Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ""

Transcript

1

2

3

4

5

6

7

8

9

10

11

12

13

14 α

15

16

17

18

19 γ

20

21

22

23

24

25

26

27 κ λ

28 α β

29

30

31 α α β γ α

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 α

53 α

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89 α β

90

91

92

93

94

95

96

97

98 β

99 β β

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127 α

128

129

130

131

132

133

134 δ

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

δ β β γ δ ββ γ α β α α α α α α α α δ δ γ γ δ δ δ δ β β α α α α α α α α β γδ α β γ δ α βγδ αβγδ δγ βα α β γ δ O α β γ δ αγ α γ α γ δ αγδ α αγ γ γ δ γ α γ β β β β β β β α γ β β β β β μ μ β β

Διαβάστε περισσότερα

1 ΗΜΕΡΟΜΗΝΙΑ Η Λ Ι Ο Σ ΣΕΛΗΝΗ 01-01-1980 1 10 13 ΑΙΓΟ 29 12 Ι Υ 02-01-1980 2 11 15 ΑΙΓΟ 12 12 ΚΑΡΚ 03-01-1980 3 12 16 ΑΙΓΟ 24 52 ΚΑΡΚ 04-01-1980 4 13 17 ΑΙΓΟ 07 15 ΛΕΩΝ 05-01-1980 5 14 18 ΑΙΓΟ 19 31 ΛΕΩΝ

Διαβάστε περισσότερα

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6 # % & ( ) +, %. / % 0 1 / 1 4 5 6 7 8 # 9 # : ; < # = >? 1 :; < 8 > Α Β Χ 1 ; Δ 7 = 8 1 ( 9 Ε 1 # 1 ; > Ε. # ( Ε 8 8 > ; Ε 1 ; # 8 Φ? : ;? 8 # 1? 1? Α Β Γ > Η Ι Φ 1 ϑ Β#Γ Κ Λ Μ Μ Η Ι 5 ϑ Φ ΒΦΓ Ν Ε Ο Ν

Διαβάστε περισσότερα

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν Ε ρ μ ο ύ π ο λ η, 0 9 Μ α ρ τ ί ο υ 2 0 1 2 Π ρ ο ς : Π ε ρ ιφ ε ρ ε ι ά ρ χ η Ν ο τ ίο υ Α ιγ α ί ο υ Α ρ ι θ. Π ρ ω τ. 3 4 2 2 κ. Ι ω ά ν ν η Μ α χ α ι ρ ί δ η F a x : 2 1 0 4 1 0 4 4 4 3 2, 2 2 8 1

Διαβάστε περισσότερα

ΤΕΣΤ ΣΤΑ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ. 1. Αν στα 2/3 ενός αριθμού προσθέσουμε 7, βρίσκουμε τον αριθμό μειωμένο κατά 4. Ποιος είναι ο αριθμός;

ΤΕΣΤ ΣΤΑ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ. 1. Αν στα 2/3 ενός αριθμού προσθέσουμε 7, βρίσκουμε τον αριθμό μειωμένο κατά 4. Ποιος είναι ο αριθμός; 1. Αν στα 2/3 ενός αριθμού προσθέσουμε 7, βρίσκουμε τον αριθμό μειωμένο κατά 4. Ποιος είναι ο αριθμός; 2. Τρεις φίλοι οι Α, Β και Γ μοιράζονται ένα ποσό. Ο Α παίρνει το ένα τέταρτο του ποσού και 20 ακόμα,

Διαβάστε περισσότερα

16. ΑΝΤΙΠΡΟΣΩΠΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΤΜΗΜΑΤΟΣ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

16. ΑΝΤΙΠΡΟΣΩΠΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΤΜΗΜΑΤΟΣ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ 16. ΑΝΤΙΠΡΟΣΩΠΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΤΜΗΜΑΤΟΣ ΔΥΤΙΚΗΣ : 51 ΕΓΚΥΡΑ ΨΗΦΟΔΕΛΤΙΑ : ΚΙΝΗΣΗ 269 269 Χ 51 = 11,28 11 42 42 Χ 51 =1,76 2 511 511 Χ 51 =21,43 21 230 230 Χ 51 =9,64 10 ΝΕΑ ΠΡΟΤΑΣΗ 164 164 Χ 51 =6,87 7

Διαβάστε περισσότερα

Τίτλος Διδακτικού Σεναρίου: «[Το φαινόμενο Doppler]»

Τίτλος Διδακτικού Σεναρίου: «[Το φαινόμενο Doppler]» Τίτλος Διδακτικού Σεναρίου: «[Το φαινόμενο Doppler]» Φάση «[4]» Τίτλος Φάσης: «[Συζήτηση-Συμπεράσματα- Εφαρμογές-Μεταγνώση]» Συμπληρωμένο φύλλο εργασίας για τη δραστηριότητα 4.3 Δραστηριότητα 4.3 Τα σύμβολα

Διαβάστε περισσότερα

Σε καθεμιά από τις παρακάτω περιπτώσεις, να μετατρέψετε τη δομή επανάληψης ΟΣΟ στην δομή ΑΠΑΝΤΗΣΗ ΑΡΧΗ_ΕΠΑΝΑΛΗΨΗΣ ΜΕΧΡΙΣ_ΟΤΟΥ Α<-54

Σε καθεμιά από τις παρακάτω περιπτώσεις, να μετατρέψετε τη δομή επανάληψης ΟΣΟ στην δομή ΑΠΑΝΤΗΣΗ ΑΡΧΗ_ΕΠΑΝΑΛΗΨΗΣ ΜΕΧΡΙΣ_ΟΤΟΥ Α<-54 Άσκηση_1 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Σε καθεμιά από τις παρακάτω περιπτώσεις, να μετατρέψετε τη δομή επανάληψης ΟΣΟ στην δομή επανάληψης ΜΕΧΡΙΣ_ΟΤΟΥ. 1 η Περίπτωση Κ 0 ΌΣΟ Λ > 5 ΕΠΑΝΑΛΑΒΕ

Διαβάστε περισσότερα

Μέθοδος CPM. 3. Για την ολοκλήρωση ενός έργου απαιτείται η εκτέλεση ενός αριθμού δραστηριοτήτων.

Μέθοδος CPM. 3. Για την ολοκλήρωση ενός έργου απαιτείται η εκτέλεση ενός αριθμού δραστηριοτήτων. Μέθοδος CPM 1. Για την ολοκλήρωση ενός έργου απαιτείται η εκτέλεση ενός αριθμού δραστηριοτήτων. Αμέσως προηγούμενη (σε μήνες) Α - 4,0 Β - 2,0 Γ - 3,0 Δ Α 5,0 Ε Γ 4,5 Ζ Β, Δ 1,5 Η Β, Δ 2,5 Θ Ε, Ζ 4.0 Ι

Διαβάστε περισσότερα

! # %& # () & +( (!,+!,. / #! (!

