστατη αγωγή ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα η : Αγωγή Μονοδιάστατη αγωγή Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Cmmns.

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς 9.Μεταφορά Θερμότητας, Αγωγή Αγωγή Αν σε συνεχές μέσο υπάρχει βάθμωση θερμοκρασίας τότε υπάρχει ροή θερμότητας χωρίς ορατή κίνηση της ύλης.

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπηρώτρια Καηγήτρια Ε.Μ.Π. Ενότητα 4 η : Μονοδιάστατη αγωγή με σύγχρονη παραγωγή ερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό υικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 8 η : Εναλλάκτες θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης reative mmns.

Διαβάστε περισσότερα

Σύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ

Σύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ ΠΕΡΙΕΧΟΜΕΝΑ Σύντομο Βιογραφικό.... - v - Πρόλογος.....- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί..... - xii - ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 1.1 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΜΕΤΑΔΟΣΗ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 2: Θερμική Αγωγιμότητα Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Διάδοση Θερμότητας. (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία)

Διάδοση Θερμότητας. (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία) Διάδοση Θερμότητας (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία) Τρόποι διάδοσης θερμότητας Με αγωγή Με μεταφορά (με τη βοήθεια ρευμάτων) Με ακτινοβολία άλλα ΠΑΝΤΑ από το θερμότερο προς το ψυχρότερο

Διαβάστε περισσότερα

Μόνιμη Μονοδιάστατη Αγωγή Θερμότητας Χωρίς Παραγωγή Θερμικής Ενέργειας

Μόνιμη Μονοδιάστατη Αγωγή Θερμότητας Χωρίς Παραγωγή Θερμικής Ενέργειας Μόνιμη Μονοδιάστατη Αγωγή Θερμότητας Χωρίς Παραγωγή Θερμικής Ενέργειας ΜΜΚ 3 Μεταφορά Θερμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜΚ 3 Μεταφορά Θερμότητας Κεφάλαιο 3 Μεθοδολογία για

Διαβάστε περισσότερα

1 Aπώλειες θερμότητας - Μονωτικά

1 Aπώλειες θερμότητας - Μονωτικά 1 Aπώλειες θερμότητας - Μονωτικά 1.1 Εισαγωγή Όταν ένα ρευστό ρέει μέσα σ' έναν αγωγό και η θερμοκρασία του διαφέρει από τη θερμοκρασία του περιβάλλοντος, τότε μεταδίδεται θερμότητα: από το ρευστό προς

Διαβάστε περισσότερα

ΑΣΚΗΣΗ ΘΕΡΜΟΜΟΝΩΣΗΣ 1 2 1

ΑΣΚΗΣΗ ΘΕΡΜΟΜΟΝΩΣΗΣ 1 2 1 ΑΣΚΗΣΗ ΘΕΡΜΟΜΟΝΩΣΗΣ 1 2 1 ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ 3 ΘΕΡΜΟΤΗΤΑ, Q ( W h ) ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ Μεταφορά ενέργειας με: Θερμική αγωγή ή Θερμική μεταβίβαση ή με συναγωγιμότητα (μεταφορά θερμότητας στην επιφάνεια επαφής

Διαβάστε περισσότερα

παραγωγή θερμότητας T=T1

παραγωγή θερμότητας T=T1 ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Σειρά Ασκήσεων στην Αγωγή Θερμότητας Οι λύσεις θα παρουσιαστούν στα μαθήματα αμέσως μετά το Πάσχα. Για να σας φανούν χρήσιμες στην κατανόηση της ύλης του μαθήματος, πρέπει να προσπαθήσετε

Διαβάστε περισσότερα

Σύντομο Βιογραφικό v Πρόλογος vii Μετατροπές Μονάδων ix Συμβολισμοί xi. ΚΕΦΑΛΑΙΟ 1 ο : ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ

Σύντομο Βιογραφικό v Πρόλογος vii Μετατροπές Μονάδων ix Συμβολισμοί xi. ΚΕΦΑΛΑΙΟ 1 ο : ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Περιεχόμενα ΠΕΡΙΕΧΟΜΕΝΑ Σύντομο Βιογραφικό v Πρόλογος vii Μετατροπές Μονάδων ix Συμβολισμοί xi ΚΕΦΑΛΑΙΟ 1 ο : ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 1.1 Θερμοδυναμική και Μετάδοση Θερμότητας 1 1.2

Διαβάστε περισσότερα

Το τοίχωμα ενός φούρνου αποτελείται από 15cm πυρίμαχο τούβλο, θερμικής αγωγιμότητας k=1.5w/mk.

