, P bkc (c[0, 1]) P bkc (L p [0, 1]) (1) 2 P bkc (X) O A (2012) Aumann. R. J., [3]. Feb Vol. 28 No.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ", P bkc (c[0, 1]) P bkc (L p [0, 1]) (1) 2 P bkc (X) O A (2012) Aumann. R. J., [3]. Feb Vol. 28 No."

Transcript

1 Pure and Applied Mathematics Feb. 212 Vol. 28 No. 1 P bkc (c[, 1]) P bkc (L p [, 1]) (1) ( (), 364) (G, β, u),,, P bkc (c[, 1]) P bkc (L p [, 1]),. ; ; O A (212) , [2]. 1965, Aumann. R. J.,, 1964, Vind. K.. 197, Debreu. G. Radon-Nikodym. 1973, KendaII D. G.,. 198,, 1996, [3],. [2] (1), L[, 1]L 2 [, 1] C[, 1]. 2 P bkc (X) [3]. 1 β G.X Banach, F : β X {F (A) A β X. {sh s R s R. sh : β β, s R, ε >, λ >, A β, s s < λ, F (A + sh) F (A + s H) < ε. π A (s) = co{f (A ) A A + sh, A β, s R, A β, π A (s) X, s R, ε >, λ >, A β, s s < λ, δ(π A (s), π A (s )) ε. {F (A) A β X, [4-5],, π A (s) P bkc (X). A A + s H, (194-),,.

2 1 28 A β, A s H A, A s H β, A s H + sh A + sh, A s H + sh β. ε >, λ >, A β, s s < λ, F (A + sh) F (A + s H) < ε, F (A ) F (A s H + sh) = F ((A s H) + s H) F ((A s H) + sh) < ε. π 1 A (s) = {F (A ) A A + sh, A β d(f (A ), π A (s)) d(f (A ), π 1 A(s)) d(f (A ), F (A s H + sh)) < ε, A A + s H, A β, x π 1 A (s ), d(x, π A (s)) < ε, [5] co B = {B, x co π 1 A (s ), n {x 1, x 2,, x n πa(s 1 ), α i, α i = 1, x = n α i x i. d(x i, π A (s)) < ε), y i π A (s), x i y i < ε, i = 1, 2,, n, y = n α i y i π A (s), d(x, y) n α i x i y i < ε, d(x, π A (s)) d(x, y) < ε, x co π 1 A (s ), sup d(x, π A (s)) ε. x co πa 1 (s ) x π A (s ), {x n co π 1 A (s ), x n x, d(x, π A (s)) x, d(x, π A (s)) ε, sup d(x, π A (s)) ε. x π A (s ) sup d(x, π A (s )) ε. x π A (s) A β, s s < λ, δ(π A (s), π A (s )) ε. 1 [3] (G, β), X, π : G P f (X), U X, π 1 (U) = {s G π(s) U β.. 2 (G, β), X Banach, F : β X {F (A) A β X, {sh s R s R, sh : β β, s R, ε >, λ >, A β, s s < λ, F (A + sh) F (A + s H) < ε, π A (s) = co{f (A ) A A + sh, A β, s R, A β,

3 1 : P bkc (c[, 1]) P bkc (L p [, 1]) (1) 11 π A (s) P bkc (X). 1 π A (s) P bkc (X), 1 [3] 1.2.5, ε >, λ > x X, A β, s s < λ, d(x, π A (s)) d(x, π A (s )) ε, x X, A β, d(x, π A (s)) s, d(x, π A (s)) (R, B(R)), B(R) R Borel σ, X, [3] π A (s). 1 2 : 1 (G, β),x Banach, F : β X, {sh s R s R, sh : β β, s R, ε >, λ >, A β, s s < λ, F (A + sh) F (A + s H) < ε. π A (s) = co{f (A ) A A + sh, A β, s R, A β, s R, ε >, λ > A β, s s < λ, δ(π A (s), π A (s )) ε, π A (s) P fc (X). 3 (G, β, µ) θ, H, h θ, A β, πa(s) 1 = co{µ(a + th) A A + sh, A β, { x πa(s) 2 = co µ(a + th)dt A A + sh, A β, { πa(s) 3 = co k(x, t)µ(a + th)dt A A + sh, A β, π i A (s) P bkc(c[, 1]), k(x, t) [, 1] [, 1], i = 1, 2, 3, s R. F 1 (A) = µ(a+th), A β, [6] 4, h θ, {µ(a+th) A β, t R, ε >, λ >, A β, t 2 t 1 < λ, µ(a + t 2 h) µ(a + t 1 h) < ε, F 1 (A) C[, 1], {F 1 (A) A β C[, 1], s R, ε >, λ >, A β, s s < λ, F 1 (A + sh) F 1 (A + s H) c[,1] = µ(a + th + sh) µ(a + th + s H) c[,1] < ε, c[, 1] Banach, 2 π 1 A (s) P bkc(c[, 1]). F 2 (A) c[, 1], F 2 (A) = x { x {F 2 (A) A β = µ(a + th)dt, A β, x 1, µ(a + th)dt A β