! # %& # () & +( (!,+!,. / #! (! ! # %& # () & +( (!,+!,. / #! (! 0 1 12!, ( #& 34!5 6( )+(, 7889 / # 4 & #! # %& , & ( () & :;( 4#! /! # # +! % # #!& ( &6& +!, ( %4,!! ( 4!!! #& /

Διαβάστε περισσότερα

Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1o ΜΕΡΟΣ

Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1o ΜΕΡΟΣ Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟ ΟΓΙΜΟ 1o ΜΕΡΟ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Η εφαπτοµένη της γραφικής παράστασης µιας σταθερής συνάρτησης σε οποιοδήποτε σηµείο του πεδίου ορισµού της συµπίπτει µε τη γραφική

Διαβάστε περισσότερα

+ (!, &. /+ /# 0 + /+ /# ) /+ /# 1 /+ /# # # # 6! 9 # ( 6 & # 6

+ (!, &. /+ /# 0 + /+ /# ) /+ /# 1 /+ /# # # # 6! 9 # ( 6 & # 6 # % ( + (!, &. /+ /# 0 + /+ /# ) /+ /# 1 /+ /# 2 + + 3 + 4 5 # 6 5 7 + 8 # # 6 (! 9 # ( 6 & 0 6 ) 1 5 + # 6 2 # # + 6 # # 6 # + # # + 6 + # #! 5 # # 6 & # : # # : 6 0 ) 5 + 6 1 # # 2 + # + # # 4 + # 6

Διαβάστε περισσότερα

ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION)

ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION) . 1 (INTERPOLATION) A a 1x1 [ ] Sin[ A] [ Sin[ a]], Cos[ A] [ Cos[ a]], Tan[ A] [ Tan[ a]], Cot[ A] [ Cot[ a]]. a x + yi x, y R Sin[ a] Cosh[ y] Sin[ x] + Cos[ x] Sinh[ y] i Cos[ a] Cos[ x] Cosh[ y] Sin[

Διαβάστε περισσότερα

εξίσωση πρώτου βαθμού

εξίσωση πρώτου βαθμού κεφάλαιο 2 Α1 εξίσωση πρώτου βαθμού επίλυση της εξίσωσης πρώτου βαθμού Εξίσωση, είναι κάθε ισότητα που περιέχει κάποιον άγνωστο, την τιμή του οποίου καλούμαστε να προσδιορίσουμε. Ο βαθμός μιας εξίσωσης

Διαβάστε περισσότερα

να μεταβάλει την ποσότητα ενός ή περισσότερων από τους συντελεστές που χρησιμοποιεί

να μεταβάλει την ποσότητα ενός ή περισσότερων από τους συντελεστές που χρησιμοποιεί ΕΠΑΝΑΛΗΠΤΙΚΟ test ΣΤΟ ΚΕΦΑΛΑΙΟ 3 Σημειώστε το Σ αν η φράση είναι σωστή και το Λ αν η φράση είναι λανθασμένη: 1. Βραχυχρόνια περίοδος είναι το χρονικό διάστημα μέσα στο οποίο η επιχείρηση δεν μπορεί να

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΚΗ ΝΟΜΟΘΕΣΙΑ ΣΤΟΝ ΤΟΜΕΑ ΤΩΝ ΟΔΙΚΩΝ ΜΕΤΑΦΟΡΩΝ Κανονισμός (ΕΕ) αριθ. 165/2014, οδηγία 2006/22/ΕΚ, κανονισμός (ΕΚ) αριθ.

ΚΟΙΝΩΝΙΚΗ ΝΟΜΟΘΕΣΙΑ ΣΤΟΝ ΤΟΜΕΑ ΤΩΝ ΟΔΙΚΩΝ ΜΕΤΑΦΟΡΩΝ Κανονισμός (ΕΕ) αριθ. 165/2014, οδηγία 2006/22/ΕΚ, κανονισμός (ΕΚ) αριθ. ΣΗΜΕΙΩΜΑ ΟΔΗΓΙΩΝ 7 Θέμα: Η έννοια των «24 ωρών» Άρθρο: Άρθρο 8 παράγραφοι 2 και 5 κανονισμού (ΕΚ) αριθ. 561/2006. Προσέγγιση που πρέπει να ακολουθείται: Σύμφωνα με το άρθρο 8 παράγραφος 2 του κανονισμού,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ. i) x 1

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ. i) x 1 ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ. Δίνεται το τριώνυμο : 3.Να βρείτε το πρόσημο των τιμών του τριωνύμου για : 3 4 i) 3 i 4 3. Να βρεθεί το πρόσημο των τριωνύμων : i) f ( ) 5 3 g( ) i h( ) 3. Να βρεθεί το

Διαβάστε περισσότερα

8 ) / 9! # % & ( ) + )! # 2. / / # % 0 &. # 1& / %. 3 % +45 # % ) 6 + : 9 ;< = > +? = < + Α ; Γ Δ ΓΧ Η ; < Β Χ Δ Ε Φ 9 < Ε & : Γ Ι Ι & Χ : < Η Χ ϑ. Γ = Φ = ; Γ Ν Ι Μ Κ Λ Γ< Γ Χ Λ =

Διαβάστε περισσότερα

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α .5.. Ίσες συναρτήσεις ΣΥΝΑΡΤΗΣΕΙΣ 7 Ο ΜΑΘΗΜΑ Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f = g, Έχουν το ίδιο πεδία ορισμού Α Για κάθε x Α ισχύει f ( x) = g( x) Αν για τις συναρτήσεις: f:

Διαβάστε περισσότερα

ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΣΦΑΛΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΤΟΥΣ 2005

ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΣΦΑΛΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΤΟΥΣ 2005 ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΕΘΝΙΚΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΥΠΗΡΕΣΙΑΣ ΤΗΣ ΕΛΛΑΔOΣ Πειραιάς, 9 Μαρτίου 27 Δ Ε Λ Τ Ι Ο Τ Υ Π Ο Υ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΣΦΑΛΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΤΟΥΣ 25 Από τη Διεύθυνση Στατιστικών Τομέα Εμπορίου και