Το τοίχωμα ενός φούρνου αποτελείται από 15cm πυρίμαχο τούβλο, θερμικής αγωγιμότητας k=1.5w/mk. Πρόβλημα ο Το τοίχωμα ενός φούρνου αποτελείται από 5cm πυρίμαχο τούβλο, θερμικής αγωγιμότητας.5w/mk. Η θερμοκρασία στην εσωτερική του επιφάνεια μετρήθηκε και βρέθηκε ίση με 8 C ενώ η εξωτερική ήταν 5 ο

Διαβάστε περισσότερα

ΑΣΚΗΣΗ ΜΕΤΑ ΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΓΩΓΙΜΟΤΗΤΑ ΣΕ ΣΥΝΘΕΤΑ ΤΟΙΧΩΜΑΤΑ

ΑΣΚΗΣΗ ΜΕΤΑ ΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΓΩΓΙΜΟΤΗΤΑ ΣΕ ΣΥΝΘΕΤΑ ΤΟΙΧΩΜΑΤΑ ΑΣΚΗΣΗ ΜΕΤΑ ΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΓΩΓΙΜΟΤΗΤΑ ΣΕ ΣΥΝΘΕΤΑ ΤΟΙΧΩΜΑΤΑ ΣΚΟΠΟΣ Ο προσδιορισμός του συντελεστή θερμικής αγωγιμότητας μεταλλικού υλικού και ο υπολογισμός του συνολικού συντελεστή μεταφοράς θερμότητας

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Coons. Για εκπαιδευτικό

Διαβάστε περισσότερα

(1) ταχύτητα, v δεδομένη την πιο πάνω κατανομή θερμοκρασίας; 6. Γιατί είναι σωστή η προσέγγιση του ερωτήματος [2]; Ποια είναι η

(1) ταχύτητα, v δεδομένη την πιο πάνω κατανομή θερμοκρασίας; 6. Γιατί είναι σωστή η προσέγγιση του ερωτήματος [2]; Ποια είναι η ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Σειρά Ασκήσεων σε Συναγωγή Θερμότητας Οι λύσεις θα παρουσιαστούν στις παραδόσεις του μαθήματος μετά την επόμενη εβδομάδα. Για να σας φανούν χρήσιμες στην κατανόηση της ύλης του μαθήματος,

Διαβάστε περισσότερα

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2.1 Εισαγωγή Η θερμοκρασιακή διαφορά μεταξύ δυο σημείων μέσα σ' ένα σύστημα προκαλεί τη ροή θερμότητας και, όταν στο σύστημα αυτό περιλαμβάνεται ένα ή περισσότερα

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 5 η : Διδιάστατη και τριδιάστατη αγωγή θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία

3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία 3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία 3.1 Εισαγωγή Η μετάδοση θερμότητας, στην πράξη, γίνεται όχι αποκλειστικά με έναν από τους τρεις δυνατούς μηχανισμούς (αγωγή, μεταφορά, ακτινοβολία),

Διαβάστε περισσότερα

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΕΣΩΤΕΡΙΚΗ ΡΟΗ ΣΕ ΑΓΩΓΟ Σκοπός της άσκησης Σκοπός της πειραματικής

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ Σελίδα 1. Εισαγωγή Βασικές έννοιες Αγωγή

ΠΕΡΙΕΧΟΜΕΝΑ Σελίδα 1. Εισαγωγή Βασικές έννοιες Αγωγή ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή Βασικές έννοιες 11 1.1 Εισαγωγή... 11 1.2 Μηχανισμοί μετάδοσης θερμότητας... 12 1.2.1 Αγωγή... 12 1.2.2 Συναγωγή... 13 1.2.3 Ακτινοβολία... 14 2. Αγωγή 19 2.1 Ο φυσικός μηχανισμός...

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΑΓΩΓΗ () Νυμφοδώρα Παπασιώπη Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΔΙΔΑΣΚΟΥΣΑ Νυμφοδώρα Παπασιώπη Λέκτορας papasiop&metal.ntua.gr Φαινόμενα Μεταφοράς

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 1: Εισαγωγή στη Μετάδοση Θερμότητας Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Διαβάστε περισσότερα

ΨΥΞΗ-ΘΕΡΜΑΝΣΗ-ΚΛΙΜΑΤΙΣΜΟΣ Ι

ΨΥΞΗ-ΘΕΡΜΑΝΣΗ-ΚΛΙΜΑΤΙΣΜΟΣ Ι Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΨΥΞΗ-ΘΕΡΜΑΝΣΗ-ΚΛΙΜΑΤΙΣΜΟΣ Ι ΘΕΡΜΟΜΟΝΩΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΥΠΟ: ΓΕΩΡΓΙΟΥ ΑΛΕΞΗ Διπλ/χου Ναυπηγού Μηχανολόγου Μηχανικού Ε.Μ.Π. Διδ/ρος

Διαβάστε περισσότερα

2 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΓΩΓΙΜΟΤΗΤΑ ΣΕ ΣΥΝΘΕΤΟ ΤΟΙΧΩΜΑ

2 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΓΩΓΙΜΟΤΗΤΑ ΣΕ ΣΥΝΘΕΤΟ ΤΟΙΧΩΜΑ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 2 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΓΩΓΙΜΟΤΗΤΑ ΣΕ ΣΥΝΘΕΤΟ ΤΟΙΧΩΜΑ ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ Σκοπός της άσκησης

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Ι ΑΣΚΟΥΣΑ Νυµφοδώρα Παπασιώπη Αν. Καθηγήτρια papasiop@metal.ntua.gr Φαινόµενα Μεταφοράς

Διαβάστε περισσότερα

ΕΝΑΛΛΑΚΤΕΣ ΘΕΡΜΟΤΗΤΑΣ

ΕΝΑΛΛΑΚΤΕΣ ΘΕΡΜΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 4 ΕΝΑΛΛΑΚΤΕΣ ΘΕΡΜΟΤΗΤΑΣ 4.1 Εισαγωγή - τύποι εναλλακτών Εναλλάκτες θερμότητας είναι οι συσκευές στις οποίες έχουμε μεταφορά ε- νέργειας, με τη μορφή θερμότητας, μεταξύ δύο ρευστών που βρίσκονται

Διαβάστε περισσότερα

Κεφάλαιο 7 Προσδιορισμός των καλωδίων και της Προστασίας τους (συν.)