4 12 28, {F 2 (A) A β c[, 1], s R, [6] 4, ε >, λ >, A β, s s < λ, F 2 (A + sh) F 2 (A + s H) c[,1] x x = µ(a + th + sh)dt µ(a + th + s H)dt µ((a + th) + sh) µ((a + th) + s H) dt < ε. c[, 1], 2 π 2 A (s) P bkc(c[, 1]). F 3 (A) = K(x, t), f(t) c[, 1], (Kf)(x) = K(x, t)µ(a + th)dt, A β, K(x, t)f(t)dt, [4] K c[, 1] c[, 1], F 3 (A) c[, 1], {F 3 (A) A β c[, 1], K(x, t) [, 1] [, 1],, K(x, t) L, [6] 4, ε >, λ >, A β, s s < λ, µ(a + sh) µ(a + s H) < ε L. F 3 (A + sh) F 3 (A + s H) c[,1] = K(x, t)µ(a + th + sh)dt K(x 1, t)µ(a + th + s H)dt K(x, t) µ((a + th) + sh) µ((a + th) + s H) dt < ε. c[, 1], 2 π 3 A (s) P bkc(c[, 1]). 4 (G, β, µ) θ, H, h θ, A β, πa(s) 4 = co{µ(a + th) A A + sh, A β, { x πa(s) 5 = co µ(a + th)dt A A + sh, A β, { πa(s) 6 = co k(x, t)µ(a + th)dt A A + sh, A β { πa(s) 7 = co k(x, t)µ(a + th)dt A A + sh, A β k(x, t) [, 1] [, 1], k(x, t) L 2 ([, 1] [, 1]) s R, π i A (s) P bkc (L P [, 1]) P 1, i = 4, 5, 6, π 7 A (s) P bkc(l 2 [, 1]).,,

5 1 : P bkc (c[, 1]) P bkc (L p [, 1]) (1) 13 F 4 (A) = µ(a + th), A β, F 5 (A) = x µ(a + th)dt, A β, y 1 (t), y 2 (t) c[, 1], F 6 (A) = x k(x, t)µ(a + th)dt, A β. y 1 (t) y 2 (t) L P [,1] y 1 (t) y 2 (t) c[,1]. 3 {F 1 (A) A β, {F 2 (A) A β {F 3 (A) A β c[, 1], {F 4 (A) A β, {F 5 (A) A β {F 6 (A) A β L P [, 1], 3 F 4 (A + sh) F 4 (A + s ) L P [,1] F 1 (A + sh) F 1 (A + s H) c[,1], F 5 (A + sh) F 5 (A + s ) L P [,1] F 2 (A + sh) F 2 (A + s H) c[,1], F 6 (A + sh) F 6 (A + s ) L P [,1] F 3 (A + sh) F 3 (A + s H) c[,1] s R, ε >, λ >, A β, s s < λ, F i (A + sh) F i (A + s H) L P [,1] ε, i = 4, 5, 6, L P [, 1], 2, π i A (s) P bkc(l P [, 1]), i = 4, 5, 6. F 7 (A) = k(x, t)µ(a + th)dt, A β, k(x, t), k(x, t) L, f(t) L 2 [, 1], (kf)(x) = k(x, t)f(t)dt, [4] k L 2 [, 1] L 2 [, 1], F 7 (A) L 2 [, 1], {F 7 (A) A β, L 2 [, 1]. [6] 4, s R, ε >, λ >, A β, s s < λ, µ(a + sh) µ(a + s H) < ε L, F 7 (A + sh) F 7 (A + s ) L 2 [,1] k(x, t) µ((a + th) + sh) µ((a + th) + s H) dt ε. L 2 [, 1], 2, π 7 A (s) P bkc(l 2 [, 1]). 3 2 [7] XY, π : X P (Y ), x X, π x (usc), π(x ) U, x V, x V, π(x) U. π x X usc, π (usc).

6 14 28 π x (lsc), U, π(x ) U, x V, x V, π(x) U. π x X lsc, π (lsc). π x, π x. π, π. 3 [7] X, Y, π : X P (Y ), x X π x Hausdorff (Hlsc), ε >, x U, π(x ) x U {y d(y, π(x)) < ε. X Hausdorff, Y Hausdorff, y Y, x σ(y, π(x)) x, π x h- (husc), σ(y, π(x)) π. 5 β G, X Banach, F : β X {F (A) A β X. {sh s R s R, sh : β β, s R, ε >, λ >, A β, s s < λ, F (A + sh) F (A + s H) < ε. π A (s) = co{f (A ) A A + sh, A β, s R, A β, A β, π A (s) P bkc (X) h-. 1 π A (s) P bkc (X), s R, ε >, λ >, A β, s s < λ, δ(π A (s), π A (s )) ε 2. [3] 1.2.5, π A (s ) {x d(x, π A (s)) < ε, s (s λ, s + λ), 3 π A s R Hausdorff (Hlsc). [3] , A β, s s < λ, δ(π A (s), π A (s )) = sup σ(x, π A (s)) σ(x, π A (s )) ε x 1 2. : a, σ(ax, B) = aσ(x, B), x X, σ(x, π A (s)) s R, σ(x, π A (s)) s R, 3 π A s R h- (husc), π A s R Hausdorff (Hlsc), s R h- (husc). π A (s) h-. [7] , π A (s). 6 (G, β, µ) θ, H, h θ, A β, 3 π 1 A (s), π2 A (s), π3 A (s) P bkc(c[, 1]); 4 π 4 A (s), π5 A (s), π6 A (s) P bkc (L P [, 1]); π 7 A (s) P bkc(l 2 [, 1]) h {F i (A) A β,, s R, ε >, A β, s s < λ, F i (A + sh) F i (A + s H) < ε. i = 1, 2, 3, 4, 5, 6, 7,

7 1 : P bkc (c[, 1]) P bkc (L p [, 1]) (1) β G, X Banach, F : β X {F (A) A β X. Q s Q, s : β β, s Q, A β, ε >, s V, A s A, A β, s V, F (A ) F (A s + s ) < ε. π A (s) = co{f (A ) A A + s, A β, s Q, π S (s) P bkc (X) s (usc), π A (s) s h- (husc), s V, sup d(x, π A (s )) ε. x π A (s) 1 π A (s) X, A A + s, A β, A s + s A + s, A s + s β. π 1 A(s) = {F (A ) A A + s, A β, s Q, A s A, A β, s V, F (A ) F (A s + s ) < ε. d(f (A ), π A (s )) d(f (A ), π 1 A(s )) d(f (A ), F (A s + s )) < ε, A A + s, A β, x π 1 A (s), d(x, π A(s )) < ε [5], co B = {B, x co π 1 A (s), 1 d(x, π A(s )) < ε, x co πa 1 (s), 1, sup d(x, π A (s )) ε, s V. x co πa 1 (s) sup d(x, π A (s )) ε, s V. x π A (s) U π A (s ), U U C, π A (s ) U C =, x 1 π A (s ), ( B x 1, 1 ) { 2 d(x1, U C ) = x d(x, x 1 ) < 1 2 d(x1, U C ) U, { ( B x 1, 1 2 d(x1, U )) C x 1 π A (s ) π A (s ), {x 1, x 2,, x n π A (s ) π A (s ) n ( B x i, 1 ) 2 d(x i, U C ) U.