Διαβάστε περισσότερα

ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ

ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ ιπλ ωµατ ική Εργασία του Φοιτητή ιονύση Παππά Τ µ ή µ α Μ ε τ α ν α σ τ ε υ τ ι κ ή ς π ο λ ι τ ι κ ή ς Τίτλος Εργασίας: Η Συµβολή της Τοπικής Αυτοδιοίκησης στην καταπολέµηση

Διαβάστε περισσότερα

Ενότητα (α) : Τίτλος Μελέτης: Σύντομη Περιγραφή Μελέτης: Φορέας Μελέτης : Ημερ. Δήλωσης Ν.1599/86 : Ανάδοχος: Αμοιβή Μελέτης : ( χωρίς ΦΠΑ)

Ενότητα (α) : Τίτλος Μελέτης: Σύντομη Περιγραφή Μελέτης: Φορέας Μελέτης : Ημερ. Δήλωσης Ν.1599/86 : Ανάδοχος: Αμοιβή Μελέτης : ( χωρίς ΦΠΑ) ΥΠΟΥΡΓΕΙΟ ΥΠΟΔΟΜΩΝ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΔΙΚΤΥΩΝ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΔΗΜΟΣΙΩΝ ΕΡΓΩΝ ΗΜΕΡΟΜΗΝΙΑ ΣΥΝΤΑΞΗΣ : ΓΕΝΙΚΗ Δ/ΝΣΗ ΠΟΙΟΤΗΤΑΣ ΔΗΜΟΣΙΩΝ ΕΡΓΩΝ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΕΜΠΕΙΡΙΑΣ ΜΕΛΕΤΩΝ ΙΔΙΩΤΙΚΩΝ ΕΡΓΩΝ (ΕΝΤΥΠΟ Α') Ενότητα

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 3. Ασκήσεις: -5 Θεωρία ως και την 3.3 Ασκήσεις: 6-8 Άσκηση Δίνεται η παράσταση: A= 3 5 +

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα

ΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα ΠΟΛΥΩΝΥΜΑ Λυμένα Παραδείγματα. Να βρεθούν οι τιμές του λ R για τις οποίες το πολυώνυμο Ρ () = (4λ -9) +(λ -λ-) +λ- είναι το μηδενικό. Το Ρ () θα είναι το μηδενικό πολυώνυμο, για εκείνες τις τιμές του λ

Διαβάστε περισσότερα

Ερωτήσεις αντιστοίχισης

Ερωτήσεις αντιστοίχισης Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 5 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 5 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 5 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 5.2 Ασκήσεις: 1-17 Θεωρία ως και την 5.3 Ασκήσεις: 18-24 Άσκηση 1 Θεωρούμε την ακολουθία

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς

Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς 9. 3. 2 0 1 6 A t h e n a e u m I n t e r C o Ο μ ι λ ί α κ υ ρ ί ο υ Τ ά σ ο υ Τ ζ ή κ α, Π ρ ο έ δ ρ ο υ Δ Σ Σ Ε Π Ε σ τ ο ε π ί σ η μ η δ ε ί π ν ο τ ο υ d i g i t a l e c o n o m y f o r u m 2 0 1

Διαβάστε περισσότερα

ΠΑΝΤΕΙΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ

ΠΑΝΤΕΙΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΑΝΤΕΙΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Αθήνα, 2014 01 ΚΕΦAΛΑΙΟ 9: Το εργασιακό καθεστώς και η πολιτική για την απασχόληση στου Οργανισμούς της Αυτοδιοικητικής Πολιτείας Η απασχόληση στους

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Διοικητική Λογιστική Δημήτρης Μπάλιος Κοστολόγηση συνεχούς παραγωγής Πληροφορίες για το κόστος παραγωγής συγκεκριμένης περιόδου Βήμα 1ο : Προσδιορισμός της φυσικής ροής Βήμα 2ο : Προσδιορισμός των ισοδύναμων

Διαβάστε περισσότερα

Q VC AVC MC , ,5 7, , ,

Q VC AVC MC , ,5 7, , , ΛΥΣΕΙΣ ΑΟΘ 4 (για καλά διαβασμένους) ΟΜΑΔΑ Α Α1. γ Α2. γ Α3. Λ Α4. Σ Α5. Σ Α6. Λ Α7. Λ ΟΜΑΔΑ Β Σχολικό βιβλίο σελ. 24 η παράγραφος 11 ΟΜΑΔΑ Γ Γ1. Ο πίνακας γίνεται: VC AVC MC 0 0 - - 10 100 10 10 180 9

Διαβάστε περισσότερα

4. ΔΙΚΤΥΑ

4. ΔΙΚΤΥΑ . ΔΙΚΤΥΑ Τελευταία μορφή επιχειρησιακής έρευνας αποτελεί η δικτυωτή ανάλυση (δίκτυα). Τα δίκτυα είναι ένα διάγραμμα από ς οι οποίοι συνδέονται όλοι μεταξύ τους άμεσα ή έμμεσα μέσω ακμών. Πρόκειται δηλαδή

Διαβάστε περισσότερα

ΜΟΡΙΑ ΔΙΔΑΚΤ. ΕΜΠΕΙΡ. ΜΗ ΤΥΠ. ΕΚΠΑΙΔ. ΜΟΡΙΑ ΔΙΔΑΚΤ. ΕΜΠΕΙΡ. Δ/ΘΜΙΑΣ & ΑΝΩ ΜΟΡΙΑ ΔΙΔΑΚΤ. ΕΜΠΕΙΡ. ΣΕ ΙΕΚ 6 12 28 23,00 69,00 1 6 9,20 14 24,00 53,20 2

ΜΟΡΙΑ ΔΙΔΑΚΤ. ΕΜΠΕΙΡ. ΜΗ ΤΥΠ. ΕΚΠΑΙΔ. ΜΟΡΙΑ ΔΙΔΑΚΤ. ΕΜΠΕΙΡ. Δ/ΘΜΙΑΣ & ΑΝΩ ΜΟΡΙΑ ΔΙΔΑΚΤ. ΕΜΠΕΙΡ. ΣΕ ΙΕΚ 6 12 28 23,00 69,00 1 6 9,20 14 24,00 53,20 2 ΚΩΔ. ΘΕΣΗΣ: 05 - ΕΙΔΙΚΟΤΗΤΑ: ΚΕΡΑΜΙΣΤΑΣ ΔΕ (ΑΡΙΘΜ ΑΤΟΜΩΝ: ) ΣΠΟΥΔΩ ΚΑΤΑΤΑΞΗ ΔΗΤΡΙΑΔΟΥ ΖΩΗ ΒΛΑΧΟΥ ΜΑΡΙΑ ΚΕΡΑΜΙΚΗ ΒΟΛΟΥ ΚΕΡΑΜΙΚΗ ΒΟΛΟΥ 6 8 3,00 69,00 6 9,0 4 4,00 53,0 3 ΓΟΥΔΙΝΗΣ ΣΤΕΡΓΙΟΣ ΚΕΡΑΜΙΚΗ ΒΟΛΟΥ

Διαβάστε περισσότερα

Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1.

Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1. .. Ασκήσεις σχ. Βιβλίου σελίδας 94 97 Α ΟΜΑ ΑΣ. Να βρείτε τις τιµές του λ R, ώστε ο z (λ )( ) να είναι : πραγµατικός αριθµός φανταστικός αριθµός z λ λ 6 (λ ) (6 λ) z πραγµατικός 6 λ 0 λ 6 z φανταστικός

Διαβάστε περισσότερα

7.2 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = x

7.2 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = x 7. ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ () = α ΘΕΩΡΙΑ. Μορφή της συνάρτησης (Ισοσκελής υπερβολή) Ιδιότητες Πεδίο ορισµού g() = R = (, 0) (0, + ) Είναι περιττή, άρα συµµετρική ως προς την αρχή των αξόνων Είναι γν.φθίνουσα

Διαβάστε περισσότερα

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος». * Συντελεστής διεύθυνσης µιας ευθείας (ε) είναι η εφαπτοµένη της γωνίας που σχηµατίζει η ευθεία (ε) µε τον άξονα x x. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

Β Λυκείου - Ασκήσεις Συστήματα. x = 38 3y x = 38 3y x = x = = 11

Β Λυκείου - Ασκήσεις Συστήματα. x = 38 3y x = 38 3y x = x = = 11 Να λυθεί το σύστημα: Β Λυκείου - Ασκήσεις Συστήματα x+ 3y= 38 3x y = 2 Θα λύσουμε το σύστημα με τη μέθοδο της αντικατάστασης: x+ 3y= 38 x = 38 3y x = 38 3y x = 38 3y 3x y = 2 338 ( 3y) y= 2 3 38 9y y =

Διαβάστε περισσότερα

ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ

ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΚΟΝΔΥΛΙΩΝ ΕΡΕΥΝΑΣ ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΥΓΕΙΑΣ Ταχ. Διεύθυνση : Λ. Αλεξάνδρας 196 Αθήνα, 01-03 -2011 Ταχ. Κώδικας :11521 Αρ. Πρωτ. ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ

Διαβάστε περισσότερα

ΑΣΚΗΣΗ ΣΤΟΝ ΚΥΚΛΟ. Ε. i) Να βρείτε τη σχετική θέση των τροχιών του 4ου και του 12ου μαθητή.

ΑΣΚΗΣΗ ΣΤΟΝ ΚΥΚΛΟ. Ε. i) Να βρείτε τη σχετική θέση των τροχιών του 4ου και του 12ου μαθητή. ΑΣΚΗΣΗ ΣΤΟΝ ΚΥΚΛΟ Θεωρούμε μια ομάδα 5 μαθητών Κάθε μαθητής χαρακτηρίζεται από έναν αριθμό μ =,,,,5 και κινείται στο καρτεσιανό επίπεδο Ο xy διαγράφοντας τροχιά με εξίσωση: Cμ x y μx μy μ μ : + + + 6 6

Διαβάστε περισσότερα

Σχήµα 1. Το σχέδιο του δικτύου. Copyright 2009 ThinkDeep, Page 1 of 7

Σχήµα 1. Το σχέδιο του δικτύου. Copyright 2009 ThinkDeep,  Page 1 of 7 Μια εταιρία αγοράζει από τον κεντρικό φορέα απόδοσης διευθύνσεων I, προκειµένου να τις χρησιµοποιήσει για το δικό της δίκτυο. Η αρχική διεύθυνση είναι 195.251.123.0 /24 (µάσκα υποδικτύου 255.255.255.0,

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (4-6-000) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο : Α.1. Να γράψετε την εξίσωση του κύκλου που έχει κέντρο ( x, ) K 0 y 0 και ακτίνα ρ. Μονάδες Α.. Πότε η εξίσωση

Διαβάστε περισσότερα

Ελληνοαμερικανικόν Εκπαιδευτικόν Ίδρυμα ΚΟΛΛΕΓΙΟ ΑΘΗΝΩΝ ΚΟΛΛΕΓΙΟ ΨΥΧΙΚΟΥ ΚΟΛΛΕΓΙΟ ΨΥΧΙΚΟΥ Λ Υ Κ Ε Ι Ο

Ελληνοαμερικανικόν Εκπαιδευτικόν Ίδρυμα ΚΟΛΛΕΓΙΟ ΑΘΗΝΩΝ ΚΟΛΛΕΓΙΟ ΨΥΧΙΚΟΥ ΚΟΛΛΕΓΙΟ ΨΥΧΙΚΟΥ Λ Υ Κ Ε Ι Ο Ελληνοαμερικανικόν Εκπαιδευτικόν Ίδρυμα ΚΟΛΛΕΓΙΟ ΑΘΗΝΩΝ ΚΟΛΛΕΓΙΟ ΨΥΧΙΚΟΥ ΚΟΛΛΕΓΙΟ ΨΥΧΙΚΟΥ Λ Υ Κ Ε Ι Ο Ενημερωτική Συνάντηση Γονέων Μαθητών Β Λυκείου Θέατρο Χωρέμη Δευτέρα, 4 Μαΐου 2015 1 ΜΕΡΟΣ Α Ακαδημαϊκό

Διαβάστε περισσότερα

ΣΥΝΘΕΣΗ ΔΥΟ ΑΠΛΩΝ ΑΡΜΟΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΠΟΥ ΕΧΟΥΝ ΤΗΝ ΙΔΙΑ ΔΙΕΥΘΥΝΣΗ ΤΑΛΑΝΤΩΣΗΣ, ΙΔΙΑ ΣΥΧΝΟΤΗΤΑ ΚΑΙ ΙΔΙΑ ΘΕΣΗ ΙΣΟΡΡΟΠΙΑΣ.