Κεφάλαιο 7 Προσδιορισμός των καλωδίων και της Προστασίας τους (συν.) Κεφάλαιο 7 Προσδιορισμός των καλωδίων και της Προστασίας τους (συν.) Παράγοντες που πρέπει να ληφθούν υπόψη Ελάχιστες διατομές καλωδίων Ικανότητα θερμικής φόρτισης μονωμένων αγωγών και καλωδίων στη μόνιμη

Διαβάστε περισσότερα

Μεταφορά Θερμότητας. Βρασμός και συμπύκνωση (boiling and condensation)

Μεταφορά Θερμότητας. Βρασμός και συμπύκνωση (boiling and condensation) ΜΜK 312 Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής γής MMK 312 1 Βρασμός και συμπύκνωση (boiing and condenion Όταν η θερμοκρασία ενός υγρού (σε συγκεκριμένη πίεση αυξάνεται μέχρι τη θερμοκρασία

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 - ΖΩΓΡΑΦΟΥ, 157 73 ΑΘΗΝΑ

Διαβάστε περισσότερα

Μεταφορά Θερμότητας. ΜΜK 312 Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής

Μεταφορά Θερμότητας. ΜΜK 312 Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 3 Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής γής MMK 3 Φυσική συναγωγή Στο προηγούμενο μάθημα είχαμε μία εισαγωγή στην φυσική συναγωγή. Παρ ότι ο μηχανισμός της είναι πλήρως κατανοητός η πολύπλοκη

Διαβάστε περισσότερα

ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 2: Αγωγή. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ

ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 2: Αγωγή. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Αγωγή Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης)

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία - Θερμότητα (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία Ποσοτικοποιεί την αντίληψή μας για το πόσο ζεστό ή κρύο είναι

Διαβάστε περισσότερα

Επίδραση του συνδυασμού μόνωσης και υαλοπινάκων στη μεταβατική κατανάλωση ενέργειας των κτιρίων

Επίδραση του συνδυασμού μόνωσης και υαλοπινάκων στη μεταβατική κατανάλωση ενέργειας των κτιρίων Επίδραση του συνδυασμού μόνωσης και υαλοπινάκων στη μεταβατική κατανάλωση ενέργειας των κτιρίων Χ. Τζιβανίδης, Λέκτορας Ε.Μ.Π. Φ. Γιώτη, Μηχανολόγος Μηχανικός, υπ. Διδάκτωρ Ε.Μ.Π. Κ.Α. Αντωνόπουλος, Καθηγητής

Διαβάστε περισσότερα

Κεφάλαιο 5 Eναλλάκτες Θερμότητας

Κεφάλαιο 5 Eναλλάκτες Θερμότητας Κεφάλαιο 5 Eναλλάκτες Θερμότητας 5. Εισαγωγή Σε πολλές εφαρμογές απαιτείται η μετάδοση θερμότητας μεταξύ δύο ρευστών. Οι διεργασίες αυτές λαμβάνουν χώρα σε συσκευές που αποκαλούνται εναλλάκτες θερμότητας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

Παραγωγή Ηλεκτρικής Ενέργειας 6ο Εξάμηνο Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών Ροή Ε. 1η Σειρά Ασκήσεων

Παραγωγή Ηλεκτρικής Ενέργειας 6ο Εξάμηνο Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών Ροή Ε. 1η Σειρά Ασκήσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Ακαδ. Έτος 0- Τομέας Ηλεκτρικής Ισχύος Αθήνα, 0 Μαρτίου 0 Καθηγητής Κ.Βουρνάς Παράδοση,,5: 8// Λέκτωρ Σ. Καβατζά 6,,4: /4/ Παραγωγή

Διαβάστε περισσότερα

ΑΣΚΗΣΗ m 5.13 ΛΥΣΗ. Α. (Γυμνός αγωγός) ΤΕΙ ΚΡΗΤΗΣ Τμήμα Μηχανολογίας ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ Καθηγητής : Μιχ. Κτενιαδάκης - Σπουδαστής : Ζάνη Γιώργος

ΑΣΚΗΣΗ m 5.13 ΛΥΣΗ. Α. (Γυμνός αγωγός) ΤΕΙ ΚΡΗΤΗΣ Τμήμα Μηχανολογίας ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ Καθηγητής : Μιχ. Κτενιαδάκης - Σπουδαστής : Ζάνη Γιώργος ΑΣΚΗΣΗ 5.3 ( ) Αεραγωγός από γαλβανισμένη λαμαρίνα αμελητέου πάχους, έχει διάμετρο 40 και μήκος 30. Στον αεραγωγό εισέρχεται θερμός αέρας, παροχής 3600 3 / σε θερμοκρασία 50 C. Ο συντελεστής συναγωγής

