Εφαρµογή κριτηρίου παραβολοειδούς εκ περιστροφής στη Βραχοµηχανική

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εφαρµογή κριτηρίου παραβολοειδούς εκ περιστροφής στη Βραχοµηχανική"

Transcript

1 Εφαρµογή κριτηρίου παραβολοειδούς εκ περιτροφής τη Βραχοµηχανική Appliaion of a paaboloid ieion in Rok Mehanis ΣΑΚΕΛΛΑΡΙΟΥ, Μ.Γ., ρ Μηχ., Π.Μ. & Α.Τ.Μ., Αναπληρωτής Καθηγητής, Ε.Μ.Π. ΠΕΡΙΛΗΨΗ : Στο παρόν άρθρο ειάγεται το κριτήριο του παραβολοειδούς εκ περιτροφής ως κριτηρίου ατοχίας τη βραχοµηχανική. Το κριτήριο αυτό έχει ειαχθεί από τον Θεοχάρη για την διερεύνηη των ύνθετων υλικών τα οποία παρουιάζουν ανιοτροπία Στην περίπτωη των ανιότροπων υλικών το κριτήριο παίρνει την γενικευµένη του µορφή ως ελλειπτικού παραβολοειδούς εκ περιτροφής, δηλαδή παραβολοειδές του οποίου η τοµή µε επίπεδο κάθετο τον άξονά του είναι έλλειψη. Ως παράδειγµα εφαρµογής του, εξετάζεται το πρόβληµα της εκτίµηης του εύρους της ζώνης ατοχίας γύρω από ήραγγα κυκλικής διατοµής ε ιότροπο (υδροτατικό) ταικό πεδίο. ABSTRACT : In his pape he paaboloid ieion has been inodued as a ok mehanis ieion. This ieion has been inodued by Theoais fo he invesigaion of anisoopi omposie maeials. In ase of anisoopi maeials, he ieion akes is geneal fom as an ellipial paaboloid sufae, ha is, a paaboloid wih an ellipial seion. As an appliaion, he poblem of he alulaion of he adius of plasi zone aound a yli opening unde isoopi field sess has been pesened.. ΕΙΣΑΓΩΓΗ Στο παρόν άρθρο ειάγεται το κριτήριο του παραβολοειδούς εκ περιτροφής ως κριτήριο ατοχίας τη βραχοµηχανική. Το κριτήριο αυτό έχει ειαχθεί από τον Θεοχάρη για την διερεύνηη των ύνθετων υλικών τα οποία παρουιάζουν ανιοτροπία. Στην περίπτωη των ανιότροπων υλικών το κριτήριο παίρνει την γενικευµένη του µορφή ως ελλειπτικού παραβολοειδούς εκ περιτροφής, δηλαδή παραβολοειδές του οποίου η τοµή µε επίπεδο κάθετο τον άξονά του είναι έλλειψη. Πρόκειται, δηλαδή, για κριτήριο το οποίο µπορεί να περιγράψει την ατοχία ιότροπων όο και ανιότροπων υλικών, το οποίο εκφράζεται ως υνάρτηη και των τριών κυρίων τάεων. Βαική παράµετρος του κριτηρίου είναι ο λόγος της αντοχής ε µονοαξονική θλίψη προς την αντοχή ε µονοαξονικό εφελκυµό για κάθε κύριο άξονα ανιοτροπίας του υλικού. Στην περίπτωη ιότροπων υλικών, παράµετρος του κριτηρίου είναι ο λόγος της αντοχής ε µονοαξονική θλίψη προς την αντοχή ε µονοαξονικό εφελκυµό. Η ιδιότητα αυτή το καθιτά χρήιµο για εφαρµογή την βραχοµηχανική όπου ο λόγος των αντοχών υπειέρχεται το εµπειρικό κριτήριο Hoek-Bown, η δε διακύµανη της τιµής αυτού του λόγου είναι και ο βαικός λόγος για την αδυναµία εφαρµογής του κριτηρίου Giffih το οποίο προβλέπει ταθερή τιµή του λόγου των αντοχών και ίη προς 8. Η εφαρµογή ενός κριτηρίου, το οποίο θεµελιώνεται ε βαικές προτάεις της Μηχανικής και εφαρµόζεται ε ιότροπα όο και ε ανιότροπα υλικά, έχει θεωρητικό και πρακτικό ενδιαφέρον. Ως παράδειγµα εφαρµογής του, εξετάζεται το πρόβληµα της εκτίµηης του εύρους της ζώνης ατοχίας γύρω από ήραγγα κυκλικής διατοµής ε ιότροπο (υδροτατικό) ταικό πεδίο. Η υµµετρία του προβλήµατος έχει ως αποτέλεµα τον χηµατιµό κυκλικής ζώνης 5ο Πανελλήνιο Συνέδριο Γεωτεχνικής & Γεωπεριβαλλοντικής Μηχανικής, ΤΕΕ, Ξάνθη, /5-/6/006

2 ατοχίας, όπως άλλωτε υµβαίνει και µε την εφαρµογή των κριτηρίων Moh-Coulomb, Hoek-Bown, Tesa και Von-Mises για το ίδιο πρόβληµα, και γίνεται ύγκριη µεταξύ των κριτηρίων Παραβολοειδούς και Hoek-Bown.. ΚΡΙΤΗΡΙΑ ΑΣΤΟΧΙΑΣ. Ειαγωγή Τα κριτήρια ατοχίας είναι χέεις µεταξύ των τάεων, η ιχύς των οποίων δηλώνει την ατοχία του υλικού, υπό την έννοια των µη αντιτρεπτών ανηγµένων παραµορφώεων (τροπών). Στην βραχοµηχανική, η τάη ατοχίας δεν υµπίπτει γενικά µε τη µέγιτη τάη. Στα υπόγεια έργα, όπου τα τοιχώµατα των εκκαφών αποτελούν επιφάνειες εφαπτόµενες των κυρίων επιπέδων, τα κριτήρια ατοχίας εκφράζονται ως χέεις µεταξύ των κυρίων τάεων ή των αναλλοίωτων ποοτήτων. Στα πρανή, όπου η ατοχία εκδηλώνεται ως αποτέλεµα διάτµηης ε κάποια επιφάνεια ολίθηης, τα κριτήρια διατυπώνονται µε χέεις ορθών και διατµητικών τάεων, π.χ. το κριτήριο Moh-Coulomb. Ακολούθως παρουιάζονται οι εκφράεις των κυριότερων κριτηρίων. Καταρχάς αναφέρεται το κριτήριο Tesa. Μετά παρουιάζεται το κριτήριο Von Mises λόγω της πουδαιότητάς του, το οποίο έχει το χαρακτηριτικό ότι παριτάνεται τον χώρο των κυρίων τάεων από κυλινδρική επιφάνεια ατοχίας. Ακολούθως παρουιάζεται το κριτήριο Giffih το οποίο, εκτός της διαφορετικής θεµελίωής του, παρουιάζει το χαρακτηριτικό της παραβολοειδούς απεικόνιής του. Εµπειρική τροποποίηη αυτού του κριτηρίου αποτελεί το εµπειρικό κριτήριο Hoek-Bown. Τέλος, ειάγεται το παραβολοειδές εκ περιτροφής, το οποίο και εφαρµόζεται για τον υπολογιµό της ακτίνας της πλατικής ζώνης.. Κριτήριο Tesa Σύµφωνα µε αυτό το κριτήριο το υλικό ατοχεί όταν η µέγιτη διατµητική τάη παίρνει µία τιµή χαρακτηριτική για το υλικό: S S 0 όπου 0 είναι η µονοαξονική αντοχή ε εφελκυµό ή θλίψη. ( ) Λόγω της απλότητας της µαθηµατικής του διατύπωης, το κριτήριο αυτό είναι το µόνο για το οποίο υπάρχει (ύµφωνα µε τη γνώη του υγγραφέα) λύη κλειτής µορφής για το εύρος και το χήµα της πλατικής ζώνης για τη γενική περίπτωη ταικού πεδίου µε k (Savin, 96).. Κριτήριο Von Mises Ο Von Mises υπέθεε ότι η θεωρία ατοχίας πρέπει να εκφράζεται υναρτήει των αναλλοίωτων των αποκλινουών τάεων J, J και J Αφού J 0, το κριτήριο εκφράζεται ως εξής: ( ) ( ) ( ) 0 όπου 0 είναι η µονοαξονική αντοχή. Παρατήρηη Γενικά αυτό το κριτήριο δεν είναι ικανοποιητικό για τα πετρώµατα. Αιτία αυτού του υµπεράµατος είναι η µη ικανοποιητική εκτίµηη της υµβολής της ενδιάµεης κύριας τάης..4 Κριτήριο Giffih Ο Giffih το 9 (Jaege and Cook), πρότεινε ένα κριτήριο για την ερµηνεία της ψαθυρής θραύης του χάλυβα τους κινητήρες των αεροπλάνων. Για την τεκµηρίωη της θεωρίας του έκανε ειρά πειραµάτων ε γυαλί, µε την υπόθεη ότι η θραύη έχει ως ηµεία εκκίνηης ρωγµές οι οποίες υπάρχουν το υλικό και προκαλούν υγκέντρωη των τάεων Σχήµα. Οι αιχµές δηλαδή των ρωγµών, όπου η ακτίνα καµπυλότητας είναι πολύ µικρή, προκαλούν µία ταική «ιδιοµορφία». Αν και η θεωρία του Giffih δεν µπορεί να εφαρµοτεί τα πετρώµατα ως έχει, αποτελεί µία βάη για την ερµηνεία της επιρροής προϋπαρχουών ρωγµών το υλικό. Η πλέον ηµαντική υµβολή της θεωρίας αυτής είναι η ενεργειακή της θεµελίωη καθώς η βαική της υπόθεη είναι ότι: µία προϋπάρχουα ρωγµή θα επεκταθεί όταν η υνολική δυναµική ενέργεια του υτήµατος των φορτίων και του υλικού µειώνεται ή παραµένει ταθερή για µία αύξηη του µήκους της ρωγµής. Η ενέργεια ενός υτήµατος µπορεί να µεταβληθεί για τρεις λόγους: ( ) 5ο Πανελλήνιο Συνέδριο Γεωτεχνικής & Γεωπεριβαλλοντικής Μηχανικής, ΤΕΕ, Ξάνθη, /5-/6/006