ΣΥΝΘΕΣΗ ΔΥΟ ΑΠΛΩΝ ΑΡΜΟΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΠΟΥ ΕΧΟΥΝ ΤΗΝ ΙΔΙΑ ΔΙΕΥΘΥΝΣΗ ΤΑΛΑΝΤΩΣΗΣ, ΙΔΙΑ ΣΥΧΝΟΤΗΤΑ ΚΑΙ ΙΔΙΑ ΘΕΣΗ ΙΣΟΡΡΟΠΙΑΣ. ΣΥΝΘΕΣΗ ΔΥΟ ΑΠΛΩΝ ΑΡΜΟΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΠΟΥ ΕΧΟΥΝ ΤΗΝ ΙΔΙΑ ΔΙΕΥΘΥΝΣΗ ΤΑΛΑΝΤΩΣΗΣ, ΙΔΙΑ ΣΥΧΝΟΤΗΤΑ ΚΑΙ ΙΔΙΑ ΘΕΣΗ ΙΣΟΡΡΟΠΙΑΣ. ΜΕΘΟΔΟΛΟΓΙΑ Έστω ότι δύο ταλαντώσεις έχουν αντίστοιχα εξισώσεις: 1 η περίπτωση:

Διαβάστε περισσότερα

Ανάλυση της τεχνικής στο ελεύθερο στυλ κολύμβησης

Ανάλυση της τεχνικής στο ελεύθερο στυλ κολύμβησης Ανάλυση της τεχνικής στο ελεύθερο στυλ κολύμβησης Περίγραμμα μαθήματος Αποτύπωση και περιγραφή της κίνησης των χεριών Κινήσεις των ποδιών Συγχρονισμός χεριών ποδιών αναπνοής Ελεύθερο Το ταχύτερο από τα

Διαβάστε περισσότερα

Δ Ε Λ Τ Ι Ο Τ Υ Π Ο Υ

Δ Ε Λ Τ Ι Ο Τ Υ Π Ο Υ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΑΣ & ΟΙΚΟΝΟΜΙΚΩΝ ΕΘΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΥΠΗΡΕΣΙΑ ΤΗΣ ΕΛΛΑΔΟΣ Αθήνα, 12/8/2004 Δ Ε Λ Τ Ι Ο Τ Υ Π Ο Υ ΟΙΚΟΔΟΜΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΠΡΙΛΙΟΣ 2004 Η Δ/νση Στατιστικών Δευτερογενούς

Διαβάστε περισσότερα

Α1. Να διατυπωθεί και να δοθεί η γεωµετρική ερµηνεία του θεωρήµατος Μέσης Τιµής του ιαφορικού Λογισµού. (3 µονάδες)

Α1. Να διατυπωθεί και να δοθεί η γεωµετρική ερµηνεία του θεωρήµατος Μέσης Τιµής του ιαφορικού Λογισµού. (3 µονάδες) Α Να διατυπωθεί και να δοθεί η γεωµετρική ερµηνεία του θεωρήµατος Μέσης Τιµής του ιαφορικού Λογισµού Α Έστω µια συνάρτηση ορισµένη σε ένα διάστηµα Αν η είναι συνεχής στο και ( ) = για κάθε εσωτερικό σηµείο

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Έστω αλφάβητο Σ και γλώσσες Λ, Λ 2, Λ επί του αλφάβητου αυτού. Να διερευνήσετε κατά πόσο ισχύει κάθε μια από τις πιο κάτω σχέσεις.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ( ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ )

ΘΕΩΡΙΑ ( ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ) ΘΕΩΡΙΑ ( ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ) Έχουμε δύο κάθετους άξονες x x και y y με κοινή αρχή 0. Από ένα σημείο Μ του επιπέδου φέρνουμε τις κάθετες στους δύο άξονες x x και y y. Ονομάζουμε τετμημένη του σημείου

Διαβάστε περισσότερα

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ. Να βρείτε το πεδίο ορισµού των παρακάτω συναρτήσεων: ( = g( = + 4 h( = t( = 5 φ( = ln σ( = ln(ln p( = ln m( = λ R λ - λ - k( = ln 4 s( = ηµ. Να εξετάσετε αν για τις παραπάνω συναρτήσεις

Διαβάστε περισσότερα

Ενότητα 6: Κατακερματισμός Ασκήσεις και Λύσεις

Ενότητα 6: Κατακερματισμός Ασκήσεις και Λύσεις ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Ενότητα : Κατακερματισμός Ασκήσεις και Λύσεις Άσκηση 1 Χρησιμοποιήστε τη συνάρτηση κατακερματισμού της διαίρεσης ως πρωτεύουσα συνάρτηση κατακερματισμού και τη συνάρτηση

Διαβάστε περισσότερα

Α (i) Από την έκφραση «το πολύ 85 λεπτά», δηλαδή λιγότερο από 85 λεπτά συμπεραίνουμε ότι η ζητούμενη πιθανότητα είναι η P X 85. Χ = 85 μ = 100 Επομένως από τον τύπο της κανονικής κατανομής (σχετικό βίντεο

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 01-013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Έστω a ένας πραγματικός αριθμός. Να δώσετε τον ορισμό της απόλυτης

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ 2016 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΛΛΗΝΙΕΣ 2016 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΕΣ 2016 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΟΜΑΔΑ ΠΡΩΤΗ Α1. α. ΣΩΣΤΟ (σελ. 24) β. ΛΑΘΟΣ (σελ. 33) γ. ΣΩΣΤΟ (σελ. 62) δ. ΣΩΣΤΟ (σελ. 57-58) ε. ΛΑΘΟΣ (σελ. 48) Α2. α Α3. γ ΟΜΑΔΑ ΔΕΥΤΕΡΗ Προσδιοριστικοί

Διαβάστε περισσότερα

Αρχές Οργάνωσης Επιχειρήσεων Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΟΜΑΔΑ Α

Αρχές Οργάνωσης Επιχειρήσεων Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΟΜΑΔΑ Α Αρχές Οργάνωσης Επιχειρήσεων Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΟΜΑΔΑ Α Στις παρακάτω προτάσεις, από Α1 μέχρι και Α6 να γράψετε στο τετράδιό σας τον αριθμό της καθεμίας και δίπλα του τη λέξη «Σωστό», αν

Διαβάστε περισσότερα

Θεωρία Κεφάλαιο 4 ο Γ Λυκείου Doppler

Θεωρία Κεφάλαιο 4 ο Γ Λυκείου Doppler Θεωρία Κεφάλαιο 4 ο Γ Λυκείου Doppler Φαινόμενο Doppler Η συχνότητα που αντιλαμβάνεται ο παρατηρητής δεν είναι ίδια με αυτήν που εκπέμπει μία πηγή όταν ο παρατηρητής και η πηγή βρίσκονται σε σχετική κίνηση