Διαβάστε περισσότερα

4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΠΑΡΑΛΛΗΛΗ ΡΟΗ ΕΠΑΝΩ ΑΠΟ ΕΠΙΠΕΔΗ ΠΛΑΚΑ Σκοπός της άσκησης Η κατανόηση

Διαβάστε περισσότερα

[ ] = = Συναγωγή Θερμότητας. QW Ahθ θ Ah θ θ. Βασική Προϋπόθεση ύπαρξης της Συναγωγής: Εξίσωση Συναγωγής (Εξίσωση Newton):

[ ] = = Συναγωγή Θερμότητας. QW Ahθ θ Ah θ θ. Βασική Προϋπόθεση ύπαρξης της Συναγωγής: Εξίσωση Συναγωγής (Εξίσωση Newton): Συναγωγή Θερμότητας: Συναγωγή Θερμότητας Μέσω Συναγωγής μεταδίδεται η θερμότητα μεταξύ της επιφάνειας ενός στερεού σώματος και ενός ρευστού το οποίο βρίσκεται σε κίνηση σχετικά με την επιφάνεια και ταυτόχρονα

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ - 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ - 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Μαΐου 2010 Ώρα : 10:00-12:30 Προτεινόμενες λύσεις ΘΕΜΑ 1 0 (12 μονάδες) Για τη μέτρηση της πυκνότητας ομοιογενούς πέτρας (στερεού

Διαβάστε περισσότερα

Συνοπτική Παρουσίαση Σχέσεων για τον Προσδιορισμό του Επιφανειακού Συντελεστή Μεταφοράς της Θερμότητας.

Συνοπτική Παρουσίαση Σχέσεων για τον Προσδιορισμό του Επιφανειακού Συντελεστή Μεταφοράς της Θερμότητας. 5 η ΔΙΑΛΕΞΗ Στόχος της διάλεξης αυτής είναι η κατανόηση των διαδικασιών αλλά και των σχέσεων που χρησιμοποιούνται για τον προσδιορισμό του ρυθμού μεταφοράς θερμότητας, Q &, αλλά και του επιφανειακού συντελεστή

Διαβάστε περισσότερα

ΥΠΟΔΕΙΓΜΑ ΑΣΚΗΣΕΩΝ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΔΕΙΓΜΑ ΑΣΚΗΣΕΩΝ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΥΠΟΔΕΙΓΜΑ ΑΣΚΗΣΕΩΝ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ 1. Να υπολογιστεί η μαζική παροχή του ατμού σε (kg/h) που χρησιμοποιείται σε ένα θερμαντήρα χυμού με τα παρακάτω στοιχεία: αρχική θερμοκρασία χυμού 20 C, τελική θερμοκρασία

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΥΣΚΕΥΩΝ ΘΕΡΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ. 1η ενότητα

ΑΣΚΗΣΕΙΣ ΣΥΣΚΕΥΩΝ ΘΕΡΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ. 1η ενότητα 1η ενότητα 1. Εναλλάκτης σχεδιάζεται ώστε να θερμαίνει 2kg/s νερού από τους 20 στους 60 C. Το θερμό ρευστό είναι επίσης νερό με θερμοκρασία εισόδου 95 C. Οι συντελεστές συναγωγής στους αυλούς και το κέλυφος

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 4: ΑΓΩΓΗ ΘΕΡΜΟΤΗΤΑΣ ΣΕ ΜΟΝΤΕΛΟ ΣΠΙΤΙΟΥ [1] ΑΡΧΗ ΠΕΙΡΑΜΑΤΟΣ

ΠΕΙΡΑΜΑ 4: ΑΓΩΓΗ ΘΕΡΜΟΤΗΤΑΣ ΣΕ ΜΟΝΤΕΛΟ ΣΠΙΤΙΟΥ [1] ΑΡΧΗ ΠΕΙΡΑΜΑΤΟΣ ΠΕΙΡΑΜΑ 4: ΑΓΩΓΗ ΘΕΡΜΟΤΗΤΑΣ ΣΕ ΜΟΝΤΕΛΟ ΣΠΙΤΙΟΥ [1] ΑΡΧΗ ΠΕΙΡΑΜΑΤΟΣ Χρησιμοποιούμε ένα μοντέλο σπιτιού το οποίο διαθέτει παράθυρα/τοίχους που μπορούν να αντικατασταθούν και προσδιορίζουμε τους συντελεστές

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ 27 Φεβρουαρίου 2006 Διάρκεια εξέτασης : 2.5 ώρες Ονοματεπώνυμο: ΑΕΜ Εξάμηνο: (α) Επιτρέπονται: Τα βιβλία

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ι & ΙΙ Εργαστηριακή Άσκηση 3: ΕΝΑΛΛΑΓΗ ΘΕΡΜΟΤΗΤΑΣ

ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ι & ΙΙ Εργαστηριακή Άσκηση 3: ΕΝΑΛΛΑΓΗ ΘΕΡΜΟΤΗΤΑΣ Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Σχεδιασμού, Ανάλυσης & Ανάπτυξης Διεργασιών και Συστημάτων ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Διευθυντής: Ι.

Διαβάστε περισσότερα

Παραγωγή Ηλεκτρικής Ενέργειας. 6ο Εξάμηνο Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών. 1η Σειρά Ασκήσεων.

Παραγωγή Ηλεκτρικής Ενέργειας. 6ο Εξάμηνο Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών. 1η Σειρά Ασκήσεων. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Ακαδ. Έτος 00- Τομέας Ηλεκτρικής Ισχύος Αθήνα 5//0 Κ. Βουρνάς, Κ. Ντελκής, Π. Γεωργιλάκης Παράδοση,,,4: //0 Παράδοση 5, 6: 5/4/0

Διαβάστε περισσότερα

Εισαγωγή στην Μεταφορά Θερμότητας

Εισαγωγή στην Μεταφορά Θερμότητας Εισαγωγή στην Μεταφορά Θερμότητας ΜΜΚ 312 Μεταφορά Θερμότητας Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής Διάλεξη 1 MMK 312 Μεταφορά Θερμότητας Κεφάλαιο 1 1 Μεταφορά Θερμότητας - Εισαγωγή Η θερμότητα

Διαβάστε περισσότερα

ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 4: Πτερύγια. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ

ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 4: Πτερύγια. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Πτερύγια Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός 1 Αγωγή Χρονικά µεταβαλλόµενη κατάσταση Κεφάλαιο 4 Ορισµός του προβλήµατος Σε πολλές τεχνικές εφαρµογές απαιτείται ο υπολογισµός της θερµικής αγωγής σε χρονικά

Διαβάστε περισσότερα

Χειμερινό εξάμηνο 2007 1

Χειμερινό εξάμηνο 2007 1 ΜΜΚ 31 Μεταφορά Θερμότητας Εξαναγκασμένη Συναγωγή και Σφαίρες ΜΜΚ 31 Μεταφορά Θερμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 και Σφαίρες (flow across cylinders

Διαβάστε περισσότερα

ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 3: Συναγωγή. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ

ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 3: Συναγωγή. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Συναγωγή Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου 2006 Ώρα: 10:30 13.00 Προτεινόµενες Λύσεις ΜΕΡΟΣ Α 1. α) Η πυκνότητα του υλικού υπολογίζεται από τη m m m σχέση d

Διαβάστε περισσότερα

Χειμερινό εξάμηνο

Χειμερινό εξάμηνο Εξαναγκασμένη Συναγωγή Ροή Πάνω από μία Επίπεδη Επιφάνεια Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 Εξαναγκασμένη συναγωγή: Στρωτή ροή σε επίπεδες πλάκες (orced convection

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας. Διάχυση Νόμος Fick

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας. Διάχυση Νόμος Fick ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας. Διάχυση Νόμος Fck Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve

Διαβάστε περισσότερα

ΥΠΟΔΕΙΓΜΑ ΘΕΩΡΗΤΙΚΩΝ ΕΡΩΤΗΣΕΩΝ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΔΕΙΓΜΑ ΘΕΩΡΗΤΙΚΩΝ ΕΡΩΤΗΣΕΩΝ ΕΞΕΤΑΣΕΩΝ ΥΠΟΔΕΙΓΜΑ ΘΕΩΡΗΤΙΚΩΝ ΕΡΩΤΗΣΕΩΝ ΕΞΕΤΑΣΕΩΝ 1. Πώς ορίζεται η περίσσεια αέρα και η ισχύς μίγματος σε μία καύση; 2. Σε ποιές περιπτώσεις παρατηρείται μή μόνιμη μετάδοση της θερμότητας; 3. Τί είναι η αντλία

Διαβάστε περισσότερα

Χειμερινό εξάμηνο

Χειμερινό εξάμηνο Μεταβατική Αγωγή Θερμότητας: Ανάλυση Ολοκληρωτικού Συστήματος Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής 1 Μεταβατική Αγωγή (ranen conducon Πολλά προβλήματα μεταφοράς θερμότητας εξαρτώνται από

Διαβάστε περισσότερα

ηλεκτρικό ρεύμα ampere

ηλεκτρικό ρεύμα ampere Ηλεκτρικό ρεύμα Το ηλεκτρικό ρεύμα είναι ο ρυθμός με τον οποίο διέρχεται ηλεκτρικό φορτίο από μια περιοχή του χώρου. Η μονάδα μέτρησης του ηλεκτρικού ρεύματος στο σύστημα SI είναι το ampere (A). 1 A =

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ ΠΑΡΑΔΕΙΓΜΑ 1: Ο κύλινδρος που φαίνεται στο σχήμα είναι από χάλυβα που έχει ένα ειδικό βάρος 80.000 N/m 3. Υπολογίστε την θλιπτική τάση που ενεργεί στα σημεία Α και

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ι & ΙΙ Εργαστηριακή Άσκηση 5: ΕΝΑΛΛΑΚΤΗΣ ΘΕΡΜΟΤΗΤΑΣ

ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ι & ΙΙ Εργαστηριακή Άσκηση 5: ΕΝΑΛΛΑΚΤΗΣ ΘΕΡΜΟΤΗΤΑΣ Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Σχεδιασμού, Ανάλυσης & Ανάπτυξης Διεργασιών και Συστημάτων ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Διευθυντής: Ι.

Διαβάστε περισσότερα

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια (παράγραφοι ά φ 3.1 31& 3.6) 36) Φυσική Γ Γυμνασίου Εισαγωγή Τα σπουδαιότερα χαρακτηριστικά της ηλεκτρικής ενέργειας είναι η εύκολη μεταφορά της σε μεγάλες αποστάσεις και

Διαβάστε περισσότερα

Ενότητα 6 η : Μεταβατική αγωγή Θερμότητας

Ενότητα 6 η : Μεταβατική αγωγή Θερμότητας ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπηρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 6 η : Μεταβατική αγωγή ερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό υικό υπόκειται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 4: Εξαναγκασμένη Θερμική Συναγωγιμότητα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 4: Εξαναγκασμένη Θερμική Συναγωγιμότητα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 4: Εξαναγκασμένη Θερμική Συναγωγιμότητα Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Environmental Fluid Mechanics Laboratory University of Cyprus Department Of Civil & Environmental Engineering ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ HM 134 ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Εγχειρίδιο

Διαβάστε περισσότερα

3. Τριβή στα ρευστά. Ερωτήσεις Θεωρίας

3. Τριβή στα ρευστά. Ερωτήσεις Θεωρίας 3. Τριβή στα ρευστά Ερωτήσεις Θεωρίας Θ3.1 Να συμπληρωθούν τα κενά στις προτάσεις που ακολουθούν: α. Η εσωτερική τριβή σε ένα ρευστό ονομάζεται. β. Η λίπανση των τμημάτων μιας μηχανής οφείλεται στις δυνάμεις

Διαβάστε περισσότερα

Παραδείγµατα ροής ρευστών (Moody κλπ.)

Παραδείγµατα ροής ρευστών (Moody κλπ.) Παραδείγµατα ροής ρευστών (Mooy κλπ.) 005-006 Παράδειγµα 1. Να υπολογισθεί η πτώση πίεσης σε ένα σωλήνα από χάλυβα του εµπορίου µήκους 30.8 m, µε εσωτερική διάµετρο 0.056 m και τραχύτητα του σωλήνα ε 0.00005

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 5: Ελεύθερη ή Φυσική Θερμική Συναγωγιμότητα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 5: Ελεύθερη ή Φυσική Θερμική Συναγωγιμότητα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 5: Ελεύθερη ή Φυσική Θερμική Συναγωγιμότητα Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 5 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΕΓΚΑΡΣΙΑ ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ Σκοπός της άσκησης Η κατανόηση

Διαβάστε περισσότερα

ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ: ΘΕΡΜΑΝΣΗ ΑΕΡΑ

ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ: ΘΕΡΜΑΝΣΗ ΑΕΡΑ ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ: ΘΕΡΜΑΝΣΗ ΑΕΡΑ Χρήσεις: Ξήρανση γεωργικών προϊόντων Θέρµανση χώρων dm Ωφέλιµη ροή θερµότητας: Q = c Τ= ρ qc( T2 T1) dt ΕΠΙΦΑΝΕΙΑ ΕΠΙΚΑΛΥΨΗΣ ΗΛΙΑΚΗ ΨΥΧΡΟΣ ΑΕΡΑΣ ΘΕΡΜΟΣ ΑΕΡΑΣ Τ 1 Τ 2 ΣΥΛΛΕΚΤΙΚΗ

Διαβάστε περισσότερα

2.1. Αρχές μετάδοσης θερμότητας

2.1. Αρχές μετάδοσης θερμότητας Κεφάλαιο Κεφάλαιο :.. Αρχές μετάδοσης θερμότητας Η μετάδοση θερμότητας είναι ο βασικός μηχανισμός με τον οποίο οι περιβαλλοντικές μεταβολές εκδηλώνονται στο εσωτερικό των κτηρίων. H αγωγή της θερμότητας

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος B Λυκείου

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος B Λυκείου B Λυκείου Θεωρητικό Μέρος Θέμα ο 0 Μαρτίου 0 A. Ποια από τις παρακάτω προτάσεις για μια μπαταρία είναι σωστή; Να εξηγήσετε πλήρως την απάντησή σας. α) Η μπαταρία εξαντλείται πιο γρήγορα όταν τη συνδέσουμε

Διαβάστε περισσότερα

Περιεχόµενα Παρουσίασης 2.9

Περιεχόµενα Παρουσίασης 2.9 Πυρηνική Τεχνολογία - ΣΕΜΦΕ Κ ε φ ά λ α ι ο ο Π α ρ ο υ σ ί α σ η. 9 1 Περιεχόµενα Παρουσίασης.9 1. Αρχή Λειτουργίας των ΠΑΙ : Η Σχάση. Πυρηνική Ηλεκτροπαραγωγή ΠΗΣ 3. Πυρηνικά Υλικά και Τύποι ΠΑΙ 4. Σύγχρονοι

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε τον συντελεστή εσωτερικής τριβής ή ιξώδες ρευστού προσδιορίζοντας την οριακή ταχύτητα πτώσης μικρών σφαιρών σε αυτό

Διαβάστε περισσότερα

Αγωγιμότητα στα μέταλλα

Αγωγιμότητα στα μέταλλα Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 5: Εναλλάκτες θερμότητας. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ

ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 5: Εναλλάκτες θερμότητας. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Εναλλάκτες θερμότητας Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες Χρήσης Το

Διαβάστε περισσότερα

ΑΠΟΔΟΣΕΙΣ TEXNIKA XAΡΑΚΤΗΡΙΣΤΙΚΑ

ΑΠΟΔΟΣΕΙΣ TEXNIKA XAΡΑΚΤΗΡΙΣΤΙΚΑ CL ΑΠΟΔΟΣΕΙΣ TEXNIKA XAΡΑΚΤΗΡΙΣΤΙΚΑ CALPAK CL ΤΕΧΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ BOILER ΛΕΒΗΤΟΣΤΑΣΙΟY ΔΙΠΛΗΣ (ΙΙ) ΕΝΕΡΓΕΙΑΣ Υλικό: Λαμαρίνα Κόλληση: Αυτόματη κόλληση μετάλλου Επικάλυψη Προστασίας: Glass Εμαγιέ ( Σμάλτο)

Διαβάστε περισσότερα

Χειμερινό εξάμηνο 2007 1

Χειμερινό εξάμηνο 2007 1 Εξαναγκασμένη Συναγωγή Εσωτερική Ροή Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 Ροή σε Σωλήνες (ie and tube flw) Σε αυτή την διάλεξη θα ασχοληθούμε με τους συντελεστές

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας 1 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Πρόβλημα 1 Μηχανική Ρευστών Κεφάλαιο 1 Λυμένα Προβλήματα Μια αμελητέου πάχους επίπεδη πλάκα διαστάσεων (0 cm)x(0

Διαβάστε περισσότερα

6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ

6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ 6-1 6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ 6.1. ΙΑ ΟΣΗ ΤΗΣ ΘΕΡΜΟΤΗΤΑΣ Πολλές βιοµηχανικές εφαρµογές των πολυµερών αφορούν τη διάδοση της θερµότητας µέσα από αυτά ή γύρω από αυτά. Πολλά πολυµερή χρησιµοποιούνται

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤ-ΤΕΧΝ ΚΑΤΕΥΘΥΝΣΗΣ

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤ-ΤΕΧΝ ΚΑΤΕΥΘΥΝΣΗΣ ΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕ-ΕΧΝ ΚΑΕΥΘΥΝΣΗΣ Κινητική θεωρία των ιδανικών αερίων. Νόμος του Boyle (ισόθερμη μεταβή).σταθ. για σταθ.. Νόμος του hales (ισόχωρη μεταβή) p σταθ. για σταθ. 3. Νόμος του Gay-Lussac

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΟΛΟΓΙΑΣ (7 Ο ΕΞΑΜΗΝΟ)

ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΟΛΟΓΙΑΣ (7 Ο ΕΞΑΜΗΝΟ) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΟΛΟΓΙΑΣ (7 Ο ΕΞΑΜΗΝΟ) Νίκος Μ. Κατσουλάκος Μηχανολόγος Μηχανικός Ε.Μ.Π., PhD, Msc ΜΑΘΗΜΑ 2-1 ΔΙΕΡΓΑΣΙΕΣ ΑΕΡΙΩΝ Εισαγωγικά

Διαβάστε περισσότερα

1.1 Δύο σφαίρες με φορτίο 2Cb έχουν τα κέντρα τους σε απόσταση 2m. Πόση είναι η δύναμη που αναπτύσσεται μεταξύ τους; Λύση

1.1 Δύο σφαίρες με φορτίο 2Cb έχουν τα κέντρα τους σε απόσταση 2m. Πόση είναι η δύναμη που αναπτύσσεται μεταξύ τους; Λύση Περιεχόμενα Πρόλογος... 9 Κεφάλαιο : Συνεχή ρεύματα... Κεφάλαιο : Λυμένες ασκήσεις... 59 Κεφάλαιο : Παραδείγματα και ασκήσεις προς λύση... 8 Κεφάλαιο 4: Συνδέσεις πηγών... 99 Κεφάλαιο 5: Ενέργεια-ισχύς-έργο-

Διαβάστε περισσότερα

ΔΟΧΕΙΑ ΖΕΣΤΟΥ ΝΕΡΟΥ ΧΡΗΣΗΣ ΛΕΒΗΤΟΣΤΑΣΙΟΥ GLASS 150-1000 ΛΙΤΡΑ- ΤΥΠΟΣ SIELINE BLS

ΔΟΧΕΙΑ ΖΕΣΤΟΥ ΝΕΡΟΥ ΧΡΗΣΗΣ ΛΕΒΗΤΟΣΤΑΣΙΟΥ GLASS 150-1000 ΛΙΤΡΑ- ΤΥΠΟΣ SIELINE BLS ΔΟΧΕΙΑ ΖΕΣΤΟΥ ΝΕΡΟΥ ΧΡΗΣΗΣ ΛΕΒΗΤΟΣΤΑΣΙΟΥ GLASS 150-1000 ΛΙΤΡΑ- ΤΥΠΟΣ SIELINE BLS ΤΕΧΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ BOILER ΛΕΒΗΤΟΣΤΑΣΙΟΥ ΔΙΠΛΗΣ (ΙΙ) ΕΝΕΡΓΕΙΑΣ Υλικό : Λαμαρίνα Κόλληση:Αυτόματη κόλληση μετάλλου Επικάλυψη

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης 1 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης ΘΕΜΑ 1 ο : Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Μια ποσότητα ιδανικού αέριου εκτονώνεται ισόθερμα μέχρι τετραπλασιασμού

Διαβάστε περισσότερα

Θερμοδυναμική Ενότητα 4:

Θερμοδυναμική Ενότητα 4: Θερμοδυναμική Ενότητα 4: Ισοζύγια Ενέργειας και Μάζας σε ανοικτά συστήματα - Ασκήσεις Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΕΝΕΡΓΕΙΑΚΩΝ ΑΝΑΓΚΩΝ ΕΝΟΣ ΟΙΚΗΜΑΤΟΣ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ EQUEST

ΜΕΛΕΤΗ ΕΝΕΡΓΕΙΑΚΩΝ ΑΝΑΓΚΩΝ ΕΝΟΣ ΟΙΚΗΜΑΤΟΣ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ EQUEST Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΕΛΛΑΔΟΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΕΝΕΡΓΕΙΑΚΩΝ ΑΝΑΓΚΩΝ ΕΝΟΣ ΟΙΚΗΜΑΤΟΣ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ EQUEST Σπουδαστής Δημήτριος

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ

ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Τα θέματα θα υποβληθούν ηλεκτρονικά μαζί με τον αλγόριθμο επίλυσης Ακολουθώντας τα τυπικά βήματα επίλυσης προβλήματος: Λεκτική περιγραφή- πρακτική σημασία του προβλήματοςβιβλιογραφική

Διαβάστε περισσότερα

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΕΦΑΡΜΟΣΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ (Ασκήσεις πράξης) ΙΔΑΝΙΚΑ ΑΕΡΙΑ - ΕΡΓΟ

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΕΦΑΡΜΟΣΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ (Ασκήσεις πράξης) ΙΔΑΝΙΚΑ ΑΕΡΙΑ - ΕΡΓΟ ΙΔΑΝΙΚΑ ΑΕΡΙΑ - ΕΡΓΟ 1. Να υπολογιστεί η πυκνότητα του αέρα σε πίεση 0,1 MPa και θερμοκρασία 20 ο C. (R air =0,287 kj/kgk) 2. Ποσότητα αέρα 1 kg εκτελεί τις παρακάτω διεργασίες: Διεργασία 1-2: Αδιαβατική

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΕΩΦΥΣΙΚΩΝ ΔΙΑΣΚΟΠΗΣΕΩΝ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΕΩΦΥΣΙΚΩΝ ΔΙΑΣΚΟΠΗΣΕΩΝ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΕΩΦΥΣΙΚΩΝ ΔΙΑΣΚΟΠΗΣΕΩΝ Z ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΟΥΡΛΟΣ ΛΕΚΤΟΡΑΣ ΤΟΜΕΑΣ ΓΕΩΦΥΣΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ, ΑΠΘ (e-mail: tsourlos@lemnos.geo.auth.gr) ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΦΥΣΙΚΗ Μελετά

Διαβάστε περισσότερα

εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια

εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια Χαρακτηριστικά Θερμοδυναμικών Νόμων 0 ος Νόμος Εισάγει την έννοια της θερμοκρασίας Αν Α Γ και Β Γ τότε Α Β, όπου : θερμική ισορροπία ος

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς image url 12.Μεταφορά Θερμότητας σε Ρευστά Χωρίς Αλλαγή Φάσης Συχνές Εφαρμογές Το θερμό ρεύμα εξόδου ενός αντιδραστήρα, όπου λαμβάνει χώρα

Διαβάστε περισσότερα

1. Ρεύμα επιπρόσθετα

1. Ρεύμα επιπρόσθετα 1. Ρεύμα Ρεύμα είναι οποιαδήποτε κίνηση φορτίων μεταξύ δύο περιοχών. Για να διατηρηθεί σταθερή ροή φορτίου σε αγωγό πρέπει να ασκείται μια σταθερή δύναμη στα κινούμενα φορτία. r F r qe Η δύναμη αυτή δημιουργεί

Διαβάστε περισσότερα

HΛΙΑΚΟΙ ΣΥΛΛΕΚΤΕΣ ΚΕΝΟΥ

HΛΙΑΚΟΙ ΣΥΛΛΕΚΤΕΣ ΚΕΝΟΥ HΛΙΑΚΟΙ ΣΥΛΛΕΚΤΕΣ ΚΕΝΟΥ (VACUUM) VTN ΤΕΧΝΙΚΟ ΕΓΧΕΙΡΙΔΙΟ ΕΠΙΣΗΜΟ ΣΗΜΑ ΠΟΙΟΤΗΤΑΣ ΤΗΣ ΕΥΡΩΠΑΪΚΗΣ ΕΝΩΣΗΣ Περιγραφή Οι συλλέκτες Calpak VTN είναι ηλιακοί συλλέκτες κενού (Vacuum) οι οποίοι αποτελούνται από

Διαβάστε περισσότερα