3 Η δηµιουργία νέων επιφανειών των ρωγµών λόγω θραύης Μεταβολή της ελατικής ενέργειας παραµορφώεων του δείγµατος και Εάν 0 8 ( 5) Ο λόγος δηλαδή της αντοχής ε θλίψη προς την αντοχή ε εφελκυµό έχει τη ταθερή τιµή 8. Αυτό το υµπέραµα είναι ένας περιοριµός για την εφαρµογή του κριτηρίου Giffih τη βραχοµηχανική. Σχήµα : Εκκίνηη ρωγµής από το ύνορο εγκοπής ελλειπτικού χήµατος υπό διαξονική θλίψη Figue : Cak popagaion fom he boundaies of an ellipial sli unde biaxial ompession Μεταβολή της δυναµικής ενέργειας του υτήµατος φόρτιης. Στην περίπτωη θλιπτικού ταικού πεδίου, επί πλέον των ενεργειακών µεταβολών υπάρχει και η υνθήκη ότι την περιοχή των αιχµών των ρωγµών αναπτύονται εφελκυτικές τάεις οι οποίες δεν µπορούν να ξεπεράουν ένα όριο. Το κριτήριο Giffih έχει την ακόλουθη διατύπωη: E a π () όπου Ε το µέτρο ελατικότητας, α είναι η ενέργεια ανά µονάδα επιφανείας, είναι το ηµιµήκος του µεγάλου άξονα της έλλειψης και είναι η εφελκυτική τάη η οποία προκαλεί εκκίνηη διάδοης ρωγµής. Εάν θελήουµε να εφαρµόουµε το κριτήριο Giffih την περίπτωη µονοαξονικής θλίψης θα έχουµε το πρόβληµα της αλληλεπίδραης των τοιχωµάτων της ρωγµής και το ενδεχόµενο της τριβής. Αυτό ηµαίνει ότι αλλάζουν οι υνοριακές υνθήκες του προβλήµατος. Έχουν γίνει διάφορες προτάεις για την αντιµετώπιη αυτού του προβλήµατος. Αν υποθέουµε ότι η ρωγµή παραµένει ανοιχτή, ότι δηλαδή δεν έχουµε τάεις τα τοιχώµατα, θα ιχύει: ( ) 8 ( ) ( 4) Σχήµα : Γραφική παράταη του κριτηρίου Giffih ε δύο διατάεις. Figue : The failue envelope aoding o Giffih ieion in dimensions. Οι Hoek & Bown βαίτηκαν την ενεργειακή θεµελίωη του κριτηρίου αυτού και το τροποποίηαν, ειάγοντας το οµώνυµο εµπειρικό κριτήριο, έτι ώτε να ιχύει το ακέραιο πέτρωµα αλλά και τη βραχοµάζα. Πέραν της υµβολής του µε την ενεργειακή θεµελίωη, το κριτήριο Giffih έχει την βαική ιδιότητα ότι προβλέπει επιφάνεια ατοχίας χήµατος παραβολοειδούς Σχήµα. Η µορφή αυτή υµφωνεί µε τα αποτελέµατα τριαξονικών δοκιµών πετρωµάτων και ε αυτό ακριβώς το δεδοµένο βαίτηκαν οι Hoek και Bown όταν ειήγαγαν το εµπειρικό τους κριτήριο το 98, ως τροποποίηη του κριτηρίου Giffih ώτε η περιβάλλουα ατοχίας να προαρµόζεται τους κύκλους Moh τριαξονικών δοκιµών..5 Το κριτήριο ατοχίας του παραβολοειδούς εκ περιτροφής Σύµφωνα µε τον Π. Σ. Θεοχάρη (Theoais, 98, 989), είναι δυνατή η έκφραη ενός κριτηρίου ατοχίας για ιότροπα µέα, τα οποία χαρακτηρίζονται από διαφορετική αντοχή ε θλίψη και εφελκυµό. Το κριτήριο αυτό έχει αφή ενεργειακή θεµελίωη καθώς η ατοχία γίνεται όταν η ελατική τροφική ενέργεια λάβει κάποια κρίιµη τιµή που εξαρτάται από την υδροτατική υνιτώα. 5ο Πανελλήνιο Συνέδριο Γεωτεχνικής & Γεωπεριβαλλοντικής Μηχανικής, ΤΕΕ, Ξάνθη, /5-/6/006

4 Έτι, υµµετέχουν εξίου οι ενέργειες υνόγκου και ύµµορφης παραµόρφωης. Το κριτήριο που πρότεινε ο Θεοχάρης, όταν παραταθεί ε χώρο (,, ), έχει παραβολική επιφάνεια και αξονική υµµετρία, υνεπώς είναι ένα παραβολοειδές εκ περιτροφής µε άξονα τον υδροτατικό άξονα. Ανήκει δε την οικογένεια του κριτηρίου του ελλειπτικού παραβολοειδούς (Theoais, Filippidis, 987). Το κριτήριο ατοχίας γράφεται ως : ( ) ( ) ( ) ( ) ( ) ( ) 6 R R Η παράµετρος είναι η µονοαξονική αντοχή ε εφελκυµό ενώ η παράµετρος R, ο λόγος της µονοαξονικής αντοχής ε θλίψη προς τη µονοαξονική αντοχή ε εφελκυµό : ( ) 7 R Η γεωµετρική απεικόνιη της επιφάνειας ατοχίας του κριτηρίου, φαίνεται το Σχήµα. Με γενίκευη του κριτηρίου του παραβολοειδούς, ώτε να εφαρµόζεται και την περίπτωη των ανιότροπων υλικών, προκύπτει το ελλειπτικό παραβολοειδές, το οποίο είναι παραβολοειδές µε τοµή κάθετη τον άξονα υµµετρίας ελλειπτικού χήµατος. Υπ αυτήν την µορφή ερµηνεύει την υµπεριφορά ανιότροπων υλικών. Σχήµα : Η επιφάνεια ατοχίας του παραβολοειδούς ως περιβάλλουα την επιφάνεια του κριτηρίου Hoek-Bown (R8, m i ) (Κοζάνης, 00). Figue : Failue sufae of paaboloid as envelope of Hoek-Bown failue sufae(r8, m i ) (Kozanis, 00). Σηµειώνεται ότι για R το κριτήριο του παραβολοειδούς ταυτίζεται µε το κριτήριο Von Mises. Στο Σχήµα 4 φαίνεται τοµή των κριτηρίων του Παραβολοειδούς και του Hoek-Bown. Σχήµα 4: Τοµή των δυο επιφανειών κάθετη τον άξονα για I.9 MPa (Κοζάνης, 00). Figue 4: Nomal seion of he wo sufaes fo I.9 MPa (Kozanis, 00). Η εξίωη (8) είναι η µαθηµατική διατύπωη του ελλειπτικού παραβολοειδούς. ( ) () 0 8,, i F. ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΑΚΤΙΝΑΣ ΤΗΣ ΠΛΑΣΤΙΚΗΣ ΖΩΝΗΣ ΓΙΑ k Για τον υπολογιµό της ακτίνας της πλατικής ζώνης για υδροτατικό (ιότροπο) ταικό 5ο Πανελλήνιο Συνέδριο Γεωτεχνικής & Γεωπεριβαλλοντικής Μηχανικής, ΤΕΕ, Ξάνθη, /5-/6/006 4

5 πεδίο εφαρµόζουµε την εξίωη ιορροπίας (Timoshenko and Goodie): d d θ 0 () 9 και τις εξιώεις του κυλίνδρου (0) και () θ p p o o e ( p ) ( 0) o e e ( p ) ( ) o e Στο όριο της πλατικής ζώνης θα ιχύει η χέη που προκύπτει από τις (0) και () µε αφαίρεη κατά µέλη: θ e e po e ( ) ( ) Η εξίωη () πρέπει να ικανοποιείται τόο για την ελατική ζώνη όο και για την πλατική την επαφή τους. Επιπλέον, οι τάεις την πλατική ζώνη πρέπει να ικανοποιούν την (6). Με την παραδοχή υνθηκών επίπεδης παραµόρφωης (ε z 0) και την ιχύ του νόµου καθετότητας (dε z 0) από την εφαρµογή του νόµου ροής (flow ule) (): όπου: K και 4 L 4 ( R ) R ( R ) R ( R ) 4 4 ( R ) e ( R ) ( 6) 4 4 ( R ) pi ( 7) Προς ύγκριη µε την ακτίνα της πλατικής ζώνης την προβλεπόµενη µε εφαρµογή του κριτηρίου Hoek-Bown παρατίθεται το µέτρο της (Hoek and Bown): e i e m m s e m p s ( 8) Στα Σχήµατα 5α, 5β και 5γ που ακολουθούν γίνεται ύγκριη των ακτίνων κατά Hoek- Bown και κατά το προτεινόµενο κριτήριο του Παραβολοειδούς µε παραµετρική ανάλυη. i f 0 ( ) προκύπτει η χέη: ( R ) b b ( 4) Με αντικατάταη των τάεων, θ και ( R ) b b (α) την διαφορική εξίωη ιορροπίας (9) προκύπτει το µέτρο της ακτίνας της πλατικής ζώνης (Αποτολέρης, 00) e e i LK K ln L ( R) ( 5) (β) 5ο Πανελλήνιο Συνέδριο Γεωτεχνικής & Γεωπεριβαλλοντικής Μηχανικής, ΤΕΕ, Ξάνθη, /5-/6/006 5

6 (γ) Στα Σχήµατα 7α-7τ παρουιάζονται επιλύεις µε το λογιµικό CEFEAS, όπου φαίνεται ο χηµατιµός πλατικής ζώνης και η αντίτοιχη µεταβολή τάεων υναρτήει της απόταης από την οπή. Στο πρόγραµµα CEFEAS ειήχθηαν οι τιµές για την αντοχή της βραχοµάζας : MPa και 0,5ΜPa. Για τις τιµές αυτές και για βάθος ήραγγας περίπου 60m (p 0 4MPa) λήφθηκαν τα αποτελέµατα που φαίνονται τα Σχήµατα 7α και 7β. Σχήµα 5: Ακτίνα της πλατικής ζώνης υναρτήει των παραµέτρων R-m (α), υναρτήει της αντοχής ε θλίψη (R4) (β) και (R5) (γ). Figue 5: Radius of plasi zone wih espe o R-m (α), and wih espe o ompessive sengh (R4) (β) and (R5) (γ). Προς ύγκριη παρατίθενται επίης οι επιλύεις που πραγµατοποιήθηκαν µε το λογιµικό τριδιάτατης µη-γραµµικής ανάλυης µε πεπεραµένα τοιχεία CEFEAS (Κοζάνης, 00) για ήραγγα µε ακτίνα 5m (α) θ θ z z θ (FEM) θ (FEM) (FEM) (FEM) z (FEM) z (FEM) Σχήµα 6: Σύγκριη της µεταβολής των τάεων µεταξύ αναλυτικής λύης και του λογιµικού CEFEAS Figue 6: Compaison of sess vaiaion aoding he losed fom soluion and he FEM pogam CEFEAS 7 (β) Αντίτοιχα, παρουιάζονται τα αποτελέµατα και για βάθη ήραγγας ία προς 80m (p 0 MPa) Σχήµατα 7γ και 7δ και 40m (p 0 MPa) Σχήµατα 7ε και 7τ. 5ο Πανελλήνιο Συνέδριο Γεωτεχνικής & Γεωπεριβαλλοντικής Μηχανικής, ΤΕΕ, Ξάνθη, /5-/6/006 6