8 16 28 { 1 2ε = min 2 d(x 1, U C ),, 1 2 d(x n, U C ), x d(x, π A (s )) < 2ε, x π A (s ), d(x, x) < 2ε, π A (s ) n j, x B(x j, 1 2 d(x j, U C )), j n, ( B x i, 1 ) 2 d(x i, U C ) d(x, x j ) d(x, x) + d(x, x j ) < 2ε d(x j.u C ) d(x j, U C ), x U, {x d(x, π A (s )) < 2ε U. s V, sup d(x, π A (s )) ε, s V, x π A (s) π A (s) {x d(x, π A (s )) ε {x d(x, π A (s )) < 2ε U, 2 π A (s) s (usc). x X, ε >, { π A (s ) x d(x, π A(s )) < ε x, π A (s) s (usc), s V, s V, { π A (s) x d(x, π A(s )) < ε { x = π A (s ) + x x <, s V, ( { σ(x, π A (s)) σ(x, π A (s )) + σ x, x x < ε x. ε ) x < σ(x, π A (s )) + ε. x X, σ(x, π A (s)) s, 3 π A (s) s h- (husc). 2 β G, X Banach, F : β X {F (A) A β X. Q s Q, s : β β, A β, s Q, ε >, s V, A s A, A β, s V, F (A ) F (A s + s ) < ε. π A (s) = co{f (A ) A A + s, A β, s Q, π A (s) P bkc (x) Q (usc), (π A ).

9 1 : P bkc (c[, 1]) P bkc (L p [, 1]) (1) 17 7 [7] β G, X Banach, F : β X, Q s Q, s : β β, s Q, A β, ε >, s V, A s A, A β, s V, F (A ) F (A s + s) < ε. π A (s) = co{f (A ) A A + s, A β, s Q, π A (s) P fc (x) s Hausdorff (Hlsc), s (lsc), sup d(x, π A (s)) ε, s V. x π A (s ), π A (s) P fc (x) A A+s, A β, A s +s A + s, A s + s β. A s A, A β, s V, π 1 A(s) = {F (A ) A A + s, A β, s Q, d(f (A ), π A (s)) d(f (A ), π 1 A(s)) F (A ) F (A s + s) < ε. A A + s, A β, x π 1 A (s ), d(x, π A (s)) < ε, s V. 1 : sup d(x, π A (s)) ε, s V. x π A (s ) x π A (s ), d(x, π A (s)) ε, s V π A (s ) {x d(x, π A (s)) ε, s V. 3 π A (s) s Hausdorff (Hlsc). U, π A (s ) U, x π A (s ) U, λ >, {x d(x, x ) < λ U. π A (s) s Hausdorff (Hlsc), s V, s V, π A (s ) {x d(x, π A (s)) < λ. x π A (s ) {x d(x, π A (s)) < λ, x π A (s), d(x, x ) < λ, x U, s V,π A (s) U, π A (s) s (lsc). Y, Q Y, x Q, a >, ax Q [7]. 9 β G, X Banach, F : β X, Q s Q, s : β β, A β s Q ε >, < t < 1, A A + as, A β, a (1 t, 1), F (A ) F (A + (1 a)s ) < ε. b (1, 1 + t), A + bs A + (2 b)s, π A (s) P fc (X) a 1 < t, π A (s) = co{f (A ) A A + s, A β, s Q, sup d(x, π A (s )) ε. x π A (as )

10 18 28 π A (s) P fc (X), a (1 t, 1), A A + as, A β A + (1 a)s A + as + (1 a)s = A + s, A + (1 a)s β. π 1 A(s) = {F (A ) A A + s, A β, s Q, A A + as, A β, a (1 t, 1), F (A ) F (A + (1 a)s ) < ε, d(f (A, π A (s )) d(f (A ), π 1 A(s )) d(f (A ), F (A + (1 a)s )) < ε. A A + as, A β, x π 1 A (as ), d(x, π A (s )) < ε, a (1 t, 1). b (1, 1+t), A A+bs, A β, A+bs A+(2 b)s, A A+(2 b)s, 2 b (1 t, 1), d(f (A ), π A (s )) < ε, A A + bs, A β x π 1 A (bs ), d(x, π A (s )) < ε, b (1, 1 + t). a 1 < t, x π 1 A (as ), d(x, π A (s )) < ε, 1 sup d(x, π A (s )) ε, a 1 < t. x π A (as ) [1]. [M]. :, 29. [2]. [J]., 21,26(5), [3],,. [M]. :, [4],,,. : [M]. :, 198. [5],,,. [M]. :, 29. [6]. [J]. : A, 1987,8(6): [7],. [M]. :, 24. Value of set-valued stochastic variables between P bkc (c[, 1]) and P bkc (L p [, 1]) Lin Yixing (Longyan Normal School, Longyan 364, China) Abstract: In this paper,we study the quasi-continuous measure space (G, β, µ) of uniformly boundness of continuous functions, and the containment relations of convex and closure set. We have constructed value of set-valued stochastic variables and continuous set-valued mapping between P bkc (c[, 1]) and P bkc (L p [, 1]). It will deepen the set-valued stochastic process theory. Key words: quasi-continuous measure space, set-valued stochastic variable, continuous set-valued mapping 21 MSC: 28B2

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) (  ( 35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

3Νο. ασκήσεις Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο. Θετική Τεχνολογική Κατεύθυνση ( ) ( 0)

