Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ""

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ Χειµερινό Εξάµηνο Ρόδος, εκέµβριος 2013 ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ, Ι ΑΚΤΙΚΗΣ και ΠΟΛΥΜΕΣΩΝ Μάθηµα: ΥΓ00003 "ΕΙΣΑΓΩΓΗ στις ΒΑΣΕΙΣ και στις ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ των ΜΑΘΗΜΑΤΙΚΩΝ Ι" ιδάσκων: Ευγένιος Αυγερινός Εργασία Προόδου #2 φυλλάδιο 2 αϖό 3 ίνονται Οµάδες Ερωτήσεων, Προβληµάτων και Ασκήσεων, Παρακαλούµε να απαντήσετε µε προσοχή δίνοντας έµφαση σε όσα ακούσατε στις διαλέξεις του µαθήµατος, αλλά και σε όσα µπορείτε να βρείτε στα αντίστοιχα κεφάλαια των συγγραµµάτων της προτεινόµενης βιβλιογραφίας. Θα πρέπει να απαντήσετε: οι φοιτητές µε άρτιο αριθµό µητρώου σε τέσσερις από τις άρτια αριθµηµένες Ασκήσεις Προβληµατα, Ερωτησεις της αρεσκείας σας ολων των Οµάδων (δηλ 4 από κάθε οµαδα) και οι φοιτητές µε περιττό αριθµό µητρώου σε τέσσερις από τις περιττά αριθµηµένες Ασκήσεις Προβληµατα, Ερωτησεις της αρεσκείας σας ολων των Οµάδων (δηλ 4 από κάθε οµαδα) Παράδοση Εργασίας Η Εργασία Προόδου #2 (και τα δυο φυλλάδια) θα πρέπει να παραδοθεί την ευτέρα 20 Ιανουαρίου 2014 και ώρες στο Εργαστήριο Μαθηµατικών στον 1ο όροφο στο κτήριο 7 η ς Μαρτίου. Ρόδος, Τετάρτη 11 εκεµβρίου 2013 Για το Εργαστήριο ΜΑΘΗΜΑΤΙΚΩΝ, Ι ΑΚΤΙΚΗΣ και Πολυµέσων Ευγένιος Αυγερινός 1

2 ΑΣΚΗΣΕΙΣ ΑΛΗΘΟΣΥΝΟΛΩΝ-ΓΡΑΦΗΜΑΤΩΝ ΣΧΕΣΕΩΝ Οµάδα Α 1. Να γίνει η γραφική (καρτεσιανή) αναπαράσταση των εξής σχέσεων: R 1 = {(x, y) R 2 : -1 x 1, -3 y 2} R 2 = {(x, y) N 2 : 1 x 2, 2 y 3} R 3 = {(x, y) Z 2 : x 2, y 3} R 4 = {(x, y) R 2 : -1 < x < 4, -3 < y 2} R 5 = {(x, y) R 2 : y < x 2, -1 x 1} 2. Να γίνει η γραφική παράσταση των εξής σχέσεων: 3 0, x 0 x, x 0 y = f(x) = { y = f(x) = { 2 2 x, x> 0 x, x< 0 R 1 = {(x, y) R 2 : y 2 y y 1, y 1 = x 2, y 2 = -x 3 } R 2 = {(x, y) R 2 : x 2 + y 2 4} R 3 = {(x, y) R 2 : 1 x 2 + y 2 4} R 4 = {(x, y) R 2 : xy 1} 3. Όµοιως: S 1 = {(x, y) R 2 : (x 1) 2 + (y + 3) 2 9} S 2 = {(x, y) Ζ 2 : x + y > 1 x > 0} S 3 = {(x, y) Ρ 2 : x + y > 1 x > 0} 4. Όµοιως: S 1 = {(x, y) R 2 : (x + 1) 2 + (y -5) 2 9} S 2 = {(x, y) R 2 : 2x + y > 1 y > 0} Οµάδα Β 1. Να γίνει ένας πίνακας µε 5 τουλάχιστον τιµές για τις παρακάτω συναρτήσεις. Στη συνέχεια να γίνει η γραφική τους παράσταση Α f(x) = 3x 2 Β f(x) = x 2 9x g(x) = x + 9 F 6 (x) = x 2 +4x-5 h(x) = 120x + 25 f 2 (x) = ( 2 1 ) x F 3 (x) = 3 2 x 3 4 F 4 (x) = 3 2 x 3 x Αν µε f(x) = [x] συµβολίζουµε το ακέραιο µέρος του x δηλ. ο [x] είναι ο µεγαλύτερος ακέραιος, ο µικρότερος ή και του x. Π.χ. [-4,1] = -5 [2,5] = 2 Να γίνει το γράφηµα της f(x) = [x] για -3 x 3 3. Να γίνει επίσης το γράφηµα των f(x) = [x + 1], 0 x 4 h(x) = 6 [x], 0 x 6 s(x) = 6 x,2 x 6 g(x) = [3 x], -1 x Να γίνει το γράφηµα των: 2

3 f(x) = x 2, f 2 (x) = 2x 2, f 3 (x) = 2 1 x 2, f 4 (x) = -3x ιερευνήστε πως επηρεάζει ο συντελεστής του x 2 το γράφηµα της f Όµοια: των F(x) = ( ) x 2, f(x) = ( ) x, γ(x) = 10 3x 3 5 ιερευνήστε πως επηρεάζει η βάση της δύναµης το γράφηµα της κάθε συνάρτησης. Οµάδα Γ 1. Α. Χρησιµοποιώντας έναν υπολογιστή εάν είναι απαραίτητο, εκτιµήστε τον χρόνο που θα έπαιρνε σ ένα κοµπιούτερ να κάνει λίστα όλα τα θέµατα από {1, 2, 3, 64}. Υποθέτουµε ότι το γρηγορότερο κοµπιούτερ µπορεί να καταγράψει ένα θέµα περίπου σε 1 εκατοµµυριοστό δευτερολέπτου. Β. Βρείτε τον χρόνο που θα πάρει στο κοµπιούτερ να ολοκληρώσει όλες τις αντιστοιχήσεις 1-1 ανάµεσα στα σύνολα {1, 2, 3,, 64} και {65, 66, 67,, 128} 2. Πόσες διαφορετικές αντιστοιχίσεις 1-1 υπάρχουν µεταξύ δύο συνόλων µε: Α. 5 στοιχεία το καθένα Β. 8 στοιχεία το καθένα Γ. ν στοιχεία το καθένα 3. Είναι δυνατό να βρεθεί ένα άπειροσύνολο Α τέτοιο ώστε : Α. το A είναι πεπερασµένο Β. το A άπειρο. Οµάδα 1. ίνονται τα γεγονότα Α, Β και C. Να εκφρασθούν µε τη βοήθεια της Θεωρίας Συνόλων τα γεγονότα: α. Μόνο το Β συµβαίνει. β. Τα Α και Β συµβαίνουν αλλά όχι το C. γ. Τουλάχιστον ένα από τα Α, Β, C συµβαίνει. δ. Ακριβώς ένα συµβαίνει. ε. Τουλάχιστον δύο από τα Α, Β, C, συµβαίνουν. 2. Αν Α, Β και C παριστάνουν τα σύνολα των φοιτητών που διαβάζουν τα περιοδικά Μ1, Μ2, και Μ3 αντίστοιχα, τότε: Να εκφράσεις µε προτάσεις τα σύνολα: α. Α Β C γ. (A B) ε. ABC β. ΑBC δ. Α Β C ζ. Α Β C Να εκφράσεις µε σύνολα τις φράσεις: α. Οι φοιτητές που διαβάζουν τουλάχιστον δύο από τα τρία περιοδικά. Β. Οι φοιτητές που διαβάζουν ακριβως δύο από τα τρία περιοδικά. Γ. Οι φοιτητές που διαβάζουν το πολύ ενα από τα τρία περιοδικά Μ1, Μ2, και Μ3. 3. ίνονται: Ρ(Α ) = 0.3, Ρ(Β) = 0.4 και Ρ(ΑΒ )= 0.5. Να βρεθούν : α) Ρ(Α), β) Ρ(ΑΒ), γ) Ρ(Α Β) α) ίνονται : Ρ(Α) = x, Ρ(Β) = y, P(AB) = z. Να βρεθεί η πιθανότητα του γεγονότος: «Συµβαίνει ακριβώς ένα από τα Α, Β»; β) Ένα παλιό αυτοκίνητο χαλάει 65% από βλάβη µηχανής, 20% από αµέλεια οδηγού, 5% από βλάβη µηχανής και αµέλεια οδηγού, και επίσης χαλάει από άλλες αιτίες. Ποια η πιθανότητα να χαλάσει το αυτοκίνητο «µόνο από βλάβη µηχανής ή µόνο από αµέλεια οδηγού»; 3

4 1.5. Αν Α, Β είναι γεγονότα και Ρ(Α) =x, P(B) = y, P(AB) = z (i) Να βρεθεί η πιθανότητα των γεγονότων C = {Συµβαίνει ακριβώς ένα από τα Α, Β} D = { εν συµβαίνει κανένα από τα Α, Β} E = {Συµβαίνει µόνο το Α} (ii) Αν P(C) = 0.7, P(D) = 0.1, P(E) = 0.3, να βρεθούν τα x, y, z ίνονται τα γεγονότα Α, Β και C. Χρησιµοποιώντας τα αξιώµατα (i), (ii), και (iii), δείξτε ότι: P (A B C) = P(A) + P(B) + P(C) P(AB) P(BC) P(CA) + P(ABC) 1.7. ίνονται τα γεγονότα Α, Β, Γ και οι πιθανότητες Ρ (ΑΒΓ) = 0.1. Ρ(Α Β Γ )) = 0.05, Ρ(ΑΒ Γ) = 0.2, Ρ(ΑΒ Γ ) = 0.15, Ρ(Α ΒΓ)= 0.12, Ρ(Α ΒΓ ) = 0.08, Ρ(Α Β Γ) = Να βρεθούν οι πιθανότητες: Ρ(Α (ΒΓ)), Ρ(Β Γ), Ρ(Α Β Γ) ίνονται τα γεγονότα Α, Β, Γ και οι πιθανότητες Ρ(Α) = Ρ(Β) = Ρ(Γ) = p, P(AB) = P(AΓ) = Ρ(ΒΓ) = q, Ρ(ΑΒΓ) = r. Να βρεις τις πιθανότητες των γεγονότων (i) = {Να συµβαίνει τουλάχιστο ένα από τα Α, Β, Γ}. (ii) Ε = {Να συµβαίνουν τουλάχιστον δύο από τα Α, Β, Γ}. (iii) Ζ = {Να συµβαίνει ακριβώς ένα από τα Α, Β, Γ}. (iv) Η = {Να συµβαίνουν ακριβώς δύο από τα Α, Β, Γ} ίνονται τα γεγονότα Α, Β, Γ και οι πιθανότητες Ρ(Α) = 0.48 Ρ(Β) = 0.40 Ρ(Γ) = 0.56, Ρ(ΑΒ) = 0.20, Ρ(ΑΓ) = 0.43, Ρ(ΒΓ) = 0.23, Ρ(ΑΒΓ) = Να υπολογιστούν οι πιθανότητες των γεγονότων. (i) = {Να συµβαίνει τουλάχιστο ένα από τα Α, Β, Γ}. (ii) Ε = {Να συµβαίνουν τουλάχιστον δύο από τα Α, Β, Γ}. (iii) Ζ = {Να συµβαίνει ακριβώς ένα από τα Α, Β, Γ}. (iv) Η = {Να συµβαίνουν ακριβώς δύο από τα Α, Β, Γ} α) Ένα κιβώτιο έχει 5 λαµπτήρες από τους οποίους οι 3 είναι ελαττωµατικοί. Ελέγχουµε τους λαµπτήρες, έναν, έναν χωρίς επανάθεση ίσαµε που να βρούµε τον πρώτο ελαττωµατικό. Ποιος ο δειγµατοχώρος; Ρίχνουµε δύο ζάρια µια φορά, και Α, Β δυο γεγονότα µε Ρ(Α) = 0.4 Ρ(Β) = 0.35 Να βρεθεί η πιθανότητα των γεγονότων C = {Συµβαίνει ακριβώς ένα από τα Α, Β} D = { εν συµβαίνει κανένα από τα Α, Β} Ε = {Συµβαίνει µόνο το Α} Ρίχνουµε 4 ζάρια µια φορά. Να βρεθεί ο δειγµατοχώρος του πειράµατος και τα γεγονότα: Α = {Έρχεται τουλάχιστον ένας άσσος}. Β = { Το άθροισµα των τεσσάρων ενδείξεων είναι 13} Στην Προηγούµενη άσκηση µας δίνουν, ότι η πιθανότητα του καθένα από τα 6 4 σηµεία του δειγµατοχώρου είναι 6-4. Βρέστε τις πιθανότητες των γεγονότων Α και Β Ρίχνουµε δύο ζάρια 24 φορές και υποθέτουµε ότι όλα τα σηµεία του δειγµατοχώρου έχουν την ίδια πιθανότητα. Να βρεθεί η πιθανότητα να φέρουµε δύο άσσους τουλάχιστον µια φορά και να συγκρίνετε µε την πιθανότητα του γεγονότος Α του προηγούµενου προβλήµατος. Υπάρχει παράδοξο: ίνεται ο δειγµατοχώρος Ω = [0, 1] και ο νόµος Ρ([α, β]) = β α 0 α β 1. (i) Ποια είναι τα γεγονότα: α) Α 1 = {x : Το πρώτο δεκαδικό ψηφίο του x δεν είναι 0} β) Α n = {x: Τα πρώτα n δεκαδικά ψηφία του x δεν είναι 0} (ii) Ποιες είναι οι πιθανότητες των Α 1, Α n Με δύο ζάρια παίζουµε το παρακάτω παιχνίδι: Αν στην πρώτη προσπάθεια έχουµε άθροισµα 2, 3, 7, 11 ή 12 σταµατούµε, αν όχι συνεχίζουµε ίσαµε που να έχουµε άθροισµα 7 ή το άθροισµα που είχαµε την πρώτη προσπάθεια. Ποιος είναι ο δειγµατοχώρος Στον προηγούµενο δειγµατοχώρο ορίζουµε τον παρακάτω νόµο πιθανοτήτων: Η πιθανότητα n διατεταγµένων ζευγαριών είναι 6-2n (π.χ. {(2, 5), (3, 4), (2, 3)}έχει πιθανότητα 6-6 ). Ο πρώτος παίκτης κερδίζει αν φέρει άθροισµα 7 ή 11 στην πρώτη προσπάθεια ή όταν τελειώσει το παιχνίδι φέρνοντας το ίδιο άθροισµα στην πρώτη και τελευταία προσπάθεια. Να βρεθεί η πιθανότητα: α) Να κερδίσει το παιχνίδι ο πρώτος παίκτης στις τρεις προσπάθειες (δύο δικές του και µια του άλλου παίκτη). β) Να τελειώσει το παιχνίδι στις τρεις πρώτες προσπάθειες. γ) Να κερδίσει το παιχνίδι τελικά ο πρώτος παίκτης. 4

5 δ) Να κερδίσει το παιχνίδι τελικά ο δεύτερος παίκτης. ΟΜΑ Α Ε 2.1. Από τον πληθυσµό Ω = {ω 1, ω 2,, ω n } παίρνουµε τυχαίο δείγµα µεγέθους r, ένα ένα µε επανάθεση, ποια η πιθανότητα του γεγονότος Α = {όλα τα r στοιχεία είναι διαφορετικά µεταξύ τους} Στο προηγούµενο παράδειγµα να βρεθεί η πιθανότητα να έχουµε τουλάχιστο δύο όµοια στοιχεία Ρίχνουµε τέσσερα ζάρια µια φορά. Ποια η πιθανότητα να πάρουµε τουλάχιστο ένα 6; Έχουµε r σωµατίδια και 3 κελιά. Θέλουµε την πιθανότητα του γεγονότος A = {Το κελί 1 έχει r 1 σωµατίδια, το κελί 2 έχει r 2 σωµατίδια και το κελί 3 έχει r 3 σωµατίδια, r 1 + r 2 + r 3 = r} Πολλές φορές ζητάµε από τον υπολογιστή να µας δώσει τυχαίους αριθµούς. Αν θέλουµε για παράδειγµα τυχαίους αριθµούς από 0 9 και παίρνουµε ένα δείγµα από 20 αριθµούς, πρέπει πρώτα να δοκιµάσουµε αν οι αριθµοί είναι πραγµατικά τυχαίου. Ένας τρόπος είναι να προσέξουµε τη σειρά µε την οποία παίρνουµε τους αριθµούς και πόσες εναλλαγές ψηφίων υπάρχουν. Για παράδειγµα το δείγµα 3, 0, 0, 4, 4, 4, 1, 1, 6 υπάρχουν 5 εναλλαγές. Αν είναι λίγες εναλλαγές υποψιαζόµαστε ότι ο υπολογισµός δίνει το ίδιο ψηφίο στη σειρά ενώ αν είναι πολλές συµβαίνει ακριβώς το αντίθετο. Αργότερα στη Στατιστική θα δούµε πως χρησιµοποιείται η συνδυαστική για την αντιµετώπιση αυτού του προβλήµατος Στις θεωρίες εκµάθησης για να ελέγξουν αν µια ορισµένη µέθοδος-θεωρία είναι επιτυχής υποβάλλουν τον µαθητή σε δοκιµασία (test). Αν ο µαθητής περάσει k 1 δοκιµασίες συνεχώς τότε δέχονται τη µέθοδο ενώ αν αποτύχει σε k 2 δοκιµασίες συνεχώς την απορρίπτουν. Και εδώ εφαρµόζεται η συνδυαστική ανάλυση για προβλήµατα Στατιστικής Σ έναν ανελκυστήρα (ασανσέρ) υπάρχουν 4 άτοµα και το κτίριο έχει 6 πατώµατα. Ποια η πιθανότητα να βγουν όλοι στο πρώτο ή δεύτερο πάτωµα; 2.8. Στο παραπάνω παράδειγµα «Ποια η πιθανότητα, να βγουν όλοι το πολύ σε δύο πατώµατα» 2.9. Σε 7 εκλογικά τµήµατα, µια παράταξη πήρε συνολικά 10 ψήφους. Ποια η πιθανότητα i) Σε ένα συγκεκριµένο εκλογικό τµήµα να υπάρχουν 2 ψήφοι της παράταξης. ii) Να έχει πάρει η παράταξη µια τουλάχιστον ψήφο σε κάθε τµήµα. iii) Σε ακριβώς 4 εκλογικά τµήµατα να µην υπάρχουν ψήφοι της παράταξης Παρατηρώντας 8 αυτοκίνητα που περνούν από ένα συγκεκριµένο σηµείο διαπιστώνουµε ότι 3 έχουν κόκκινο χρώµα. Ποια η πιθανότητα: Α.Να περάσουν τα 3 κόκκινα αυτοκίνητα διαδοχικά το ένα ακριβώς µετά το άλλο. Β. Να υπάρχουν 2 άλλα αυτοκίνητα ανάµεσα στα 2 πρώτα κόκκινα και 1 ανάµεσα στο δεύτερο και τρίτο κόκκινο. ΟΜΑ Α Ζ ΠΡΟΒΛΗΜΑΤΑ ΠΙΘΑΝΟΤΗΤΩΝ και Συνδυαστικής 1. Εάν πέσει µια πινέζα µπορεί να προσγειωθεί ( ) µε το κεφάλι κάτω, ή ( ) µε το κεφάλι πάνω. Το πείραµα επαναλήφθηκε 80 φορές µε τα ακόλουθα αποτελέσµατα. Με την κεφαλή προς τα πάνω: 56 φορές µε την κεφαλή προς τα κάτω: 24 φορές. Α) Ποια είναι η πιθανότητα η πινέζα να προσγειωθεί µε το κεφάλι πάνω. 5

6 Β) Ποια η πιθανότητα να προσγειωθεί µε το κεφάλι κάτω. Γ) Εάν επιχειρήσετε το πείραµα αυτό άλλες 80 φορές θα πάρετε τα ίδια αποτελέσµατα; γιατί; ) Περιµένετε να πλησιάσετε σχεδόν τα πρώτα αποτελέσµατα από τη δεύτερη προσπάθεια; Γιατί; 2. Σε ένα πείραµα συλλέξτε το τελευταίο νούµερο τηλεφωνικών αριθµών. Ας υποθέσουµε ότι κάθε ένα από τα 10 ψηφία έχει τις ίδιες πιθανότητες να παρουσιαστεί σαν τελικό ψηφίο. Καταγράψτε τα ακόλουθα. Α) Ένα διάστηµα δειγµάτων Β) Τα αποτελέσµατα εκείνα που το ψηφίο αυτό είναι µικρότερο του 5. Γ) Τα αποτελέσµατα που το ψηφίο είναι µονός αριθµός. ) Τα αποτελέσµατα που το ψηφίο δεν είναι το 2. Ε) Βρες τις πιθανότητες κάθε ενός από τα αποτελέσµατα (Β) ( ). 3. Γυρίζουµε τον παρακάτω τροχό Βρες τις πιθανότητες να λάβουµε τα κάθε ένα από τα ακόλουθα. Α) Ρ(παράγοντες του 35) Β) Ρ(πολλαπλάσιο του 3) Γ) Ρ(ζυγό αριθµό), ) Ρ(6 ή 2) Ε) Ρ(11) Στ) Ρ(σύνθετος αριθµό) Ζ) Ρ(ούτε ένας πρώτος ούτε ένας σύνθετος αριθµός) 4. Τραβάµε ένα χαρτί από µια τράπουλα 52 καρτών. Βρες την πιθανότητα για κάθε ένα από τα ακόλουθα. Α) Μια κόκκινη κάρτα Β) Μια κόκκινη κάρτα ή ένα 10 Γ) Μια φιγούρα ) Μια Ντάµα Ε) Όχι µια Ντάµα Στ) Μια φιγούρα ή ένα µπαστούνι Ζ) Μια φιγούρα και ένα µπαστούνι Η) Ούτε φιγούρα ούτε µπαστούνι. 5. Ένα συρτάρι περιέχει 6 µαύρες κάλτσες 4 καφέ και 2 πράσινες. Ας υποθέσουµε ότι τραβάµε µια κάλτσα από το συρτάρι. Βρες την πιθανότητα να συµβεί κάθε ένα από τα ακόλουθα. Α) Η κάλτσα είναι καφέ. Β) Η κάλτσα είναι η µαύρη ή πράσινη. Γ) Η κάλτσα είναι κόκκινη. ) Η κάλτσα δεν είναι µαύρη. 6. Κάθε γράµµα της αλφαβήτου γράφεται σε ένα ξεχωριστό χαρτί και τοποθετείται µέσα σ ένα κουτί. Στην συνέχεια τραβάµε ένα χαρτί στην τύχη. Α) Ποια είναι η πιθανότητα το χαρτί να έχει γραµµένο πάνω του ένα φωνήεν, Β) Ποια η πιθανότητα να έχει γραµµένο ένα σύµφωνο; 7) Εάν η πιθανότητα να καταφέρεις να ταξιδέψεις µε την πτήση για Βοστόνη είναι 0,2, ποια είναι η πιθανότητα να χάσεις την πτήση; 8) Η Σοφία έχει 6 δισκέτες κοµπιούτερ χωρίς καµία ένδειξη στην επιφάνειά τους. Αυτές περιέχουν Αγγλικά, Μαθηµατικά, Αµερικάνικη Ιστορία, Χηµεία και Φυσική. Απάντησε στις ακόλουθες ερωτήσεις. Α) Εάν επιλέξει µια δισκέτα στην τύχη ποια είναι η πιθανότητα να έχει επιλέξει το CD µε τα αγγλικά; Β) Ποια η πιθανότητα το CD που θα επιλέξει να µην είναι ούτε Μαθηµατικά ούτε Χηµεία. 9) Οι ακόλουθες ερωτήσεις αναφέρονται σ ένα πολύ δηµοφιλές παιχνίδι ζαριών seven-eleven στο οποίο κάθε παίχτης ρίχνει δύο ζάρια. Α) Φέρνοντας άθροισµα 7 ή 11 στην πρώτη ρίψη κερδίζεις. Ποια η πιθανότητα να κερδίσεις µε την πρώτη ρίψη; Β) Φέρνοντας 2, 3, ή 12 στην πρώτη ρίψη χάνεις. Ποια η πιθανότητα να χάσεις στην πρώτη ρίψη; Γ) Αν φέρεις 4, 5, 6, 8, 9, ή 10 στην πρώτη ρίψη ούτε χάνεις ούτε κερδίζεις. Ποια η πιθανότητα ούτε να χάσεις ούτε να κερδίσεις στην πρώτη ρίψη; 6

7 ) Εάν φέρεις 4, 5, 6, 8, 9, ή 10 ο παίκτης πρέπει να φέρει ξανά το ίδιο νούµερο πριν φέρει 7. Ποιο ποσό από τα 4, 5, 6, 8, 9, ή 10 έχει την µεγαλύτερη πιθανότητα να ληφθεί ξανά; Ε. Ποια η πιθανότητα να φέρουµε το άθροισµα 1 σε οποιαδήποτε ρίψη; Στ. Ποια η πιθανότητα να φέρουµε άθροισµα µικρότερο του 13 σε οποιαδήποτε ρίψη; 10. Εάν ρίξουµε τα ζάρια 60 φορές υποθέστε πόσες φορές θα εµφανιστεί άθροισµα το 7; 11. Ποια είναι η πιθανότητα να συµβεί το κάθε ένα από τα παρακάτω συγκεκριµένα γεγονότα µε το πέταγµα του ζαριού; 1 Ένα µονό νούµερο. Ένας αριθµός µικρότερος του 7. 2 Ένας ζυγός αριθµός Ένας αριθµός διαφορετικός του 0 3 Ένα νούµερο µεγαλύτερο από το 2 Ο αριθµός 0. 4 Ένας αριθµός µικρότερος του 4. Ένα νούµερο διαφορετικό του Ποια είναι η πιθανότητα να συµβεί κάθε ένα από τα παρακάτω συγκεκριµένα γεγονότα τραβώντας ένα χαρτί από µια συνηθισµένη τράπουλα 52 χαρτιών; Ένας άσσος. Ένα µπαστούνι. Ένας βασιλιάς Ένα κόκκινο χαρτί. στην πρώτη ρίψη; µέλη µιας τάξης δίνουν χειραψίες ο ένας µε τον άλλο την µέρα που ανοίγει το σχολείο. Α) πόσες χειραψίες έγιναν στο σύνολο; Β) πόσες θα γίνουν εάν συµπληρωµατικά κάθε ένας δίνει τα χέρια επίσης και µε τον διευθυντή; 14. Μια τάξη πρόκειται να διαιρεθεί σε δύο οµάδες µε τουλάχιστον ένα µαθητή η κάθε µια. Πόσα διαφορετικά ζευγάρια οµάδων µπορούν να γίνουν από µια τάξη 8 µαθητών; 15. Πόσα διαφορετικά ζευγάρια οµάδων από τέσσερις σπουδαστές η κάθε µια µπορούν να γίνουν από µια τάξη εννέα µαθητών; 16. Προβλήµατα µέτρησης µπορούν να προκύψουν µέσα από πολλά µαθηµατικά πάζλς. είτε το σχέδιο παρακάτω και βρείτε για παράδειγµα τα ακόλουθα πάζλς µε στόχους: Επιτρέπεται να ρίξεις τέσσερα βέλη και ας υποθέσουµε ότι δεν αστοχείς. Με πόσους διαφορετικούς τρόπους µπορείς να επιτύχεις το σκορ 60 πόντων; Παρατήρησε και τοποθέτησε µε την σειρά τα 2 τελευταία ψηφία από 20 πινακίδες αυτοκινήτων που βρίσκονται στο πάρκιν. Επανέλαβε αυτή τη διαδικασία για 5 τουλάχιστον σετ από 20 διψήφιους αριθµούς. Για κάθε σετ από 20 νούµερα παρατήρησε πόσο συχνά βρίσκεις µια επανάληψη από κάθε ζευγάρι ψηφίων. (το ίδιο διψήφιο νούµερο να εµφανίζεται τουλάχιστον δυο φορές). ΟΜΑ Α Η Προβλήµατα Αριθµητικής για Λύση 1. Ο πατέρας του Νίκου χρησιµοποίησε 36 σακιά λίπασµα καθαρού βάρους 49,5 κιλών το καθένα. Πόσα κιλά λίπασµα χρησιµοποίησε; 2. Από την υλοτόµηση µιας δασικής έκτασης παράγονται ηµερησίως κατά µέσο όρο, 7, κµ. ξυλεία ελάτου και 8, κµ. ξυλεία πεύκου. Πόση ξυλεία παράγεται συνολικά σε 1 µήνα (30 ηµ.) ; 3. Το Υπουργείο Υγείας προειδοποιεί: Το κάπνισµα βλάπτει σοβαρά την υγεία. Ένα τσιγάρο περιέχει 0,008 γρ. νικοτίνη και 0,015 γρ. πίσσα. Ένας καπνιστής καπνίζει 20 τσιγάρα την ηµέρα. Πόση πίσσα και πόση νικοτίνη περιέχουν τα τσιγάρα που καπνίζει 35 ολόκληρα χρόνια. 4. Ο πατέρας έβαλε 20 λτ. Βενζίνη. Στο ταξίδι του έκαψε τα 1/3 της βενζίνης που έβαλε. Πόσα λτ. έκαψε ; 7

8 5. Η µητέρα για να πάει στη δουλειά της χρειάζεται 5/6 της ώρας. Τα 2/5 του χρόνου αυτού πηγαίνει µε τα πόδια. Πόση ώρα βαδίζει η µητέρα; 6. Οι φυσιολάτρες διάνυσαν 10,875 χµ. σε 3 ώρες. Πόσα χµ. διάνυσαν κατά µέσο όρο την ώρα. 7. Το πλοίο εκτελεί τακτικά το δροµολόγιο του σε 10 ώρες µε σταθερή ταχύτητα 24,5 µίλια την ώρα. Αφού ταξίδεψε 4 ώρες έπαθε βλάβη και καθυστέρησε 2 ώρες. Με πόση ταχύτητα την ώρα πρέπει να συνεχίσει το ταξίδι του για να φτάσει χωρίς καθυστέρηση στον προορισµό του; 8. Το 15 πλάσιο ενός αριθµού αυξηµένο κατά 0,0085 είναι 3,4585. Ποιος είναι ο αριθµός; 9. Το ωφέλιµο φορτίο ενός αυτοκινήτου είναι τόνοι. Στο αυτοκίνητο έχουν φορτωθεί 35 κιβώτια των 25 κιλ. Πόσα κιβώτια των 60 κιλών µπορούν να φορτωθούν ακόµα; 10. Για να καλυφτούν 1530 µ. χρησιµοποιήθηκαν σωλήνες των 4,5 µέτρ. Ο καθένας. Πόσοι σωλήνες χρησιµοποιήθηκαν ; 11. Το καφεκοπτείο παραλαµβάνει 100 κιλά ωµό καφέ που στο καβούρδισµα και το άλεσµα έχει φύρα 3,250 κιλά. Συσκευάζει τον αλεσµένο καφέ σε πακέτο των 0,250 κιλά. Πόσα είναι τα πακέτα ; 12. Ένα λεωφορείο µετέφερε σε µια βδοµάδα 438 επιβάτες και εισέπραξε δρχ. Πόσο κάνει το ένα εισιτήριο ; 13. Το καφεκοπτείο παρέλαβε 50 κιλά ωµό καφέ. Στο καβούρδισµα και στο άλεσµα είχε φύρα 3,75 κιλά. Καφεκοπτείο συσκεύασε οµοιόµορφα του αλεσµένο καφέ σε 370 πακέτα. Ποιο είναι το βάρος του καφέ σε κάθε πακέτο ; 8

2. Πόσες διαφορετικές αντιστοιχίσεις 1-1 υπάρχουν μεταξύ δύο συνόλων με: Β. 8 στοιχεία το καθένα

2. Πόσες διαφορετικές αντιστοιχίσεις 1-1 υπάρχουν μεταξύ δύο συνόλων με: Β. 8 στοιχεία το καθένα ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Χειµερινό Εξάµηνο Ρόδος, εκέµβριος 2014 ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ, Ι ΑΚΤΙΚΗΣ και ΠΟΛΥΜΕΣΩΝ Μάθηµα: ΥΓ00003 "ΕΙΣΑΓΩΓΗ στις

Διαβάστε περισσότερα

Ρόδος, Μαρτιος 2014. Εργασία Προόδου #1. ίνονται Οµάδες Ερωτήσεων, Προβληµάτων και Ασκήσεων, Α,Β,Γ,,Ε,Ζ,Η

Ρόδος, Μαρτιος 2014. Εργασία Προόδου #1. ίνονται Οµάδες Ερωτήσεων, Προβληµάτων και Ασκήσεων, Α,Β,Γ,,Ε,Ζ,Η ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 Eaρινό Εξάµηνο Ρόδος, Μαρτιος 2014 ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ, Ι ΑΚΤΙΚΗΣ και ΠΟΛΥΜΕΣΩΝ Μάθηµα: ΥΓ00003 "ΕΙΣΑΓΩΓΗ στις ΒΑΣΕΙΣ

Διαβάστε περισσότερα

"ΕΙΣΑΓΩΓΗ στις ΒΑΣΕΙΣ και στις ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ των ΜΑΘΗΜΑΤΙΚΩΝ Ι"

ΕΙΣΑΓΩΓΗ στις ΒΑΣΕΙΣ και στις ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ των ΜΑΘΗΜΑΤΙΚΩΝ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 Εαρινό Εξάµηνο Ρόδος, Μάιος 2014 ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ, Ι ΑΚΤΙΚΗΣ και ΠΟΛΥΜΕΣΩΝ Μάθηµα: ΥΓ00003 "ΕΙΣΑΓΩΓΗ στις ΒΑΣΕΙΣ

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων και Στατιστική

Θεωρία Πιθανοτήτων και Στατιστική Θεωρία Πιθανοτήτων και Στατιστική 2 ο Εξάμηνο Ασκήσεις Πράξης 1 Θεωρία Συνόλων - Δειγματικός Χώρος Άσκηση 1: Να βρεθούν και να γραφούν με συμβολισμούς της Θεωρίας Συνόλων οι δειγματοχώροι των τυχαίων πειραμάτων:

Διαβάστε περισσότερα

1.1 Πείραμα Τύχης - δειγματικός χώρος

1.1 Πείραμα Τύχης - δειγματικός χώρος 1. ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Πείραμα Τύχης - δειγματικός χώρος Κάθε πείραμα στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως το αποτέλεσμα λέγεται αιτιοκρατικό πείραμα. Τέτοια πειράματα

Διαβάστε περισσότερα

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4.

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4. ο Κεφάλαιο : Πιθανότητες. Δειγματικοί χώροι. Διαγράμματα Venn Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. Κλασικός ορισμός πιθανότητας 4. Κανόνες λογισμού πιθανοτήτων η Κατηγορία : Δειγματικοί χώροι ) Ρίχνουμε

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

P (A) = 1/2, P (B) = 1/2, P (C) = 1/9

P (A) = 1/2, P (B) = 1/2, P (C) = 1/9 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-1: Πιθανότητες - Χειµερινό Εξάµηνο 011 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : /11/011 Ηµεροµηνία Παράδοσης : 1/11/011

Διαβάστε περισσότερα

ΑΝΕΣΤΗΣ ΤΣΟΜΙΔΗΣ - ΜΑΘΗΜΑΤΙΚΟΣ

ΑΝΕΣΤΗΣ ΤΣΟΜΙΔΗΣ - ΜΑΘΗΜΑΤΙΚΟΣ ΑΝΕΣΤΗΣ ΤΣΟΜΙΔΗΣ - ΜΑΘΗΜΑΤΙΚΟΣ 1) ΣΤΑΤΙΣΤΙΚΗ 1. Οι παρακάτω αριθμοί παρουσιάζουν τις ενδείξεις ενός ζαριού το οποίο ρίξαμε 20 φορές. 5 5 5 1 2 5 4 3 2 3 1 3 6 4 1 4 6 6 5 4 i) Να κατασκευάσετε πίνακα α)

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ. Ρίχνουµε ένα νόµισµα τρείς φορές (i) Να βρείτε τον δειγµατικό χώρο του πειράµατος τύχης. (ii) Να βρείτε την πιθανότητα των ενδεχοµένων: Α: Οι τρεις ενδείξεις είναι ίδιες. Β:

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ κεφ - ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ Σε ένα συρτάρι υπάρχουν δύο κάρτες, μία άσπρη και μία κόκκινη Παίρνουμε στην τύχη μία κάρτα από το συρτάρι, καταγράφουμε το χρώμα της και την ξαναβάζουμε

Διαβάστε περισσότερα

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Πιθανότητες Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 7 / 0 / 0 6 Γενικής κεφάλαιο 3 94 ασκήσεις και τεχνικές σε 8 σελίδες εκδόσεις Καλό πήξιμο ΓΛΥΚΟΣ ΚΩΝ/ΝΟΣ τηλ.

Διαβάστε περισσότερα

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ 1. Ο Γυμναστής ενός λυκείου προκειμένου να στελεχώσει την ομάδα μπάσκετ του λυκείου ψάχνει στην τύχη μεταξύ των μαθητών να βρει τρεις κοντούς (Κ) και τρεις ψηλούς (Ψ). Να

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ . Να βρείτε το δειγµατικό χώρο της ρίψης ενός ζαριού.. Επιλέγουµε ένα µαθητή Λυκείου και σηµειώνουµε το φύλο και την τάξη του. Να βρείτε το δειγµατικό χώρο Ω του πειράµατος. 3. Τραβάµε ένα φύλλο από µία

Διαβάστε περισσότερα

ΙΙΙ εσµευµένη Πιθανότητα

ΙΙΙ εσµευµένη Πιθανότητα ΙΙΙ εσµευµένη Πιθανότητα 1 Λυµένες Ασκήσεις Ασκηση 1 Στρίβουµε ένα νόµισµα δύο ϕορές. Υποθέτοντας ότι και τα τέσσερα στοιχεία του δειγµατοχώρου Ω {(K, K, (K, Γ, (Γ, K, (Γ, Γ} είναι ισοπίθανα, ποια είναι

Διαβάστε περισσότερα

κανένα από τα παραπάνω

κανένα από τα παραπάνω Το παρακάτω ερωτηµατολόγιο απευθύνεται σε προπτυχιακούς φοιτητές µη µαθηµατικών τµηµάτων και έχει ως στόχο να καταγράψει τις µαθηµατικές γνώσεις που απαιτούνται για την παρακολούθηση ενός εισαγωγικού µαθήµατος

Διαβάστε περισσότερα

3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ

3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ . Ασκήσεις σχ. βιβλίου σελίδας 54 56 Α ΟΜΑ ΑΣ. Από µία τράπουλα µε 5 φύλλα παίρνουµε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχοµένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν είναι 5 i) εχόµαστε

Διαβάστε περισσότερα

4 η δεκάδα θεµάτων επανάληψης

4 η δεκάδα θεµάτων επανάληψης 1 4 η δεκάδα θεµάτων επανάληψης 31. Έστω Α, Β δύο ενδεχόµενα του ίδιου δειγµατικού χώρου. Αν Ρ(Α ) 0,8 και Ρ(Β ) 0,71 δείξτε ότι Ρ( Α Β) 1,01 Ρ( Α Β) i Το ενδεχόµενο Α Β δεν είναι το κενό. Έχουµε Ρ( Α

Διαβάστε περισσότερα

Η Έννοια της Πιθανότητας. 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα:

Η Έννοια της Πιθανότητας. 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα: 1 Η Έννοια της Πιθανότητας Η Έννοια της Πιθανότητας 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα: α) Να εμφανιστεί περιττός αριθμός κατά την ρίψη ενός ζαριού. (1/2) β) Να εμφανιστεί τουλάχιστον

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΘΕΜΑ 3 Το ύψος κύματος (σε μέτρα) σε μία συγκεκριμένη θαλάσσια περιοχή είναι τυχαία μεταβλητή X με συνάρτηση πυκνότητας πιθανότητας

ΘΕΜΑ 3 Το ύψος κύματος (σε μέτρα) σε μία συγκεκριμένη θαλάσσια περιοχή είναι τυχαία μεταβλητή X με συνάρτηση πυκνότητας πιθανότητας ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ TOMEAΣ ΜΑΘΗΜΑΤΙΚΩΝ ΕΞΕΤΑΣΕΙΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΕΚΠΑΙΔΕΥΣΗ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 26 Σεπτεμβρίου 2014 Ομάδα Θεμάτων Α ΘΕΜΑ 1 Ρίχνουμε ένα αμερόληπτο νόμισμα (δύο δυνατά

Διαβάστε περισσότερα

Ερωτηµατολόγιο PMP , +

Ερωτηµατολόγιο PMP , + Ερωτηµατολόγιο PMP Διαβάστε προσεκτικά κάθε ένα από τα παρακάτω προβλήµατα. Για κάθε πρόβληµα υπάρχουν τέσσερις εναλλακτικές απαντήσεις από τις οποίες µόνο µία είναι η σωστή. Παρακαλώ επιλέξτε τη σωστή

Διαβάστε περισσότερα

2

2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Χειµερινό Εξάµηνο Ρόδος, Νοέµβριος 2014 ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ, Ι ΑΚΤΙΚΗΣ και ΠΟΛΥΜΕΣΩΝ Μάθηµα: ΥΓ00003 "ΕΙΣΑΓΩΓΗ στις

Διαβάστε περισσότερα

(1) 98! 25! = 4 100! 23! = 4

(1) 98! 25! = 4 100! 23! = 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-17: Πιθανότητες - Χειµερινό Εξάµηνο 015 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 Συνδυαστική Ανάλυση και Εισαγωγή στις ιακριτές Τυχαίες Μεταβλητές Επιµέλεια

Διαβάστε περισσότερα

3ο Φροντιστηριο ΗΥ217

3ο Φροντιστηριο ΗΥ217 3ο Φροντιστηριο ΗΥ217 Επιµέλεια : Γ. Καφεντζής 30 Οκτωβρίου 2013 Ασκηση 0.1 Εχουµε 3 κέρµατα. Το ένα από αυτά έχει κορώνα και στις δύο πλευρές, το άλλο έχει γράµµατα και στις δύο πλευρές, και το τελευταίο

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΠΡΟΟΔΟΥ #1 φυλλάδιο 1 από 3

ΕΡΓΑΣΙΑ ΠΡΟΟΔΟΥ #1 φυλλάδιο 1 από 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 017-018 Χειμερινό Εξάμηνο Ρόδος, Σεπτέμβριος 017 ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ, ΔΙΔΑΚΤΙΚΗΣ και ΠΟΛΥΜΕΣΩΝ Μάθημα: ΥΓ00003 "ΕΙΣΑΓΩΓΗ

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Έννοια Ορισμοί Τρόπος υπολογισμού Kατανομή πιθανότητας Ασκήσεις

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Έννοια Ορισμοί Τρόπος υπολογισμού Kατανομή πιθανότητας Ασκήσεις ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Έννοια Ορισμοί Τρόπος υπολογισμού Kατανομή πιθανότητας Ασκήσεις Έννοια τυχαίας μεταβλητής Κατά τον υπολογισμό πιθανοτήτων, συχνά συμβαίνει τα ενδεχόμενα που μας ενδιαφέρουν να μετρούν

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ. 1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688. Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 1

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ. 1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688. Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 1 ο Αχαρνών 97 Αγ Νικόλαος 086596 ο Αγγ Σικελιανού Περισσός 078688 Ε ΛΙΑΤΣΟΣ Μαθηµατικός 7 t t 5 Ο πληθυσµός µιας κοινωνίας βακτηριδίων δίνεται από τον τύπο P(t) = e e σε δεκάδες µικρόβια και t 0 Α Να αποδειχθεί

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ Οµάδα η. Αν Ω={ω,ω,,ω 6 } είναι ο δ.χ ενός πειράµατος τύχης να βρείτε τις πιθανότητες Ρ(ω ),,Ρ(ω 6 ) αν είναι γνωστό ότι αυτές αποτελούν διαδοχικούς όρους αριθµητικής προόδου µε

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α Ερώτηση θεωρίας α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; =. β) Για δύο συμπληρωματικά ενδεχόμενα Α και Α να αποδείξετε

Διαβάστε περισσότερα

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ Συχνότητα Σχετική συχνότητα Αν σε ν εκτελέσεις ενός πειράματος ένα ενδεχόμενο Α πραγματοποιείται va φορές,τότε va ο αριθμός va λέγεται συχνότητα του ενδεχομένου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες-Χειµερινό Εξάµηνο 08-09 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 4 Ασκηση Το πείραµά µας συνίσταται στη ϱίψη 3 τίµιων κερµάτων. Συµβολίζουµε

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Ανδρεσάκης Δ. ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΙΘΑΝΟΤΗΤΕΣ

ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Ανδρεσάκης Δ. ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΙΘΑΝΟΤΗΤΕΣ ΛΓΕΡ ΛΥΚΕΙΟΥ ΠΙΘΝΟΤΗΤΕΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙ 1 Tα πειράματα των οποίων δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνονται (φαινομενικά τουλάχιστον) κάτω από τις ίδιες συνθήκες

Διαβάστε περισσότερα

(1) 98! 25! = 4 100! 23! = 4

(1) 98! 25! = 4 100! 23! = 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 Συνδυαστική Ανάλυση ΙΙ και Εισαγωγή στις ιακριτές Τυχαίες Μεταβλητές

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος ΠΙΘΑΝΟΤΗΤΕΣ.Ένα κουτί περιέχει τέσσερις λαχνούς αριθμημένους από το εώς το 4. Εκλέγουμε έναν λαχνό στην τύχη,σημειώνουμε το αποτέλεσμα και δεν ξανατοποθετούμε τον λαχνό στο κουτί. Επαναλαμβάνουμε το πείραμα

Διαβάστε περισσότερα

4 η δεκάδα θεµάτων επανάληψης

4 η δεκάδα θεµάτων επανάληψης 4 η δεκάδα θεµάτων επανάληψης 31. Έστω Α, Β δύο ενδεχόµενα του ίδιου δειγµατικού χώρου. Αν Ρ(Α ) 0,8 και Ρ(Β ) 0,71 δείξτε ότι Ρ( Α Β) 1,01 Ρ( Α Β) i Το ενδεχόµενο Έχουµε Α Βδεν είναι το κενό. Ρ( Α Β)

Διαβάστε περισσότερα

Α ΕΝΟΤΗΤΑ. Πιθανότητες. Α.1 (1.1 παρ/φος σχολικού βιβλίου) Α.2 (1.2 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα. Η έννοια της πιθανότητας

Α ΕΝΟΤΗΤΑ. Πιθανότητες. Α.1 (1.1 παρ/φος σχολικού βιβλίου) Α.2 (1.2 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα. Η έννοια της πιθανότητας Α ΕΝΟΤΗΤΑ Πιθανότητες Α.1 (1.1 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα Α.2 (1.2 παρ/φος σχολικού βιβλίου) Η έννοια της πιθανότητας Α.1 Δειγματικός Χώρος. Ενδεχόμενα. Απαραίτητες γνώσεις

Διαβάστε περισσότερα

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος Τμήμα Λογιστικής και Χρηματοοικονομικής 1 Θεωρία Πιθανοτήτων Δρ. Αγγελίδης Π. Βασίλειος 2 Περιεχόμενα Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους 3 Πείραμα

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 Ο «ΠΙΘΑΝΟΤΗΤΕΣ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 Ο «ΠΙΘΑΝΟΤΗΤΕΣ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΠΙΘΑΝΟΤΗΤΕΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 00-0 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ Ι Παπαγρηγοράκης http://usersschgr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ-

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1ο Α. Να αποδείξετε ότι

Διαβάστε περισσότερα

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς.

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς. Πιθανότητες Α Λσκείοσ Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς www.askisopolis.gr Πιθανότητες Εφαρμογές στον ορισμό πιθανότητας. Ρίχνουμε ένα νόμισμα τρεις φορές. Ποια είναι η πιθανότητα να φέρουμε και τις

Διαβάστε περισσότερα

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΑΛΓΕΒΡΑ - Α ΛΥΚΕΙΟΥ ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Επιμέλεια: Παπαδόπουλος Παναγιώτης Πείραμα τύχης 1 η δραστηριότητα Ρίξτε ένα κέρμα 5 φορές και καταγράψτε την πάνω όψη του: 1 η ρίψη:, 2 η ρίψη:, 3 η ρίψη:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-: Πιθανότητες - Χειµερινό Εξάµηνο 0 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο - Συνδυαστική Ανάλυση Επιµέλεια : Σοφία Σαββάκη Θεωρία. Η ϐασική αρχή της απαρίθµησης

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΓΕΡΓΙΟΣ Ε. ΚΑΡΑΦΕΡΗΣ ΠΕ03 ΜΑΘΗΜΑΤΙΚΟΣ [] ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΡΙΑ: Πείραμα Τύχης Κάθε πείραμα κατά στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2017 ιδάσκων : Π. Τσακαλίδης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2017 ιδάσκων : Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο 07 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 4 ιακριτές Τυχαίες Μεταβλητές ( Ι ) Επιµέλεια : Στιβακτάκης Ραδάµανθυς Ασκηση.

Διαβάστε περισσότερα

P (A B) = P (A) + P (B) P (A B)

P (A B) = P (A) + P (B) P (A B) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 1 Επιµέλεια : Σοφία Σαββάκη Ασκηση 1. Ο εκφωνητής του δελτίου καιρού δίνει

Διαβάστε περισσότερα

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Οι µηνιαίες αποδοχές, σε, ν υπαλλήλων είναι x, x,, x ν και αυτές αποτελούν οµοιογενές δείγµα µε µέση τιµή 000. Αν το 8% έχει µισθό Α, το 6% Β και οι υπόλοιποι Γ : Να βρείτε το

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 2ο Κανόνες Απαρίθμησης (συνέχεια) 2 ΙΣΤΟΣΕΛΙΔΑ ΜΕ ΔΙΑΦΑΝΕΙΕΣ, ΒΙΒΛΙΟ & ΔΕΙΓΜΑ ΘΕΜΑΤΩΝ www.unipi.gr/faculty/mkoutras/index.htm

Διαβάστε περισσότερα

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 Ορισµός Πιθανότητας Στοιχεία Συνδυαστικής Κλασικός Ορισµός της Πιθανότητας Εστω Ω ο δειγµατοχώρος ενός πειράµατος

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση:

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 2 η : Δεσμευμένη Πιθανότητα. Ολική Πιθανότητα-Θεώρημα Bayes, Ανεξαρτησία και Συναφείς Έννοιες. Γεώργιος Ζιούτας Τμήμα

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 3: Πιθανότητες. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 3: Πιθανότητες. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 3: Πιθανότητες Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Προτεινόμενεσ αςκήςεισ απο το Βιβλίο με τίτλο

Προτεινόμενεσ αςκήςεισ απο το Βιβλίο με τίτλο Προτεινόμενεσ αςκήςεισ απο το Βιβλίο με τίτλο Τίτλοσ βιβλίου «Θεωρία Πιθανοτήτων και Στατιςτική Επιχειρήςεων» ςυγγραφείσ, Παπαδόγγονασ Θ. και Φιλιππάκησ Μιχαήλ, εκδόςεισ τςότρασ, Κωδικόσ Βιβλίου ςτον Εφδοξο:

Διαβάστε περισσότερα

Στατιστική. Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.

Στατιστική. Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία Γεώργιος Ζιούτας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ : 3 ώρες (180 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ: Ευρωπαϊκό τυπολόγιο Υπολογιστής τσέπης χωρίς δυνατότητα προγραμματισμού

Διαβάστε περισσότερα

ΧΑΡΑΛΑΜΠΟΣ.ΣΠ. ΛΥΚΟΥΔΗΣ - ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ

ΧΑΡΑΛΑΜΠΟΣ.ΣΠ. ΛΥΚΟΥΔΗΣ - ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Θεωρία Πιθανοτήτων Εάν οι συνθήκες τέλεσης ενός πειράματος καθορίζουν πλήρως το αποτέλεσμα του, τότε το πείραμα λέγεται αιτιοκρατικό. Είναι γνωστό ότι το αποσταγμένο νερό βράζει στους 100 βαθμού κελσίου.

Διαβάστε περισσότερα

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα x 1 2x 7 x 8 4

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα x 1 2x 7 x 8 4 Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα 1 1) Na λυθούν οι εξισώσεις : α) 2 3x 1 x 8 x 1 (απ.: x = -2) β) γ) 2x 7 x 1 (απ.: x = -12) 4 3 4 5 x 2 x 4 2 x (απ.: x = 1) 4 5 δ) x 1

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ. Νίκος Μυλωνάς Βασίλης Παπαδόπουλος. Βοήθηµα διδάσκοντα

ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ. Νίκος Μυλωνάς Βασίλης Παπαδόπουλος. Βοήθηµα διδάσκοντα ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ Νίκος Μυλωνάς Βασίλης Παπαδόπουλος Βοήθηµα διδάσκοντα Εκδόσεις Τζιόλα Περιεχόµενα Πιθανότητες 5 3 ιακριτές τυχαίες µεταβλητές 37 4 Συνεχείς τυχαίες µεταβλητές

Διαβάστε περισσότερα

= 14 = 34 = Συνδυαστική Ανάλυση

= 14 = 34 = Συνδυαστική Ανάλυση 1. Συνδυαστική Ανάλυση 1.1 Ένα κουτί περιέχει 8 κόκκινες, 3 άσπρες και 9 μπλε σφαίρες. Εάν βγάλουμε 3 σφαίρες στην τύχη χωρίς επανατοποθέτηση, ποια είναι η πιθανότητα (α) να είναι και οι 3 κόκκινες, (β)

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ Πιθανότητες 24 Πιθανότητες 24 η Άσκηση Η Δανάη περιστρέφει τον δείκτη στον διπλανό τροχό. α. Να εκφράσεις με κλάσμα την πιθανότητα:. Ο δείκτης να σταματήσει σε

Διαβάστε περισσότερα

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε 1. Να αποδειχθεί ότι κάθε ϑετικός ακέραιος αριθµός n 6, µπορεί να γραφεί στη µορφή όπου οι a, b, c είναι ϑετικοί ακέραιοι. n = a + b c,. Να αποδειχθεί ότι για κάθε ακέραιο

Διαβάστε περισσότερα

Διάλεξη 4: Θεωρία Πιθανοτήτων Ασκήσεις 4

Διάλεξη 4: Θεωρία Πιθανοτήτων Ασκήσεις 4 Διάλεξη 4: ΑΣΚΗΣΕΙΣ. Η πιθανότητα εμφάνισης βλάβης σε ένα μηχάνημα εργοστασίου ισούται με 0.03, η πιθανότητα εμφάνισης σε ένα δεύτερο ισούται με 0.0 και η πιθανότητα βλάβης και στα δυο ισούται με 0.05.

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 6o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

P( n, k) P(5,5) 5! 5! 10 q! q!... q! = 3! 2! = 0! 3! 2! = 3! 2!

P( n, k) P(5,5) 5! 5! 10 q! q!... q! = 3! 2! = 0! 3! 2! = 3! 2! HY118- ιακριτά Μαθηµατικά Φροντιστήριο στη Συνδυαστική (#8) Άσκηση 1 Με πόσους τρόπους µπορούµε να δηµιουργήσουµε συµβολοσειρές που αποτελούνται από τρεις παύλες και δύο τελείες; Άσκηση 1, 1 η προσέγγιση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2014 ιδάσκων : Π. Τσακαλίδης. Λύσεις εύτερης Σειράς Ασκήσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2014 ιδάσκων : Π. Τσακαλίδης. Λύσεις εύτερης Σειράς Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 204 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : /0/206 Ηµεροµηνία Παράδοσης : 20/0/206

Διαβάστε περισσότερα

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ . ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Ασκήσεις σχ. βιβλίου σελίδας 7 9 Α ΟΜΑΔΑΣ. Από μία τράπουλα με 5 φύλλα παίρνουμε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχομένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΜΣ στη «Ναυτιλία» Τμήμα Β art time Χαράλαμπος Ευαγγελάρας hevangel@unipi.gr Η έννοια της Πιθανότητας Ο όρος πιθανότητα είναι συνδέεται άμεσα με τη μελέτη

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α.1. Να αποδείξετε

Διαβάστε περισσότερα

Πιθανότητες. Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους

Πιθανότητες. Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους Πιθανότητες Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους «Πείραμα» Tύχης Οτιδήποτε συμβαίνει και δεν γνωρίζουμε από πριν το ακριβές αποτέλεσμά του. Απασχόλησαν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ 3ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 3ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

ΣΥΝ ΥΑΣΤΙΚΗ ΑΝΑΛΥΣΗ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών

ΣΥΝ ΥΑΣΤΙΚΗ ΑΝΑΛΥΣΗ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών Τµ. Επιστήµης των Υλικών Χώρος Πιθανότητας Συµµετρικός Χώρος Πιθανότητας 1 Θεωρούµε ότι ο δειγµατοχώρος Ω είναι πεπερασµένος, Ω= {ω 1,ω 2,...,ω n }. 2 Κάθε δειγµατοσηµείο έχει τις ίδιες ευκαιρίες εµφάνισης

Διαβάστε περισσότερα

ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 1 50

ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 1 50 ΜΑΘΗΜΑΤΙΚΗ ΣΚΕΨΗ ρ Κορρές Κωνσταντίνος ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 1 50 1. Μία έρευνα από 50 µαθητές έδειξε ότι 30 είχαν γάτες, 25 είχαν σκύλους, 5 είχαν χάµστερ, 16 είχαν σκύλους και γάτες, 4 είχαν σκύλους και χάµστερ,

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 4.4 : Πιθανότητα Δεσμευμένη Πιθανότητα- Όρια (ΙV). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΠΙΘΑΝΟΤΗΤΩΝ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ

Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΠΙΘΑΝΟΤΗΤΩΝ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΠΙΘΑΝΟΤΗΤΩΝ ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ Στόχοι- Υποστόχοι- Δραστηριότητες Ασημίνα Ασβεστά, Κωνσταντίνα Ζαχαροπούλου, Σοφία Αιζενμπαχ Πείραμα Τύχης Πιθανότητα Ενδεχομένου ΠΕΙΡΑΜΑ ΤΥΧΗΣ Α Β Γ Δ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Η καταληκτική ημερομηνία για την παραλαβή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 ο ΠΙΘΑΝΟΤΗΤΕΣ Συνοπτική Θεωρία Όλες οι αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις από την Τράπεζα Θεμάτων του Υπουργείου και προτεινόμενες Διαγωνίσματα

Διαβάστε περισσότερα

Ασκήσεις Κεφαλαίου 1

Ασκήσεις Κεφαλαίου 1 Ασκήσεις Κεφαλαίου 1 1. Αν συμβολίζει τη συμμετρική διαφορά των γεγονότων Α και Β, δηλ. δείξτε ότι ισχύει 0 και επαληθεύστε με αριθμητικό παράδειγμα ότι δεν ισχύει το αντίστροφο. 2. Για τα γεγονότα Α και

Διαβάστε περισσότερα

α Α και α Β, β Α και β Β, γ Α και γ Β, δ Α και δ Β, ε Α και ε Β, ζ Β και ζ Β, η Α και η Β, θ Α και θ Β.

α Α και α Β, β Α και β Β, γ Α και γ Β, δ Α και δ Β, ε Α και ε Β, ζ Β και ζ Β, η Α και η Β, θ Α και θ Β. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2017-2018 Χειμερινό Εξάμηνο Ρόδος, Νοέμβριος 2017 ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ, ΔΙΔΑΚΤΙΚΗΣ και ΠΟΛΥΜΕΣΩΝ Μάθημα: ΥΓ00003 "ΕΙΣΑΓΩΓΗ

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός

Διαβάστε περισσότερα

8 Άρα η Ϲητούµενη πιθανότητα είναι

8 Άρα η Ϲητούµενη πιθανότητα είναι ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-17: Πιθανότητες - Χειµερινό Εξάµηνο 014 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 4/10/014 Ηµεροµηνία Παράδοσης : 5/11/014

Διαβάστε περισσότερα

Μάθηµα 1 ο. Πιθανότητα-Έννοιες και Ορισµοί. Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων.

Μάθηµα 1 ο. Πιθανότητα-Έννοιες και Ορισµοί. Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων. Μάθηµα 1 ο Πιθανότητα-Έννοιες και Ορισµοί Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων. http://compus.uom.gr/inf267/index.php 1 Εισαγωγικά Βασικές Έννοιες

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 19/04/2016 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραµα Πείραµα: Οποιαδήποτε διαδικασία που µπορεί να οδηγήσει σε ένα αριθµό παρατηρήσιµων

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ www.askisopolis.gr 3 4 .5381 Ένα κουτί περιέχει άσπρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 0, οι κόκκινες είναι 7, ενώ όλες οι μπάλες μαζί είναι

Διαβάστε περισσότερα

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44. ΤΕΧΝΙΚΕΣ ΚΑΤΑΜΕΤΡΗΣΗΣ Η καταµετρηση ενος συνολου µε πεπερασµενα στοιχεια ειναι ισως η πιο παλια µαθηµατικη ασχολια του ανθρωπου. Θα µαθουµε πως, δεδοµενης της περιγραφης ενος συνολου, να µπορουµε να ϐρουµε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }. 3 ΠΙΘΑΝΟΤΗΤΕΣ 3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Ένα πείραμα του οποίου δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνεται φαινομενικά τουλάχιστον κάτω από

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση. Βασικές τεχνικές απαρίθμησης Αρχή Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση. Βασικές τεχνικές απαρίθμησης Αρχή Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση Βασικές τεχνικές απαρίθμησης Αρχή Περιστεριώνα Συνδυαστική ανάλυση - μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών

Διαβάστε περισσότερα

P (D) = P ((H 1 H 2 H 3 ) c ) = 1 P (H 1 H 2 H 3 ) = 1 P (H 1 )P (H 2 )P (H 3 )

P (D) = P ((H 1 H 2 H 3 ) c ) = 1 P (H 1 H 2 H 3 ) = 1 P (H 1 )P (H 2 )P (H 3 ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 205 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 2 Επιµέλεια : Κατερίνα Καραγιαννάκη Ασκηση. Μία κότα ϑέλει να διασχίσει το

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2 ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ Έστω βασικό σύνολο Ω = {, 4, 5, 8, 0} και τα υποσύνολα του Ω, Α = {, 5, 0}, Β = {4, 8, 0} i) Να παραστήσετε με διάγραμμα Venn τα παραπάνω σύνολα ii) Να περιγράψετε

Διαβάστε περισσότερα

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ Πιθανότητες και Αρχές Στατιστικής (3η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 38 Περιεχόμενα

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α) Ρ (Α Β). Μονάδες

Διαβάστε περισσότερα

Απαρίθμηση: Εισαγωγικά στοιχεία

Απαρίθμηση: Εισαγωγικά στοιχεία Απαρίθμηση: Εισαγωγικά στοιχεία Συνδυαστική ανάλυση - μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση: μέτρηση αντικειμένων με ορισμένες

Διαβάστε περισσότερα