7 ταικού πεδίου ( k ) παρατίθεται το Σχήµα 8 (Κοζάνης, 00) η πλατική ζώνη ανιότροπου µέου όπως προέκυψε από το πρόγραµµα CEFEAS. 7 (γ) 7 (τ) Σχήµα 7: Πλατική ζώνη και µεταβολή τάεων γύρω από κυκλική οπή ύµφωνα µε το κριτήριο του Παραβολοειδούς για MPa, 0,5MPa. (α-β) p 0 4MPa, (γ-δ) p 0 MPa, (ε-τ) p 0 MPa. Figue 7: Plasi zone and sess vaiaion aound yli opening aoding o he paaboloid ieion fo MPa, 0,5MPa. (α-β) p 0 4MPa, (γ-δ) p 0 MPa, (ε-τ) p 0 MPa. 7 (δ) 7 (ε) Προς ύγκριη µε την περίπτωη ανιότροπου µέου και µη υδροτατικού Σχήµα 8: Ζώνες ατοχίας για γωνία αξόνων ανιοτροπίας 45 0 ως προς την κατακόρυφο και k0.5 (Κοζάνης, 00) Figue 8: Failue zones fo angle beween of axes of anisoopy and he veial dieion equal o 45 0 and k0.5 (Kozanis, 00) Για τα ίδια δεδοµένα των αναλύεων των Σχηµάτων 7α έως 7τ, έγιναν υπολογιµοί µε βάη τις χέεις (5) και (8) για να γίνει 5ο Πανελλήνιο Συνέδριο Γεωτεχνικής & Γεωπεριβαλλοντικής Μηχανικής, ΤΕΕ, Ξάνθη, /5-/6/006 7

8 ύγκριη µεταξύ του προτεινόµενου κριτηρίου του παραβολοειδούς και του κριτηρίου Hoek- Bown Πίνακας. Παρατηρείται ότι ε όλες τις περιπτώεις µε το κριτήριο του παραβολοειδούς προβλέπεται ακτίνα πλατικής ζώνης µικρότερη. Ενδεχοµένως η διαφορά αυτή να οφείλεται ε µεγάλο βαθµό το ότι το κριτήριο αυτό υµµετέχει και η ενδιάµεη τάη ε αντίθεη µε το κριτήριο Hoek-Bown το οποίο είναι υνάρτηη της και της. Πίνακας : Σύγκριη αναλυτικών υπολογιµών µε λύεις κλειτής µορφής και ακτίνα οπής ίη προς 5m (Αποτολέρης, 00) Table : Compaison of analyial esuls by using losed fom soluions fo an opening wih adius equal o 5m (Aposoleis, 00) Κριτήριο Παραβολοειδούς, p 0 4MPa R e e - 0,5 8,00 -,0 0,5 Κριτήριο Hoek-Bown, p 0 4MPa m s e e 8,96,45 Κριτήριο Παραβολοειδούς p 0 MPa R e e - 0,5 8,00-0,64 6,55 Κριτήριο Hoek-Bown, p 0 MPa m s e e 8 0,7 9,07 Κριτήριο Παραβολοειδούς, p 0 MPa R e e - 0,5 8,00-0,0 5,0 Κριτήριο Hoek-Bown, p 0 MPa m s e e 8 0,0 6,84 5. ΣΥΜΠΕΡΑΣΜΑΤΑ Στην παρούα εργαία εφαρµότηκε το κριτήριο του Παραβολοειδούς για τον υπολογιµό της πλατικής ακτίνας γύρω από κυκλική οπή εντός υδροτατικού (ιότροπου) ταικού πεδίου. Η ύγκριη µε τα αντίτοιχα αποτελέµατα που προκύπτουν µε εφαρµογή του εµπειρικού κριτηρίου Hoek-Bown είναι ικανοποιητική. Το αποτέλεµα αυτό είναι ηµαντικό διότι το κριτήριο του παραβολοειδούς είναι ένα κριτήριο αυτηρά θεµελιωµένο και όχι εµπειρικό. Μπορεί δε να χρηιµεύει ως µέτρο ύγκριης ε διάφορες εφαρµογές της βραχοµηχανικής. Το ηµαντικότερο όµως πλεονέκτηµά του είναι το ότι γενικεύεται ώτε να ερµηνεύει και την µηγραµµική υµπεριφορά ανιότροπων υλικών. Αξίζει να ηµειωθεί ότι έως ήµερα δεν έχει προταθεί άλλο κριτήριο το οποίο να µπορεί να ερµηνεύει την µη-γραµµική υµπεριφορά ιότροπων και ανιότροπων µέων. 6. ΒΙΒΛΙΟΓΡΑΦΙΑ Αποτολέρης, Κ (00): «ιερεύνηη της δηµιουργίας πλατικής ζώνης γύρω από κυκλική ήραγγα εντός υδροτατικού ταικού πεδίου µε εφαρµογή του κριτηρίου του παραβολοειδούς», ιπλωµατική εργαία, ΠΜΣ «Σχεδιαµός και Κατακευή Υπόγειων Έργων», Ε.Μ.Π. Jaege and Cook (979), Fundamenals of Rok Mehanis, Chapman & Hall. Κοζάνης, Στ. (00): «Η επιρροή της Ανιοτροπίας της Βραχοµάζας τον Σχεδιαµό Υπόγειων Έργων», ιπλωµατική εργαία, ΠΜΣ «Σχεδιαµός και Κατακευή Υπόγειων Έργων», Ε.Μ.Π. Κοζάνης, Στ. (00): «Συµβολή τη µελέτη της Βραχοµάζας, θεωρουµένης ως µέου µε µή-γραµµική υµπεριφορά µε τη µέθοδο των Πεπεραµένων Στοιχείων. Έµφαη τα Υπόγεια Έργα», ιδακτορική ιατριβή, ΕΜΠ. Hoek, E. and Bown, E. T., (980): 'Undegound Exavaions in Rok', Insiuion of Mining and Meallugy. Savin, G. N. (96): Sess Conenaion aound Holes, Pegamon Pess. Theoais, P.S. (98), Yield ieia depending on pessue and dilaany, Poeedings Naional Aademy of Ahens, Vol. 58, pp Theoais, P.S. and Philippidis Th., (987), The paaboloidal failue sufae of iniially anisoopi elasi solids, I. Rein. Plas. Composies, Vol. 6, Issue. Theoais, P.S. (989), The paaboloid failue sufae fo he geneal ohoopi maeial, Aa Mehania, Vol. 79, pp Timoshenko, S. P. and Gooodie, J. N. (95): Theoy of Elasiiy, MGaw-Hill. 5ο Πανελλήνιο Συνέδριο Γεωτεχνικής & Γεωπεριβαλλοντικής Μηχανικής, ΤΕΕ, Ξάνθη, /5-/6/006 8

9 5ο Πανελλήνιο Συνέδριο Γεωτεχνικής & Γεωπεριβαλλοντικής Μηχανικής, ΤΕΕ, Ξάνθη, /5-/6/006 9

Σχ. 1 Eναλλασσόμενες καταπονήσεις

Σχ. 1 Eναλλασσόμενες καταπονήσεις Πανεπιτήμιο Θεαλίας Διδάκων: Αλ. Κερμανίδης Σχεδιαμός Στοιχείων Μηχανών ε μεταβαλλόμενα φορτία Μεταβαλλόμενα με τον χρόνο φορτία χαρακτηρίζονται τα φορτία που μεταβάλλουν το μέγεθος ή την διεύθυνη τους

Διαβάστε περισσότερα

5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ

5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ ΜΑΘΗΜΑ : ΕΑΦΟΜΗΧΑΝΙΚΗ Ι - 5 ο Εξ. Πολιτικών Μηχανικών - Ακαδημαϊκό Έτος : 00 004 5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια : Γιάννης Κουκούλης, Υποψήφιος ιδάκτορας ΕΜΠ Λίγα «Θεωρητικά»!!! Η παρούα

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ IΙ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΥΡΙΕΣ ΤΑΣΕΙΣ 1. Τάεις γύρω από ένα Σηµείο Όπως αναφέρθηκε ε προηγούµενη ενότητα, υχνά είναι πιο εύχρητο να αναλύονται οι τάεις γύρω από ένα ηµείο

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΑ ΙΑΡΡΟΗΣ (YIELD CRITERIA)- ΝΟΜΟΙ ΡΟΗΣ- ΑΝΙΣΟΤΡΟΠΙΑ

ΚΡΙΤΗΡΙΑ ΙΑΡΡΟΗΣ (YIELD CRITERIA)- ΝΟΜΟΙ ΡΟΗΣ- ΑΝΙΣΟΤΡΟΠΙΑ ΚΡΙΤΗΡΙΑ ΙΑΡΡΟΗΣ YIELD CRITERIA- ΝΟΜΟΙ ΡΟΗΣ- ΑΝΙΣΟΤΡΟΠΙΑ Κριτήριο διαρροής είναι η µαθηµατική υνθήκη που περιγράφει την εντατική κατάταη ε ένα ηµείο της µάζας του υλικού, ώτε το ηµείο αυτό να υµβαίνει

Διαβάστε περισσότερα

ΔΙΑΛΕΞΗ 2 Τάσεις και παραμορφώσεις γύρω από κυκλικές σήραγγες. Κατανομές τάσεων και παραμορφώσεων γύρω από κυκλική σήραγγα - Παραδοχές

ΔΙΑΛΕΞΗ 2 Τάσεις και παραμορφώσεις γύρω από κυκλικές σήραγγες. Κατανομές τάσεων και παραμορφώσεων γύρω από κυκλική σήραγγα - Παραδοχές ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΕΙΔΙΚΑ ΓΕΩΤΕΧΝΙΚΑ ΕΡΓΑ - Γεωτεχνική Σηράγγων» 9ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 5-6 ΔΙΑΛΕΞΗ Τάεις και παραμορφώεις γύρω από κυκλικές ήραγγες 5.8.5 Κατανομές τάεων και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΜΕΤΑ ΟΣΗ ΤΩΝ ΤΑΣΕΩΝ ΛΟΓΩ ΕΠΙΒΟΛΗΣ ΕΞΩΤΕΡΙΚΩΝ ΦΟΡΤΙΩΝ

ΚΕΦΑΛΑΙΟ 8 ΜΕΤΑ ΟΣΗ ΤΩΝ ΤΑΣΕΩΝ ΛΟΓΩ ΕΠΙΒΟΛΗΣ ΕΞΩΤΕΡΙΚΩΝ ΦΟΡΤΙΩΝ Μετάδοη Τάεων λόγω Επιβολής Φορτίων Σελίδα ΚΕΦΑΛΑΙΟ 8 ΜΕΤΑ ΟΣΗ ΤΩΝ ΤΑΣΕΩΝ ΛΟΓΩ ΕΠΙΒΟΛΗΣ ΕΞΩΤΕΡΙΚΩΝ ΦΟΡΤΙΩΝ 8. Ειαγωγή Ένα ύνηθες αποτέλεµα των έργων Πολιτικού Μηχανικού είναι η επιβολή φορτίων το έδαφος

Διαβάστε περισσότερα

ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ

ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ Η ερµιονική εκποµπή ηλεκτρονίων είναι ένα φαινόµενο το οποίο βαίζεται η λειτουργία της λυχνίας κενού. Η δίοδος λυχνία κενού αποτελεί ορόηµο τον πολιτιµό του ύγχρονου ανρώπου

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ VIII. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΕ ΥΝΑΜΙΚΕΣ ΚΑΤΑΠΟΝΗΣΕΙΣ 1. Ειαγωγή Ήδη από το 180 είχε διαπιτωθεί ότι τα µεταλλικά υλικά, όταν καταπονούνται από επαναλαµβανόµενες ή χρονικά µεταβαλλόµενες

Διαβάστε περισσότερα

12.1 Σχεδιασμός αξόνων

12.1 Σχεδιασμός αξόνων 1.1 Σχεδιαμός αξόνων Επιδιώκοντας τον χεδιαμό αξόνων αναζητούμε τις διαμέτρους τα διάφορα ημεία αλλαγής διατομών ή επιβολής φορτίων και τα μήκη του άξονα που αντιτοιχούν τις διαμέτρους, την ακτίνα καμπυλότητας

Διαβάστε περισσότερα

Σχεδιασµός Φορέων από Σκυρόδεµα µε βάση τον Ευρωκώδικα 2

Σχεδιασµός Φορέων από Σκυρόδεµα µε βάση τον Ευρωκώδικα 2 Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Τοµέας οµικών Κατακευών Εργατήριο Ωπλιµένου Σκυροδέµατος Κωνταντίνος Χαλιορής, ρ. Πολιτικός Μηχανικός, Λέκτορας τηλ./fax: 54107963 Ε-mail: haliori@ivil.duth.gr

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (Sampling Distributions)

ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (Sampling Distributions) ΚΕΦΑΛΑΙΟ 0 ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (amplig Distibutios) Ένα χαρακτηριτικό των επιτημονικών μελετών τις οποίες απαιτείται η χρήη των διαδικαιών της Στατιτικής Συμπεραματολογίας είναι η ύπαρξη τυχαιότητας

Διαβάστε περισσότερα

ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων Εφαρμογές. A. Μπενάρδος Λέκτορας ΕΜΠ. Δ. Καλιαμπάκος Καθηγητής ΕΜΠ

ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων Εφαρμογές. A. Μπενάρδος Λέκτορας ΕΜΠ. Δ. Καλιαμπάκος Καθηγητής ΕΜΠ ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ Μέθοδος και Εφαρμογές. Μπενάρδος Λέκτορας ΕΜΠ Δ. Καλιαμπάκος Καθηγητής ΕΜΠ Στύλων Παράδειγμα Ο χεδιαμός των τη μέθοδο και γίνεται με βάη τη θεωρία της υνειφέρουας ς Κάθε τύλος φέρει το

Διαβάστε περισσότερα

ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1

ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1 Στατιτική υµπεραµατολογία για τη διαδικαία της ποιότητας Στο προηγούµενο κεφάλαιο κάναµε την παραδοχή και υποθέαµε ότι οι παράµετροι των κατανοµών των πιθανοτήτων άρα και οι παράµετροι της διαδικαίας ήταν

Διαβάστε περισσότερα

(α) (β) (γ) Σχήμα Error! No text of specified style in document.-1: Ελικοειδή ελατήρια διαφόρων διατομών και μορφών

(α) (β) (γ) Σχήμα Error! No text of specified style in document.-1: Ελικοειδή ελατήρια διαφόρων διατομών και μορφών 11.6 Ελικοειδή θλιπτικά ελατήρια Στα προηγούμενο κεφάλαιο είδαμε αναλυτικά τα ελικοειδή κυλινδρικά ελατήρια υμπίεης, κυκλικής διατομής ύρματος. Στο Σχήμα 11-7 φαίνονται (α) κυλινδρικό ελατήριο υμπίεης

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : 009-010 ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. 4 ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευτρατία

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΘΕΩΡΙΑΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ

ΕΦΑΡΜΟΓΕΣ ΘΕΩΡΙΑΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ 1 ΤΟΜΕΑΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΘΕΩΡΙΑΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΣΗΜΕΙΩΣΕΙΣ ( Κυρίως επιλεγµένα και ελεύθερα µεταφραµένα

Διαβάστε περισσότερα

6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π.

6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π. 6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π. ΑΣΚΗΣΗ 1 Θα χρηιμοποιηθούν οι χέεις που προκύπτουν από τη θεώρηη γραμμικής ιότροπης

Διαβάστε περισσότερα

Άσκηση 19 Εξαναγκασμένες ηλεκτρικές ταλαντώσεις και συντονισμός

Άσκηση 19 Εξαναγκασμένες ηλεκτρικές ταλαντώσεις και συντονισμός Μιχάλης Καλογεράκης 9 ο Εξάμηνο ΣΕΜΦΕ ΑΜ:987 Υπεύθυνος Άκηης: Κα Μανωλάτου Συνεργάτις: Ζάννα Βιργινία Ημερομηνία Διεξαγωγής:8//5 Άκηη 9 Εξαναγκαμένες ηλεκτρικές ταλαντώεις και υντονιμός ) Ειαγωγή: Σκοπός

Διαβάστε περισσότερα

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και 9 Έτω U R ανοικτό ύνολο και Επικαµπύλια ολοκληρώµατα f : U R R C καµπύλη :[, ] U υνεχής πραγµατική υνάρτηη. Θεωρούµε µια ώτε ( t) x( t), y( t), z( t) ύνθετη υνάρτηη fo :[, ] R t [, ] f x( t), y( t), z(

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ

ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ Ιχύς P 10 KW Στροφές ειόδου n 1450 τρ./λεπτό Σχέη μετάδοης i 4 Α. ΥΠΟΛΟΓΙΣΜΟΙ ΟΔΟΝΤΩΤΩΝ ΤΡΟΧΩΝ 1. Προωρινή εκλογή υλικού δοντιού: Για την επιλογή του υλικού

Διαβάστε περισσότερα

Πίνακας Περιεχομένων. Πίνακας Περιεχομένων 1. Πίνακας Σχημάτων 5. Πίνακας Πινάκων 11. Πίνακας Συμβολισμών Συντομογραφιών 13

Πίνακας Περιεχομένων. Πίνακας Περιεχομένων 1. Πίνακας Σχημάτων 5. Πίνακας Πινάκων 11. Πίνακας Συμβολισμών Συντομογραφιών 13 Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πίνακας Σχημάτων 5 Πίνακας Πινάκων Πίνακας Συμβολιμών Συντομογραφιών Ειαγωγή Γενικότητες 5. Έννοιες από την μηχανική του υνεχούς μέου... 7.. Η χέη τάεων παραμορφώεων

Διαβάστε περισσότερα

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και 9 Έτω U R ανοικτό ύνολο και Επικαµπύλια ολοκληρώµατα f : U R R C καµπύλη :[, ] U υνεχής πραγµατική υνάρτηη Θεωρούµε µια ώτε ( t) x( t), y( t), z( t) ύνθετη υνάρτηη fo :[, ] R t [, ] f x( t), y( t), z(

Διαβάστε περισσότερα

Το θεώρηµα του Green

Το θεώρηµα του Green 57 58 Το θεώρηµα του Green :, Υπενθυµίζουµε ότι µια απλή κλειτή καµπύλη [ ] κλειτή καµπύλη ( = ) ώτε ο περιοριµός [, ) R είναι µια να είναι απεικόνιη Μια απλή κλειτή καµπύλη του επιπέδου ονοµάζεται και

Διαβάστε περισσότερα

Χάραξη γραφηµάτων/lab Graphing

Χάραξη γραφηµάτων/lab Graphing Χάραξη γραφηµάτων/lb Grphng Η χάραξη ή γραφηµάτων (ή γραφικών παρατάεων είναι µια πολύ ηµαντική εργαία τη πειραµατική φυική. Γραφήµατα παρέχουν ένα αποδοτικό τρόπο για να απεικονίζεται η χέη µεταξύ των

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ V: ΜHXANIKH ΣYMΠΕΡΙΦΟΡΑ Ε ΑΦΙΚΟΥ ΣΤΟΙΧΕΙΟΥ

ΚΕΦΑΛΑΙΟ V: ΜHXANIKH ΣYMΠΕΡΙΦΟΡΑ Ε ΑΦΙΚΟΥ ΣΤΟΙΧΕΙΟΥ ΚΕΦΑΛΑΙΟ V: ΜHXANIKH ΣYMΠΕΡΙΦΟΡΑ Ε ΑΦΙΚΟΥ ΣΤΟΙΧΕΙΟΥ 1 Οι υνηθέτερες δοκιμές της Εδαφομηχανικής 2 Μονοδιάτατη υμπίεη Τυπική υμπεριφορά ( v -ε v ) Μέτρο Συμπίεης (D) Φόρτιη αποφόρτιη επαναφόρτιη ιαφορές

Διαβάστε περισσότερα

5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ

5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ 5 5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ ΠΛΗΘΥΣΜΟΣ ΚΑΙ ΕΙΓΜΑ. ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στην πράξη θέλουµε υχνά να βγάλουµε υµπεράµατα για µια µεγάλη οµάδα ατόµων ή αντικειµένων. Αντί να µελετήουµε ολόκληρη την οµάδα,

Διαβάστε περισσότερα

ΙΑΡΘΡΩΣΗ ΜΑΘΗΜΑΤΟΣ. Εξίσωση Schrıdinger. Χρησιµότητα Εξαγωγή της εξίσωσης Schrıdinger. Περιοχές κυµατοδήγησης οπτικού παλµού

ΙΑΡΘΡΩΣΗ ΜΑΘΗΜΑΤΟΣ. Εξίσωση Schrıdinger. Χρησιµότητα Εξαγωγή της εξίσωσης Schrıdinger. Περιοχές κυµατοδήγησης οπτικού παλµού ΙΑΡΘΡΩΣΗ ΜΑΘΗΜΑΤΟΣ Εξίωη Schrıdinger Χρηιµότητα Εξαγωγή της εξίωης Schrıdinger Περιοχές κυµατοδήγηης οπτικού παλµού Αλληλεπίδραη µη γραµµικών φαινοµένων και διαποράς Αµελητέα η διαπορά και τα µη γραµµικά

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΕΚΣΚΑΦΩΝ ΣΕ ΣΥΜΠΑΓΕΣ ΠΕΤΡΩΜΑ

ΑΝΑΛΥΣΗ ΤΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΕΚΣΚΑΦΩΝ ΣΕ ΣΥΜΠΑΓΕΣ ΠΕΤΡΩΜΑ ΑΝΑΛΥΣΗ ΤΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΕΚΣΚΑΦΩΝ ΣΕ ΣΥΜΠΑΓΕΣ ΠΕΤΡΩΜΑ. ΜΕΘΟΔΟΛΟΓΙΑ. Τα υπόγεια τεχνικά έργα έχουν γενικά μεγάλη διάρκεια ζωής. Τέτοια είναι οι ήραγγες, οι άλαμοι, οι αποήκες καυίμων, τα

Διαβάστε περισσότερα

Εκτιµητική. Boutsikas M.V. (2003), Σηµειώσεις Στατιστικής ΙΙΙ, Τµήµα Οικονοµικής Επιστήµης, Πανεπιστήµιο Πειραιώς.

Εκτιµητική. Boutsikas M.V. (2003), Σηµειώσεις Στατιστικής ΙΙΙ, Τµήµα Οικονοµικής Επιστήµης, Πανεπιστήµιο Πειραιώς. 4 Εκτιµητική Σύνδεη θεωρίας πιθανοτήτων - περιγραφικής τατιτικής H περιγραφική τατιτική (ΣΤΑΤΙΣΤΙΚΗ Ι αφορά κυρίως τη µελέτη κάποιων «µεγεθών» (πχ µέη τιµή, διαπορά, διάµεος, κοκ ενός «δείγµατος» υγκεκριµένων

Διαβάστε περισσότερα

Νόμος των Wiedemann-Franz

Νόμος των Wiedemann-Franz Άκηη 38 Νόμος των Widmann-Franz 38.1 Σκοπός Σκοπός της άκηης αυτής είναι η μέτρηη της ταθεράς Lorntz ε δύο διαφορετικά μέταα οι ιδιότητες των οποίων διαφέρουν ημαντικά. Η ταθερά του Lorntz μετράται μέω

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο ΚΕΦΑΛΑΙΟ 7 Ροπή και Στροφορµή Μέρος πρώτο Μέχρι εδώ εξετάαµε την κίνηη ενός υλικού ηµείου υπό την επίδραη µιας δύναµης. Τα πράγµατα αλλάζουν δραµατικά αν αντί υλικού ηµείου έχοµε ένα τερεό ώµα. Η µελέτη

Διαβάστε περισσότερα

Κεφάλαιο 1: Εισαγωγή... 11

Κεφάλαιο 1: Εισαγωγή... 11 Περιεχόμενα Πρόλογος... 7 Ειαγωγικό ημείωμα... 9 Κεφάλαιο : Ειαγωγή.... Η Παγκόμια Χρηματοπιτωτική Κρίη.... Το Αντικείμενο και ο Στόχος του Βιβλίου... 9.3 Η Δομή του Βιβλίου... 0 Κεφάλαιο : Η ιαχείριη

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 13 Ιουνίου 2010

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 13 Ιουνίου 2010 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουνίου Θέμα ( μονάδες) Έτω αβγδ,,, και V = αβγδ,,,, όπου α= (,,), β= (,,), γ= (,5,), δ= (5,,). i)

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ (ΣΥΝΕΧΕΙΑ)

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ (ΣΥΝΕΧΕΙΑ) (ΣΥΝΕΧΕΙΑ) Χαράλαµπος Α. Χαραλαµπίδης 9 εκεµβρίου 2009 Η ηµαντικότερη κατανοµή πιθανότητας της Θεωρίας Πιθανοτήτων και της Στατιτικής, µε µεγάλο πεδίο εφαρµογών, είναι η κανονική κατανοµή. Η κατανοµή αυτή

Διαβάστε περισσότερα

ΣΥΜΒΟΛΗ ΣΤΗ ΜΕΛΕΤΗ ΤΗΣ ΒΡΑΧΟΜΑΖΑΣ, ΘΕΩΡΟΥΜΕΝΗΣ ΩΣ ΜΕΣΟΥ ΜΕ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΙΣΟΤΡΟΠΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ, ΜΕ ΤΗ ΜΕΘΟ Ο ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΣΥΜΒΟΛΗ ΣΤΗ ΜΕΛΕΤΗ ΤΗΣ ΒΡΑΧΟΜΑΖΑΣ, ΘΕΩΡΟΥΜΕΝΗΣ ΩΣ ΜΕΣΟΥ ΜΕ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΙΣΟΤΡΟΠΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ, ΜΕ ΤΗ ΜΕΘΟ Ο ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΜΑΡΤΙΟΣ-ΑΠΡΙΛΙΟΣ 004 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ ΣΥΜΒΟΛΗ ΣΤΗ ΜΕΛΕΤΗ ΤΗΣ ΒΡΑΧΟΜΑΖΑΣ, ΘΕΩΡΟΥΜΕΝΗΣ ΩΣ ΜΕΣΟΥ ΜΕ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΙΣΟΤΡΟΠΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ, ΜΕ ΤΗ ΜΕΘΟ Ο ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Έµφαη τα υπόγεια έργα Σ. ΚΟΖΑΝΗΣ

Διαβάστε περισσότερα

Γ D µε αρχικό σηµείο το ( a, ( ) ( ) είναι µια άλλη και καταλήγει στο ( x, τότε (1) Γ ξεκινούν από το σηµείο (, ) και ( x,

Γ D µε αρχικό σηµείο το ( a, ( ) ( ) είναι µια άλλη και καταλήγει στο ( x, τότε (1) Γ ξεκινούν από το σηµείο (, ) και ( x, 69 Θα αποδείξουµε την υνέχεια- ως εφαρµογή του θεωρήµατος του Greenτην κατεύθυνη (ιι (ι του θεωρήµατος που χαρακτηρίζει τα υντηρητικά πεδία F : R R, όπου απλά υνεκτικός τόπος του R ( Θεώρηµα Αν R είναι

Διαβάστε περισσότερα

5. ιαστήµατα Εµπιστοσύνης

5. ιαστήµατα Εµπιστοσύνης 5 ιατήµατα Εµπιτούνης Στο προηγούµενο κεφάλαιο αχοληθήκαµε εκτενώς µε την εκτίµηη των παραµέτρων διαφόρων κατανοµών Για παράδειγµα είδαµε ότι η καλύτερη εκτιµήτρια για την εκτίµηη της µέης τιµής ενός κανονικού

Διαβάστε περισσότερα

Δδά Διδάσκοντες: Δημήτριος Ρόζος, Επικ. Καθηγητής ΕΜΠ Τομέας Γεωλογικών Επιστημών, Σχολή Μηχανικών Μεταλλείων Μεταλλουργών

Δδά Διδάσκοντες: Δημήτριος Ρόζος, Επικ. Καθηγητής ΕΜΠ Τομέας Γεωλογικών Επιστημών, Σχολή Μηχανικών Μεταλλείων Μεταλλουργών ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ Δδά Διδάκοντες: Δημήτριος Ρόζος, Επικ. Καθηγητής ΕΜΠ Τομέας Γεωλογικών

Διαβάστε περισσότερα

1. Έλεγχος Υποθέσεων. 1.1 Έλεγχοι για την µέση τιµή πληθυσµού

1. Έλεγχος Υποθέσεων. 1.1 Έλεγχοι για την µέση τιµή πληθυσµού . Έλεγχος Υποθέεων. Έλεγχοι για την µέη τιµή πληθυµού Ας υποθέουµε ένα πληθυµό µε µέη τιµή (µ.τ.) µ και τυπική απόκλιη (τ.α.). Έχει δειχτεί το κεφ.0 ο έλεγχος µιας µηδενικής υπόθεης H 0 δεδοµένης µιας

Διαβάστε περισσότερα

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου. Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης

Διαβάστε περισσότερα

Σχήµα 5.1 : Η κανονική κατανοµή, όπου τ = (x-μ)/σ

Σχήµα 5.1 : Η κανονική κατανοµή, όπου τ = (x-μ)/σ 5 Μοντέλα θυάνου του Gauss Όπως προαναφέρθηκε η δηµοφιλέτερη µεθοδολογία υπολογιµού της ατµοφαιρικής διαποράς ε πρακτικές εφαρµογές βαίζεται την εξίωη θυάνου του Gauss. Κάτω από υγκεκριµένες υνθήκες, τα

Διαβάστε περισσότερα

σ.π.π. της 0.05 c 0.1

σ.π.π. της 0.05 c 0.1 6 Έλεγχοι Υποθέεων Σε αρκετές εφαρµογές παρουιάζεται η ανάγκη λήψης αποφάεων χετικών µε την κατανοµή ενός πληθυµού Πιο υγκεκριµένα, ε πολλές περιπτώεις πρέπει, βάει ενός τδ Χ, Χ,, Χ από έναν πληθυµό µε

Διαβάστε περισσότερα

Διαδικασία προσδιορισμού των καμπύλων σύγκλισης-αποτόνωσης (p - u) και των καμπύλων απόστασης συντελεστή αποτόνωσης (λ x)

Διαδικασία προσδιορισμού των καμπύλων σύγκλισης-αποτόνωσης (p - u) και των καμπύλων απόστασης συντελεστή αποτόνωσης (λ x) Διαδικαία προδιοριμού των καμπύων ύγκιης-αποτόνωης ( - ) και των καμπύων απόταης υνττή αποτόνωης ( x) Μ. Καββαδάς, Αναπ. Καηγητής ΕΜΠ. Δδομένα : (α) Γωμτρία: Ακτίνα ήραγγας : (κυκική ήραγγα) Σήραγγα μγάου

Διαβάστε περισσότερα

Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 7.1

Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 7.1 7. ΧΑΛΙΚΟΠΑΣΣΑΛΟΙ Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 2015 ΠΕΡΙΕΧΟΜΕΝΑ 7.1 Μέθοδοι Κατακευής 7.2 Παράμετροι Σχεδιαμού Οριμοί 7.3 Εμπειρικές Μέθοδοι Σχεδιαμού 7.4 Αναλυτικές Μέθοδοι Σχεδιαμού

Διαβάστε περισσότερα

Στραγγίσεις (Εργαστήριο)

Στραγγίσεις (Εργαστήριο) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιευτικό Ίρυμα Ηπείρου Στραγγίεις (Εργατήριο Ενότητα 6 : Η κίνηη του νερού το έαφος IV Δρ. Μενέλαος Θεοχάρης Άκηη Ένας κλειτός υπό πίεη υροφορέας έχει μεταβλητό πάχος

Διαβάστε περισσότερα

Υπενθυµίσεις Μηχανικής Παραµορφωσίµων Στερεών

Υπενθυµίσεις Μηχανικής Παραµορφωσίµων Στερεών Παράρτηµα Υπνθυµίις Μηχανικής Παραµορφωίµων Στρών 1. ΤΑΣΕΙΣ Οι ξωτρικές δυνάµις που πιβάλλονται ένα ώµα µπορούν να χωριθούν δύο κατηγορίς, τις καθολικές δυνάµις και τις πιφανιακές δυνάµις. Οι καθολικές

Διαβάστε περισσότερα

ΣΤΕΑΜΧ ΕΛΕΓΧΟΣ ΕΚΤΙΜΗΣΗ ΒΛΑΒΩΝ ΠΡΟΤΑΣΕΙΣ ΕΠΙΣΚΕΥΗΣ Φ.Ο. ΣΤΟ ΠΡΩΗΝ ΚΤΙΡΙΟ ΚΕΤΕΣ ΣΠΟΥ ΑΣΤΗΣ: ΛΓΟΣ (ΜΧ) ΒΑΡΛΑΜΟΣ ΕΥΑΓΓΕΛΟΣ ΙΟΥΛΙΟΣ 2006

ΣΤΕΑΜΧ ΕΛΕΓΧΟΣ ΕΚΤΙΜΗΣΗ ΒΛΑΒΩΝ ΠΡΟΤΑΣΕΙΣ ΕΠΙΣΚΕΥΗΣ Φ.Ο. ΣΤΟ ΠΡΩΗΝ ΚΤΙΡΙΟ ΚΕΤΕΣ ΣΠΟΥ ΑΣΤΗΣ: ΛΓΟΣ (ΜΧ) ΒΑΡΛΑΜΟΣ ΕΥΑΓΓΕΛΟΣ ΙΟΥΛΙΟΣ 2006 ΣΤΕΑΜΧ ΕΛΕΓΧΟΣ ΕΚΤΙΜΗΣΗ ΒΛΑΒΩΝ ΠΡΟΤΑΣΕΙΣ ΕΠΙΣΚΕΥΗΣ Φ.Ο. ΣΤΟ ΠΡΩΗΝ ΚΤΙΡΙΟ ΚΕΤΕΣ ΣΠΟΥ ΑΣΤΗΣ: ΛΓΟΣ (ΜΧ) ΒΑΡΛΑΜΟΣ ΕΥΑΓΓΕΛΟΣ ΙΟΥΛΙΟΣ 006 ΕΝΙΣΧΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΚΑΘΗΓΗΤΕΣ: ΣΠΥΡΑΚΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΠΑΛΗΟΥ ΧΡΥΣΑΝΘΗ

Διαβάστε περισσότερα

ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ

ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ 105 Κεφάλαιο 5 ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ 5.1 Εισαγωγή Στα προηγούμενα κεφάλαια αναλύσαμε την εντατική κατάσταση σε δομικά στοιχεία τα οποία καταπονούνται κατ εξοχήν αξονικά (σε εφελκυσμό ή θλίψη) ή πάνω

Διαβάστε περισσότερα

, της Χ που έχουμε διαθέσιμες μετά από μια πραγματοποίηση του τυχαίου δείγματος X, X, 2

, της Χ που έχουμε διαθέσιμες μετά από μια πραγματοποίηση του τυχαίου δείγματος X, X, 2 Στατιτικές Συναρτήεις και Δειγματοληπτικές Κατανομές Στατιτικές Συναρτήεις και Δειγματοληπτικές Κατανομές Στην ενότητα «Από τις Πιθανότητες τη Στατιτική» εξηγήαμε ότι τη Στατιτική «όλα αρχίζουν από τα

Διαβάστε περισσότερα

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου. Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ίνεται το παρακάτω ύνολο εκπαίδευης: ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάεις 3 Ιουνίου 005 ιάρκεια:

Διαβάστε περισσότερα

ΕΛΛΕΙΨΕΙΣ ΕΜΠΙΣΤΟΣΥΝΗΣ ΣΤΑ ΠΑΡΑΓΟΝΤΙΚΑ ΕΠΙΠΕΔΑ ΤΗΣ AFC

ΕΛΛΕΙΨΕΙΣ ΕΜΠΙΣΤΟΣΥΝΗΣ ΣΤΑ ΠΑΡΑΓΟΝΤΙΚΑ ΕΠΙΠΕΔΑ ΤΗΣ AFC Ελληνικό Στατιτικό Ιντιτούτο Πρακτικά 18 ου Πανελληνίου Συνεδρίου Στατιτικής (005) ελ.57-65 ΕΛΛΕΙΨΕΙΣ ΕΜΠΙΣΤΟΣΥΝΗΣ ΣΤΑ ΠΑΡΑΓΟΝΤΙΚΑ ΕΠΙΠΕΔΑ ΤΗΣ AFC Γεώργιος Μενεξές, Άγγελος Μάρκος, Γιάννης Παπαδημητρίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ. Τυχαίες µεταβητές Ποές φορές ε ένα πείραµα τύχης δεν µας ενδιαφέρει ο δειγµατοχώρος του ο οποίος όπως είδαµε µπορεί να είναι και µη-αριθµητικό ύνοο αά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ ΡΟΗΣ ΜΟΝΙΜΩΝ ΡΕΥΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5 ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ ΡΟΗΣ ΜΟΝΙΜΩΝ ΡΕΥΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5 ΚΕΦΑΛΑΙΟ 5 ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ ΡΟΗΣ ΜΟΝΙΜΩΝ ΡΕΥΜΑΤΩΝ 5. Ειαγωγικά Στα προηγούµενα κεφάλαια, αχοληθήκαµε µε τη µελέτη πεδίων που η δηµιουργία τους οφείλονταν την παρουία ακίνητων ηλεκτρικών φορτίων.

Διαβάστε περισσότερα

Είδη σφαλµάτων. Σφάλµατα στις παρατηρήσεις. Θεωρία Σφαλµάτων ΑΚΡΙΒΕΙΕΣ ΙΕΙΚΟΝΙΚΩΝ ΑΠΟ ΟΣΕΩΝ

Είδη σφαλµάτων. Σφάλµατα στις παρατηρήσεις. Θεωρία Σφαλµάτων ΑΚΡΙΒΕΙΕΣ ΙΕΙΚΟΝΙΚΩΝ ΑΠΟ ΟΣΕΩΝ Είδη φαλµάτων Σφάλµα µετρηµένη αληθής τιµή Τυχαία - Εµφανίζονται χεδόν ε όλες τις παρατηρήεις και ακολουθούν υνήθως κανονική κατανοµή. Συτηµατικά - Εµφανίζονται ε όλες τις παρατηρήεις και µπορεί να µοντελοποιηθούν

Διαβάστε περισσότερα

S AB = m. S A = m. Υ = m

S AB = m. S A = m. Υ = m χολή αγρονόµων και τοπογράφων µηχανικών ο εξάµηνο Άκηη Απλοί γεωµετρικοί υπολογιµοί ίνεται το τετράπλευρο ΑΒΓ που φαίνεται το χήµα. Στο ύπαιθρο µετρήθηκαν οι οριζόντιες πλευρές (µήκη) ΑΒ και Α. Επίης είναι

Διαβάστε περισσότερα

Κεφάλαιο 12 ΦΥΣΙΚΟ ΕΝΤΑΤΙΚΟ ΠΕΔΙΟ

Κεφάλαιο 12 ΦΥΣΙΚΟ ΕΝΤΑΤΙΚΟ ΠΕΔΙΟ Κεφάλαιο 1 ΦΥΣΙΚΟ ΕΝΤΑΤΙΚΟ ΠΕΔΙΟ Ο προδιοριμός του φυικού εντατικού πεδίου έχει α κοπό να δώει αφενός μεν τη βαική γνώη για το πεδίο των τάεων, αφετέρου δε τη υγκεκριμένη γνώη των υνοριακών υνθηκών που

Διαβάστε περισσότερα

1. Η κανονική κατανοµή

1. Η κανονική κατανοµή . Η κανονική κατανοµή Η κανονική κατανοµή είναι η ηµαντικότερη κατανοµή πιθανοτήτων µε τις περιότερες εφαρµογές. Μελετήθηκε αρχικά από τον De Moire (667-754) και από τον Lple (749-87) οι οποίοι απέδειξαν

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΣΤΗ ΘΡΑΥΣΤΟΜΗΧΑΝΙΚΗ (Με εφαρμογές σε προβλήματα μηχανικής των υλικών, υπογείων έργων και σηράγγων)

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΣΤΗ ΘΡΑΥΣΤΟΜΗΧΑΝΙΚΗ (Με εφαρμογές σε προβλήματα μηχανικής των υλικών, υπογείων έργων και σηράγγων) Γ. Ε. ΕΞΑΔΑΚΤΥΛΟΥ ΚΑΘΗΓΗΤΟΥ ΠΟΛΥΤΕΧΝΕΙΟΥ ΚΡΗΤΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΣΤΗ ΘΡΑΥΣΤΟΜΗΧΑΝΙΚΗ (Με εφαρμογές ε προβλήματα μηχανικής των υλικών, υπογείων έργων και ηράγγων) Χανιά 006 Eιαγωγή

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ ΚΕΦΑΛΑΙΟ 14 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Έτω Χ 1, Χ,..., Χ και Υ 1, Υ,..., Υ m δύο τυχαία δείγματα μεγέθους και m αντίτοιχα από δύο ανεξάρτητους κανονικούς πληθυμούς

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ ΚΕΦΑΛΑΙΟ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΔΙΑΚΥΜΑΝΣΗ ΕΝΟΣ ΠΛΗΘΥΣΜΟΥ Έχουμε ήδη δει την εκτιμητική ότι αν ο υπό μελέτη πληθυμός είναι κανονικός, τότε: [ Χi Χ] ( n 1) i= 1 = =

Διαβάστε περισσότερα

Μια ακόμη πιο δύσκολη συνέχεια.

Μια ακόμη πιο δύσκολη συνέχεια. Μια ακόμη πιο δύκολη υνέχεια. Μόνο για καθηγητές. Σαν υνέχεια της ανάρτηης «Μια...δύκολη περίπτωη, αν φύλλο εργαίας.» ας δούμε μερικά ακόμη ερωτήματα, αφήνοντας όμως έξω τους μαθητές-υποψήφιους. Ένα ορθογώνιο

Διαβάστε περισσότερα

( α ). Να δηλωθεί η συνάρτηση με την genter. ( β ). Να εφαρμοστεί τον αντίστροφο μετασχηματισμό Laplace και να αποδειχθεί Θεωρητικά.

( α ). Να δηλωθεί η συνάρτηση με την genter. ( β ). Να εφαρμοστεί τον αντίστροφο μετασχηματισμό Laplace και να αποδειχθεί Θεωρητικά. Δίνεται η υνάρτηη μεταφοράς ενός αυτόματου υτήματος πλοήγηης υπερηχητικού αεροπλάνου, το οποίο επικουρεί την αεροδυναμική ευτάθεια του, κάνοντας την πτήη ποιο ταθερή και ποιο άνετη. Ζητείται να μελετηθεί

Διαβάστε περισσότερα

1 Το Μεθοδολογικό Πλαίσιο Μέσου- ιακύμανσης... 11

1 Το Μεθοδολογικό Πλαίσιο Μέσου- ιακύμανσης... 11 Περιεχόμενα Πρόλογος... 7 Ειαγωγικό ημείωμα... 9 Το Μεθοδολογικό Πλαίιο Μέου- ιακύμανης.... Ειαγωγή.... Απόδοη και Κίνδυνος....3 Διαφοροποίηη Χαρτοφυλακίων... 5.4 Το Αποτελεματικό Μέτωπο... 7.5 Τεχνικές

Διαβάστε περισσότερα

ΑΡΙΣΤΗ ΣΥΝΘΕΣΗ ΧΑΡΤΟΦΥΛΑΚΙΩΝ. 4.1 Εισαγωγή

ΑΡΙΣΤΗ ΣΥΝΘΕΣΗ ΧΑΡΤΟΦΥΛΑΚΙΩΝ. 4.1 Εισαγωγή Κεφάλαιο 4 ΑΡΙΣΤΗ ΣΥΝΘΕΣΗ ΧΑΡΤΟΦΥΛΑΚΙΩΝ 4. Ειαγωγή Στο προηγούμενο κεφάλαιο εξετάαμε πώς ένας επενδυτής που αποτρέφεται τον κίνδυνο απώλειας ειοδήματος επιλέγει επενδυτικά χέδια κάτω από υνθήκες αβεβαιότητας.

Διαβάστε περισσότερα

Σχεδιασµός, Μεθοδολογία και Λογισµικό Παρακολούθησης Συγκλίσεων Σηράγγων µε Μεθόδους Τεχνικής Γεωδαισίας

Σχεδιασµός, Μεθοδολογία και Λογισµικό Παρακολούθησης Συγκλίσεων Σηράγγων µε Μεθόδους Τεχνικής Γεωδαισίας Σχεδιαµός, Μεθοδολογία και Λογιµικό Παρακολούθηης Συγκλίεων Σηράγγων µε Μεθόδους Τεχνικής Γεωδαιίας Κ. ΛΑΚΑΚΗΣ Λέκτορας Α.Π.Θ Σ. Π. ΧΑΛΙΜΟΥΡ ΑΣ Υπ. ιδάκτωρ Α.Π.Θ Π. ΣΑΒΒΑΪ ΗΣ Καθηγητής Α.Π.Θ. Περίληψη

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ Γ ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ. Καθηγητή Κων/νου Ευσταθίου, Εργαστήριο Αναλυτικής Χηµείας Πανεπιστηµίου Αθηνών

ΕΝΟΤΗΤΑ Γ ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ. Καθηγητή Κων/νου Ευσταθίου, Εργαστήριο Αναλυτικής Χηµείας Πανεπιστηµίου Αθηνών ΕΝΟΤΗΤΑ Γ ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ Καθηγητή Κων/νου Ευταθίου, Εργατήριο Αναλυτικής Χηµείας Πανεπιτηµίου Αθηνών Η χρηιµότητα ενός αναλυτικού αποτελέµατος ποτέ δεν µπορεί να είναι καλύτερη από την ποιότητα του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9. Σχετική κίνηση

ΚΕΦΑΛΑΙΟ 9. Σχετική κίνηση ΚΕΦΑΛΑΙΟ 9 Σχετική κίνηη 1 Υλικό ηµείο µάζας m=1 κινείται πάνω ε επίπεδο Ο που περιτρέφεται γύρω από τον άξονα Ο µε γωνιακή ταχύτηταω = ωk, όπου ω=1/ s -1 Αν κάποια τιγµή το ώµα βρίκεται ε απόταη r=1 m

Διαβάστε περισσότερα

2. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ

2. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ ΚΕΦΑΛΑΙΟ 3. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ 3. Παραδοχές Σήραγγα κυκλικής διατοµής (ακτίνα ) Συνθήκες επίπεδης παραµόρφωσης (κατά τον άξονα της σήραγγας z) Ισότροπη γεωστατική

Διαβάστε περισσότερα

ΕΟ31 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ. Τόμος : Θεωρία Χαρτοφυλακίου

ΕΟ31 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ. Τόμος : Θεωρία Χαρτοφυλακίου ΕΟ3 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ Τόμος : Θεωρία Χαρτοφυλακίου Μάθημα 0: Απόδοη και κίνδυνος Σε αυτή την ενότητα θα μάθουμε να υπολογίζουμε την απόδοη και τον κίνδυνο κάθε αξιόγραφου. Ειδικότερα θα διαχωρίουμε

Διαβάστε περισσότερα

Συμμετρία μορίων και θεωρία ομάδων

Συμμετρία μορίων και θεωρία ομάδων Συμμετρία μορίων και θεωρία ομάδων Συμμετρία πολυατομικών μορίων Τι μας χρειάζεται; Προβλέπει τη φαματοκοπία και τη υμπεριφορά ατόμων και μορίων Πράξεις Συμμετρίας: κινήεις του μορίου κατά τις οποίες η

Διαβάστε περισσότερα

Οριζόντια βολή. Επιλέγοντας την ταχύτητα βολής.

Οριζόντια βολή. Επιλέγοντας την ταχύτητα βολής. η Εφαρμογή (Το επιτυχημένο service) Οριζόντια βολή. Επιλέγοντας την ταχύτητα βολής. Νεαρός τενίτας που έχει ύψος h ν =,6m εκτελεί service και το μπαλάκι φεύγει από ύψος h =,4m πάνω από το κεφάλι του με

Διαβάστε περισσότερα

Επιλογή του τρόπου κρούσης και απώλεια επαφής Β Γ

Επιλογή του τρόπου κρούσης και απώλεια επαφής Β Γ Επιλογή του τρόπου κρούης και απώλεια επαφής Οι δύο µικρές φαίρες και του χήµατος έχουν ίες µάζες και κινούνται το λείο οριζόντιο δάπεδο. Οι φαίρες υγκρούονται και η κρούη τους είναι κεντρική και πλατική.

Διαβάστε περισσότερα

Εφαρµογή της θεωρίας πλαστικότητας σε στοιχεία σκυροδέµατος τετραγωνικής διατοµής περισφιγµένα µε σύνθετα υλικά

Εφαρµογή της θεωρίας πλαστικότητας σε στοιχεία σκυροδέµατος τετραγωνικής διατοµής περισφιγµένα µε σύνθετα υλικά Εφαρµογή της θεωρίας πλατικότητας ε τοιχεία κυροδέµατος τετραγωνικής διατοµής περιφιγµένα µε ύνθετα υλικά Π.. Κιούης ρ. Πολιτικός Μηχανικός. Καθηγητής Colorado School of Mines, Golden, CO 8, kiousis@mines.edu

Διαβάστε περισσότερα

οι ενήλικες στην περιοχή Β, ο φοιτητής γνωρίζει ότι X ~ N(

οι ενήλικες στην περιοχή Β, ο φοιτητής γνωρίζει ότι X ~ N( Σημειακή Εκτίμηη & Εκτίμηη με Διάτημα Εμπιτούνης Σημειακή Εκτίμηη & Εκτίμηη με Διάτημα Εμπιτούνης Αρκετά τρόφιμα περιέχουν το ιχνοτοιχείο ελήνιο το οποίο, όταν προλαμβάνεται ε μικρές ποότητες ημερηίως,

Διαβάστε περισσότερα

Μάθημα: Πειραματική αντοχή των υλικών Σύνθετη καταπόνηση

Μάθημα: Πειραματική αντοχή των υλικών Σύνθετη καταπόνηση Μάθημα: Πειραματική αντοχή των υλικών Σύνθετη καταπόνηση Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχήμα 1 Μέσω των πειραμάτων

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΕΠΕΝΔΥΣΕΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΕΠΕΝΔΥΣΕΩΝ Ακαδηµαϊκό έτος 015-016 Εαρινό Εξάµηνο ΔΙΑΧΕΙΡΙΣΗ ΕΠΕΝΔΥΣΕΩΝ Α.Α.Δράκος Διάλεξη 5 η 6 η. Υποδειγµα Ιορροπίας τις Κεφαλαιαγορές Υπόδειγµα Αποτίµηης Περιουιακών Στοιχείων Γραµµή Αξιογράφων Συντελετής βήτα

Διαβάστε περισσότερα

Αδιαστατοποιημένο Κριτήριο Αστοχίας Τοιχοποιίας υπό Διαξονική ένταση Non-Dimensional Masonry Failure Criterion under Biaxial Stress

Αδιαστατοποιημένο Κριτήριο Αστοχίας Τοιχοποιίας υπό Διαξονική ένταση Non-Dimensional Masonry Failure Criterion under Biaxial Stress 1 Αδιατατοποιημένο Κριτήριο Ατοχίας Τοιχοποιίας υπό ιαξονική ένταη Non-Dimensional Masonr Failure Criterion under Biaial Stress Πρακτικά 16ου Συνεδρίου Σκυροδέματος, Πάφος, Κύπρος, 1-3 Οκτωβρίου 009 Π

Διαβάστε περισσότερα

Γραπτή Εργασία 2 Διαχείριση Χαρτοφυλακίου. Γενικές οδηγίες

Γραπτή Εργασία 2 Διαχείριση Χαρτοφυλακίου. Γενικές οδηγίες ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ 3 Χρηματοοικονομική Διοίκηη Ακαδημαϊκό Έτος: 009-0 Γραπτή Εργαία Διαχείριη Χαρτοφυλακίου Γενικές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA

ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA ΜΕΛΟΣ ΤΗΣ ΔΙΕΘΝΟΥΣ ΚΑΙ ΕΥΡΩΠΑΪΚΗΣ ΕΤΑΙΡΕΙΑΣ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ (RSAI, ERSA) Οικονομική Κρίη και Πολιτικές Ανάπτυξης και Συνοχής 0ο Τακτικό Επιτημονικό

Διαβάστε περισσότερα

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΟΥΤΡΟΥΜΑΝΙ ΗΣ Θ. ΖΑΦΕΙΡΙΟΥ Ε.

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΟΥΤΡΟΥΜΑΝΙ ΗΣ Θ. ΖΑΦΕΙΡΙΟΥ Ε. ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Γ Ε Ω Ρ Γ Ι Κ Ο Σ Π Ε Ι Ρ Α Μ Α Τ Ι Σ Μ Ο Σ ΚΟΥΤΡΟΥΜΑΝΙ ΗΣ Θ. ΖΑΦΕΙΡΙΟΥ Ε. Αν. Καθηγητής.Π.Θ. Υπ. ιδάκτορας Ορετιάδα 007 ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο ο

Διαβάστε περισσότερα

Νόµος των Wiedemann-Franz

Νόµος των Wiedemann-Franz Άκηη 7 Νόµος των Wiedemann-Franz 7.1 Σκοπός Σκοπός της άκηης αυτής είναι η µέτρηη της ταθεράς Lorentz ε δύο διαφορετικά µέταα οι ιδιότητες των οποίων διαφέρουν ηµαντικά. Η ταθερά του Lorentz µετράται µέω

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ Η απεικόνιη των εκβάεων ενός πειράµατος τύχης την ευθεία των πραγµατικών αριθµών οδηγεί την τυχαία µεταβλητή. 9 3 6 ( ω ω 9 36 44 Τα αποτελέµατα ενός πειράµατος τύχης ορίζουν

Διαβάστε περισσότερα

Αποδοτικότητα Χαρτοφυλακίου

Αποδοτικότητα Χαρτοφυλακίου Αποδοτικότητα Χαρτοφυλακίου n E( R ) ΣWE( R ) P i i i όπου: E(Ri) : αντιπροωπεύει την προδοκώµενη αποδοτικότητα από το τοιχείο i. Wi : το ποοτό που αντιπροωπεύει η αξία του τοιχείου αυτού τη υνολική αξία

Διαβάστε περισσότερα

Εκπαίδευση Νευρο-ασαφούς Ταξινοµητή Προτύπων Με Τη Χρήση Τεχνικών Επιβλεπόµενης Μάθησης ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Εκπαίδευση Νευρο-ασαφούς Ταξινοµητή Προτύπων Με Τη Χρήση Τεχνικών Επιβλεπόµενης Μάθησης ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Εκπαίδευη Νευρο-ααφούς Ταξινοµητή Προτύπων Με Τη Χρήη Τεχνικών Επιβλεπόµενης

Διαβάστε περισσότερα

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών 7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιτήμιο Πελοποννήου Εκτιμήεις Διατήματα Εμπιτούνης Έλεγχοι Υποθέεων Stefao G. Giakoumato Εκτιμητική Οι κατανομές των τατιτικών έχουν άγνωτες παραμέτρους, οι οποίες πρέπει να εκτιμηθούν Εκτιμητές ε

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τµήµα Μηχανολόγων Μηχανικών Τοµέας Ρευστών Εργαστήριο Θερµικών Στροβιλοµηχανών

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τµήµα Μηχανολόγων Μηχανικών Τοµέας Ρευστών Εργαστήριο Θερµικών Στροβιλοµηχανών ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τµήµα Μηχανολόγων Μηχανικών Τοµέας Ρευτών Εργατήριο Θερµικών Στροβιλοµηχανών Υπολογιτικό θέµα : «Η βέλτιτη χεδίαη πτερύγωης τροβιλοµηχανής και η δηµιουργία χετικού µεταπροτύπου»

Διαβάστε περισσότερα

Στατιστικοί Ελεγχοι. t-έλεγχος για την σύγκριση των µέσων δύο πληθυσµών. Έλεγχος 5: Έλεγχος της οµοιογένειας δύο πληθυσµών µε διακυµάνσεις σ 1

Στατιστικοί Ελεγχοι. t-έλεγχος για την σύγκριση των µέσων δύο πληθυσµών. Έλεγχος 5: Έλεγχος της οµοιογένειας δύο πληθυσµών µε διακυµάνσεις σ 1 Στατιτικοί Ελεγχοι Έλεγχος 1: Ζ-Έλεγχος για τον µέο µ ενός πληθυµού Έλεγχος : t - Έλεγχος για τον µέο µ ενός πληθυµού Έλεγχος 3: I -τετράγωνο Έλεγχος για την διακύµανη Έλεγχος 4: t-έλεγχος για την ύγκριη

Διαβάστε περισσότερα

6 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΜΕΤΑΒΛΗΤΟΤΗΤΑΣ 6.1 Εισαγωγή. 6.2 Μεταβλητότητα και Τυχαιότητα. 6.3 Κλάσεις Μεταβλητότητας

6 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΜΕΤΑΒΛΗΤΟΤΗΤΑΣ 6.1 Εισαγωγή. 6.2 Μεταβλητότητα και Τυχαιότητα. 6.3 Κλάσεις Μεταβλητότητας Σχεδιαµός και Έλεγχος Συτηµάτων Παραγωγής 1 6 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΜΕΤΑΒΛΗΤΟΤΗΤΑΣ 6.1 Ειαγωγή Η µεταβλητότητα (vibiliy) είναι η ποιότητα της µη οµοιοµορφίας ε µια κλάη οντοτήτων. Σε υτήµατα παραγωγής υπάρχουν

Διαβάστε περισσότερα

4 e. υ (Γ) υ (Δ) 1 (Ε) 1+ i

4 e. υ (Γ) υ (Δ) 1 (Ε) 1+ i . Αν τα 4 6 8 δ, i, d, i και d αντιτοιχούν όλα το ίδιο αποτελεματικό επιτόκιο, τότε i 6 i 6 4 4 d 4 8 d 8 6 4 e δ (Α) 3 υ (Β) υ (Γ) υ (Δ) (Ε) + i . Ένα 0ετές αφαλιτικό προϊόν εγγυάται απόδοη 7% τα πρώτα

Διαβάστε περισσότερα

Θεωρία Στοχαστικών Σηµάτων: Εκτίµηση Φάσµατος. Παραµετρικά µοντέλα

Θεωρία Στοχαστικών Σηµάτων: Εκτίµηση Φάσµατος. Παραµετρικά µοντέλα ΒΕΣ 6 Προαρµοτικά Συτήµατα τις Τηλεπικοιννίες Θερία Στοχατικών Σηµάτν: Εκτίµηη φάµατος, Παραµετρικά µοντέλα Ειαγγή Μοντέλα Στοχατικών Βιβλιογραφία Ενότητας uto []: Κεφάλαιo Widrow [985]: Chaptr 3 Hayi

Διαβάστε περισσότερα

Θηκόγραμμα (box-plot) Γραφική παρουσίαση των μέτρων θέσης μιας μεταβλητής

Θηκόγραμμα (box-plot) Γραφική παρουσίαση των μέτρων θέσης μιας μεταβλητής Έχουε δει ότι ένα βαικό ειονέκτηα του αριθητικού έου είναι ότι είναι ευαίθητος ε ακραίες παρατηρήεις. Θηκόγραα (bo-plot) Γραφική παρουίαη των έτρων θέης ιας εταβλητής Ένας ιοταθιένος (p %) αριθητικός έος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΖΕΥΓΗ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΚΕΦΑΛΑΙΟ 4 ΖΕΥΓΗ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΕΦΑΛΑΙΟ ΖΕΥΓΗ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Ειαγωγή Υπάρχουν προβήµατα πιθανοτήτων τα οποία θα πρέπει να µεετηθούν δύο ή περιότερες τυχαίες µεταβητές από κοινού για να µπορεί να περιγραφεί επαρκώς και πήρως το αντίτοιχο

Διαβάστε περισσότερα

Ψηφιακός Έλεγχος. 8 η διάλεξη Σφάλματα. Ψηφιακός Έλεγχος 1

Ψηφιακός Έλεγχος. 8 η διάλεξη Σφάλματα. Ψηφιακός Έλεγχος 1 Ψηφιακός Έλεγχος 8 η διάλεξη Σφάλματα Ψηφιακός Έλεγχος Δυαδική αριθμητική και μήκος λέξης Ένας αριθμός μπορεί να αναπαραταθεί απο C+ bits που ονομάζονται λέξη. Το μήκος της λέξης είναι πάντα πεπεραμένο,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6. Τιμολόγηση Δικαιωμάτων σε συνεχή χρόνο Το μοντέλο των Black and Scholes

ΚΕΦΑΛΑΙΟ 6. Τιμολόγηση Δικαιωμάτων σε συνεχή χρόνο Το μοντέλο των Black and Scholes ΚΕΑΛΑΙΟ 6 Τιμολόγηη Δικαιμάτν ε υνεχή χρόνο Το μοντέλο τν Blk nd hol 6.. Το Μοντέλο τν Blk hol ή Blk hol Mon Έτ μια χρηματοοικονομική αγορά εξεταζόμενη το χρονικό διάτημα [0 ] για κάποιο δεδομένο Τ. Συμβολίζουμε

Διαβάστε περισσότερα

To φαινόµενο της κό ωσης. N.. Αλεξόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ

To φαινόµενο της κό ωσης. N.. Αλεξόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ To φαινόµενο της κό ωης N.. Αλεξόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ 1 οµή Παρουίαης Η κόπωη ε µηχανολογικές εφαρµογές Μηχανιµός κόπωης Στάδιο 1: ηµιουργία των µικρο-ρωγµών

Διαβάστε περισσότερα

2. ΕΠΙΠΕ Η ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ

2. ΕΠΙΠΕ Η ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ Τεχνική Μηχανική ΙΙ, Κεφ., 007 69. ΕΠΙΠΕ Η ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ.1 Οριµοί Η µαθηµατική θεωρία των τάεων διατυπώθηκε από τον Louis Augustin Cauchy 1. Για την επεξήγηη της έννοιας της τάης θα θεωρήουµε εδώ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΚΑΙ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΕΣ ΕΠΕΝ ΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ

ΑΝΑΛΥΣΗ ΚΑΙ ΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΚΑΙ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΕΣ ΕΠΕΝ ΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΑΝΑΛΥΣΗ ΚΑΙ ΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΚΑΙ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΕΣ ΕΠΕΝ ΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ 1 1. ΕΙΣΑΓΩΓΗ 1. Η Αγορά Κεφαλαίου Η αγορά κεφαλαίου αποτελεί ένα από τους ηµαντικότερους χρηµατοοικονοµικούς θεµούς

Διαβάστε περισσότερα

4. Ειδικές Διακριτές, Συνεχείς Κατανομές

4. Ειδικές Διακριτές, Συνεχείς Κατανομές 4. Ειδικές Διακριτές, Συνεχείς Κατανομές 4.. Η ομοιόμορφη διακριτή κατανομή. Εμφανίζεται τις περιπτώεις όπου η υπό εξέταη τ.μ. Χ παίρνει πεπεραμένο πήθος τιμών π.χ. Χ {,,...,} και όες οι πιθανότητες P

Διαβάστε περισσότερα