3Νο. ασκήσεις Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο. Θετική Τεχνολογική Κατεύθυνση ( ) ( 0) Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π Δ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) 3Νο ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 1 Να μελετήσετε

Διαβάστε περισσότερα

Πανεπιστήµιο Μακεδονίας Οικονοµικών και Κοινωνικών Επιστηµών Τµήµα Εφαρµοσµένης Πληροφορικής

Πανεπιστήµιο Μακεδονίας Οικονοµικών και Κοινωνικών Επιστηµών Τµήµα Εφαρµοσµένης Πληροφορικής Πανεπιστήµιο Μακεδονίας Οικονοµικών και Κοινωνικών Επιστηµών Τµήµα Εφαρµοσµένης Πληροφορικής ΕΠΙ ΡΑΣΗ ΤΩΝ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΜΕΓΕΘΩΝ ΕΠΕΝ ΥΣΕΙΣ ΚΑΙ ΕΠΙΤΟΚΙΑ ΣΤΟΝ ΟΛΛΑΝ ΙΚΟ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΟ ΕΙΚΤΗ Νικόλαος

Διαβάστε περισσότερα

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University) On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University) 1 1 Introduction (E) {1+x 2 +β(x,y)}y u x (x,y)+{x+b(x,y)}y2 u y (x,y) +u(x,y)=f(x,y)

Διαβάστε περισσότερα

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h A n a l i s a M a n a j e m e n B P I H d i B a n k S y a r i a h I S S N : 2 0 8 7-9 2 0 2 I S L A M I N O M I C P e n e r b i t S T E S I S L A M I C V I L L A G E P e n a n g g u n g J a w a b H. M

Διαβάστε περισσότερα

= df. f (n) (x) = dn f dx n

= df. f (n) (x) = dn f dx n Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

þÿ¹º±½ À Ã Â Ä Å ½ ûµÅĹº þÿàá ÃÉÀ¹º Í Ä Å µ½¹º Í þÿ à º ¼µ Å Æ Å

þÿ¹º±½ À Ã Â Ä Å ½ ûµÅĹº þÿàá ÃÉÀ¹º Í Ä Å µ½¹º Í þÿ à º ¼µ Å Æ Å Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2014 þÿ ¹µÁµÍ½ Ã Ä Å µà±³³µ»¼±ä¹º þÿãäáµâ º±¹ Ä Â µà±³³µ»¼±ä¹º  þÿ¹º±½

Διαβάστε περισσότερα

Isoperimetrikèc anisìthtec kai sugkèntrwsh tou mètrou

Isoperimetrikèc anisìthtec kai sugkèntrwsh tou mètrou Kefˆlaio 3 Isoperimetrikèc anisìthtec kai sugkèntrwsh tou mètrou 3.1 MetrikoÐ q roi pijanìthtac 3.1αʹ Ορισμός και παραδείγματα Ορισμός 3.1.1 (μετρικός χώρος πιθανότητας). Εστω (X, d) ένας μετρικός χώρος.

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital C RAM 3002 C RAROC Rsk-Adjusted Return on Captal C C RAM Rsk-Adjusted erformance Measure C RAM RAM Bootstrap RAM C RAROC RAM Bootstrap F830.9 A CAM 2 CAM 3 Value at Rsk RAROC Rsk-Adjusted Return on Captal

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

The Impact of Stopping IPO in Shenzhen A Stock Market on Guiding Pattern of Information in China s Stock Markets

The Impact of Stopping IPO in Shenzhen A Stock Market on Guiding Pattern of Information in China s Stock Markets 2005 9 9 :100026788 (2005) 0920036206,, (, 230009) :,.,, A ;, A A, A A.,2000 10,.,,,. : ; ; ; : F830191 : A The Impact of Stopping IPO in Shenzhen A Stock Market on Guiding Pattern of Information in China

Διαβάστε περισσότερα

Math 248 Homework 1. Edward Burkard. Exercise 1. Prove the following Fourier Transforms where a > 0 and c R: f (x) = b. f(x c) = e.

Math 248 Homework 1. Edward Burkard. Exercise 1. Prove the following Fourier Transforms where a > 0 and c R: f (x) = b. f(x c) = e. Math 48 Homework Ewar Burkar Exercise. Prove the following Fourier Transforms where a > an c : a. f(x) f(ξ) b. f(x c) e πicξ f(ξ) c. eπixc f(x) f(ξ c). f(ax) f(ξ) a e. f (x) πiξ f(ξ) f. xf(x) f(ξ) πi ξ

Διαβάστε περισσότερα

4. Απαγορεύεται η χρήση υπολογιστή χειρός. Απαγορεύεται η χρήση κινητού, και ως υπολογιστή χειρός.

4. Απαγορεύεται η χρήση υπολογιστή χειρός. Απαγορεύεται η χρήση κινητού, και ως υπολογιστή χειρός. ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ, ΙΩΑΝΝΗΣ ΚΟΝΤΟΓΙΑΝΝΗΣ, ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ, ΙΟΥΝΙΟΣ 207 ΟΝΟΜΑ ΦΟΙΤΗΤΗ:.............................. Οδηγίες. Συμπληρώστε το όνομά

Διαβάστε περισσότερα

Καλώς ήρθατε στην Τοπολογία! http://eclass.uoa.gr/courses/math451/ Χειμερινό Εξάμηνο 2015-16 Υπενθύμιση: Η τοπολογία της ομοιόμορφης σύγκλισης Εστω K ένα σύνολο (π.χ. K = [a,b]) και f n,f : K R φραγμένες

Διαβάστε περισσότερα

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί

Διαβάστε περισσότερα

Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας

Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας 1 013-014 Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση 1: υο ευθείες [ɛ 1 : y = m 1 x + a 1,ɛ 1 : y = m x + a ], τέµνονται και σχηµατίζουν γωνία θ (ϐλέπε

Διαβάστε περισσότερα

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής

Διαβάστε περισσότερα

Quick algorithm f or computing core attribute

Quick algorithm f or computing core attribute 24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute

Διαβάστε περισσότερα

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ. Αντοχή Υλικού

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ. Αντοχή Υλικού ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Αντοχή Υλικού Ερρίκος Μουρατίδης (BSc, MSc) Σεπτέμβριος 015 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2 F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =

Διαβάστε περισσότερα

Κεφάλαιο 8. Ορμή, ώθηση, κρούσεις

Κεφάλαιο 8. Ορμή, ώθηση, κρούσεις Κεφάλαιο 8 Ορμή, ώθηση, κρούσεις Στόχοι 8 ου Κεφαλαίου Ορμή και ώθηση. Διατήρηση της ορμής. Μη ελαστικές κρούσεις. Ελαστικές κρούσεις. Κέντρο μάζας. Η μεταβολή της ορμής ενός σωματίου κατά τη διάρκεια

Διαβάστε περισσότερα

h(x, y) = card ({ 1 i n : x i y i

h(x, y) = card ({ 1 i n : x i y i Κεφάλαιο 1 Μετρικοί χώροι 1.1 Ορισμός και παραδείγματα Ορισμός 1.1.1 μετρική). Εστω X ένα μη κενό σύνολο. Μετρική στο X λέγεται κάθε συνάρτηση ρ : X X R με τις παρακάτω ιδιότητες: i) ρx, y) για κάθε x,

Διαβάστε περισσότερα

John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ορισµένα αποτελέσµατα του τα σηµεία ισορροπίας Nash (NE Nash Equilibrium) ύπαρξη σηµείου

Διαβάστε περισσότερα

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 006.. 3, º 1(130).. 7Ä16 Š 530.145 ˆ ƒ ˆ ˆŒ ˆŸ Š ƒ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É μ ² Ö Ó μ μ Ö μ μ²õ μ É μ ÌÉ ±ÊÎ É ² ³ É μ - Î ±μ μ ÊÌ ±μ Ëμ ³ μ- ±² μ ÒÌ ³μ ²ÖÌ Ê ±. ³ É ÔÉμ μ μ μ Ö, Ö ²ÖÖ Ó ±μ³

Διαβάστε περισσότερα

y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 4ο Κατανομές Στατιστικών Συναρτήσεων Δείγμα από κανονική κατανομή Έστω Χ= Χ Χ Χ τ.δ. από Ν µσ τότε ( 1,,..., n) (, ) Τ Χ Χ Ν Τ Χ σ σ Χ Τ Χ n Χ S µ S µ 1( ) = (0,1), ( ) = ( n 1)

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 5.6: Μέση Τιμή, Συναρτήσεις Συσχέτισης (Correlation) & Συνδιασποράς (Covariance)

Διαβάστε περισσότερα

þÿ Á±½Äà Å, šåá¹±º Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

þÿ Á±½Äà Å, šåá¹±º Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2016 þÿ ±¾ ± Ä Â ÃÉÃÄ Â ¹±Çµ Á¹Ã þÿ±½ ÁÉÀ ½ ŠŽ±¼¹º Í ÃÄ ÃÇ þÿ Á±½ÄÃ

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1 5.1: Εισαγωγή 5.2: Πιθανότητες 5.3: Τυχαίες Μεταβλητές καθ. Βασίλης Μάγκλαρης

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t)

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t) Κεφάλαιο 7 Ακολουθίες και σειρές συναρτήσεων 7.1 Ακολουθίες συναρτήσεων: κατά σημείο σύγκλιση Ορισμός 7.1.1. Εστω X σύνολο, (Y, ρ) μετρικός χώρος και f n, f : X Y (n = 1, 2,...). Λέμε ότι η ακολουθία συναρτήσεων

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Μαθηματικά Μοντέλα Συστημάτων Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations)

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations) ΦΥΣ 11 - Διαλ.09 1 Σήμερα...? q Λογισμό μεταβολών (calculus of variations) Λογισμός μεταβολών - εισαγωγικά ΦΥΣ 11 - Διαλ.09 q Εύρεση του ελάχιστου ή μέγιστου μιας ποσότητας που εκφράζεται με τη μορφή ενός

Διαβάστε περισσότερα

þÿ ɺÁ Ä ÅÂ, ±»Î¼ Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

þÿ ɺÁ Ä ÅÂ, ±»Î¼ Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2016 þÿ ͽ Á ¼ µà±³³µ»¼±ä¹º  þÿµ¾ Å ½Éà  ³º» ³¹ºÎ½ ½ à þÿ ɺÁ Ä ÅÂ,

Διαβάστε περισσότερα

Μέτρο και ολοκλήρωμα Lebesgue: Εγχειρίδιο χρήσης.

Μέτρο και ολοκλήρωμα Lebesgue: Εγχειρίδιο χρήσης. Κεφάλαιο 1 Μέτρο και ολοκλήρωμα Lebesgue: Εγχειρίδιο χρήσης. Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Stein and Shakarchi 2009 και Wheeden 2015. 1.1 Μέτρο Lebesgue στο R Αν E R το μέτρο

Διαβάστε περισσότερα

l 0 l 2 l 1 l 1 l 1 l 2 l 2 l 1 l p λ λ µ R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3 大阪電気通信大学研究論集 ( 自然科学編 ) 第 51 号 A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3 Takuya IWATA and Kiyoshi

Διαβάστε περισσότερα

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006) J. Comput. Chem. Jpn., Vol. 5, No. 1, pp. 29 38 (2006) Microsoft Excel, 184-8588 2-24-16 e-mail: yosimura@cc.tuat.ac.jp (Received: July 28, 2005; Accepted for publication: October 24, 2005; Published on

Διαβάστε περισσότερα

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ).

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ). Κεφάλαιο 4 Συναρτήσεις μεταξύ μετρικών χώρων 4.1 Συνεχείς συναρτήσεις Εστω (X, ρ) και (Y, σ) δύο μετρικοί χώροι. Στην 2.2 δώσαμε τον ορισμό της συνέχειας μιας συνάρτησης f : X Y σε κάποιο σημείο x 0 X:

Διαβάστε περισσότερα

Εισαγωγή στις Ελλειπτικές Καµπύλες

Εισαγωγή στις Ελλειπτικές Καµπύλες Εισαγωγή στις Ελλειπτικές Καµπύλες Αριστείδης Κοντογεώργης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. 4 Νοεµβρίου 2014, 1/19 Το ϑεώρηµα Riemann-Roch Θεωρούµε µια επιφάνεια Riemann M και το σώµα των F των

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 5.6: Μέση Τιμή, Συναρτήσεις Συσχέτισης & Συνδιασποράς 5.7: Μετάδοση Στοχαστικής

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΚΑΛΟΓΗΡΑΤΟΥ Ζ. - ΜΟΝΟΒΑΣΙΛΗΣ Θ. ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ Μεγιστοποίηση εμβαδού με τον περιορισμό της περιμέτρου

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Optimization Investment of Football Lottery Game Online Combinatorial Optimization 27 :26788 (27) 2926,2, 2, 3 (, 76 ;2, 749 ; 3, 64) :, ;,,, ;,, : ; ; ; ; ; : TB4 : A Optimization Investment of Football Lottery Game Online Combinatorial Optimization HU Mao2lin,2, XU Yin2feng 2, XU Wei2jun

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

2 η δεκάδα θεµάτων επανάληψης

2 η δεκάδα θεµάτων επανάληψης 1 2 η δεκάδα θεµάτων επανάληψης 11. Α. Αν α > 0 µε α 1 τότε για οποιουσδήποτε πραγµατικούς αριθµούς θ 1, θ 2 > 0 να αποδείξετε ότι log α (θ 1 θ 2 ) = log α θ 1 + log α θ 2 Β. Έστω το σύστηµα Σ : α1x +

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές IV

Ηλεκτρονικοί Υπολογιστές IV ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Εισαγωγή στα δυναμικά συστήματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler

Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler EΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler Συντάκτης: ΜΑΡΗΣ

Διαβάστε περισσότερα

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Optimization Investment of Football Lottery Game Online Combinatorial Optimization 27 :26788 (27) 2926,2, 2 3, (, 76 ;2, 749 ; 3, 64) :, ;,, ;, : ; ; ; ; ; : TB4 : A Optimization Investment of Football Lottery Game Online Combinatorial Optimization HU Mao2lin,2, XU Yin2feng 2, XU Wei2jun

Διαβάστε περισσότερα

T M = T p U = v p = c i

T M = T p U = v p = c i Κεφάλαιο 4 Διανυσματικά πεδία Σύνοψη Ορίζουμε και μελετάμε λεία διανυσματικά πεδία σε μια λεία πολλαπλότητα M. Ως λεία απεικόνιση, ένα διανυσματικό πεδίο έχει τη μορφή X : M T M με τιμές στην εφαπτόμενη

Διαβάστε περισσότερα

Μετασχηµατισµός FOURIER ιακριτού Χρόνου - DTFT. Οκτώβριος 2005 ΨΕΣ 1

Μετασχηµατισµός FOURIER ιακριτού Χρόνου - DTFT. Οκτώβριος 2005 ΨΕΣ 1 Μετασχηµατισµός FOURIER ιακριτού Χρόνου - DTFT Οκτώβριος 2005 ΨΕΣ 1 Γενικά Μορφές Μετασχηµατισµού Fourir Σήµατα που αντιστοιχούν στους τέσσερους τύπους µετασχηµατισµών α Μετασχηµατισµός Fourir FT β Σειρά

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Ιδιότητες συστημάτων Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

«ΘΕΜΑΤΑ ΑΣΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ» ΔΙΔΑΣΚΟΥΣΕΣ: ΒΑΪΟΥ Ντ., ΜΑΝΤΟΥΒΑΛΟΥ Μ., ΜΑΥΡΙΔΟΥ Μ. «Gentrification Friendly» γειτονιές στο κέντρο της Αθήνας(;)

«ΘΕΜΑΤΑ ΑΣΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ» ΔΙΔΑΣΚΟΥΣΕΣ: ΒΑΪΟΥ Ντ., ΜΑΝΤΟΥΒΑΛΟΥ Μ., ΜΑΥΡΙΔΟΥ Μ. «Gentrification Friendly» γειτονιές στο κέντρο της Αθήνας(;) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ Δ. Π. Μ. Σ.: ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΧΕΔΙΑΣΜΟΣ ΤΟΥ ΧΩΡΟΥ ΚΑΤΕΥΘΥΝΣΗ Β : ΠΟΛΕΟΔΟΜΙΑ - ΧΩΡΟΤΑΞΙΑ «ΘΕΜΑΤΑ ΑΣΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ» ΔΙΔΑΣΚΟΥΣΕΣ: ΒΑΪΟΥ Ντ., ΜΑΝΤΟΥΒΑΛΟΥ

Διαβάστε περισσότερα

Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. Χρυσάνθη Στυλιανού Λεμεσός 2014 ΤΕΧΝΟΛΟΓΙΚΟ

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6 η : Μερική Παράγωγος ΙΙ Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Επιμέλεια: Αδαμαντία Τραϊφόρου (Α.Μ 263) Επίβλεψη: Καθηγητής Μιχαήλ Κονιόρδος

Επιμέλεια: Αδαμαντία Τραϊφόρου (Α.Μ 263) Επίβλεψη: Καθηγητής Μιχαήλ Κονιόρδος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗΣ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΣΧΟΛΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Οι Ολοκληρωμένες Επικοινωνίες Μάρκετινγκ και η επίδρασή τους στη Συμπεριφορά του Καταναλωτή

Διαβάστε περισσότερα

Εκπαιδευτικές πολιτιστικές πρακτικές των γονέων και κοινωνική προέλευση

Εκπαιδευτικές πολιτιστικές πρακτικές των γονέων και κοινωνική προέλευση Εκπαιδευτικές πολιτιστικές πρακτικές των γονέων και κοινωνική προέλευση Θεόδωρος Β. Θάνος & Ευθύµιος Τόλιος ΠΕΡΙΛΗΨΗ Στην παρούσα εργασία εξετάζονται οι εκπαιδευτικές πρακτικές των γονέων οι οποίες αποσκοπούν

Διαβάστε περισσότερα

Υ ΡΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΥΠΟΒΑΘΜΙΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΥΠΟΓΕΙΩΝ ΝΕΡΩΝ ΣΤΗΝ ΠΕΡΙΟΧΗ ΜΕΣΣΗΝΗΣ, Ν.ΜΕΣΣΗΝΙΑΣ

Υ ΡΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΥΠΟΒΑΘΜΙΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΥΠΟΓΕΙΩΝ ΝΕΡΩΝ ΣΤΗΝ ΠΕΡΙΟΧΗ ΜΕΣΣΗΝΗΣ, Ν.ΜΕΣΣΗΝΙΑΣ ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th

Διαβάστε περισσότερα

convk. c i c i t i. c i u i c < c i φ i (F (ω)) c < ( ) c i m i < i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1

convk. c i c i t i. c i u i c < c i φ i (F (ω)) c < ( ) c i m i < i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 Ολοκλήρωση συναρτήσεων με τιμές σε χώρους Baach Αν (Ω, S, µ είναι χώρος μέτρου και (X, είναι χώρος Baach, μια συνάρτηση F : Ω X θα λέγεται ασθενώς μετρήσιμη (αντίστοιχα, ασθενώς ολοκληρώσιμη αν για κάθε

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ ½»Åà Äɽ µ½½ ¹Î½ Ä Â þÿ±¾¹»ì³ à  º±¹ Ä Â þÿ±à ĵ»µÃ¼±Ä¹ºÌÄ Ä±Â

Διαβάστε περισσότερα

ο ό Α αφ ο ι α ι οί οι Α αφο ο ι Α αφ ο α ά ο ι αβ Α αφ α Α αφ ί α ό Α αφο ο ι ά ι Α αφ ο α ια ι α ι ο ι ά αι,, ό ι ι ά ι ά α α Ευφυής Έλεγχος 4

ο ό Α αφ ο ι α ι οί οι Α αφο ο ι Α αφ ο α ά ο ι αβ Α αφ α Α αφ ί α ό Α αφο ο ι ά ι Α αφ ο α ια ι α ι ο ι ά αι,, ό ι ι ά ι ά α α Ευφυής Έλεγχος 4 ο ό Α αφ ο ι α ι οί οι Α αφο ο ι Α αφ ο α ά ο ι αβ Α αφ α Α αφ ί α ό Α αφο ο ι ά ι Α αφ ο α ια ι α ι ο ι ά αι,, ό ι ι ά ι ά α α 4 Α αφ ο ι / ι ό φο α ια ο οί ια ά α ο ία φ ά ί αι Α αφή ογι ή (Fuzzy Logic),

Διαβάστε περισσότερα

Η ϐέλτιστη σταθερά στην ανισότητα Hausdorff-Young

Η ϐέλτιστη σταθερά στην ανισότητα Hausdorff-Young Η ϐέλτιστη σταθερά στην ανισότητα Hausdorff-Youg Ασπασία Κωτσογιάννη Περίληψη Ο µετασχηµατισµός Fourier Εστω f L. Ορίζουµε. fξ = π fxe ix ξ dx, ξ. Το ολοκλήρωµα Lebesgue στη σχέση. συγκλίνει για κάθε ξ

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά

Επιχειρησιακά Μαθηματικά Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά () ΑΘΗΝΑ ΝΟΕΜΒΡΙΟΣ 01 1 Τηλ:10.93.4.450 Πεδίο Ορισμού Οικονομικών Συναρτήσεων Οι οικονομικές συναρτήσεις (συνάρτηση Ζήτησης, συνάρτηση

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

V r,k j F k m N k+1 N k N k+1 H j n = 7 n = 16 Ṽ r ñ,ñ j Ṽ Ṽ j x / Ṽ W 2r V r D N T T 2r 2r N k F k N 2r Ω R 2 n Ω I n = { N: n} n N R 2 x R 2, I n Ω R 2 u R 2, I n x k+1 = x k + u k, u, x R 2,

Διαβάστε περισσότερα

«ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΤΗΣ ΠΕΡΔΙΚΑΣ (ALECTORIS GRAECA) ΣΤΗ ΣΤΕΡΕΑ ΕΛΛΑΔΑ»

«ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΤΗΣ ΠΕΡΔΙΚΑΣ (ALECTORIS GRAECA) ΣΤΗ ΣΤΕΡΕΑ ΕΛΛΑΔΑ» ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΕΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗ: ΕΔΑΡΜΟΓΕΣ ΤΗΣ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΟΥΣ ΦΥΣΙΚΟΥΣ ΠΟΡΟΥΣ «ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ

Διαβάστε περισσότερα

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim. Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) x ξ g(x, ξ), g(x, ξ) f(x) f(ξ) x ξ Ορισμός Cauchy: ɛ > 0 δ(ɛ, ξ) > 0 x x ξ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ

ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ Ακρότατα Δρ. Ιωάννης Ε. Λιβιέρης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. TEI Δυτικής Ελλάδας 2 Ακρότατα συνάρτησης Έστω συνάρτηση f A R 2 R και ένα σημείο P(x, y ) A. Η τιμή f(x, y )

Διαβάστε περισσότερα

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ» ΓΔΩΠΟΝΗΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΩΝ ΣΜΗΜΑ ΑΞΙΟΠΟΙΗΗ ΦΤΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗ ΜΗΥΑΝΙΚΗ ΣΟΜΕΑ ΕΔΑΦΟΛΟΓΙΑ ΚΑΙ ΓΕΩΡΓΙΚΗ ΥΗΜΕΙΑ ΕΙΔΙΚΕΤΗ: ΕΦΑΡΜΟΓΕ ΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΣΟΤ ΦΤΙΚΟΤ ΠΟΡΟΤ «ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ

Διαβάστε περισσότερα

Α.Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

Α.Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ Α.Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΣΥΡΜΑΤΗ ΔΙΑΧΕΙΡΙΣΗ ΦΩΤΙΣΜΟΥ ΚΤΙΡΙΟΥ WIRELESS MANAGEMENT LIGHTING OF BUILDING Επιβλέπων Καθηγητής: Μαλατέστας Παντελής Σπουδαστής: Ρόκος

Διαβάστε περισσότερα

1 Το ϑεώρηµα του Alexandrov

1 Το ϑεώρηµα του Alexandrov Το ϑεώρηµα του Alexandrov Γιώργος Γιανναράκης και αυιδούλα ηµοπούλου Περίληψη Το 1939, ο Alexandr Alexandrov απέδειξε το ακόλουθο ϑεώρηµα : Εστω C R d ανοιχτό και κυρτό, f : C R µια κυρτή συνάρτηση. Τότε,

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΟΡΦΟΛΟΓΙΚΩΝ ΔΙΑΔΙΚΑΣΙΩΝ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΤΗΣ ΣΥΝΘΕΣΗΣ ΥΠΟ ΤΟ ΠΡΙΣΜΑ ΤΩΝ ΑΠΣ: ΜΙΑ ΚΡΙΤΙΚΗ ΘΕΩΡΗΣΗ

Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΟΡΦΟΛΟΓΙΚΩΝ ΔΙΑΔΙΚΑΣΙΩΝ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΤΗΣ ΣΥΝΘΕΣΗΣ ΥΠΟ ΤΟ ΠΡΙΣΜΑ ΤΩΝ ΑΠΣ: ΜΙΑ ΚΡΙΤΙΚΗ ΘΕΩΡΗΣΗ Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΟΡΦΟΛΟΓΙΚΩΝ ΔΙΑΔΙΚΑΣΙΩΝ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΤΗΣ ΣΥΝΘΕΣΗΣ ΥΠΟ ΤΟ ΠΡΙΣΜΑ ΤΩΝ ΑΠΣ: ΜΙΑ ΚΡΙΤΙΚΗ ΘΕΩΡΗΣΗ Κωνσταντίνα Ειρήνη ΚΟΥΦΟΥ, Υποψήφια Διδάκτωρ Π.Τ.Π.Ε. Κρήτης, εκπαιδευτικός Δευτεροβάθμιας

Διαβάστε περισσότερα

Ύπαρξη και Mοναδικότητα Λύσης Μη γραμμικών ΔΕ

Ύπαρξη και Mοναδικότητα Λύσης Μη γραμμικών ΔΕ Κεφάλαιο 3 Ύπαρξη και Mοναδικότητα Λύσης Μη γραμμικών ΔΕ Στο κεφάλαιο αυτό θα αναφέρουμε τις συνθήκες ύπαρξης και μοναδικότητας ΠΑΤ μη γραμμικών ΔΕ. Στο εδάφιο 3.1, θα παρουσιάσουμε την προσεγγιστική μέθοδο

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1 Απόδειξη Τύπου Little Ιδιότητα PASTA (Poisson Arrivals See Time Averages) Βασικοί

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Μορφές και πρόσημο τριωνύμου

Μορφές και πρόσημο τριωνύμου 16 Φεβρουαρίου 214 Μορφές τριωνύμου Μορφές τριωνύμου Ανάπτυγμα: P(x) = αx 2 + βx + γ Μορφές τριωνύμου Μορφές τριωνύμου Ανάπτυγμα: Παραγοντοποιημένη: P(x) = αx 2 + βx + γ P(x) = k(x λ)(x μ) Μορφές τριωνύμου

Διαβάστε περισσότερα

Γεωµετρικη Θεωρια Ελεγχου

Γεωµετρικη Θεωρια Ελεγχου Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων Τµηµα Μαθηµατικων Χειµερινό Εξάµηνο 2016-2017 Γεωµετρικη Θεωρια Ελεγχου εύτερη Εργασία 1. Βρείτε δύο διαφορετικά παραδείγµατα συστηµάτων στο

Διαβάστε περισσότερα

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers 2 M2 Fourier Series answers in Mathematica Note the function HeavisideTheta is for x>0 and 0 for x

Διαβάστε περισσότερα

Υπεραγωγιμότητα. Βασικά Φαινόμενα: Ηλεκτροδυναμική: Επιφανειακή Ενέργεια: Κβαντικά Φαινόμενα: Μικροσκοπική Θεωρία :

Υπεραγωγιμότητα. Βασικά Φαινόμενα: Ηλεκτροδυναμική: Επιφανειακή Ενέργεια: Κβαντικά Φαινόμενα: Μικροσκοπική Θεωρία : Βασικά Φαινόμενα: Ηλεκτροδυναμική: Επιφανειακή Ενέργεια: Κβαντικά Φαινόμενα: Μικροσκοπική Θεωρία : Υπεραγωγιμότητα Μηδενική Αντίσταση Missn, Κρίσιμο Πεδίο, Θερμοδυναμική Κρίσιμο Ρεύμα Εξισώσεις London,

Διαβάστε περισσότερα

Antoniou, Antonis. Neapolis University. þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

Antoniou, Antonis. Neapolis University. þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2016 þÿ µà¹² ÁÅ½Ã Ä Â ¹º ³ ½µ¹±Â þÿæá ½Ä µ¹ ¼»  ¼µ Ãǹ Æ Antoniou, Antonis

Διαβάστε περισσότερα

Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπίγγος Γεώργιος

Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπίγγος Γεώργιος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ-ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΣΚΟΠΗΣΗΣ Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα