ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ"

Transcript

1 ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΕΦΑΡΜΟΣΜΕΝΕΣ ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΔΙΠΛΩΜΑΤΙΚΗ ΔΙΑΤΡΙΒΗ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΚΑΤΕΥΘΥΝΣΗ : «ΕΦΑΡΜΟΣΜΕΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΑ ΜΑΘΗΜΑΤΙΚΑ» Η ΙΔΙΟΤΗΤΑ RADON NIKODYM ΣΕ ΧΩΡΟΥΣ BANACH, ΣΥΝΕΧΗ ΙΔΙΑΖΟΝΤΑ ΜΕΤΡΑ ΚΑΙ ΤΕΛΕΣΤΕΣ ΣΤΟΝ L¹ ΖΑΚΥΝΘΙΝΑΚΗΣ ΓΕΩΡΓΙΟΣ Επιβλέπων : Επίκουρος Καθηγητής Πετράκης Μίνως ΧΑΝΙΑ, 2011

2 ΠΕΡΙΕΧΟΜΕΝΑ. Εισαγωγή...σελ.2 1.Προκατακτικά -Ορισµοί...σελ.3 2.Ηιδιότητα Rado - Nikodym...σελ.8 3. Martigales...σελ.12 4.Τελεστέςστον L 1...σελ.21 5.Η RNPσεδυϊκούςχώρους...σελ.38 6.Ιδιάζοντασυνεχήµέτρακαιτελεστέςστον L 1...σελ.41 Βιβλιογραφία...σελ.48 1

3 ΕΙΣΑΓΩΓΗ Στην διατριβή αυτή, παρουσιάζουµε µια συνοπτική εισαγωγή στη θεωρία στην θεωρία των χώρων µε την RNP (Ιδιότητα Rado Nikodym). ίνουµε όµως πλήρη απόδειξη του βασικού θεωρήµατος της detability (θεώρηµα 6.8). Στο [D] ο R. Doss αποδεικνύει το εξής αποτέλεσµα: ΑντολείναισυνεχέςµέτροστονκύκλοΠτότευπάρχει m (mείναιτοµέτρο Lebesgueστον Π)έτσιώστε λ m. Στοκεφάλαιο 6χρησιµοποιούµεαναπαραστάσειςτελεστώνστον L 1 µεστοχαστικούς πυρήνες και αποδεικνύουµε ότι στην περίπτωση που το µέτρο λ είναι Rajchma το µέτρον στοθεώρηµατου R.Doss µπορείναπαρθείναείναιένα Rieszγινόµενοτης µορφής w lim Π 1 cos k x (θεώρηµα 6.8). k1 Τοµέτροαυτόείναιιδιάζονπροςτο m. Επίσης παραθέτουµε εφαρµογές στην πραγµατική ανάλυση ενός θεωρήµατος από το [Β2]. 2

4 1.Προκατακτικά - Ορισµοί Έστω (,,)έναςχώροςπιθανότηταςκαι Xέναςχώρος Baach. Μίασυνάρτησηκαλείταιαπλήεάνυπάρχουν x 1, x 2,..., x XκαιΕ 1,Ε 2,...,Ε Ν έστι ώστε f : x i χ Ε1 όπουχ Ε1 ω 0εάνω Ε i. To (Boher)ολοκλήρωµαµιαςαπλής i1 συναρτήσεως f είναι εξ ορισµού fdλ x i λε Ε ι,ε Σ. Ε i1 Μίασυνάρτηση f : X καλείταιµετρήσιµηεάνυπάρχειµιαακολουθίααπλών συναρτήσεων s έτσιώστε lim s f 0 λ-σχεδόνπαντού. Εάν f : X είναιµετρήσιµησυνάρτησηκαιυπάρχειακολουθίααπλών συναρτήσεων s έτσιώστε lim s fdλ 0τότεηf καλείται Boher ολοκληρώσιµη. Σ αυτήν την περίπτωση fdλορίζεται Ε Σσαντοόριο lim s dλ. Ε E Ο ίδιος ο Boher έδωσε τον παρακάτω χαρακτηρισµό των Boher ολοκληρώσιµων συναρτήσεων. 1.1Θεώρηµα :Έστω f : X µιαµετρήσιµησυνάρτηση.η f είναι Boher ολοκληρώσιµη εάν και µόνο αν fdλ. Ω Με L X 1 λσυµβολίζουµετονχώρο Baachόλωντων Boherολοκληρώσιµων Παρατήρηση: πολλά από τα κλασικά θεωρήµατα για µετρήσιµες πραγµατικές συναρτήσεις και Lebesgue ολοκληρώσιµες συναρτήσεις γενικεύονται στην περίπτωση διανυσµατικών συναρτήσεων µε τιµές σ ένα χώρο Baach. Σχεδόν όλες οι αποδείξεις παραµένουν οι ίδιες (αρκεί κάποιος να αντικαταστήσει τις απόλυτες τιµές µε νόρµες). Παρακάτω αναφέρονται (χωρίς απόδειξη) ορισµένα θεωρήµατα για Boher συναρτήσεις. 1.Έστω f µιαακολουθίααπο Boherολοκληρώσιµεςσυναρτήσεις f : X. Εάν lim f fστολ-µέτρο (δηλαδήεάν limλω Ω:f ω fω ε 0 ε 0 ) 3

5 καιεάνυπάρχειπραγµατική Lebesgueολοκληρώσιµησηνάρτηση g :Ωέτσιώστε f gλ-σχεδόνπαντού,τότεηf είναι Boher oοκληρώσιµηκαι lim f dλ f dλ Ε Σ. E E 2.Εάν f L X 1 τότε fdλ fdλ Ε Σ. Ε Ε 3.Εάν f, g L 1 X και fdλ gdλ Ε Στότε f g λ-σχεδόνπαντού. Ε Ε 4.Εάν f : 0, 1 X είναι Boherολοκληρώσιµητότεγιαόλασχεδόντα s 0, 1 sh ftdt fs. έχουµε lim 1 h h0 S 5.Έστω Tέναςκλειστόςτελεστήςαπότονχώρο Baach Xστονχώρο BaachΨ.Εάν η f : XκαιηTf :ΩΨείναι Boherολοκληρώσιµεςτότε T fdλ Tfdλ. E Ε 6.Εάν f L X 1 καιε Σ,λΕ 0τότε 1 λε fdλ cofe. Ε Ένααποτασηµαντικάθεωρήµαταγιαµετρήσιµεςσυναρτήσεις f : Xείναιτο θεώρηµα Μετρησιµότητας του Pettis. 1.2Θεώρηµα [D-U] :Έστω f : Xµιασυνάρτηση.Ταεπόµεναείναιισοδύναµα. 1.Ηfείναιµετρίσιµη 2. x X ηπραγµατικήσυνάρτηση x f :ΩείναιµετρήσιµηκαιυπάρχειΕ Σ, λε 0έτσιώστετοσύνολο fω\εείναι (orm)διαχωρίσιµουποσύνολοτο X. Απόδειξη: (1 2)Αςυποθέσουµεότιηf: X είναιµετρίσιµη.αποτοθεώτηµατου Egoroff µπορούµεναβρούµεµιαακολουθία f απλώνσυναρτήσεωνέτσιώστε lim f f 0 λ-σχεδόνοµοιόµορφα. ηλαδήγιακάθε NυπάρχειένασύνολοΕ Σέτσιώστε 4

6 λε 1 και lim f fοµοιόµορφαστοω\ε.κάθεσυνάρτηση f έχειπεδίοτιµώνένα φραγµένο υποσύνολο κάποιου υπόχωρου του X που είναι πεπερασµένης διάστασης. Εποµένωςτοσύνολο fω\ε είναιολικάφραγµένο (totally bouded)καιδιαχωρίσιµο. Είναιφανερόλοιπόνότιτοσύνολο f Ω\Ε fω\ε είναιδιαχωρίσιµο. Παρατηρούµε επίσης ότι το σύνολο Ω\ Ω\Ε Ε έχειλ-µέτροµηδέναφού λε 1.ΈχουµεαποδείξειλοιπόνότιυπάρχεισύνολοΕ,λΕ 0έτσιώστετο σύνολο fω\εείναιδιαχωρίσιµο. 1 Εάν x X τότεησυνάρτηση x f είναιαπλήαφούηf είναιαπλή.γνωρίζουµεότι f ω fωγιαόλασχεδόνταω Ωεποµένως x f ω x fωγιαόλασχεδόντα ω Ω.Αυτόσηµαίνειότιησυνάρτηση x f :Ωείναιµετρήσιµη. 2 1 :ΈστωΕ Σ,µελΕ 0και fω\εδιαχωρίσιµουποσύνολοτου X.Έστω x ένααριθµήσιµοπυκνόυποσύνολοτου fω\ε.μετηβοήθειατουθεωρήµατος Hah-Baachµπορούµεναδιαλέξουµεµιαακολουθία x συναρτησοειδώνστον X έτσιώστε x x x και x 1.Εάνω Ω\Ετότε fω sup x fω.εποµένως ησυνάρτηση f x είναιµετρήσιµη. Έστωε 0.ΘεωρούµετασύνολαΕ ω Ω:g ω ε.εάντοµέτρολείναι πλήρεςτότεκάθεε ανήκειστηνσ.σεκάθεπερίπτωση β Σµελβ E 0. Ορίζουµετηνσυνάρτηση g :ΩXωςεξής: gω χ εάνωεβ \ β m m gω 0εάνω β. Παρατηρούµεότι gω fω εγιαόλασχεδόνταω Ω. ηλαδήηf µπορείνα προσεγγιστεί από µια συνάρτηση g που παίρνει αριθµήσιµο το πλήθος τιµές. Εάν πάρουµεε 1 είναιφανερόότιµπορούµενακατασκευάσουµεµιαακολουθία g από συναρτήσειςπουπαίρνουναριθµήσιµεςτοπλήθοςτιµέςκαι g f 1 σχεδόν παντού.κάθε g έχειτηµορφή g x,m X E,m µεε,i Ε,j εάν i jκαι E,m Σ. m1 Επειδήτοµέτρολείναιπεπερασµένοείναιδυνατόννα "κόψουµε"λίγοτις g καινα ορίσουµεµιαακολουθία f απόαπλέςσυναρτήσειςπουνασυγκλίνουνσχεδόνπαντού στην f. Αυτό σηµαίνει ότι είναι η f είναι µετρήσιµη. ΈστωΩέναµηκενόσύνολο,Σµιασ-άλγεβραυποσυνόλωντουΩκαι Xέναςχώρος Baach. 5

7 1.3Ορισµός: Hαπεικόνησηµ :ΣXκαλείταιδιανυσµατικόµέτρο (vector measure) εάνµ Α µα γιακάθεακολουθία Α ξένωνσυνόλωναπότηνσ-άλγεβρα Σ. 1 1 Παρατήρηση: Είναι φανερό ότι η σειρά µα όχιµόνοσυγκλίνειαλλάκαικάθε 1 αναδιάταξη των όρων της δίνει συγκλίνουσα σειρά εάν το µ είναι διανυσµατικό µέτρο. Η κύµανση (variatio) ενός διανυσµατικού µέτρου µ είναι η (επεκτεταµένη πραγµατική)συνάρτηση µ :Σ0,τηςοποίαςητιµήσ ένασύνολο E Σείναι µ Ε sup µa όπουτο supremumτοπαίρνουµεπάνωσ όλεςτιςδιαµερίσεις π Aπ τουεσεπεπερασµένοτοπλήθοςξένωναναδύοστοιχείωναπότηνσ.εάν µ Ω τότε το διανυσµατικό µέτρο µ καλείται µέτρο φραγµένης κύµανσης (bouded variatio). Εάν Ω,Σ,λείναιέναςχώροςπιθανότητας, Xέναςχώρος Baachκαι f L 1 X λµια Boher ολοκληρώσιµη συνάρτηση µπορούµε να ορίσουµε ένα διανυσµατικό µέτρο µ :ΣXωςεξής:µΕ fdλ,ε Σ.Τοότιτοµείναιαριθµήσιµαπροσθετικό Ε χρειάζεταιαπόδειξη (ΕάνΕ Ε µε Ε ακολουθίαξένωναναδυοσυνόλωναπότη Στότεησειρά fdλσυγκλίνειαπολύτωςγιατίκυριαρχείταιαπότηνσυγκλίνουσα 1Ε σειράf dλ.παρατηρούµεότι 1 Ε fdλ f dλ Ε 1Ε 1 fdλ.είναιφανερόότι Ε 1 limλ m m1 Ε 0καιεποµένως ότιµ Ε µε ). 1 1 lim m fdλ 0 Ε Ε 1Ε m1 1 fdλ fdλ.αυτόσηµαίνει Τοµέτροµ,µΕ fdλείναιφραγµένηςκύµανσης (bouded variatio)καιαπολύτως Ε συνεχέςωςπροςτολ(δηλαδήεάν E ΣκαιλΕ 0τότε µ Ε 0). Είναι φυσικό να ρωτήσουµε εάν κάθε διανυσµατικό µέτρο µ, που είναι φραγµένης κύµανσης και είναι απόλυτα συνεχές ως προς το λ προέρχεται απο µια Boher 6

8 ολοκληρώσιµη συνάρτηση. Η απάντηση στο ερώτηµα αυτό είναι αρνητική όπως δείχνει το ακόλουθο παράδειγµα. Παράδειγµα:Έστω Ω,Σ,λ 0, 1, Lebesgueµετρήσιµασύνολα, Lebesgueµέτρο). Έστω XοBaachχώρος L 1 0, 1.Θεωρούµετοδιανυσµατικόµέτροµ :ΣL 1 0, 1που ορίζεταιωςεξήςµα X Α,Α Σ. Είναι εύκολο να δεί κανείς ότι το µ είναι ένα διανυσµατικό µέτρο πεπερασµένης κύµανσης και απολύτως συνεχές ως προς λ. Αςυποθέσουµεότι f L 1 L 1λέτσιώστεµΑ f dλθακαταλήξουµεσεάτοπο. Έστω F L 0, 1 L 1 0, 1.Είναιφανερόότι F, ftdλt F, ftdλt F, X A Ftdλt. Αυτόσυνεπάγεταιότιυπάρχειένα Α Α σύνολοαf ΣµελΑF 0έτσιώστε F, ft Ftt 0, 1\AF. Α Α Έστω Ι ηακολουθίαόλωντωνυποδιαστηµάτωντου 0, 1µερητάάκρα.Έστω F X I L 0, 1.ΈστωΑ ΑF και x 0. 1\Α. 1 Έχουµε ότι fxsdλs F sfxsdλs F x.εάν x I τότε F x 0 Ι εποµένως fxs 0γιαόλασχεδόντα s 0, 1εάν x 0, 1 \Α.Αυτόσυνεπάγεταιότι η f : 0, 1 L 1 µηδενίζεταισχεδόνπαντού. ενείναιδυνατόνλοιπον fdλ X Α, Α Σ. Α 7

9 2.ΗΙ ΙΟΤΗΤΑ RADON - NIKODYM 2.1Ορισµός:Οχώρος Baach Xλέµεότιέχειτην Rado - NikodymΙδιότητα (RNP) εάνγιακάθεχώροπιθανότητας Ω,Σ,λκαιγιακάθεδιανυσµατικόµέτροµ :ΣX (το οποίο είναι φραγµένης κύµανσης και απόλυτως συνεχές ως προς το λ) υπάρχει Boher ολοκληρώσιµησυνάρτηση f L 1 X λέτσιώστεµε f dλ E Σ. 2.2 Ορισµός: Έστω Κ ένα κλειστό φραγµένο κυρτό υποσύνολο του χώρου Baach X. ToσύνολοΚέχειτην Rado - NikodymΙδιότηταεάνγιακάθεχώροπιθανότητας Ω,Σ,λ καικάθεδιανυσµατικόµέτροµ :ΣXτοοποίοείναιαπολύτωςσυνεχέςωςπροςλ, είναιφραγµένηςκύµανσηςκαιπουτο "average rage"αµ µε,ε Σ,λΕ 0. λε περιέχεταιστοκυπάρχει f L 1 X λέτσιώστεµα fdλ E Σ. Ε ΈνακλειστόκαικυρτόυποσύνολοΚ Xέχειτην RNPεάνκάθεκλειστό,κυρτόκαι φραγµένο υποσύνολο του Κ έχει την RNP. Οιχώροι L 1, c o, c0, 1, l, L δενέχουντην RNP.Κάθεαυτοπαθήςχώρος,κάθεδυϊκός χώροςείναιδιαχωρίσιµος (π.χ. l 1 )κάθεχώροςµε boudelly completeβάσηέχειτην RNP. Είναιπολύεύκολοναδείκανείςότι: 1.Εάν X,Ψείναιισοµορφικοίχώροι BaachκαιοXέχειτην RNPτότεκαιοΨέχειτην RNP. 2. EάνοXέχειτην RNPτότεκαικάθευπόχωροςτου Xέχειτην RNP. 3.Εάνκάθεδιαχωρίσιµοςυπόχωροςτου Xέχειτην RNPτότεκαιοXέχειτην RNP. 2.3Ορισµός:ΈστωΑέναφραγµένουποσύνολοτου X.ΤοΑκαλείται detableεάν ε 0 xεαέτσιώστε x coa\b ε x. (coσυµβολίζειτηνκλειστήκυρτήθήκηκαι B ε x y X : x y ε) ΕάνΑείναιέναφραγµένουποσύνολοτου X,α 0και f X, f 0τότετο slice τουα πουορίζεταιαπότο f καιτοαείναιτοσύνολο sα, f,α x Α:fx supfa α. Είναιεύκολοναδείκανείς (µετηβοήθειατου Hah-Baach)ότιένασύνολοΑείναι detableεάνκαιµόνοεάν ε 0υπάρχεικάποιο slice sa, f,ατουοποίουηδιάµετρος 8

10 είναι µικρότερη απο ε. Το 1967 ο M.A.Rieffel εισήγαγε την ένοια της detability και απέδειξε το εξής θεώρηµα. 2.4 Θεώρηµα [D-U] : Έστω X ένας χώρος Baach. Εάν κάθε φραγµένο υποσύνολο του Xείναι detableτότεοxέχειτην RNPιδιότητα. Απόδειξη:Έστωµ :ΣXέναδιανυσµατικόµέτροφραγµένηςκύµανσηςκαι απολύτως συνεχές ως προς το µέτρο πιθανότητας λ. Εάν µ είναι η variatio του µ από το κλασικό Rado-Nikodym θεώρηµα µπορούµε ναβρούµε h L 1 λ, h 0έτσιώστε µ Ε hdλ, Ε Σ.Εάν F ΣµεΑF συµβολίσουµετοσύνολο µg λg : G F,λG 0. Εάνησυνάρτηση hείναιφραγµένηστο Fτότετο AFείναιφραγµένοσύνολοδιότι µg λg µ G λg 1 λg hdλ. G Η καρδιά της απόδειξης Rieffel βρίσκεται στο επόµενο λήµµα. Ε 2.5Λήµµα: 3 0,Ε ΣµελΕ 0,F Σµε F ΕκαιλF 0έτσιώστε diamaf ε.γιανααποδείξουµετολήµµααςυποθέσουµεότιη hείναιφραγµένηστο 9

11 Ε,καιεποµένωςτοσύνολοΑΕείναιφραγµένο.Αυτόµπορούµενατοκάνουµεχωρίς βλάβητηςγενικότηταςαφούε ω Ε:hω.ΤοσύνολοΑΕείναι detable εποµένως F 0 Ε,λF 0 0έτσιώστε µf 0 λf 0 coαε\β ε µf 0 2 λf 0 Q. Εάν diamaf εέχουµεαποδείξειτολήµµα.εάν diamaf ετότε Β F 0,λΒ 0 έτσιώστε µβ Q.Πραγµατικάεάν µκ Q Κ F λβ λκ 0,λΚ 0τότε µκ µf 0 λκ λf 0 ε diamaf ε ε ε. ιαλέγουµετώραµια maximal (αναγκαστικάαριθµήσιµη)οικογένειααπόξέναανάδύοσύνολα Β,λΒ 0,Β F 0 και µβ λβ Q.Θεωρούµετοσύνολο F F 0 \Β.ΕάνλF 0τότεµF 0και µπορούµεναγράψουµε µf 0 λf 0 µ Β λβ i λβ λβ i µβ.αυτόσηµαίνειότιτο µf 0 λβ λf 0 βρίσκεταιστο Qπράγµαάτοπο. ενείναιλοιπόνδυνατόνναείναιλf 0. ΕποµένωςλF 0.Απότην maximalityτης Β εάν G FκαιλG 0τότε µg Q µg µf 0 ε. Αυτόσυνεπάγεταιότι diamaf εκαιτολήµµαέχει λg λg λf 0 2 αποδειχθεί. Τώρα συνεχίζουµε την απόδειξη του θεωρήµατος. Μπορούµε να πάρουµε (ξανά!) µια maximal (αναγκαστικααρθµήσιµη)οικογένεια Ε i i απόξέναανάδύοσύνολαστην Σ,λΕ i 0έτσιώστε diamaε i ε i.είναιφανερότώραότιµεεπαγωγήµπορούµενα βρούµεµιαακολουθίαδιαµερίσεωνπ Ε i i,αύξουσαωςπροςτην refiemetέτσι ώστε diamaε i 1 1,.Θεωρούµετησυνάρτηση g 2 1 :ΩX, g µe i i λe i X E i. Παρατηρούµεότιηg είναιοµοιόµορφα Cauchy (g ω g m ω εάν m )και εποµένωςηg συγκλίνειστην L X 1 νόρµασεκάποιασυνάρτηση g L X 1. ΓιακάθεΕ Σ έχουµε ότι µε g dλ Ε µε i E i µe i λe i i ΕποµένωςµE lim g dλ gdλ Ε Σ. Ε Ε λε i E µε i E µε i λε i E λε i i λε i E Εδώ τελείωσε η απόδειξη του θεωρήµατος! Παρατήρηση:ΑςυποθέσουµεότιτοΑΩ µε,ε Σ,λΕ 0είναιφραγµένο λε απότο 1.Έστωφ g g 1, 1.Είναιφανερόότιφ x i X Ei, µε x i X,x i 1 2.Μπορούµεναορίσουµε v : S l 1 ωςεξής vε,i 1 2 λε Ε i.έστωτ : l 1 Xένας (φραγµένος)γραµµικόςτελεστής i 10

12 έτσωώστετe,i 2 x i όπουτο e,i είναιτο, iµοναδικόδιάνυσµατηςσυνηθισµένης βάσηςτου l 1. ΜπορείεύκολαναδείκανείςότιΤ v µ. Παρατήρηση:Έστωµ :Σέναπραγµάτικοµέτροστο 0, 1καιέστωότι µε λεόπουλτοµέτρο Lebesgue.Μετηµέθοδοτηςαποδείξεωςτου προηγούµενου θεωρήµατος µπορούµε να αποδείξουµε ότι το µέτρο µ έχει µια Rado-Nikody παράγωγο. Έτσι έχουµε µια πολύ απόδειξη του κλασικού Rado-Nikody θεωρήµατος. Η παρατήρηση αυτή οφείλεται στον R.E.Huff. 11

13 3. Martigales Έστω Ω,Σ,λέναςχώροςπιθανότηταςκαιΣ Σµιασ-άλγεβραυποσυνόλωντουΩ. Με Xσυµβολίζουµεκάποιοχώρο Baach. Hσυνάρτηση g L 1 X λκαλείται coditioal expectatioτης fωςπροςσ εάνηgείναισ -µετρήσιµηκαι gdλ fdλ,ε Σ.ΜεΕf Σ συµβολίζουµετην coditioal expectatioτης fωςπροςσ. Ε Ε Παρατήρηση:Τοκλασικόθεώρηµα Rado - Nikodymδίδειαµέσωςότιεάν f :Ω είναιµιαπραγµατικήσυνάρτησηκαισ Σµιασ-υποάλγεβρατηςΣτότεηΕf Σ υπάρχει.πραγµατικάεάνησ είναιτοµέτροµα fdλτότε m λκαιηεf Σ είναιηrado-nikodymπαράγωγος dm dλ. Ο ίδιος συλλογισµός αποδεικνύει ότι αν f :ΩXείναιµια boherολοκληρώσιµησυνάρτησηκαιοxέχειτην RNPτότεηΕf Σ υπάρχει. Α Αυτόπουείναισηµαντικόείναιότιακόµακαιεάνοχώρος Xδενέχειτην RNP µπορούµεναορίσουµε coditioal expectatioσυναρτήσεωνστον L 1 X ωςεξής:ξεκινάµε απότιςαπλέςσυναρτήσειςτηςµορφής f x i X Ai, A i Σ, x i X.ΟρίζουµεΕf Σ x i ΕX Ai /Σ όπουηεx Ai /Σ είναιηπραγµατική coditioal expectatioτης i1 συνάρτησης X Ai L 1 λ. i1 Είναι φανερό ότι στην περίπτωση αυτή (που η f είναι απλή συνάρτηση) έχουµε 1.Ηg Εf Σ είναισ µετρήσιµη 2. gdλ x i EX Ai /Σ x i Α Α Α X Ai fdλ,a Σ. Α 3.ΗΕf Σ είναιγραµµικήωςπροςτην f. 4.ΗΕf Σ ω Εf/Σ ω Εάντώρα f L X 1 λείναιµιαοποιαδήποτε Boherολοκληρώσιµησυνάρτηση 12

14 f :ΩX τότεηf µπορείναπροσεγγιθείαπόαπλέςσυναρτήσεις S.Ηακολουθία Εs /Σ 1 είναι Cauchyστον L 1 X λκαιτοόριοτηςείναιανεξάρτητοαπότηνακολουθία S.ΤοόριοαυτόείναιηΕf Σ.Όλαταπαραπάνωσυνοψίζονταιστοεξής 3.1Θεώρηµα:Έστω f L X 1 Ω,Σ,λ,Σ Σµιασ-υποάλγεβρατηςΣ.Υπάρχει g Εf Σ (ουσιαστικάµοναδική)έτσιώστε α.εf Σ L X 1 Ω,Σ,λ β. gdλ fdλ,a Σ Α Α ΟτελεστήςΕ/Σ : L X 1 L X 1 είναιγραµµικόςκαιικανοποιείταεξής: 1. Εf Σ ω Εf/Σ ωλ-σχεδόνπαντού 2. Εf Σ ω f 1, L X 1 λ 3.ΕάνΣ Σ είναισ-άλγεβρατότεεεf Σ /Σ ΕΕf Σ /Σ Εf Σ. 3.2Ορισµός:ΈστωΣ 0 Σ 1...Σ...Σµιααύξουσαακολουθία f,σ, fl X 1 λ καλείται martigaleεάνεf 1 /Σ f,. Παράδειγµα 1:Έστω L X 1 λκαισ 0 Σ 1...Σ µιααύξουσαακολουθία σ-αλγεβρων.έστω f Εf/Σ.Τότεηακολουθία f,σ είναιένα martigale. Παράδειγµα 2:Έστω x,k, 0, 1, 2,..., k 1, 2,..., 2 έναδένδροσ έναχώρο Baach X. Aυτόσηµαίνειότιηακολουθία x,k είναιφραγµένηκαι x,k 1 x 2 1, 2k 1 x 1,2k 0, 1, 2,..., 1 k 2. Έστω I,k k1 k,, 0, 1, 2,..., 1 k 2 ηακολουθίατωνδυαδικώνδιαστηµάτων.μεσ 2 2 συµβολίζουµετηνπεπερασµένηάλγεβραπουγεννάταιαπότην I,k 1 k 2. 13

15 Μπορούµε να ορίσουµε ένα martigale µε τιµές στο χώρο X ως εξής: ξ 0 x 01 X Io1 ξ 1 x 11 X I11 x 12 X 12 2 ξ x,k X I,k,ξ : 0, 1 X. k1 Μπορεί εύκολα να δεί κανείς ότι ξ 0 ξ 1 αφού x 01 1 x 2 11 x 12.Οµοίως 0,1 0,1 έχουµεότιεξ 1 /Σ ξ. ηλαδήηακολουθία ξ,σ είναιένα martigale. Έναδένδρο x,k καλείταιε-δένδροεάν x 1,2k1 x,k ε k 1 k 2. Είναιφανερόότιτο martigale ξ Σ πουαντιστοιχείσ έναε-δένδροδενµπορείνα συγκλίνειαφού ξ 1 t ξ t ε,t 0, 1.Στον L 1 0, 1υπάρχειένα 1-δένδρο. X k1 2, k 2 Πραγµατικάεάν h,k, 1 k 2, 0, 1,... έχουµεότι h 1,k k, 1 k 2 και h 1,2k1 h 1,2k 1 1. Είναιεπίσηςφανερόότι h,k είναιδένδρο δηλαδή h 1,2k1 h 1,2k 2h,k,,k, 1 k 2. 14

16 3.3 MAXIMAL INEQUALITY [Bou] :ΈστωΣ 0 Σ 1...Σ Σµιααύξουσα ακολουθία σ-αλγεβρών από µετρήσιµα υποσύνολα του Ω. Έστω h µιαακολουθίαθετικώνπραγµατικώνσυναρτήσεωνέτσιώστε: 1.Ηh j είναιησ j µετρήσιµη j 2.Εάν i,α Σ j τότε h i d λ h d λ και Α Α 3. sup h j j Ω Τότε c 0λω Ω: sup h j ω c 1 c j Ω sup h j dλ. Απόδειξη:Έστω έναςσταθερόςφυσικόςαριθµός.μεα 1 συµβολίζουµετο σύνλο ω Ω:h 1 ω c. j Ω Εάν 2 i µεα i συµβολίζουµετοσύνολοα i ω Ω, h 1 ω c,..., h i1 ω c, και h 1 ω c.είναιφανερόότια i Σ i καια ι Α j, i j, 1 i. Παρατηρούµε ότι c λω Ω: sup h j ω c cλ A i cλα i h i dλ h dλ h dλ sup j Ω Έχουµελοιπόναποδείξειότιλω : sup h j ω c 1 c i1 j Ω έχουµελω : sup h j ω c 1 c j i1 sup h j. j Ω i1 A i j Ω i1 A i sup h j. Είναιφανερόότιεάν Ω j 3.4ΤΟΘΕΩΡΗΜΑΤΩΝ LEVY - DΕVB [Bou] :Έστω Ω,Σ,λχώροςπιθανότηταςκαι Σ 1 Σ 2...Σ....Σακολουθίααπόσ-υποάλγεβρεςτηςΣτωνοποίωνηένωσηγεννά τησ.έστω f Ef/Σ όπου f µιαοποιαδήποτε Boherολοκληρώσιµησυνάρτηση f L 1 X λ. Tότε lim f ω fωλ-σχεδόνπαντούκαι lim f f 1 0. Απόδειξη:Έστωφ f L X 1 λέτσιώστε f ω fω 0λ-σχεδόνπαντούκαι f f 1 0όταν. θααποδειχθείότιτοφείναικλειστόκαιπυκνόστον L X 1 λ 15

17 Α )Τοφείναιπυκνόστον L 1 X λ :Εάν f L 1 X Ω,Σ,λ (δηλαδήεάνηf είναι Σ -µετρήσιµητότεεf/σ k f k f φ. Είναιφανερόλοιπόνότι φ L 1 X Ω,Σ,λ. Κάθεσυνάρτησητηςµορφής x X A, x X A Σ ανήκειστοφ. 1 Αφούη Σ είναιπυκνήστηνσµπορούµεναδούµεότικαικάθεσυνάρτησητης 1 µορφής x X B, x X, B Σανήκειστηνφ.Παρατηρούµεότιογραµµικόςχώροςφ περιέχειτοπυκνόσύνολοτωναπλώνσυναρτήσεων φείναιπυκνόστον L X 1 Ω,Σ,λ. 1 Β )Οφείναικλειστόςστον L X 1 λ. Έστω f στηνκλειστήθήκητουφ. ε 0,δ 0 g φέτσιώστε f g 1 2 ε δ. Έστω g EG/Σ. Γιαόλασχεδόνταω Ωέχουµε f ω f κ ω g ω g κ ω f g ω f k g k ω g ω g κ ω Ef Έστω h j ω Εf g/σ j ω. Απότιςπαραπάνωανισότητεςκαιαπότοότι g φ έχουµε ότι lim sup f ω f k ω 2 sup h j ω,λ-σχεδόνπαντού.ηακολουθία h j,k ικανοποιεί τις συνθήκες της maximal iequality (3.3) και εποµένως λω : lim sup f ω f k ω ε λω : 2 sup h j ω ε 2 ε,k j j sup h j 1 2 ε j sup Αφούταε,δήτανοποιοιδήποτεθετικοίαριθµοίέιναιφανερόότιτοόριο lim ω fω υπάρχει σχεδόν παντού. Τώρα θα µπορέσουµε να αποδείξουµε ότι η f που πήραµε στο φ ανήκειστοφ.ε 0µπορούµεναβρούµε g L 1 X Ω,Σ Ν,λγιακάποιοΝ έτσιώστε f g 1 ε. Όταν Νέχουµε 2 f f 1 f g 1 g Eg/Σ 1 Eg f/σ 1 ε 0 g f Αυτό συνεπάγεταιότικάποιαυπακολουθία f i της f συγκλίνεισχεδόνπαντούστην f fω lim f i ω fω lim f ωλ. i j Ω 3.5Θεώρηµα [D-U] :Έστω Xέναςχώρος Baachκαι K Xείναικλειστό,φραγµένο σύνολο µε την RNP. Τότε κάθε martigale µε τιµές στο K συγκλίνει σχεδόν παντού. Απόδειξη:ΑςυποθέσουµεότιτοΚέχειτην RNPγιατοχώρο Ω,Σ,λκαιότι Σ 1 Σ 2...Σ είναιµιααύξουσαακολουθίασ-υποάλγεβρωντηςσκαιότιη Σ γεννάτηνσ. Έστω f,σ ένα martigaleµετιµέςστοκ.ορίζουµεταδιανυσµατικά µέτραµα f dλ,α Σ,. Tαµείναισυνεχήωςπροςλµ λ. Eίναι Α εύκολοναδείκανείςότιτο "average rage" Aµ µ E λε,λε 0περιέχεταιστοΚ. ιότιεάν x X,τότε x µ A λa 1 λα Α 1 x f λ λ supx x : x K. ΑφούτοΚείναι (ασθενώς)κλειστό,κυρτό µ Α Κ. Παρατηρούµετώραότιτο lim µ λα Aυπάρχει 16

18 Α Σ αφούτο f,σ είναι martigaleκαιηακολουθία f dλείναιτελικάσταθερή 1 γιαα Σ. Μάλισταµπορείναδειχθείότιτοόριο lim µ Aυπάρχει Α Σαφούη Σ γεννάτηνσ.πραγµατικά ε 0,Α Σ Β Σ Ν γιακάποιον έτσιώστε λαβ ε όπουμ supx, x K. Εάν Nέχουµε 2Μ f dλ f Ν dλ Α Α Β Β ΑΒ f dλ f Ν dλ f dλ f Ν dλ 0 2λΑΒΜ ε. Αφούλοιπόνηακολουθίαµ A είναι Cachyτοόριοµ A lim µ Aυπάρχει.Το ΑΒ Α ΑΣ θεώρηµατων Vitali - Hah -Saks (3.6)συνεπάγεταιότιτοµ :ΣΧ,µA limµ A είναιµέτρο (δηλαδήείναιαριθµήσιµαπροσθετικό).αφούµ λ,αµ Αµ Κ καιτοκέχειτην RNPυπάρχει f L 1 Χ Ω,Σ,λέτσιώστεµA fdλ Α Σ. ΓιαΑ Σ έχουµε fdλ µa µ A f dλ Ef/Σ f λ-σχεδόνπαντού.απότοθεώρηµα Α Α του Levy-Doob (3.6) έχουµε ότι lim f ω fω 0λσχεδόνπαντού.Απεδείχθη λοιπόνότιεάντοκέχειτην RNPτότεκάθε martigaleµετιµέςστο Kσυγκλίνεισχεδόν παντού. Α 1 Στην απόδειξη του παραπάνω θεωρήµατος χρησιµοποιήθηκε το θεώρηµα των Vitali-Hah-Saks. Για πληρώτητα παραθέτουµε την απόδειξη του από τον Duford-Schwartz Yel.Ip Θεώρηµα VITALI-HAHN-SAKS [D-S] :Έστω Ω,Σ,λχώροςπιθανότητας, X χώρος Baach καιµ :ΣΧµιαακολουθίααπόλ-συνεχή µ λδιανυσµατικά µέτρα.εάντοόριο lim µ Ευπάρχει Ε Στότε lim µ Ε 0οµοιόµορφα λε0 1, 2, 3,... Επιπλέοντοµ :ΣΧ,µΕ lim µ Εείναιδιανυσµατικόµέτρο. Απόδειξη: Μπορεί εύκολα να δεί κανείς ότι µπορούµε να ορίσουµε µια µετρική στο Σ. ΗαπόστασητωνσυνόλωνΑ,Β ΣθαείναιλΑΒ.Μπορείνααποδειχείότιαναυτόςο µετρικόςχωρόςείναιπλήρης.κάθεµ :ΣΧείναισυνεχήςσυνάρτησηαπότον µετρικόχώροσστοχεπειδήµ λ.τασύνολα Σ,m E : E Σ, µ E µ m E εείναικλειστά ε 0. Εποµένωςκαιτοσύνολο Σ ρ Σ,m είναικλειστόστονπλήρηµετρικόχώροσ.αφούτο limµeυπάρχει,mp Ε ΣέχουµεότιΣ Σ ρ.απότοθεώρηµατου BaireκάποιοαπόταΣ ρ έχει ρ1 εσωτερικόσηµείο.υπάρχειλοιπόνακέραιος q, r 0, A Σέτσιώστε ΕστησειράΚµε κέντροτοακαιακτίνα rναέχουµε µ E µ m E ε,, m 1. Αςπάρουµε 0 δr έτσιώστε µ Β ε 1, 2, 3,..., q 1, q ΒµελΒ δ. ΕάντώραλΒ δγια κάποιοβέτσιώστεα\β,αβναανήκουνστησφαίρακ Ε Σ:λΑΕ r. Θα 17

19 έχουµε µ Β µ q Β µ Β µ q Β µ q B µ A B µ q A B µ A\B µ q A\B Έχουµε δείξει λοιπόν ότι lim µ Ε 0οµοιόµορφαγια 1, 2, 3,... λε0 Αποµένει να δειχθεί ότι µ είναι αριθµήσιµα προσθετικό. Αρκεί να δείξουµε ότι µ Ε m 0γιακάθεφθίνουσαακολουθίαΕ 0 Ε 1...Ε m... µε E i. Έχουµε γιαµιατέτοιαακολουθία Ε ι ότιλε m Σ λε \Ε k1. Απότην έχουµεότι ε 0 m ε έτσιώστε µ Ε m ε m m ε, 1, 2,... µe m ε m m ε µε m 0 A.E.D. m km i1 3.7Λήµµα:ΈστωΚένακυρτόκλειστόφραγµένουποσύνολοτουΧ.Έστω Σ 1 Σ 2...Σ µιααύξουσαακολουθίασ-αλγεβρώνστο 0, 1καιξ : 0, 1 Κµια ακολουθίααπόσ µετρήσιµεςσυναρτήσειςγιατηνοποίασ ξ E j 1 ε. (Εδώµε Ε συµβολίζουµετην ExpectatioωςπροςΣ. Tότευπάρχειένα martigale ξ,σ µε τιµέςστο έτσιώστε ξ ξ 1 ε. Απόδειξη: fix k. Έχουµεότι ξ Ε κ ξ κ1 1 Σ E k ξ E k ξ 1 1 ε. Ηακολουθία Ε κ ξ 1 k µπορείνααποδειχθείότιείναι Cauchyκαιεποµένωςσυγκλίνειστον L 1 X σ έναόριοξ k. Είναιφανερόότι ξ κ ξ κ ε. Ηξ κ παίρνειτιµές (σχεδονπαντου)στοσύνολο Κ.Παρατηρούµεότιξ κ1 lim E κ1 ξ εποµένως E κ ξ κ1 lim E κ ξ ξ κ. Αυτό σηµαίνειότιηακολουθία ξ κ,σ κ κ είναιένα martigale. Είµαστε τώρα σε θέση να αποδείξουµε το εξής θεώρηµα 3.8Θεώρηµα [D-U] :ΈστωΚένακλειστόφραγµένοκυρτόυποσύνολοτουΧ.Εάν κάθε martigaleξ : 0, 1 ΚσυγκλίνεισχεδόνπαντούτότεκάθευποσύνολοτουΚ είναι detable. Απόδειξη:ΑςυποθέσουµεότιτοσύνολοΑ Κδενείναι detable.αυτοσηµαίνειότι ε 0έτσιώστε x A, x coa\bx,ε. Αρκείνααποδείξουµεότιυπάρχειµια ακολουθίασ 1 Σ 2...Σ,... σαλγεβρώναπό (µετρήσιµα)υποσύνολατου0, 1και µιαακολουθία ξ ξ : 0, 1 Kέτσιώστε 18

20 1.ΚάθεΣ είναιπεπερασµένη 2. ξ 1 ξ ε 3.Κάθεξ είναισ -µετρήσιµηκαιπαίρνειτιµέςστοα. 4. Σ ξ Ε ξ 1 1 ε. 3 ΗκατασκευήτωνΣ καιτωνξ θαγίνειεπαγωγήωςπρος. α.σ 1 φ,0, 1,ξ 1 x X 0,1 όπου xείναιέναοποιοδήποτεστοιχείοτουα. j β.αςυποθέσουµεότιέχουµεκατασκευάσειτηνσ καιξ. Έστω Ι i i1 ηδιαµέριση του 0, 1πουγεννάτηνΣ,καιαςυποθέσουµεότιηξ : 0, 1 Αείναιτηςµορφής ξ Σ j x i X Ii x 1, x 2,..., x j A. i1 Fix i.γνωρίσουµεότι x i coa\bx i,εκαιεποµένωςυπάρχουνθετικοίαριθµοί λ i,1,λ i,2,...,λ i,ki, καιστοιχεία x i,1, x i,2,..., x i,ki τουσυνόλουα\βx i,ε έτσιώστε i.λ i,1,λ i,2,...,λ i,ki 1 ii. x i λ i,1 x i,1...λ i,ki x i,ki ε 3 ώστελι i,κ λ i,κ λι i. 2. ΈστωΙ i,1,ι i,2,...,ι i,ki µιαδιαµέρισητουι i έτσι (Εδώβέβαιατολείναιτοµέτρο Lebesgue). ΟρίζουµεΣ 1 ναείναιηάλγεβραπουγεννάταιαπότο Ι i,κ : 1 i j, 1 k k i. Eπίσηςορίζουµεξ 1 : 0, 1 Xναείναιξ 1 έχουµεότι ξ 1 ξ 1 ε. j Σ k i i1k1 Σ x i,k X Ii,k. Eπειδή x i x i,k εiκαι k Παρατηρούµε ότι 19

21 j k j λi Εξ 1 ΣΣ x i,k i,k X λi i I i ξ E ξ 1 1 Σ x i k i Σ λ i,κ x i,k i1k1 j i1 k1 λι i ε 3 2. Αυτό συνεπάγεταισξ E ξ 1 1 ε. Μπορούµεναπούµεότιµέχριτώραέχουµε 3 αποδείξει το εξής θεώρηµα. 3.9 Θεώρηµα: Έστω Κ ένα κυρτό, κλειστό, φραγµένο υποσύνολο του X. Τα επόµενα είνα ισοδύναµα. (1).ΤοΚέχειτην RNP (2). Κάθε martigale µε τιµές στο Κ συγκλίνει σχεδόν παντού (3). Κάθε υποσύνολο του Κ είναι martigale (3)(1) (2.4) (1)(2) (3.5) (2)(3) (3.8) 20

22 4ΤΕΛΕΣΤΕΣΣΤΟΝ L 1 ΈστωΤ : L 1 0, 1 XέναςτελεστήςκαιΑ 0, 1ένασύνολοθετικούµέτρου.ΜεΓ Α συµβολίζουµετοσύνολογ Α Τφ : sup pφ Α,φ 0,φ Λήµµα [B1] :Έστω SΓ Α, x,αένα sliceτουσυνόλουγ Α.Τότευπάρχει Β Α,λΒ 0έτσιώστεΓ Β SΓ Α, x, a. Aπόδειξη:Έστωγ sup x Γ Α aκαιφ 0, sup pφ Α,φ 1έτσιώστε φτ x γ. ΤοσύνολοΚ y L 1 Α : y 0 και yτ x γy 1 είναιέναςκυρτόςκλειστός κώνοςτου L 1 Α. Είναιφανερόότιφ Κκαιεποµένωςαπότοθεώρηµα Hah-Baach g L Aέτσιώστεφg sup yg 0. yκ ΤοσύνολοΒ g 0είναιέναυποσύνολοτουΑκαιέχειθετικόµέτρο.Εάντώρα y 0, y 1και sup py Βέχουµεότι yτ x γ (αφού y Κ) x Ty sup x Γ Α α ΑυτόσηµαίνειότιΓ Β SΓ Α, x, a. Αναπαραστάσιµοι Τελεστές 4.2Ορισµός:Έστω Xέναςχώρος Baach.ΈναςτελεστήςΤ : L 1 0, 1 Xένας τελεστής.αςυποθέσουµεότι ε 0Α 0, 1θετικούµέτρου Β Α,λΒ 0έτσι ώστε diamγ Β ε. ΤότεοτελεστήςΤείναιαναπαραστάσιµος. Απόδειξη:Τοδιανυσµατικόµέτροµ :ΣX,µΑ ΤX Α έχειτηνιδιότητα : Ε 0, 1µελΕ 0 Ε 1 Εέτσιώστετο average rage Αµ µε λε,ε Ε 1,λΕ 0ναέχειδιάµετροµικρότερητουε.Όπωςπροκύπτειαπό την απόδειξη του θεωρήµατος (2.4) το µ έχει Rado-Nikodym παράγωγο η οποία θα είναι η συνάρτηση που "αναπαραστά" τον Τ. 4.3Θεώρηµα:ΈστωΚ Xένακυρτόκλειστόυποσύνολοτου Xµετην RNP.Εάν Τ : L 1 0, 1 XείναιέναςτελεστήςέτσιώστεΓ 0,1 Τφ :φ0,φ 1 ΚτότεοΤ είναι αναπαραστάσιµος. 21

23 Απόδειξη:ΕάνΑ 0, 1,λΑ 0τότετοσύνολοΓ Α Τφ :φ0 sup pφ Α,φ1 είναι detableκαιεποµένως ε 0 slice SτουΓ Α έτσιώστε diams ε. Απότολήµµα (4.1) Β Α,λΒ 0έτσιώστεΓ Β SκαιότιοτελεστήςΤείναιαναπαραστάσιµος. 4.4Θεώρηµα:ΈστωΚένακλειστόκυρτόφραγµένουποσύνολοτου X.Εάνκάθε τελεστήςτ : L 1 XέτσιώστεΓ 0,1 Κείναιαναπαραστάσιµοςτότεκάθε martigaleµε τιµέςστοκσυγκλίνεισχεδόνπαντού (καιεποµένωςτοκέχειτην RNP). Απόδειξη:Έστωξ : 0, 1 Xένα martigaleµετιµέςστοκ.θεωρούµετοντελεστή Τ : L 1 X,Τφ lim ξ φ. (Τοόριουπάρχειγιακάθεαπλήσυνάρτησηφκαιεποµένως φ L 1 ). Έστω g L X ηπαράγωγοςτουτ.έχουµεότιφg lim ξ φ,φ L 1. Αυτόσηµαίνει ότιεg/σ ξ. Aπότοθεώρηµατου Levy-Doobέχουµεότιτο martigaleσυγκλίνει σχεδόν παντού στην g. 4.5Θεώρηµα (Daford-Pettis) [D-U] :ΈστωΤ : L 1 X έναςαναπαραστάσιµος τελεστής.εάνκ L 1 καιτοσύνολοτκείναι orm-συµπαγέςυποσύνολοτου X. Απόδειξη:Αςυποθέσουµεότι g L X έτσιώστετf fgdλ,f L 1. ΈστωΚένα φραγµένοοµοιόµορφαολοκληρώσιµο (uiformly itergalle)υποσύνολοτου L 1. ιαλέγουµεµιαακολουθία g απλώνσυναρτήσεωνηοποίανασυγκλίνεισχεδόν παντούστην g.απότοθεώρηµατου EgoroffµπορούµεναβρούµεένασύνολοΕ 1 έτσι ώστε lim g gοµοιόµορφαστοε 1 καιτοµέτρολ0, 1\Ε 1 ναείναιτόσοµικρόώστε 0,1\Ε 1 Ε f dλ f K. Τ1 Αφούησυνάρτηση g X E1 : 0, 1 Xέχει (σχετ.)συµπαγέςπεδίοτιµών,οτελεστής f fgdλείναισυµπαγήςκαιεποµένωςτοσύνολο fgdλ,f Κείναισχετ. E 1 συµπαγής. E 1 Παρατηρούµεότιγια f Κ fgdλ Τε 0,1\Ε 1 Τ1 ε. 22

24 Τοσύνολο Τf : f Κ fgdλ fgdλ, f Κείναι totally boudedαπό E 1 0,1\Ε 1 2ε σφαίρες.άρατοσύνολοτκείναισχετ.συµπαγές. 4.6Θεώρηµα (Lewis - Stegall):ΈστωΤ : L 1 Xέναςτελεστής.ΟΤείναι αναπαραστάσιµοςεάνκαιµόνοεάνυπάρχουντελεστές S : L 1 l 1, U : l 1 Xέτσιώστε Τ US. Ηαπόδειξη (στηγλώσσατωνδιανυσµατικώνµέτρων)έχειγίνειστoκεφάλαιο 2. Παρατήρηση:Γνωρίζουµεότιοχώρος l 1 έχειτηνιδιότητατου Schurδηλαδήεάνµια ακολουθίασυγλίνειασθενώςστον l 1 τότεσυγκλίνεικαιστηνόρµατου l 1.Τοθεώρηµα των Lewis - Stegall δίνει µια άλλη απόδειξη του θεωρήµατος των Duford-Pettis (4.5). 4.7Θεώρηµα:ΈστωΤ : L 1 Xέναςασθενώςσυµπαγήςτελεστής.ΤότεοΤείναι αναπαραστάσιµος. Απόδειξη [S] : Χωρίς βλαβη της γενικότητας µπορούµε να υποθέσουµε ότι ο X είναι διαχωρίσιµος. Έστω W ένα ασθενώς συµπαγές υποσύνολο του X έτσι ώστε Τf : f 1 1 W. Μπορούµεναδεχθούµεότιτο Wείναικυρτόσυµµετρικό. ιαλέγουµεµιαακολουθία x i i1 όταν X, x i 1ηοποία "νορµάρει"κάθεστοιχείο του X (δηλαδήεάν x X, τότε x sup x i x ).Έστωα sup x. i xw Ορίζουµε την απεικόνηση Φ : W Q Π α,α i1 Φx x i x i1 x W. ΗσυνάρτησηΦείναιοµοιοµορφισµόςτου Wµετηνασθενήτοπολογίατου Q (διότιη cox i, i 0είναι w πυκνήστηνβ x x X,x 1καιεποµένωςείναι πυκνή ως προς την οµοιόµορφη σύγλιση στην ασθενώς συµπαγή κυρτά υποσύνολα του X). Έστω h i T x i L. Μπορούµεναδούµεότι sup h i ω T x i α i Ορίζουµε y : 0, 1 Q yω h i ω i1. Αφού η y είναι η "κατά συντεταγµένες µετρήσιµη" είναι µετρήσιµη. Θα δείξουµε ότι 23

25 yω ΦW λ σχεδόνπαντούκαιτότεησυνάρτησηφ 1 Ψθαείναιη"παράγωγος τουτ. Ισχυριζόµαστεότι τοσύνολο A ω : x Wµε x i x h i ω 1 i έχει µέτρο 1.Αυτότοσύνολοείναιµετρήσιµοεπειδήείναιτηςµορφής y 1 Uόποθ Uείναι ένα ανοικτό υποσύνολο του Q. Ορίζουµε τον τελεστή S X l, S x x i x i1. Οτελεστής S Tείναιαναπαραστάσιµοςµεπαράγωγο τηνσυνάρτησηω h i ω i1. Τοσύνολο S T f : f 1 1περιέχειστοσύνολο S Wπουείναι ormσυµπαγές.αυτόσηµαίνειότι h i ω i1 είναιστο S Wγιαόλα σχεδόνταω 0, 1. ΑυτόσυνεπάγεταιότιλA 1 λ A 1. Γιαω A διαλέγουµε x Wέτσι ώστε i x i x h i ω Έστω x 0 έναασθενέςσηµείοσυσσώρευσηςτης x 1. Τότε x i x 0 h i ω i. Αυτό σηµαίνειότι yω ΦW λ σχεδόνπαντού.ησυνάρτησηφ 1 Ψ : 0, 1 Xείναιη παράγωγος του Τ. 4.8Πόρισµα:ΕάνΤ : L 1 XείναιασθενώςσυµπαγήςτότεοΤαπεικονίζειασθενώς συµπαγήυποσύνολατου L 1 σε ormσυµπαγήυποσύνολατου X. 4.9 Superlemma [Bou] : (Asplud, Namioka, Bourgai). Έστω Τ,Κ 0,Κ 1 κλειστά,κυρτάφραγµέναυποσύνολατουχώρου Baach Xκαιε 0 έτσι ώστε (1) J coκ 0 Κ 1 (2)Κ ο Jκαι diamκ 0 ε (3) J\Κ 1 Τότευπάρχειένα sliceτου Jτοοποίοπεριέχειένασηµείοτου Κ 0 καιτουοποίουη διάµετρος είναι µικρότερη του ε. Απόδειξη: r 0, 1θέτουµε C r x X : x 1 λx 0 λx 1, x 0 Κ 1, r λ1. 24

26 Παρατηρούµεότιόπωςτο r 0τακυρτάσύνολα C r αυξάνουναπότοσύνολοκ 1 στο σύνολο co coκ 0 Κ 1. Πρώταθααποδειχθείότιεάν 0 r 1τότε J\C r K 0 \C r. Έστω f X έτσιώστε sup fk 1 sup ft Έχουµελοιπόνότι sup ft sup fco sup fco maxsup fk 0, sup fk 1 sup ft. Eπίσης παρατηρούµε ότι sup fc r sup fc r sup1 λ sup fk 0 λ sup fk 1 :λr, 1 1 r sup fk 0 rsup Αυτόσυνεπάγεταιότιδενείναιδυνατόν C r K 0 αφούτότε sup fc r sup fk 0. Τοεπόµενοβήµαείναινααποδείξουµεότι diamj\c r εεάντο rείναιαρκετάκοντά στο 0. Αφού J coέχουµε J\C r co\c r. Eπειδήτο C r είναικλειστότο co\c r είναιπυκνόστο co\c r. Εποµένωςεάν w J\C r καιδ 0 x co\c r έτσιώστε w x δ. ιαλέγουµε x 0 K o, x 1 K 1 καιλ 0, rέτσιώστεχ 1 λx 0 λx 1. Έχουµεότι w x 0 w x x x 0 δ λx 0 x 1 δ rmόπου Μ sup 0 y 1 : y 0 Κ 0, y 1 Κ 1 Είναιεύκολοναδούµετώραότι diamj\c r δ rm diamk o δrm Επειδή diamk o εεάνπάρουµεταδ, rκατάλληλαµικράµπορούµενακάνουµετην διάµετροτου J\C r µικρότερηαποε. Τώραεάν x 0 K o και x 0 J\C r τότευπάρχειένα sliceτου Jξένοπρόςτο C r.το slice αυτό έχει διάµετρο µικρότερη απο ε. Υπάρχειµια w µορφήτου Superlemmaηοποίαµπορείναδιατυπωθείωςεξής. Superlemma :Έστωε 0, J, K 0, K 1 w -συµπαγήυποσύνολατουδυϊκούχώρου Baach X έτσιώστε (1) J cok 0 K 1 w cok 0 K 1 (2) K 0 Jκαι diamk o ε (3) J\K 1 25

27 Τότευπάρχειένα w sliceτου JτοοποίοπεριέχειένασηµείοτουΚ 0 καιτουοποίου η διάµετρος είναι µικρότερη απο ε. 4.10Θεώρηµα [Bou] :ΈστωΚέναασθενώςσυµπαγέςκυρτόυποσύνολοτου X.Τότε τοκέχειτην RNP. Aπόδειξη: Ας υποθέσουµε ότι το Κ είναι διαχωρίσιµο ασθενώς συµπαγές υποσύνολο του XκαιότιτοΚδενείναι detable.έστω x i έναπυκνόυποσύνολοτουκκαιε 0. Έστω D ασθενώςκλειστήθήκητου w K K. Παρατηρούµεότι Bx i, ε. 3 Το σύνολο D µε την ασθενή τοπολογία είναι συµπαγής (Hausdorff) και αφού τα σύνολα DBx i, ε είναιασθενώςκλειστάαπότοθεώρηµακατηγορίαςτου Baire 2 µπορούµεναβρούµεέναασθενώςανοικτόυποσύνολοτου Vτου Xέτσιώστε V D Bx i, ε γιακάποιο i 3 i1 ΈστωΚ 0 cov Dκαι Κ 1 coκ\v Παρατηρούµε ότι (1)Κ cok 0 K 1 (2) diamk o ε. Έστωτώρα x extk V. (Αφού V D. υπάρχειτέτοιο x).έχουµεότι x ασθενήθήκη Κ\Vκαιεποµένως x K 1 coκ\v. ηλαδή (3) K\K 1. Το Superlemma µπορεί να εφαρµοστεί για το σύνολο Κ αφού ισχύουν τα (1),(2),(3). Εποµένωςυπάρχειένα sliceτουκδιαµέτρουε. ΑυτόσηµαίνειότιτοΚείναι detable. 4.11Λήµµα:Έστω D, Cκλειστάφραγµένακυρτάυποσύνολατου X.Έστω J codcκαιέστω fx sup ft sup fcγιακάποιο f X και x J. Τότε x D. Απόδειξη: x codcέτσιώστε x x 0. Αςυποθέσουµεότι x λ d 1 λ c, 0 λ 1 d D, c C. Χωρίςβλάβητηςγενικότητας υποθέτουµεότι λ lim λ f/d 1 λ fc λ sup fd 1 λ sup fc sup fj. 26

D 1 D, D n+1 D n, D n G n, diam(d n ) < 1 n. B := ρ(x n, x m ) diam(d m ) < 1 m.

D 1 D, D n+1 D n, D n G n, diam(d n ) < 1 n. B := ρ(x n, x m ) diam(d m ) < 1 m. Σηµειώσεις Συναρτησιακής Ανάλυσης Θέµης Μήτσης Τµηµα Μαθηµατικων Πανεπιστηµιο Κρητης Περιεχόµενα 1. Το ϑεώρηµα κατηγορίας του Baire 4 2. Χώροι Banach 5 3. Φραγµένοι γραµµικοί τελεστές 8 4. Χώροι πεπερασµένης

Διαβάστε περισσότερα

e-mail: s97130@math.aegean.gr soviet@teivos.samos.aegean.gr http://iris.math.aegean.gr/software/kerkis/

e-mail: s97130@math.aegean.gr soviet@teivos.samos.aegean.gr http://iris.math.aegean.gr/software/kerkis/ A Π α ν ε π ι ς τ ή µ ι ο Α ι γ α ί ο υ Σ χ ο λ ή Θ ε τ ι κ ώ ν Ε π ι ς τ η µ ώ ν Τ µ ή µ α Μ α θ η µ α τ ι κ ώ ν Πτυχιακή εργασία Εκπονητής Χουσαΐνοβ Αλέξανδρος Α.Μ. 311/1997130 Σάµος, 2002 Τίτλος : Θεωρία

Διαβάστε περισσότερα

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2...

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2... ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Β.ΒΛΑΧΟΥ, Α. ΣΟΥΡΜΕΛΙΔΗΣ Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών Φθινόπωρο 2013 1 Θα θέλαμε να αναφέρουμε ότι για την συγγραφή αυτών των σημειώσεων χρησιμοποιήσαμε ιδιαίτερα α)το βιβλίο

Διαβάστε περισσότερα

σημειωσεις θεωριας μετρου

σημειωσεις θεωριας μετρου σημειωσεις θεωριας μετρου Σάμος 2009 Επιλογή υλικού Αντώνης Τσολομύτης Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών. Δημιουργία πρώτου ηλεκτρονικού αρχείου Μαγδαληνή Πλιόγκα Απόφοιτος του Τμήματος Μαθηματικών

Διαβάστε περισσότερα

Ανάλυση Fourier και Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος

Ανάλυση Fourier και Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος Ανάλυση Fourier και Ολοκλήρωµα Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Πανεπιστήµιο Αθηνών Αθήνα 2015 Περιεχόµενα 1 Μέτρο Lebesgue 3 1.1 Εξωτερικό µέτρο Lebesgue........................... 3

Διαβάστε περισσότερα

Θεωρία Μετρικών Χώρων Θέµης Μήτσης

Θεωρία Μετρικών Χώρων Θέµης Μήτσης Θεωρία Μετρικών Χώρων Θέµης Μήτσης Τµηµα Μαθηµατικων Πανεπιστηµιο Κρητης Ηρακλειο Περιεχόµενα Μετρικοί χώροι 5 Σύγκλιση ακολουθιών 7 Ανοιχτά και κλειστά σύνολα 9 Συνεχείς συναρτήσεις 13 Κλειστότητα, σηµεία

Διαβάστε περισσότερα

Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh

Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ginnhc K. Sarant pouloc jnik Mets bio Poluteqne o Sqol farmosmłnwn Majhmatik n & Fusik n pisthm n TomŁac Majhmatik n 22 Febrouar ou 28 Perieqìmena Συμβολισμός

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

Ιωάννης Πολυράκης Καθηγητής ΕΜΠ ΘΕΜΑΤΑ ΑΝΑΛΥΣΗΣ και Θεωρία Γενικής Ισορροπίας στην Οικονοµία ΑΘΗΝΑ 2009 2 Περιεχόµενα 1 Εισαγωγή 7 1.1 Η δυϊκότητα αγαθών-τιµών.................. 8 1.1.1 Λήψη αποφασεων...................

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0.

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑΪΟΥ 23 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1o A. Για x x έχουµε: f (

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Ασκήσεις και Θέµατα στη Μαθηµατική Ανάλυση Ι

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Ασκήσεις και Θέµατα στη Μαθηµατική Ανάλυση Ι ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Ασκήσεις και Θέµατα στη Μαθηµατική Ανάλυση Ι Γιάννης Σαραντόπουλος Αθήνα 7 Οκτωβρίου 5 Περιεχόµενα Συµβολισµός

Διαβάστε περισσότερα

Σύντοµες Σηµειώσεις Πραγµατικής Ανάλυσης Θέµης Μήτσης

Σύντοµες Σηµειώσεις Πραγµατικής Ανάλυσης Θέµης Μήτσης Σύντοµες Σηµειώσεις Πραγµατικής Ανάλυσης Θέµης Μήτσης Τµηµα Μαθηµατικων Πανεπιστηµιο Κρητης Ηρακλειο Περιεχόµενα Συµβάσεις και συµβολισµοί 4 1. Το εξωτερικό µέτρο Lebesgue 5 2. Μετρήσιµα σύνολα 7 3. Η

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y.

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y. ΛΥΣΕΙΣ ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Άσκηση 6 6 Λύση: α) 7z + z (cosπ + isi π ) π+ kπ π+ kπ Κατά συνέπεια z (cos + isi ), k,,, 5 Παίρνουµε τις ρίζες 6 6 z (cos + isi ) ( + i ) + i, π π 6 6 6 z (cos + isi ) (cos

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 16 Ιανουαρίου 2013 Ασκηση

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β.

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β. ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηµατική Ανάλυση Ι Φεβρουαρίου, 3 Θ. (α ) Εστω A, B µη κενά ϕραγµένα σύνολα πραγµατικών αριθµών. είξτε ότι αν inf A

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

Κουβεντιάζοντας µε τις ασκήσεις

Κουβεντιάζοντας µε τις ασκήσεις Κουβεντιάζοντας µε τις ασκήσεις Μαθηµατικά κατεύθυνσης Γ Λυκείου (Θέµατα σε όλη τη ύλη) Άσκηση 2 η Αν f συνεχής στο [1, 11], παραγωγίσιµη στο (1, 11) και f(1)=1, f(11)=11 δείξτε ότι υπάρχουν α, β στο (1,

Διαβάστε περισσότερα

Θεωρία Προσέγγισης και Εφαρµογές

Θεωρία Προσέγγισης και Εφαρµογές Θεωρία Προσέγγισης και Εφαρµογές Μιχάλης Κολουντζάκης Τµήµα Μαθηµατικών και Εφαρµοσµένων Μαθηµατικών, Πανεπιστήµιο Κρήτης, Βούτες, 70013 Ηράκλειο, E-mail: kolount AT gmail.com Ανοιξη 2013-14 Περιεχόµενα

Διαβάστε περισσότερα

Κεφάλαιο 8 1. Γραµµικές Απεικονίσεις

Κεφάλαιο 8 1. Γραµµικές Απεικονίσεις Σελίδα 1 από 9 Κεφάλαιο 8 1 Γραµµικές Απεικονίσεις Τα αντικείµενα µελέτης της γραµµικής άλγεβρας είναι σύνολα διανυσµάτων που χαρακτηρίζονται µε την αλγεβρική δοµή των διανυσµατικών χώρων. Όπως λοιπόν

Διαβάστε περισσότερα

Σηµειώσεις Γενικής Τοπολογίας Θέµης Μήτσης

Σηµειώσεις Γενικής Τοπολογίας Θέµης Μήτσης Σηµειώσεις Γενικής Τοπολογίας Θέµης Μήτσης Τµηµα Μαθηµατικων Πανεπιστηµιο Κρητης Περιεχόµενα 1. Τοπολογικοί Χώροι - Βάσεις - Υποβάσεις 4 2. Κλειστότητα και Εσωτερικό 7 3. Σύγκλιση 10 4. Συνέχεια 13 5.

Διαβάστε περισσότερα

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ Ο κύριος στόχος αυτού του κεφαλαίου είναι να δείξουµε ότι η ολοκλήρωση είναι η αντίστροφη πράξη της παραγώγισης και να δώσουµε τις βασικές µεθόδους υπολογισµού των ολοκληρωµάτων

Διαβάστε περισσότερα

Σηµειώσεις για τα Μαθήµατα Εισαγωγή στην Ανάλυση Ι και Εισαγωγή στην Ανάλυση ΙΙ Θέµης Μήτσης

Σηµειώσεις για τα Μαθήµατα Εισαγωγή στην Ανάλυση Ι και Εισαγωγή στην Ανάλυση ΙΙ Θέµης Μήτσης Σηµειώσεις για τα Μαθήµατα Εισαγωγή στην Ανάλυση Ι και Εισαγωγή στην Ανάλυση ΙΙ Θέµης Μήτσης Τµηµα Μαθηµατικων Πανεπιστηµιο Κρητης Ηρακλειο Περιεχόµενα Κεφάλαιο. Το Αξίωµα τής Πληρότητας 5 Ασκήσεις 9

Διαβάστε περισσότερα

Συνήθεις ιαφορικές Εξισώσεις. Πρόχειρες σηµειώσεις. Αλκης Τερσένοβ. 1. ιαφορικές Εξισώσεις Πρώτης Τάξης... 2

Συνήθεις ιαφορικές Εξισώσεις. Πρόχειρες σηµειώσεις. Αλκης Τερσένοβ. 1. ιαφορικές Εξισώσεις Πρώτης Τάξης... 2 Συνήθεις ιαφορικές Εξισώσεις 215 Πρόχειρες σηµειώσεις Αλκης Τερσένοβ Περιεχόµενα 1. ιαφορικές Εξισώσεις Πρώτης Τάξης... 2 2. Συστήµατα ιαφορικών Εξισώσεων Πρώτης Τάξης... 22 2.1 ιαφορικές Εξισώσεις Ανώτερης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό. Β. Τι

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

Το Ορισµένο Ολοκλήρωµα

Το Ορισµένο Ολοκλήρωµα Το Ορισµένο Ολοκλήρωµα Λυγάτσικας Ζήνων Πρότυπο Πειραµατικό Γ.Ε.Λ. Βαρβακείου Σχολής 3 Μαρτίου 4 Εισαγωγή Ο δρόµος της ϑεωρίας της ολοκλήρωσης ξεκινά απο τον Αρχιµήδη, αλλά η πραγµατική ιστορία αρχίζει

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3.

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3. ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ Έστω Χ = (Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ. Χ την: F(x) = P(X 1 x 1,, X x ), x = (x 1,,x ) T 1. 0 F(x) 1, x.. Η F είναι μη

Διαβάστε περισσότερα

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Μαρίνα Χαραλαµπίδου Τµήµα Μαθηµατικών Τοµέας Αλγεβρας και Γεωµετρίας Πανεπιστηµίο Αθηνών Σεµινάριο Τοµέα Αλγεβρας και Γεωµετρίας 11/12/2012 1 / 47 Περιεχόµενα

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x,

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x, Θέμα Α Θέματα Α. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του, στο οποίο όμως η f είναι συνεχής. Να αποδείξετε ότι αν η f() διατηρεί πρόσημο στο (, ) (, ), τότε

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρ Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Συναρτήσεις, Ορια, Συνέχεια ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των συναρτήσεων,

Διαβάστε περισσότερα

ιανυσµατική Ανάλυση Γιάννης Γιαννούλης

ιανυσµατική Ανάλυση Γιάννης Γιαννούλης ιανυσµατική Ανάλυση Γιάννης Γιαννούλης Ιωάννινα, 13.1.2013 Σηµείωση : Οι παρούσες σηµειώσεις δηµιουργούνται κατά την διάρκεια της διδασκαλίας του µαθήµατος Απειροστικός Λογισµός ΙΙΙ σε ϕοιτητές του τρίτου

Διαβάστε περισσότερα

Βάση και Διάσταση Διανυσματικού Χώρου

Βάση και Διάσταση Διανυσματικού Χώρου Βάση και Διάσταση Διανυσματικού Χώρου Έστω V ένας διανυσματικός χώρος επί του σώματος F. Ορισμός : Ένα υποσύνολο S του διανυσματικού χώρου V θα λέμε ότι είναι βάση του V αν ισχύει Α) Η θήκη του S παράγει

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α.

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. είναι διαµερίσεις των κλειστών διαστηµάτων [α,b] και [c,d] αντιστοίχως της µορφής

ΚΕΦΑΛΑΙΟ 4 ΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. είναι διαµερίσεις των κλειστών διαστηµάτων [α,b] και [c,d] αντιστοίχως της µορφής . Ορισµοί-Ιδιότητες ΚΕΦΑΛΑΙΟ 4 ΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Έστω f : R είναι µία φραγµένη συνάρτηση πάνω σε µία κλειστή ορθογώνια περιοχή Εστω (, y ) { } R =,y :a b, c y d. = είναι µια διαµέριση της ορθογώνιας περιοχής

Διαβάστε περισσότερα

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Αλέξανδρος Γ. Συγκελάκης 6 Απριλίου 2006 Περίληψη Θέµα της εργασίας αυτής, είναι η απόδειξη οτι η εξίσωση x 3 + y 3 = z 3 όπου xyz 0,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΡΟΣΕΓΓΙΣΗΣ ΔΗΜΗΤΡΙΟΣ ΝΟΥΤΣΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΜΑΘΗΜΑΤΚΩΝ. Ιωάννινα 2014

ΘΕΩΡΙΑ ΠΡΟΣΕΓΓΙΣΗΣ ΔΗΜΗΤΡΙΟΣ ΝΟΥΤΣΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΜΑΘΗΜΑΤΚΩΝ. Ιωάννινα 2014 ΘΕΩΡΙΑ ΠΡΟΣΕΓΓΙΣΗΣ ΔΗΜΗΤΡΙΟΣ ΝΟΥΤΣΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΜΑΘΗΜΑΤΚΩΝ Ιωάννινα 0 Περιεχόμενα ΕΙΣΑΓΩΓΗ 5. Νόρμες.................................... 6. Υπαρξη και μονοσήμαντο.......................... 8 ΟΜΟΙΟΜΟΡΦΗ

Διαβάστε περισσότερα

Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA

Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA Eisagwg Οι δυναμοσειρές είναι μια πολύ ενδιαφέρουσα κατηγορία σειρών. Βρίσκουν πολύ σημαντικές εφαρμογές στον ορισμό συναρτήσεων καθώς και σε διάφορες

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Γιωργος Λαλας Α.Μ: 331/2004026. Το Θεωρηµα Dvoretzky. Πτυχιακη Εργασια. AΠανεπιστήµιο Αιγαίου, Τµήµα Στατιστικής

Γιωργος Λαλας Α.Μ: 331/2004026. Το Θεωρηµα Dvoretzky. Πτυχιακη Εργασια. AΠανεπιστήµιο Αιγαίου, Τµήµα Στατιστικής Γιωργος Λαλας Α.Μ: 331/2004026 Το Θεωρηµα Dvoretzky Πτυχιακη Εργασια AΠανεπιστήµιο Αιγαίου, Τµήµα Στατιστικής και Αναλογιστικών - Χρηµατοοικονοµικών Μαθηµατικών Σάµος Ιουνιος 2011 Εισηγητής: Ταχτσής Ελευθέριος

Διαβάστε περισσότερα

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ Κασαπίδης Γεώργιος Μαθηµατικός Στο άρθρο αυτό µελετάµε την πιο χαρακτηριστική ιδιότητα του συνόλου R των πραγµατικών αριθµών. ΟΡΙΣΜΟΣ 1 Ένα σύνολο Α από πραγµατικούς

Διαβάστε περισσότερα

H Ισοδυναμία των Διαστημάτων του R με αφορμή ένα Πρόβλημα του «φ»

H Ισοδυναμία των Διαστημάτων του R με αφορμή ένα Πρόβλημα του «φ» H Ισοδυναμία των Διαστημάτων του R με αφορμή ένα Πρόβλημα του «φ» Δημ. Ι. Μπουνάκης Σχ. Σύμβουλος Μαθηματικών (Δημοσιεύτηκε στο τεύχος 6, 2009, του περιοδικού «φ») Στο τελευταίο τεύχος (5 ο, 2008) του

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων. Άσκηση Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μέρος ο i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 6. Βέλτιστες προσεγγίσεις σε ευκλείδειους χώρους Στο κεφάλαιο αυτό θα ασχοληθούµε µε προσεγγίσεις που ελαχιστοποιούν αποστάσεις σε διανυσµατικούς χώρους, µε νόρµα που προέρχεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β ΙΟΥΝΙΟΥ 4 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία σελ. 5 σχολικού βιβλίου. Α. Θεωρία σελ. 73 σχολικού βιβλίου. Α3. Θεωρία σελ. 5 σχολικού βιβλίου. Α4. α) Λ, β) Σ, γ) Σ,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 867 (Αναρτήθηκε 8 4 ) ίνονται τα διανύσµατα a και b µε µέτρα, 6 αντίστοιχα και ϕ [, π] a b+ x+ a b y 5= () δίνεται η εξίσωση ( ) ( ) α) Να αποδείξετε

Διαβάστε περισσότερα

(GNU-Linux, FreeBSD, MacOsX, QNX

(GNU-Linux, FreeBSD, MacOsX, QNX 1.7 διαταξεις (σελ. 17) Παράδειγµα 1 Θα πρέπει να κάνουµε σαφές ότι η επιλογή των λέξεων «προηγείται» και «έπεται» δεν έγινε απλώς για λόγους αφαίρεσης. Μπορούµε δηλαδή να ϐρούµε διάφορα παραδείγµατα στα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (Θεώρ Frmat) σχολικό βιβλίο σελ 6-6 Α Θεωρία (Ορισµός) σχολικό βιβλίο σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Συνέχεια συνάρτησης Σελ 17. Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε

Συνέχεια συνάρτησης Σελ 17. Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε Συνέχεια συνάρτησης Σελ 17 ΜΕΘΟΔΟΛΟΓΙΑ 4.0.1 Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε κάποιο διάστημα τιμών της μεταβλητής της, οδηγεί στην εφαρμογή του θεωρήματος Βlzan ως εξής: i) Μεταφέρουμε

Διαβάστε περισσότερα

Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27)

Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27) Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: ίκτυα ροής και το πρόβληµα της µέγιστης ροής Η µεθοδολογία Ford-Fulkerson Ο αλγόριθµος Edmonds-Karps ΕΠΛ 232

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 04 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04 ΘΕΜΑ ο : * Θεωρούμε τους μιγαδικούς αριθμούς της μορφής xxi,

Διαβάστε περισσότερα

Κάθε γνήσιο αντίτυπο φέρει τη σφραγίδα του εκδότη

Κάθε γνήσιο αντίτυπο φέρει τη σφραγίδα του εκδότη Κάθε γνήσιο αντίτυπο φέρει τη σφραγίδα του εκδότη ΘΩΜΑΣ Α. ΚΥΒΕΝΤΙΔΗΣ Γεννήθηκε το 947 στο Νέο Πετρίτσι του Ν. Σερρών. Το 965 αποφοίτησε από το εξατάξιο Γυμνάσιο Σιδηροκάστρου του Ν. Σερρών και εγγράφηκε

Διαβάστε περισσότερα

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Ι. ΠΡΑΞΕΙΣ A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ Ορισµός Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Παραδείγµατα:. Η ισότητα x y = x y είναι µια πράξη επί του *. 2. Η ισότητα

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Ολοκληρώµατα ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 85 3 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των ολοκληρωµάτων πραγµατικών συναρτήσεων

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Λογάριθµοι ΛΟΓΑΡΙΘΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΛΟΓΑΡΙΘΜΟΥΣ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Λογάριθµοι ΛΟΓΑΡΙΘΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΛΟΓΑΡΙΘΜΟΥΣ ΛΟΓΑΡΙΘΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΛΟΓΑΡΙΘΜΟΥΣ Παραθέτουµε αρχικά τις βασικές ιδιότητες των δυνάµεων µε βάση έ- ναν θετικό πραγµατικό αριθµό και εκθέτη έναν ρητό αριθµό. α x.α y = α x+y (α.β) x = α x.β x α x :α

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΙΟΥΝΙΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

23 2011 ΘΕΜΑ Α A1. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και x 0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x 0 και είναι παραγωγίσιμη στο σημείο αυτό, να αποδείξετε ότι:

Διαβάστε περισσότερα

Ακρότατα πραγματικών συναρτήσεων

Ακρότατα πραγματικών συναρτήσεων Ακρότατα πραγματικών συναρτήσεων Ορισμός Έστω U R, U και f : U R R συνάρτηση τότε: )Το λέγεται τοπικό ελάχιστο της f αν υπάρχει περιοχή V του ώστε f f για κάθε V U Το λέγεται τοπικό μέγιστο της f αν υπάρχει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 3ο : Δίνεται η συνάρτηση f :(,) R με f() η οποία για κάθε (,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (ΟΕΦΕ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 01 Ε_ΜλΘΤ(α) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή Μαΐου 01 ιάρκεια Εξέτασης:

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( )

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( ) ΚΕΦΑΛΑΙ 6 ΕΥΘΕΙΑ-ΕΠΙΠΕ 6 Γεωµετρικοί τόποι και εξισώσεις στο χώρο Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών ρισµός 6 Θεωρούµε τη συνάρτηση F:Α,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία ΜΑΘΗΜΑ 8. B.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία Θεωρία Ασκήσεις γ. τόπου και µεγιστο ελάχιστου Στις ασκήσεις αυτού του µαθήµατος χρησιµοποιούµε ανισωτικές σχέσεις από την Ευκλείδεια Γεωµετρία. Θυµίζουµε

Διαβάστε περισσότερα

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις Σελίδα 1 από 6 Κεφάλαιο 5 Οι χώροι R και C Περιεχόµενα 5.1 Ο Χώρος R Πράξεις Βάσεις Επεξεργασµένα Παραδείγµατα Ασκήσεις 5. Το Σύνηθες Εσωτερικό Γινόµενο στο Ορισµοί Ιδιότητες Επεξεργασµένα Παραδείγµατα

Διαβάστε περισσότερα

4. Μιγαδική Ολοκλήρωση. Το Θεώρηµα Cauchy και εφαρµογές. ( ) ( ) ( )

4. Μιγαδική Ολοκλήρωση. Το Θεώρηµα Cauchy και εφαρµογές. ( ) ( ) ( ) 4 Μιαδική Ολοκλήρωση Το Θεώρηµα Cauchy και εφαρµοές Καµπύλες στο Μιαδικό επίπεδο Oρισµός 4 Αν, :[, ] xy a είναι συνεχείς πραµατικές συναρτήσεις τότε κάθε απεικόνιση :[ a, ] : t = x t + iy t, καλείται (προσανατολισµένη)

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)<0 Τότε υπάρχει ένα τουλάχιστον χ 0

ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)<0 Τότε υπάρχει ένα τουλάχιστον χ 0 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ-ΘΕΩΡΗΜΑ BOLZANO ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)

Διαβάστε περισσότερα

= A. 2 z1 ( 1. γνωστός ως κύκλος του Απολλωνίου.

= A. 2 z1 ( 1. γνωστός ως κύκλος του Απολλωνίου. ΤΟ ΜΙΓΑ ΙΚΟ ΕΠΙΠΕ Ο Επί του επιπέδου θεωρούµε ένα ορθογώνιο σύστηµα συντεταγµένων Oxy, και σε κάθε σηµείο P(x, y) του επιπέδου αντιστοιχίζουµε τον µιγαδικό αριθµό = x+ y Η αντιστοιχία αυτή είναι µία ένα

Διαβάστε περισσότερα

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Κεφ. I Εισαγωγή.. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Η ανάγκη µαθηµατικής περιγραφής και µοντελοποίησης συστηµάτων τα οποία εξελίσσονται χρονικά κατά τρόπο που περιέχει, σε µικρό ή µεγάλο βαθµό, τυχαιότητα,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 8: Ολοκληρώματα Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mil: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

Σηµειώσεις στις συναρτήσεις

Σηµειώσεις στις συναρτήσεις Σηµειώσεις στις συναρτήσεις 4 Η έννοια της συνάρτησης Ο όρος «συνάρτηση» χρησιµοποιείται αρκετά συχνά για να δηλώσει ότι ένα µέγεθος, µια κατάσταση κτλ εξαρτάται από κάτι άλλο Και στα µαθηµατικά ο όρος

Διαβάστε περισσότερα

Ασυµπτωτικη Θεωρια Χωρων Πεπερασµενης ιαστασης Με Νορµα Ασυµπτωτικη Θεωρια Χωρων Πεπερασµενης ιαστασης Με Νορµα Μορφω Ιακωβου Πτυχιακή Εργασία Επιβλέπων Αντωνιος Τσολοµυτης Πανεπιστήµιο Αιγαίου Τµήµα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 7 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α.1 Αν z 1, z είναι µιγαδικοί αριθµοί, να αποδειχθεί ότι: z 1 z = z 1 z. Α. Πότε δύο συναρτήσεις f, g λέγονται ίσες; Μονάδες 4 Α.3 Πότε η ευθεία y

Διαβάστε περισσότερα