Διαβάστε περισσότερα

Δ Ε Λ Τ Ι Ο Τ Υ Π Ο Υ

Δ Ε Λ Τ Ι Ο Τ Υ Π Ο Υ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΕΘΝΙΚΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΥΠΗΡΕΣΙΑΣ Πειραιάς, 07/08/2009 ΤΗΣ ΕΛΛΑΔOΣ Δ Ε Λ Τ Ι Ο Τ Υ Π Ο Υ ΟΙΚΟΔΟΜΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΜΑΪΟΣ 2009 Η Γενική Γραμματεία Εθνικής Στατιστικής Υπηρεσίας της Ελλάδος

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 ΗΔιωνυμική κατανομή για (πολύ) μεγάλα ν και (πολύ) μικρά p Η χρήση του τύπου ν x ν x f ( x)

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ (-6-) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ ο : Α. Αν η συνάρτηση είναι παραγωγίσιμη σ ένα σημείο του πεδίου ορισμού της, να γραφεί η εξίσωση της εφαπτομένης της

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΠΡΟΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΠΡΟΓΡΑΜΜΑ ΠΡΟΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ ΔΙΔΑΣΚΑΛΙΑΣ ΜΑΘΗΜΑΤΩΝ Β ΕΞΑΜΗΝΟΥ - ΜΑΘΗΜΑΤΑ ΚΟΡΜΟΥ ΩΡΕΣ ΜΑΘΗΜΑ ΧΩΡΟΣ ΜΑΘΗΜΑ ΧΩΡΟΣ ΜΑΘΗΜΑ ΧΩΡΟΣ ΜΑΘΗΜΑ ΧΩΡΟΣ ΜΑΘΗΜΑ ΧΩΡΟΣ 8-9 Ασκήσεις (Α - Ω) 9-10 Δομές Δεδομένων ( Τμήμα Α & Β) Τμήμα

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο Α. Έστω a, ) και β, ) δύο διανύσµατα του καρτεσιανού επιπέδου Ο. α) Να εκφράσετε χωρίς απόδειξη) το εσωτερικό γινόµενο των διανυσµάτων a και

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Θέμα A. Να αποδείξετε ότι η εξίσωση της εφαπτομένης του κύκλου στο σημείο του Α, ) είναι 8 μονάδες) Β. Να δώσετε τον ορισμό

Διαβάστε περισσότερα

Πράξεις Τακτοποίησης και Αναλογισμού Οικοπέδων Διάνοιξη Οδού

Πράξεις Τακτοποίησης και Αναλογισμού Οικοπέδων Διάνοιξη Οδού Πράξεις Τακτοποίησης και Αναλογισμού Οικοπέδων Διάνοιξη Οδού Χρησιμοποιήθηκαν σχήματα και κείμενα από σημειώσεις Σεμιναρίων Μικρής διάρκειας του ΤΕΕ/ΤΚΜ 2012 Εισηγήτριες: Κωνσταντίνα Χατζηρόδου Νικολοπούλου

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα.

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα. 69: Υπολογιστικές Μέθοδοι για Μηχανικούς Ολοκληρώματα ttp://ecourses.cemeng.ntu.gr/courses/computtionl_metods_or_engineers/ Αριθμητική Ολοκλήρωση συναρτήσεων Χρησιμοποιούμε αριθμητικές μεθόδους για τον

Διαβάστε περισσότερα

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016 ΘΕΜΑ Α Απαντήσεις στα Μαθηματικά Κατεύθυνσης 6 Α.. Σχολ. Βιβλίο, Θεωρία, σελ.6-(i) Α.. Σχολ. Βιβλίο, Θεωρία, σελ. 4 Α. Σχολ. Βιβλίο, Θεωρία, σελ. 46,47 Α.4. α. Λ β. Σ γ. Λ δ. Σ ε. Σ ΘΕΜΑ Β B. Η συνάρτηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων εξέτασης προόδου στο μάθημα «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων εξέτασης προόδου στο μάθημα «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων εξέτασης προόδου στο μάθημα «Γραμμική Άλγεβρα» (ΗΥ9) Θέμα. (μονάδες.0) Οι ορίζουσες των πινάκων ABC,, βρεθούν οι ορίζουσες των πινάκων:

Διαβάστε περισσότερα

Γ1. Υπολογισμοί: = = Χ 1 Χ. β. Σ γ. Λ δ. Σ ε. Λ. Σελ σχολικού βιβλίου «Ιδιότητες αναγκών» Β Γ: ΚΕΧ σε όρους Ψ = = = Β Α: ΚΕΨ σε όρους Χ = = = 2

Γ1. Υπολογισμοί: = = Χ 1 Χ. β. Σ γ. Λ δ. Σ ε. Λ. Σελ σχολικού βιβλίου «Ιδιότητες αναγκών» Β Γ: ΚΕΧ σε όρους Ψ = = = Β Α: ΚΕΨ σε όρους Χ = = = 2 Ενδεικτικές Απαντήσεις Γ Λυκείου Σεπτέµβριος Αρχές Οικονοµικής Θεωρίας µάθηµα επιιλογής ΟΜΑΔΑ ΠΡΩΤΗ Α. α. Σ β. Σ γ. Λ δ. Σ ε. Λ Α. α Α3. Β ΟΜΑΔΑ ΔΕΥΤΕΡΗ Σελ. - σχολικού βιβλίου «Ιδιότητες αναγκών» Γ. Υπολογισμοί:

Διαβάστε περισσότερα

Γ τάξη Τεχνολογικής Κατεύθυνσης Ενιαίου Λυκείου ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. ΔΟΜΗ ΕΠΙΛΟΓΗΣ Διδάσκων: ΔΟΥΡΒΑΣ ΙΩΑΝΝΗΣ

Γ τάξη Τεχνολογικής Κατεύθυνσης Ενιαίου Λυκείου ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. ΔΟΜΗ ΕΠΙΛΟΓΗΣ Διδάσκων: ΔΟΥΡΒΑΣ ΙΩΑΝΝΗΣ Γ τάξη Τεχνολογικής Κατεύθυνσης Ενιαίου Λυκείου ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΟΜΗ ΕΠΙΛΟΓΗΣ Διδάσκων: ΔΟΥΡΒΑΣ ΙΩΑΝΝΗΣ Κεφάλαιο 2 : Δομή Επιλογής Εντολές επιλογής Εντολή ΑΝ. Εντολές

Διαβάστε περισσότερα

Βασικές ασκήσεις Βασική θεωρία. του πεδίου ορισμού της; β) Έστω η συνάρτηση: ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x

Βασικές ασκήσεις Βασική θεωρία. του πεδίου ορισμού της; β) Έστω η συνάρτηση: ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x 8 Συνέχεια συνάρτησης Ορισμός της συνέχειας 8. α) Πότε μια συνάρτηση f :A λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού της; β) Έστω η συνάρτηση:, αν < f() =, αν i) Να αποδείξετε ότι f() = 7 και να

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ- ΑΣΚΗΣΕΙΣ

ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ- ΑΣΚΗΣΕΙΣ ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ- ΑΣΚΗΣΕΙΣ Κατηγορίες ασκήσεων στα απόλυτα ΠΕΡΙΠΤΩΣΗ : Εξισώσεις που περιέχουν απόλυτο μιας παράστασης και όχι παράταση του x έξω από το απόλυτο. α) Λύνουμε ως προς το απόλυτο

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΡΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΘΕΜΑ Α ΟΜΑΔΑ ΠΡΩΤΗ Α.1 α. Σ, β. Λ, γ. Σ, δ. Σ, ε. Λ Α2. α, Α3. γ ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΘΕΜΑ Β Σχολικό Βιβλίο,σελ.83-84,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 23 OKTΩΒΡΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ. e γν.αύξουσα 1 e e 0 e 1 e 1 0 e 1 e 1

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 23 OKTΩΒΡΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ. e γν.αύξουσα 1 e e 0 e 1 e 1 0 e 1 e 1 ΚΕΝΤΡΟ Αγίας Σοφίας 39 3044444 ΝΤΕΠΩ Β Όλγας 68 3048400 ΕΥΟΣΜΟΣ ΜΑλεξάνδρου 45 30770360 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 3 OKTΩΒΡΙΟΥ 06 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A Θεωρία Σχολικού Βιβλίου

Διαβάστε περισσότερα

Λ. Ελευθερίου Βενιζέλου & Κανακίδη 1, ΚΑΛΛΙΘΕΑ Τηλ Fax

Λ. Ελευθερίου Βενιζέλου & Κανακίδη 1, ΚΑΛΛΙΘΕΑ Τηλ Fax Το νέο σύστημα αναφορών του edu4schools είναι πλέον διαθέσιμο! Όλες οι αναφορές που χρησιμοποιούσατε βρίσκονται σε ένα κεντρικό σημείο κάνοντας την πρόσβασή σε αυτές αμεσότερη και ευκολότερη, ενώ ταυτόχρονα

Διαβάστε περισσότερα

ΕΘΝΙΚΗ ΠΙΝΑΚΟΘΗΚΗ- ΜΟΥΣΕΙΟ ΑΛΕΞΑΝΔΡΟΥ ΣΟΥΤΖΟΥ

ΕΘΝΙΚΗ ΠΙΝΑΚΟΘΗΚΗ- ΜΟΥΣΕΙΟ ΑΛΕΞΑΝΔΡΟΥ ΣΟΥΤΖΟΥ ΕΣΟΔΑ ( ΣΕ ΔΡΧ.) ΕΘΝΙΚΗ ΠΙΝΑΚΟΘΗΚΗ ΜΟΥΣΕΙΟ ΑΛΕΞΑΝΔΡΟΥ ΣΟΥΤΖΟΥ ΚΕΦΑΛΑΙΟ ΑΥΤΟΤΕΛΟΥΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΛΗΡΟΔΟΤΗΜΑΤΟΣ ΕΛΕΝΗΣ ΦΡΑΓΚΟΠΟΥΛΟΥ ΑΠΟΛΟΓΙΣΜΟΣ ΕΣΟΔΩΝ ΕΞΟΔΩΝ ΟΙΚΟΝΟΜΙΚΗΣ ΧΡΗΣΕΩΣ 2000 ΕΞΟΔΑ ( ΣΕ ΔΡΧ.) ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

aμαθηματικα ΚΑΤΕΥΘΥΝΣΗΣ 2014

aμαθηματικα ΚΑΤΕΥΘΥΝΣΗΣ 2014 aμαθηματικα ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ Α Α. Σελ 5 Α. Σελ 73 Α3. Σελ 5 Α4. α) Λ β) Σ γ) Σ δ) Σ ε) Λ ΘΕΜΑ Β B. Θέτω z yi στην εξίσωση και έχουμε: z z z i 4 i yi yi yi i 4 i y i 4 i y i 4 i y 4 i Συνεπώς πρέπει να

Διαβάστε περισσότερα

1.2 Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

1.2 Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1 1. Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ MΟΝΩΝΥΜΑ ΘΕΩΡΙΑ 1. Αριθµητική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών. Αλγεβρική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ [Κεφ..6: Συνέπειες του Θεωρήματος της Μέσης Τιμής πλην της Ενότητας Μονοτονία Συνάρτησης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ Κεφάλαιο ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ο ΜΕΡΟΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 6. Λ 8. Λ. Σ 7. Σ 9. Λ 3. Λ 8. Λ 3. Σ 4. Σ 9. Σ 3. α Σ 5. Σ. Σ β Σ 6. Λ.

Διαβάστε περισσότερα

ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος

ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΥΨΗΛΩΝ ΣΥΧΝΟΤΗΤΩΝ (Θ) Ενότητα 3: Μικροκυματικές Διατάξεις ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς

Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς Να χαρακτηρίσετε µε Σ (Σωστό) ή Λ (Λάθος) τους παρακάτω ισχυρισµούς:. Για κάθε α R ισχύει ότι : α =α.. Για κάθε α R ισχύει ότι : α = α.. Για κάθε α R ισχύει ότι

Διαβάστε περισσότερα

Τους επόµενους δύο τρεις µήνες τι προβλέπετε; Θα γίνουν αρκετές, ή λίγες απεργίες και κινητοποιήσεις; Γ/ Α 15% Αρκετές 60% Λίγες 25% Διάγραμμα 1

Τους επόµενους δύο τρεις µήνες τι προβλέπετε; Θα γίνουν αρκετές, ή λίγες απεργίες και κινητοποιήσεις; Γ/ Α 15% Αρκετές 60% Λίγες 25% Διάγραμμα 1 ΠΡΟΣ ΟΚΙΕΣ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΣΥΓΚΡΟΥΣΕΙΣ ΣΤΟΥΣ ΠΡΟΣΕΧΕΙΣ ΜΗΝΕΣ Τους επόµενους δύο τρεις µήνες τι προβλέπετε; Θα γίνουν αρκετές, ή λίγες απεργίες και κινητοποιήσεις; 15% Αρκετές 60% Λίγες 25% Διάγραμμα

Διαβάστε περισσότερα

Ερωτήσεις Σωστού-Λάθους και Πολλαπλών Επιλογών. Ερωτήσεις Σωστού Λάθους. Ερωτήσεις πολλαπλών επιλογών

Ερωτήσεις Σωστού-Λάθους και Πολλαπλών Επιλογών. Ερωτήσεις Σωστού Λάθους. Ερωτήσεις πολλαπλών επιλογών Πληθωρισμός Ερωτήσεις Σωστού-Λάθους και Πολλαπλών Επιλογών Ερωτήσεις Σωστού Λάθους 1. Μία αύξηση στο επίπεδο τιμών ισοδυναμεί με μία μείωση στην αξία του χρήματος. 2. Η ποσοτική θεωρία του χρήματος υποστηρίζει

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ Κεφάλαιο ο: ΙΑΦΟΡΙΚΟ ΟΓΙΜΟ ο ΜΕΡΟ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν η συνάρτηση f είναι παραγωγίσιµη στο R και f (α) f (β), α, β R, α < β, τότε ισχύει f () για κάθε (α, β).. * Αν η συνάρτηση f

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( ) α. Να βρείτε το πεδίο ορισμού της. β. Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν. γ. Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο f ( ), να δείξετε ότι αβ+=0.

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής. 1. * Από τα παρακάτω διαγράµµατα, γραφική παράσταση συνάρτησης είναι το

Ερωτήσεις πολλαπλής επιλογής. 1. * Από τα παρακάτω διαγράµµατα, γραφική παράσταση συνάρτησης είναι το Ερωτήσεις πολλαπλής επιλογής. * Από τα παρακάτω διαγράµµατα, γραφική παράσταση συνάρτησης είναι το διάγραµµα Α. B. Γ.. Ε. 7 . * Από τα παρακάτω διαγράµµατα δεν είναι γραφική παράσταση συνάρτησης το διάγραµµα

Διαβάστε περισσότερα

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας»

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Άσκηση 1. Έστω ότι μια επιχείρηση αντιμετωπίζει ετήσια ζήτηση = 00 μονάδων για ένα συγκεκριμένο προϊόν, σταθερό κόστος παραγγελίας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΙΓΜΑΤΙΚΗ Ι ΑΣΚΑΛΙΑ «ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟ Ο ΤΩΝ ΟΡΙΖΟΥΣΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ» 1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΟΡΙΣΜΟΣ 1 : Γραµµική εξίσωση λέγεται κάθε

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Για ποιες τιµές του, αν υπάρχουν, ισχύει κάθε µία από τις ισότητες α. log = log( ) β. log = log γ. log 4 log = Να λυθεί η εξίσωση 4 log ( ) + = 0 6 α) Θα πρέπει > 0 και > 0,

Διαβάστε περισσότερα

Κώδικας και Τίτλος Ενότητας Χρήση λογισμικού επεξεργασίας κειμένου για τη δημιουργία απλών εγγράφων ρουτίνας Αριθμός και Τίτλος

Κώδικας και Τίτλος Ενότητας Χρήση λογισμικού επεξεργασίας κειμένου για τη δημιουργία απλών εγγράφων ρουτίνας Αριθμός και Τίτλος Aριθμός Μεθοδολογικού EUPA_LO_033_M_036 Εργαλείου Κώδικας και Τίτλος Τομέα 2.9 Δεξιότητες Τεχνολογίας Πληροφοριών και Επικοινωνιών Εργασίας Κώδικας και Τίτλος Ενότητας 2.9.1 Χρήση λογισμικού επεξεργασίας

Διαβάστε περισσότερα

7. ΠΑΝΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

7. ΠΑΝΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ . ΠΑΝΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Έτος ίδρυσης 9 ΨΩΦΑΚΗ ΚΩΝΣΤΑΝΤΙΝΑ ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ.... ΠΑΝΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ.... Η ΚΑΤΑ ΦΥΛΟ ΣΥΝΘΕΣΗ ΤΟΥ ΔΕΠ (ΣΥΝΟΛΙΚΑ ΣΤΟΙΧΕΙΑ).... ΚΑΤΑΝΟΜΗ ΤΩΝ ΜΕΛΩΝ ΔΕΠ ΚΑΤΑ ΦΥΛΟ ΚΑΙ ΒΑΘΜΙΔΑ

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Κωνικές τοµ ές) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

Θέματα. , για. a 0. (8 μονάδες) Γ. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις:

Θέματα. , για. a 0. (8 μονάδες)  Γ. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: Θέματα Θέμα 1 Α. Να δώσετε τον ορισμό της παραβολής. (5 μονάδες) Β. Να αποδείξετε ότι a v a, για a 0. (8 μονάδες) Γ. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ισχύει Σ Λ ii)

Διαβάστε περισσότερα

( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι:

( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι: ( x) Άρα το είναι ρίζα του P, οπότε το x είναι παράγοντάς του 4 Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x ) είναι: 3 π ( x) = x + x x + 3 Η ταυτότητα της προηγούμενης διαίρεσης είναι: 4 3 x 3x + 5x

Διαβάστε περισσότερα

Ω Ρ Ο Λ Ο Γ Ι Ο Π Ρ Ο Γ Ρ Α Μ Μ Α Μ Α Θ Η Μ Α Τ Ω Ν Α Ε Τ Ο Υ Σ ( Β Ε Ξ Α Μ Η Ν Ο ) ΩΡΑ ΔΕΥΤΕΡΑ ΤΡΙΤΗ ΤΕΤΑΡΤΗ ΠΕΜΠΤΗ ΠΑΡΑΣΚΕΥΗ

Ω Ρ Ο Λ Ο Γ Ι Ο Π Ρ Ο Γ Ρ Α Μ Μ Α Μ Α Θ Η Μ Α Τ Ω Ν Α Ε Τ Ο Υ Σ ( Β Ε Ξ Α Μ Η Ν Ο ) ΩΡΑ ΔΕΥΤΕΡΑ ΤΡΙΤΗ ΤΕΤΑΡΤΗ ΠΕΜΠΤΗ ΠΑΡΑΣΚΕΥΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ Έναρξη μαθημάτων εαρινού εξαμήνου 2013-2014: 24.02.2014 Λήξη μαθημάτων εαρινού εξαμήνου 2013-2014: 06.06.2014 Διεξαγωγή εξετάσεων

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Α. Η ΣΥΝΑΡΤΗΣΗ : y = α.x ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ 1. Δίνεται η ευθεία y = 3x. α) Να υπολογίσετε την κλίση της ευθείας. β) Να κάνετε την γραφική της παράσταση. 2. Μια ευθεία διέρχεται από την αρχή των

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα