Γενετικοί Αλγόριθμοι. Εισαγωγή

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γενετικοί Αλγόριθμοι. Εισαγωγή"

Transcript

1 Τεχνητή Νοημοσύνη 08 Γενετικοί Αλγόριθμοι (Genetic Algorithms) Εισαγωγή Σε αρκετές περιπτώσεις το μέγεθος ενός προβλήματος καθιστά απαγορευτική τη χρήση κλασικών μεθόδων αναζήτησης για την επίλυσή του. Από την άλλη τυχαίνει να είναι εύκολο να δημιουργηθούν λύσεις με απευθείας μηχανισμούς. π.χ. στο πρόβλημα του πλανόδιου πωλητή ο οποιοσδήποτε μπορεί να ορίσει μια πορεία που περνά από όλες τις πόλεις μία φορά πλην όμως μάλλον δεν θα είναι η καλύτερη δυνατή! Στις περιπτώσεις αυτές βρίσκουν εφαρμογή πιθανοκρατικοί αλγόριθμοι οι οποίοι αν και δεν εγγυώνται ότι θα βρουν τη βέλτιστη λύση, είναι ικανοί να επιστρέψουν μια αρκετά καλή λύση σε εύλογο χρονικό διάστημα. Μια κατηγορία τέτοιων αλγορίθμων επίλυσης προβλημάτων είναι οι γενετικοί αλγόριθμοι ή ΓΑ (genetic algorithms), στους οποίους ο βασικός μηχανισμός λειτουργίας είναι εμπνευσμένος από τη Δαρβινική Θεωρία της Εξέλιξης. Φώτης Κόκκορας Τμήμα Μηχανικών Υπολογιστών ΤΕΙ Θεσσαλίας Σε αντίθεση με τους κλασικούς αλγόριθμους αναζήτησης που ψάχνουν στο χώρο των καταστάσεων, οι ΓΑ εκτελούν αναζήτηση στο χώρο των υποψήφιων λύσεων με στόχο την εύρεση αποδεκτών λύσεων, σύμφωνα με κάποιο κριτήριο. να γιατί πρέπει να είναι εύκολο να δημιουργηθούν λύσεις με απευθείας μηχανισμούς! Φώτης Κόκκορας -2- Τεχνητή Νοημοσύνη Ιστορικά Στοιχεία Το 1958 ο Friedberg, επιχείρησε να συνδυάσει μικρά προγράμματα FORTRAN, ωστόσο τα προγράμματα που προέκυψαν συνήθως δεν ήταν εκτελέσιμα. Το 1975 ο Holland, χρησιμοποίησε σειρές bits για να αναπαραστήσει λειτουργίες με τρόπο τέτοιο ώστε κάθε συνδυασμός bits να είναι μια έγκυρη λειτουργία. Θεωρία της Εξέλιξης (evolution) Κανόνας της φυσικής επιλογής: Οι οργανισμοί που δε μπορούν να επιβιώσουν στο περιβάλλον τους πεθαίνουν, ενώ οι υπόλοιποι πολλαπλασιάζονται μέσω της αναπαραγωγής. Οι απόγονοι παρουσιάζουν μικρές διαφοροποιήσεις από τους προγόνους τους, ενώ συνήθως υπερισχύουν αυτοί που συγκεντρώνουν τα καλύτερα χαρακτηριστικά. Σποραδικά συμβαίνουν τυχαίες μεταλλάξεις, από τις οποίες οι περισσότερες οδηγούν τα μεταλλαγμένα άτομα στο θάνατο, αν και είναι πιθανό, πολύ σπάνια όμως, να οδηγήσουν στη δημιουργία νέων "καλύτερων" οργανισμών. Αν το περιβάλλον μεταβάλλεται με αργούς ρυθμούς, τα διάφορα είδη μπορούν να εξελίσσονται σταδιακά ώστε να προσαρμόζονται σε αυτό. Π Γενικός Γενετικός Αλγόριθμος Σχηματική Λειτουργία ελιτισμός γονείς Γ διασταύρωση μετάλλαξη Α απόγονοι Π' Φώτης Κόκκορας -3- Τεχνητή Νοημοσύνη Φώτης Κόκκορας -4- Τεχνητή Νοημοσύνη

2 Μηχανισμός Λειτουργίας ΓΑ Βήματα (με βάση το προηγούμενο σχήμα): 1. Δημιούργησε έναν τυχαίο αρχικό πληθυσμό Π, με Ν υποψήφιες λύσεις (δηλαδή μη έγκυρες ή μη βέλτιστες, κλπ). Αυτές αποτελούν τα άτομα του πληθυσμού. 2. Βαθμολόγησε κάθε υποψήφια λύση χρησιμοποιώντας μια συνάρτηση καταλληλότητας (fitness function) (δηλ. πόσο κοντά σε μια αποδεκτή λύση είναι). 3. Σχημάτισε ζευγάρια γονέων λαμβάνοντας με στοχαστικό τρόπο άτομα του πληθυσμού Π. Τα άτομα μπορεί να συμμετέχουν καθόλου ή περισσότερες από μία φορές. Δίνεται όπως μεγαλύτερη προτεραιότητα στις πλέον κατάλληλες λύσεις (άτομα) του πληθυσμού. 4. Κάθε ζευγάρι διασταυρώνεται (mates), δίνοντας νέες λύσεις (απογόνους-offsprings). 5. Πιθανοκρατικά, κάποιοι από τους απογόνους υφίστανται μετάλλαξη (mutation). 6. Ο νέος πληθυσμός Π' (ίδιου μεγέθους με τον Π) δημιουργείται επιλέγοντας με κάποιο συστηματικό τρόπο "καλά" άτομα, κύρια από το σύνολο των απογόνων και δευτερευόντως αλλά όχι υποχρεωτικά, από τον αρχικό πληθυσμό. 7. Η διαδικασία επαναλαμβάνεται για το νέο πληθυσμό Π' μέχρι να πληρείται κάποια συνθήκη τερματισμού (π.χ. εύρεση λύσης ικανοποιητικής ποιότητας, μη περαιτέρω βελτίωση των λύσεων, χρονικά όρια, κτλ) Συστατικά Γενετικού Αλγορίθμου Ένας ΓΑ για δεδομένο πρόβλημα, περιλαμβάνει: Αναπαράσταση (κωδικοποίηση) Υποψήφιων Λύσεων Ορισμό Συνάρτησης Καταλληλότητας (ποιότητας) Δημιουργία Αρχικού Πληθυσμού Λύσεων (συνήθως δημιουργείται τυχαία) Μηχανισμό Επιλογής Γονέων Διαδικασία Αναπαραγωγής/Ανασυνδυασμού Ορισμός του Πληθυσμού της Επόμενης Γενιάς. Επιπρόσθετα, υπάρχουν και οι συνθήκες τερματισμού της αναζήτησης που όμως είναι γενικές (ανεξάρτητες προβλήματος). Φώτης Κόκκορας -5- Τεχνητή Νοημοσύνη Φώτης Κόκκορας -6- Τεχνητή Νοημοσύνη Αναπαράσταση Υποψήφιων Λύσεων Στους βιολογικούς οργανισμούς, ένα χρωμόσωμα είναι ένα μεγάλο μόριο DNA και περιέχει έναν αριθμό γονιδίων. Το DNA αποτελείται από αλληλουχίες τεσσάρων διαφορετικών νουκλεοτιδίων (βάσεων): Adenine, Guanine, Thymine, Cytosine. Άρα το αλφάβητο του DNA έχει 4 γράμματα: A, G, T και C. Στους ΓΑ, κάθε υποψήφια λύση αναπαρίσταται με μία συμβολοσειρά ενός πεπερασμένου αλφάβητου. Χρωμόσωμα Η συμβολοσειρά αποκαλείται και χρωμόσωμα (chromosome) ενώ τα επιμέρους τμήματά της που κωδικοποιούν κάποιο χαρακτηριστικό ονομάζονται και γονίδια (gene). Τυπικές Αναπαραστάσεις (μη πλήρης λίστα) Δυαδική Αναπαράσταση: Χρησιμοποιούνται bits με τιμή 0 ή 1. Η ερμηνεία τους εξαρτάται από το πρόβλημα. Στο παράδειγμα, θα μπορούσε να είναι 2 ακέραιοι των 8 bit έκαστος, ή 4 των 4 bit. Αναπαράσταση Permutation (Συνδυασμού) Χρησιμοποιούνται ακέραιοι, σε κάποια διάταξη, χωρίς όμως να επαναλαμβάνονται. Θα μπορούσε π.χ. κάθε ακέραιος να είναι μια πόλη και όλο το χρωμόσωμα μια διαδρομή! Φώτης Κόκκορας -7- Τεχνητή Νοημοσύνη Γονίδιο Συνάρτηση Καταλληλότητας (Fitness Function) Δέχεται ως είσοδο ένα χρωμόσωμα και επιστρέφει έναν αριθμό, που υποδηλώνει το πόσο κατάλληλο (ή "καλό") είναι το συγκεκριμένο άτομο-λύση. Αν το χρωμόσωμα κωδικοποιεί μια διαδρομή, η τιμή καταλληλότητας θα μπορούσε να είναι το μήκος της, ή ο χρόνος για να τη διανύσει κάποιος, ή το κόστος σε απαιτούμενα καύσιμα, ή και συνδυασμός αυτών! Αν το χρωμόσωμα κωδικοποιεί τη θέση που πρέπει να τοποθετηθούν κεραίες κινητής τηλεφωνίας, η τιμή καταλληλότητας θα μπορούσε να είναι το ποσοστό κάλυψης στην περιοχή. Η αξιολόγηση των λύσεων χρησιμοποιείται: στην επιλογή γονέων για τη διαδικασία αναπαραγωγής στην επιλογή ατόμων για τον σχηματισμό του πληθυσμού της επόμενης γενιάς στη συνθήκη τερματισμού Φώτης Κόκκορας -8- Τεχνητή Νοημοσύνη

3 Παραδείγματα #1 Εύρεση Μεγίστου Συνάρτησης μιας Μεταβλητής f(x)=xsin(10πx)+1, ορισμένη στο διάστημα [-1, 2] 3 Η αντιμετώπιση του προβλήματος αυτού αναλυτικά (δηλαδή μηδενισμός πρώτης παραγώγου, κλπ) είναι δύσκολη Το πρόβλημα μπορεί να αντιμετωπισθεί με ΓΑ Χρήση δυαδικής αναπαράστασης Έστω ότι θέλουμε ακρίβεια 6 δεκαδικών ψηφίων Αυτά μας δίνουν 10 6 συνδυασμούς στο διάστημα μιας μονάδας. Για αναπαράσταση του διαστήματος [-1, 2] (3 μονάδες) απαιτούνται αριθμοί. Επειδή 2 21 < < 2 22, χρειάζονται 22 δυαδικά ψηφία. Η αντιστοίχηση μεταξύ δυαδικών <b 21, b 20,..., b 0 > και δεκαδικών στο [-1, 2] γίνεται ως εξής: x = -1 + x'(3/(2 22-1)) όπου x η παράμετρος της f(x) και x' ο δεκαδικός που αντιστοιχεί στη δυαδική αναπαράσταση. Η συνάρτηση καταλληλότητας είναι η ίδια η f(x), ενώ ο αρχικός πληθυσμός δημιουργείται τυχαία. Εφαρμόζοντας κλασικές τεχνικές διασταύρωσης και μετάλλαξης υπολογίζεται ότι το μέγιστο βρίσκεται "περίπου" στη θέση x=1.85 με f(1.85)=2.85. Φώτης Κόκκορας -9- Τεχνητή Νοημοσύνη Παραδείγματα #2 Το πρόβλημα του Πλανόδιου Πωλητή Εύρεση της σειράς με την οποία ένας πωλητής πρέπει να περάσει από όλες τις πόλεις ενός συνόλου πόλεων και να επιστρέψει στην αρχική, ώστε να έχει το μικρότερο δυνατό κόστος, όπως αυτό εκφράζεται κάθε φορά (απόσταση, χρόνος, κλπ). Αναπαράσταση με διανύσματα ακεραίων αριθμών μήκους ίσου με το πλήθος των πόλεων. Οι αριθμοί δεν επαναλαμβάνονται ( v=i 1 i 2 i n, όπου i 1, i 2,..., i n 1..n και i j i k για jk ) Δημιουργία αρχικού πληθυσμού με τυχαίο τρόπο. Απλή συνάρτηση καταλληλότητας: π.χ. άθροισμα αποστάσεων μεταξύ πόλεων Αναπαραγωγή: Πρέπει να προκύπτουν έγκυρα (βάσει προβλήματος) χρωμοσώματα! π.χ. να μην εμφανίζεται μία πόλη δύο φορές! Λεπτομέρειες για το μηχανισμό αναπαραγωγής δίνονται αργότερα Φώτης Κόκκορας -10- Τεχνητή Νοημοσύνη Αρχικοποίηση Πληθυσμού Παράγονται "λύσεις" (όχι απαραίτητα καλές ζητούμενο είναι να συμφωνούν με την αναπαράσταση που έχει επιλεγεί). Συνήθως είναι τυχαίες τιμές που παράγονται από μια γεννήτρια τυχαίων αριθμών. Προγραμματιστικά, ο πληθυσμός μιας γενιάς είναι μια δομή δεδομένων πίνακα (ή συνδεδεμένη λίστα). Το μέγεθός της καθορίζεται από το μέγεθος του πληθυσμού με τον οποίο θέλουμε να δουλέψουμε. Το μέγεθος του πληθυσμού πρέπει να είναι επαρκώς μεγάλο αλλά όχι πολύ μεγάλο! Δείτε το όπως τη διαδικασία δειγματοληψίας από ένα σύνολο. Αν είναι πολύ μικρό, η αναζήτηση θα καθυστερήσει και ίσως δεν δώσει και καλό αποτέλεσμα. Αν είναι πολύ μεγάλο, θα υπάρχει υπολογιστική επιβάρυνση (χρόνος, μνήμη). Τυπικά μεγέθη είναι μερικές εκατοντάδες (χωρίς να είναι δεσμευτικό). Ζητούμενο (αλλά όχι πάντα εύκολο να γίνει) είναι να υπάρχει επαρκής εκπροσώπηση λύσεων από όλες τις περιοχές του χώρου των λύσεων! Φώτης Κόκκορας -11- Τεχνητή Νοημοσύνη Μηχανισμός Επιλογής Γονέων Θέλουμε τα περισσότερο ποιοτικά άτομα να έχουν μεγαλύτερη πιθανότητα επιβίωσης (άρα και αναπαραγωγής) από τα λιγότερο ποιοτικά. Αυτό αντιγράφει την Θεωρία της Εξέλιξης! Θεωρούμε ότι η ποιότητά τους οφείλεται στο "γενετικό" τους υλικό άρα θέλουμε στοιχεία αυτού του υλικού να περάσουν στις επόμενες γενιές με μεγαλύτερη συχνότητα. Τα αδύναμα άτομα δεν "καταδικάζονται" απλά συμμετέχουν με μικρότερη συχνότητα. Στη φύση, τέτοια άτομα ίσως να έχουν κάποια χρήσιμα για τις επόμενες γενιές χαρακτηριστικά! Υπάρχουν πολλοί μηχανισμοί στην βιβλιογραφία. Αρκετά διαδεδομένοι είναι αυτοί που βασίζονται στην έννοια του Τροχού Επιλογής. Θα δούμε δύο μηχανισμούς. Επιλογή με Ρουλέτα (Roulette Wheel Selection) Παράδειγμα Μεγιστοποίηση Συνάρτησης Έστω ότι θέλουμε το μέγιστο της συνάρτησης y = (1/4) x 2 + 2x + 5 στο [0, 10] Άρα η συνάρτηση καταλληλότητας είναι η ίδια η παραπάνω συνάρτηση. Έστω αναπαράσταση 10-bit. Τα 10-bit επιτρέπουν τιμές μεταξύ 0 και 2 10, δηλαδή μεταξύ 0 και Μπορούμε εύκολα να αναγάγουμε αυτές τις τιμές σε κάποιο άλλο επιθυμητό διάστημα τιμών, εδώ στο [0,10]. Ο ακόλουθος πίνακας περιέχει τα μεγέθη που απαιτεί η επιλογή με ρουλέτα. Φώτης Κόκκορας -12- Τεχνητή Νοημοσύνη

4 Ο πίνακας περιέχει: 5 τυχαία άτομα (χρωμοσώματα), την ισοδύναμη δεκαδική τους τιμή, αναγωγή αυτής στο διάστημα [0, 10], την τιμή της συνάρτ. καταλληλότητας το ποσοστό που αντιπροσωπεύει αυτή η τιμή στο άθροισμα (σύνολο) των τιμών καταλληλότητας (στο 22.05, κάτω), και τέλος την αθροιστική πιθανότητα (τελευταία στήλη) σε κάθε κελί αθροίζουμε τις μέχρι εκεί πιθανότητες Η προτελευταία στήλη καθορίζει το μέγεθος των τομέων πάνω στον τροχό. Ο τροχός γυρίζει τόσες φορές όσα και τα άτομα που θέλουμε να επιλέξουμε. Παράγουμε έναν τυχαίο αριθμό μεταξύ 0-100, έστω Κ. Με βάση αυτόν, επιλέγουμε το χρωμόσωμα με την μεγαλύτερη αθροιστική πιθανότητα που δεν υπερβαίνει το Κ. Παραδείγματα: Κ=10 #1, Κ=31 #1, Κ=80 #3, Κ=99 #5 Η μέθοδος μεροληπτεί υπέρ των "ποιοτικότερων" ατόμων. Αν το κάνει πολύ έντονα, υπάρχουν τεχνικές αναπροσαρμογής των τιμών για αποφυγή πρόωρης σύγκλισης (τοπικό μέγιστο). Κάτι τέτοιο κάνει η επόμενη μέθοδος. Φώτης Κόκκορας -13- Τεχνητή Νοημοσύνη Rank Roulette Wheel Όπως πριν αλλά μέχρι το σημείο υπολογισμού των πιθανοτήτων επιλογής. Μετά: Ταξινομείται η λίστα σε αύξουσα τιμή πιθανότητας. Επαναϋπολογίζονται πιθανότητες με τη σχέση δεξιά: P i είναι η νέα πιθανότητα επιλογής του χρωμοσώματος i, λ είναι το πλήθος των επιλογών που θέλουμε Παράδειγμα: Έστω πληθυσμός 6 ατόμων (λ=6) ταξινομημένα στην τιμή ποιότητας. Μας ενδιαφέρει μόνο η θέση τους: 1 ο, 2 ο, 3 ο, κ.ο.κ. i 1 Pi i Ο παρονομαστής της παραπάνω σχέσης είναι: Σi = = 21 Η σχέση δίνει τις πιθανότητες που φαίνονται στον πίνακα δεξιά. Άρα, η μέθοδος εισάγει πλασματικές τιμές ποιότητας, εξασφαλίζοντας διαφορετικότητα στις τιμές, χωρίς να χαλάει την ποιοτική κατάταξη (δηλ. ο πρώτος καλύτερος παραμένει πρώτος, ο δεύτερος παραμένει 2 ος, κ.ο.κ.) Tournament Selection Βήματα: Επιλέγονται τυχαία n άτομα (n2) από τον πληθυσμό. Από τα n άτομα, επιλέγεται αυτό με την καλύτερη τιμή ποιότητας. Η διαδικασία επαναλαμβάνεται μέχρι να συγκεντρωθούν τα λ άτομα που απαιτούνται. Φώτης Κόκκορας -14- Τεχνητή Νοημοσύνη i1 Αναπαραγωγή / Ανασυνδυασμός Έχοντας δημιουργήσει τον πληθυσμό που θα συμμετάσχει στην αναπαραγωγική διαδικασία, επιλέγουμε από αυτόν τυχαία ζευγάρια και εφαρμόζουμε τεχνικές ανασυνδυασμού (αναπαραγωγής). Υπάρχουν πάρα πολλές τεχνικές. Το τι θα επιλέξουμε το καθορίζει κύρια ο τρόπος περιγραφής που έχουμε υιοθετήσει αρχικά. Θα αναφέρουμε χαρακτηριστικές περιπτώσεις για τις δυαδική και permutation αναπαραστάσεις. Αναπαραγωγή σε Δυαδική αναπαράσταση: Single Point Crossover N Point Crossover Α και Β (κάτω) είναι οι δύο απόγονοι. Επιπλέον στους γονείς (πάνω) είναι σημειωμένο ποιο τμήμα πάει στον απόγονο Α και ποιο στον Β. Τα τμήματα οριοθετούνται με μια γραμμή σε τυχαία θέση (η κόκκινη γραμμή). Φώτης Κόκκορας -15- Τεχνητή Νοημοσύνη Partially Mapped Crossover Θα τη δούμε με παράδειγμα στο πρόβλημα του πλανόδιου πωλητή. Έστω ότι οι πόλεις είναι 9. Υιοθετήσαμε νωρίτερα την περιγραφή με μια αλληλουχία των αριθμών 1 ως 9, χωρίς να επαναλαμβάνονται οι αριθμοί. Έστω p 1 =( ) και p 2 =( ) δύο τυχαίες λύσεις. τα σύμβολα μπήκαν τυχαία ορίζουν τα τμήματα που θα χρησιμοποιηθούν Δημιουργείται η αρχική μορφή των απογόνων κρατώντας το κεντρικό τμήμα γονέων o 1 =(x x x x x) και o 2 =(x x x x x) Για να συμπληρωθούν τα υπόλοιπα στοιχεία του ο 1, θα χρησιμοποιηθεί το χρωμόσωμα του γονέα p 2 αναδιαταγμένο. p 2 =( ) αναδιάταξη: Επιπλέον αφαιρούνται οι πόλεις (ψηφία) που υπάρχουν ήδη στο o 1 =(xxx 4567 xx) δηλαδή από το απομένει το με τα ψηφία συμπληρώνεται η λύση ο 1 αρχίζοντας από το τέλος (με την ίδια σειρά δηλαδή που έγινε αναδιάταξη στον γονέα p 2 ). Οπότε γίνεται: o 1 =( ) Όμοια προκύπτει ότι o 2 =( ) Φώτης Κόκκορας -16- Τεχνητή Νοημοσύνη

5 Μετάλλαξη (Mutation) Σε Δυαδική Αναπαράσταση: με χαμηλή συχνότητα, επιλέγουμε ένα τυχαίο bit σε τυχαίο άτομο και του αλλάζουμε τιμή. Ο ρυθμός μετάλλαξης υλοποιείται εύκολα. Αν π.χ. θέλουμε 1 στις 1000 φορές, παράγουμε έναν ακέραιο στο διάστημα (1,1000). Αν είναι π.χ. 1 τότε κάνουμε τη μετάλλαξη, αλλιώς όχι. Σε Αναπαράσταση Permutation (Μετάθεσης) Inversion/Αναστροφή: μια τυχαία αλληλουχία αριθμών, μικρού μήκους, αναστρέφεται. Ορισμός του Πληθυσμού της Επόμενης Γενιάς. Ζητούμενο: να καθορίσουμε ποια άτομα (από την τρέχουσα γενιά και τους απογόνους) θα αποτελέσουν την επόμενη γενιά. Επιλέγουμε: μ άτομα από το σύνολο της τρέχουσας γενιάς λ απογόνους (τα άτομα που προέκυψαν από την αναπαραγωγή) Επιπλέον μπορούμε να κρατούμε το καλύτερο "άτομο". Ελιτισμός elitism: Η καλύτερη λύση (στο σύνολο αρχικού πληθυσμού και παιδιών) μεταφέρεται απευθείας στην επόμενη γενιά ώστε κατ'ελάχιστο να μη χειροτερεύει η καλύτερη λύση (άτομο) που έχουμε. Δύο διαδεδομένοι τρόποι είναι με βάση την ηλικία και με βάση την ποιότητα. Swap: δύο τυχαία επιλεγμένοι αριθμοί ενός χρωμοσώματος, ανταλλάσουν θέση. Φώτης Κόκκορας -17- Τεχνητή Νοημοσύνη Φώτης Κόκκορας -18- Τεχνητή Νοημοσύνη Επιλογή ως προς την Ηλικία Συνθήκη Τερματισμού ΓΑ Μέρος της τρέχουσας γενιάς αντικαθίσταται από απογόνους. Δύο τυπικοί τρόποι: Τα λ χειρότερα άτομα της τρέχουσας γενιάς αντικαθίστανται από λ απόγονους. Τυχαία, λ άτομα της τρέχουσας γενιάς αντικαθίστανται από λ απόγονους Επιλογή ως προς την Ποιότητα Κριτήριο Επιλογής είναι η τιμή ποιότητας. Δύο τυπικοί τρόποι: Tournament: Από το σύνολο ατόμων (απόγονοι και τρέχουσα γενιά), επιλέγεται ένα μικρό υποσύνολο k ατόμων και το άτομο με τη χειρότερη ποιότητα απομακρύνεται. Η διαδικασία επαναλαμβάνεται μέχρι να απομείνει το επιθυμητό πλήθος ατόμων. GENITOR: Από το σύνολο ατόμων (απόγονοι και τρέχουσα γενιά), απομακρύνονται τα χειρότερα άτομα ώστε να μείνει το επιθυμητό πλήθος. Είναι λίγο επικίνδυνη μέθοδος γιατί μπορεί να οδηγήσει τον ΓΑ σε πρόωρη σύγκλιση σε τοπικό ακρότατο (δεν θα τον αφήσει να διερευνήσει επαρκώς τον χώρο αναζήτησης (δηλ. τον χώρο των λύσεων)). Φώτης Κόκκορας -19- Τεχνητή Νοημοσύνη Φώτης Κόκκορας -20- Τεχνητή Νοημοσύνη

6 Σύγχρονες Εφαρμογές ΓΑ (1/2) Εύρεση μέγιστης τιμής αριθμητικών συναρτήσεων. Η εύρεση του μέγιστου μιας συνάρτησης δεν είναι καθόλου εύκολη υπόθεση για συναρτήσεις πολλών μεταβλητών, οι οποίες εμφανίζουν ασυνέχειες, θόρυβο, κλπ. Το πλεονέκτημα που εμφανίζει η εφαρμογή τους σε αυτά τα προβλήματα είναι ότι η συνάρτηση καταλληλότητας είναι η ίδια η συνάρτηση του προβλήματος! Επεξεργασία Εικόνων Αναγνώριση προτύπων, όπως ακμές, επιφάνειες, αντικείμενα, σε ψηφιοποιημένες εικόνες. Συνδυαστική βελτιστοποίηση. Το κλασσικό πρόβλημα κατανομής πόρων σε δραστηριότητες, με σκοπό τη μεγιστοποίηση του οφέλους ή την ελάττωση του κόστους. Ο έλεγχος όλων των υποψήφιων λύσεων να είναι αδύνατος (συνδυαστική έκρηξη)! Γνωστά προβλήματα αυτής της κατηγορίας: του πλανόδιου πωλητή, η αποθήκευση κιβωτίων, σχεδίαση VLSI κυκλωμάτων, καταμερισμός εργασιών, ωρολόγιο πρόγραμμα, βελτιστοποιημένη κοπή υλικών για ελαχιστοποίηση απωλειών υλικού (υφάσματα, ελάσματα, ξύλα), τοποθέτηση αναμεταδοτών/κεραιών, κτλ Σύγχρονες Εφαρμογές ΓΑ (2/2) Σχεδίαση Σχεδίαση κατασκευών και εξαρτημάτων, με ζητούμενο τόσο την εύρεση μιας λύσης, όσο και τη βελτιστοποίησή της ώστε να πληροί κάποιες ιδιότητες. Παράδειγμα το εικονιζόμενο ακροφύσιο. Αρχικό Σχήμα: Βελτιστοποιημένο Σχήμα: Σχεδίαση μορίων με επιθυμητές ιδιότητες (για φαρμακευτικές ουσίες, κτλ). Οι αλγόριθμοι μπορούν να δοκιμάσουν συνδυασμούς και ιδέες που ο ανθρώπινος νους δε θα δοκίμαζε ποτέ, δίνοντας ενίοτε πρωτότυπα αποτελέσματα. Σχόλια (αντί σύνοψης) Με εξαίρεση την αναπαράσταση και την συνάρτηση καταλληλότητας που εξαρτώνται από το υπό μελέτη πρόβλημα, τα υπόλοιπα βήματα στους ΓΑ είναι τυποποιημένα. Οι ΓΑ περιέχουν αρκετές παραμέτρους και απαιτούν αρκετό πειραματισμό για να βρεθούν οι κατάλληλες τιμές σε αυτές (π.χ. μέγεθος πληθυσμού γενιάς). Οι ΓΑ εμπεριέχουν έντονο στοιχείο τυχαιότητας (randomness) και διαδοχικά run ενός αλγορίθμου δεν εγγυώνται παρόμοια αποτελέσματα. Παρόλα αυτά οι ΓΑ έχουν επιδείξει εξαιρετική ικανότητα στο να μοντελοποιήσουν φαινόμενα και συμπεριφορές με έντονο συνδυαστικό χαρακτήρα (πολλές παράμετροι, κτλ). Φώτης Κόκκορας -21- Τεχνητή Νοημοσύνη Φώτης Κόκκορας -22- Τεχνητή Νοημοσύνη Εργαλεία - Στο Matlab δώστε: optimtool('ga') Φώτης Κόκκορας -23- Τεχνητή Νοημοσύνη

Κεφάλαιο 7. Γενετικοί Αλγόριθµοι. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 7. Γενετικοί Αλγόριθµοι. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 7 Γενετικοί Αλγόριθµοι Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Εισαγωγή Σε αρκετές περιπτώσεις το µέγεθος ενός προβλήµατος καθιστά απαγορευτική

Διαβάστε περισσότερα

Τυπικά θέματα εξετάσεων. ΠΡΟΣΟΧΗ: Οι ερωτήσεις που παρατίθενται ΔΕΝ καλύπτουν την πλήρη ύλη του μαθήματος και παρέχονται απλά ενδεικτικά

Τυπικά θέματα εξετάσεων. ΠΡΟΣΟΧΗ: Οι ερωτήσεις που παρατίθενται ΔΕΝ καλύπτουν την πλήρη ύλη του μαθήματος και παρέχονται απλά ενδεικτικά ΤΕΙ Κεντρικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταπτυχιακό Πρόγραμμα Τηλεπικοινωνιών & Πληροφορικής Μάθημα : 204a Υπολογιστική Ευφυία Μηχανική Μάθηση Καθηγητής : Σπύρος Καζαρλής Ενότηα : Εξελικτική

Διαβάστε περισσότερα

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης.

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Ένα από τα γνωστότερα παραδείγματα των ΕΑ είναι ο Γενετικός

Διαβάστε περισσότερα

Ε ανάληψη. Α ληροφόρητη αναζήτηση

Ε ανάληψη. Α ληροφόρητη αναζήτηση ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,

Διαβάστε περισσότερα

Γενετικοί Αλγόριθμοι (ΓΑ) Genetic Algorithms (GAs) Είναι το πιο αντιπροσωπευτικό και δημοφιλές είδος Εξελικτικού Αλγόριθμου Χρησιμοποιούνται κυρίως

Γενετικοί Αλγόριθμοι (ΓΑ) Genetic Algorithms (GAs) Είναι το πιο αντιπροσωπευτικό και δημοφιλές είδος Εξελικτικού Αλγόριθμου Χρησιμοποιούνται κυρίως Σπύρος Καζαρλής Γενετικοί Αλγόριθμοι (ΓΑ) Genetic Algorithms (GAs) Είναι το πιο αντιπροσωπευτικό και δημοφιλές είδος Εξελικτικού Αλγόριθμου Χρησιμοποιούνται κυρίως ως αλγόριθμοι γενικής βελτιστοποίησης

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΑ σε ΓΕΝΕΤΙΚΟΥΣ

ΕΡΩΤΗΜΑΤΑ σε ΓΕΝΕΤΙΚΟΥΣ ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Quiz Γενετικών Αλγορίθµων 1 ΕΡΩΤΗΜΑΤΑ σε ΓΕΝΕΤΙΚΟΥΣ ΚΩ ΙΚΟΠΟΙΗΣΗ ΕΡΩΤΗΜΑ 1.1 Ο φαινότυπος ενός ατόµου α.αναπαριστά ένα άτοµο στο χώρο λύσεων του προβλήµατος β.κωδικοποιεί

Διαβάστε περισσότερα

Περιγραφή Προβλημάτων

Περιγραφή Προβλημάτων Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2

1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2 1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2 Άσκηση Δίνεται ο αρχικός πληθυσμός, στην 1 η στήλη στον παρακάτω πίνακα και οι αντίστοιχες καταλληλότητες (στήλη 2). Υποθέστε ότι, το ζητούμενο είναι η μεγιστοποίηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΙΜΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ

ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΙΜΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΙΜΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ Μανινάκης Ανδρέας 1 Πολυτεχνείο Κρήτης Τμήμα Μηχανικών Παραγωγής και Διοίκησης Επιβλέπων καθηγητής:

Διαβάστε περισσότερα

Νευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές

Νευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Νευρωνικά ίκτυα και Εξελικτικός Προγραµµατισµός Σηµερινό Μάθηµα επανάληψη Γενετικών Αλγορίθµων η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Κωδικοποίηση Αντικειµενική Συνάρτ Αρχικοποίηση Αξιολόγηση

Διαβάστε περισσότερα

ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ: θεωρητικό Πλαίσιο

ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ: θεωρητικό Πλαίσιο ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ: θεωρητικό Πλαίσιο EVOLOTIONARY ALGORITHMS 1 ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ Η Λογική (1/2) Ο Εξελικτικός Υπολογισµός (evolutionary computation) χρησιµοποιεί τα υπολογιστικά µοντέλα εξελικτικών

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση Προχωρημένες Μέθοδοι Προβλήματα με την «κλασική» βελτιστοποίηση Η αντικειμενική συνάρτηση

Διαβάστε περισσότερα

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή Στοιχειώδης συνδυαστική Συνδυασμοί και διατάξεις με επανάληψη Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων;

Διαβάστε περισσότερα

Υπολογιστική Νοηµοσύνη

Υπολογιστική Νοηµοσύνη Υπολογιστική Νοηµοσύνη Σηµερινό Μάθηµα Η θεωρία της Εξέλιξης των Ειδών οµή Γενετικού Αλγόριθµου Κύρια χαρακτηριστικά ενός Γενετικού Αλγορίθµου (ΓΑ) Γενετική ιαδικασία 1 Η θεωρία της Εξέλιξης των Ειδών

Διαβάστε περισσότερα

i=1 f i = F i SF [0, f 1 ), [f 1, f 1 + f 2 ), [f 1 + f 2, f 1 + f 2 + f 3 ),..., [f 1 + f f P 1, 1) i 1

i=1 f i = F i SF [0, f 1 ), [f 1, f 1 + f 2 ), [f 1 + f 2, f 1 + f 2 + f 3 ),..., [f 1 + f f P 1, 1) i 1 ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ (216-17) Εργασία 4 Πολύ συχνά, ένα υπολογιστικό πρόβλημα έχει περισσότερες από μία λύση. Για παράδειγμα, αν θέλουμε να βρούμε ένα υποσύνολο ενός συνόλου ακεραίων, που το άθροισμα

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Εισαγωγή στους Γενετικούς Αλγορίθμους

Εισαγωγή στους Γενετικούς Αλγορίθμους ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΓΝΩΡΙΣΗΣ ΠΡΟΤΥΠΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών & Πληροφορικής Τομέας Εφαρμογών και Θεμελιώσεων της Επιστήμης των Υπολογιστών. Διευθυντής

Διαβάστε περισσότερα

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης: Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται

Διαβάστε περισσότερα

Γενετικοί αλγόριθµοι - ΓΑ Genetic algorithms - GA

Γενετικοί αλγόριθµοι - ΓΑ Genetic algorithms - GA Γενετικοί αλγόριθµοι - ΓΑ Genetic algorithms - GA ΕΦΑΡΜΟΓΗ στην ΕΠΕΞΕΡΓΑΣIΑ ΣΗΜΑΤΟΣ και στην ΑΣΑΦΗ ΛΟΓIΚΗ Σ. Φωτόπουλος ΠΑΝΕΠ. ΠΑΤΡΩΝ Τµ. ΦΥΣΙΚΗΣ ΠΜΣ ΗΕΠ ΓΑ - Εισαγωγικά Γενετικοί αλγόριθµοι (Genetic algorithms)

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Ανάλυση των Γενετικών Αλγορίθµων

Ανάλυση των Γενετικών Αλγορίθµων Ανάλυση των Γενετικών Αλγορίθµων Σηµερινό Μάθηµα ΠρόβληµαΒελτιστοποίησης Βελτιστοποίηση συνάρτησης µιας µεταβλητής Βελτιστοποίηση συνάρτησης k µεταβλητών Περιορισµοίτουπεδίουορισµού Περιορισµοί πλεοναζουσών

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Βασισμένο σε μια εργασία των Καζαρλή, Καλόμοιρου, Μαστοροκώστα, Μπαλουκτσή, Καλαϊτζή, Βαλαή, Πετρίδη Εισαγωγή Η Εξελικτική Υπολογιστική

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΣΦΑΛΜΑΤΑ ΑΡΙΘΜΗΤΙΚΩΝ ΥΠΟΛΟΓΙΣΜΩΝ

ΣΦΑΛΜΑΤΑ ΑΡΙΘΜΗΤΙΚΩΝ ΥΠΟΛΟΓΙΣΜΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ (4 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ) ΣΦΑΛΜΑΤΑ ΑΡΙΘΜΗΤΙΚΩΝ

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 3ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Εξελικτικός Υπολογισμός Ορισμός Βασικές Αρχές Βελτιστοποίησης Κλασικοί Αλγόριθμοι

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 3 Λειτουργίες σε Bits, Αριθμητικά Συστήματα Χρήστος Γκουμόπουλος Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Φύση υπολογιστών Η

Διαβάστε περισσότερα

Πληροφορική 2. Δομές δεδομένων και αρχείων

Πληροφορική 2. Δομές δεδομένων και αρχείων Πληροφορική 2 Δομές δεδομένων και αρχείων 1 2 Δομή Δεδομένων (data structure) Δομή δεδομένων είναι μια συλλογή δεδομένων που έχουν μεταξύ τους μια συγκεκριμένη σχέση Παραδείγματα δομών δεδομένων Πίνακες

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 26: Καθολική Μηχανή Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ )

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ ) Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ. 25 48) Τι είναι αλγόριθμος; Γ ΛΥΚΕΙΟΥ Αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρονικό διάστημα,

Διαβάστε περισσότερα

Υπολογιστικό Πρόβληµα

Υπολογιστικό Πρόβληµα Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α A1. Να γράψετε στο τετράδιό σας τους

Διαβάστε περισσότερα

Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή. 1 Στέργιος Παλαμάς

Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή. 1 Στέργιος Παλαμάς ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Τμήμα Λογιστικής Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή 1 1. Αριθμοί: Το Δυαδικό Σύστημα Οι ηλεκτρονικοί υπολογιστές

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΤΗΓΟΡΙΚΩΝ ΔΕΔΟΜΕΝΩΝ. Σ. ΖΗΜΕΡΑΣ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών- Χρηματοοικονομικών Μαθηματικών Σάμος

ΑΝΑΛΥΣΗ ΚΑΤΗΓΟΡΙΚΩΝ ΔΕΔΟΜΕΝΩΝ. Σ. ΖΗΜΕΡΑΣ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών- Χρηματοοικονομικών Μαθηματικών Σάμος ΑΝΑΛΥΣΗ ΚΑΤΗΓΟΡΙΚΩΝ ΔΕΔΟΜΕΝΩΝ Σ. ΖΗΜΕΡΑΣ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών- Χρηματοοικονομικών Μαθηματικών Σάμος Εισαγωγή Αριθμητικά δεδομένα αντιστοιχούν σε πραγματοποιήσεις τυχαίων

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 6 ΟΥ ΚΕΦΑΛΑΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ 6.1 Τι ονοµάζουµε πρόγραµµα υπολογιστή; Ένα πρόγραµµα

Διαβάστε περισσότερα

ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ

ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ. ΚΑΤΕΥΘΥΝΣΗ ΔΙΟΙΚΗΣΗΣ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ Πληροφορική I "Προγραμματισμός" B. Φερεντίνος

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ

ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ Ηλίας Κ. Ξυδιάς 1, Ανδρέας Χ. Νεάρχου 2 1 Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων, Πανεπιστήμιο Αιγαίου, Σύρος

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Νικόλαος - Σπυρίδων Αναστασίου Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Χρήση Εξελικτικών Αλγορίθμων για την εκπαίδευση

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός Κεφάλαιο 5ο: Ακέραιος προγραμματισμός 5.1 Εισαγωγή Ο ακέραιος προγραμματισμός ασχολείται με προβλήματα γραμμικού προγραμματισμού στα οποία μερικές ή όλες οι μεταβλητές είναι ακέραιες. Ένα γενικό πρόβλημα

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016

Διαβάστε περισσότερα

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης: Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ Γ Α... Β

ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ Γ Α... Β ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΑΠΡΙΛΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (2/2) 1.1 Τα bits και ο τρόπος που αποθηκεύονται 1.2 Κύρια µνήµη 1.3 Αποθηκευτικά µέσα 1.4 Αναπαράσταση πληροφοριών ως σχηµάτων bits

Διαβάστε περισσότερα

Εργαστήριο «Τεχνολογία Πολιτισμικού Λογισμικού» Ενότητα. Επεξεργασία πινάκων

Εργαστήριο «Τεχνολογία Πολιτισμικού Λογισμικού» Ενότητα. Επεξεργασία πινάκων Ενότητα 4 Επεξεργασία πινάκων 36 37 4.1 Προσθήκη πεδίων Για να εισάγετε ένα πεδίο σε ένα πίνακα που υπάρχει ήδη στη βάση δεδομένων σας, βάζετε τον κέρσορα του ποντικιού στο πεδίο πάνω από το οποίο θέλετε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 7 ο Τι πρέπει να έχουμε υπ όψιν μας για την επιλογή της κατάλληλης γλώσσας προγραμματισμού;

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 7 ο Τι πρέπει να έχουμε υπ όψιν μας για την επιλογή της κατάλληλης γλώσσας προγραμματισμού; Τι πρέπει να έχουμε υπ όψιν μας για την επιλογή της κατάλληλης γλώσσας προγραμματισμού; Κάθε γλώσσα σχεδιάζεται για συγκεκριμένο σκοπό, δίνοντας έμφαση σε ορισμένα χαρακτηριστικά σε βάρος κάποιων άλλων.

Διαβάστε περισσότερα

FORTRAN και Αντικειμενοστραφής Προγραμματισμός

FORTRAN και Αντικειμενοστραφής Προγραμματισμός FORTRAN και Αντικειμενοστραφής Προγραμματισμός Παραδόσεις Μαθήματος 2016 Δρ Γ Παπαλάμπρου Επίκουρος Καθηγητής ΕΜΠ georgepapalambrou@lmentuagr Εργαστήριο Ναυτικής Μηχανολογίας (Κτίριο Λ) Σχολή Ναυπηγών

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

3. Προσομοίωση ενός Συστήματος Αναμονής.

3. Προσομοίωση ενός Συστήματος Αναμονής. 3. Προσομοίωση ενός Συστήματος Αναμονής. 3.1. Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων,

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν

Διαβάστε περισσότερα

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 13 Δ. Τουμπακάρης 30 Μαΐου 2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια Παράδοση:

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Πέµπτη 19 Ιουνίου 2008 11:00-14:00 Έστω το παρακάτω

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση:

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι. Λουκάς Γεωργιάδης

Δομές Δεδομένων και Αλγόριθμοι. Λουκάς Γεωργιάδης Δομές Δεδομένων και Αλγόριθμοι Λουκάς Γεωργιάδης loukas@cs.uoi.gr www.cs.uoi.gr/~loukas Στόχοι Μαθήματος Η σχεδίαση και ανάλυση αλγορίθμων και δομών δεδομένων αποτελεί σημαντικό τμήμα της πληροφορικής.

Διαβάστε περισσότερα

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι

Διαβάστε περισσότερα

Συνδυαστικά Λογικά Κυκλώματα

Συνδυαστικά Λογικά Κυκλώματα Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική

Διαβάστε περισσότερα

Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω:

Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω: Σημειώσεις Δικτύων Αναλογικά και ψηφιακά σήματα Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω: Χαρακτηριστικά

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αυτόματα Στοίβας (2.2) Τυπικός Ορισμός Παραδείγματα Ισοδυναμία με Ασυμφραστικές

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ. Μεταπτυχιακό Δίπλωμα Ειδίκευσης Μαθηματικά των Υπολογιστών και των Αποφάσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ. Μεταπτυχιακό Δίπλωμα Ειδίκευσης Μαθηματικά των Υπολογιστών και των Αποφάσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Μεταπτυχιακό Δίπλωμα Ειδίκευσης Μαθηματικά των Υπολογιστών και των Αποφάσεων ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΕ ΤΗ ΧΡΗΣΗ ΓΕΝΕΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ ΣΠΟΥΔΑΣΤΗΣ:

Διαβάστε περισσότερα

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Έλενα Ρόκου Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΣΙΤΩΝ ΧΩΡΗΤΙΚΟΤΗΤΩΝ ΑΛΥΣΟΕΙΔΩΝ ΜΟΝΩΤΗΡΩΝ ΜΕΣΩ ΓΕΝΕΤΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ

ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΣΙΤΩΝ ΧΩΡΗΤΙΚΟΤΗΤΩΝ ΑΛΥΣΟΕΙΔΩΝ ΜΟΝΩΤΗΡΩΝ ΜΕΣΩ ΓΕΝΕΤΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ ΝΟΕΜΒΡΙΟΣ-ΔΕΚΕΜΒΡΙΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 1 ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΣΙΤΩΝ ΧΩΡΗΤΙΚΟΤΗΤΩΝ ΑΛΥΣΟΕΙΔΩΝ ΜΟΝΩΤΗΡΩΝ ΜΕΣΩ ΓΕΝΕΤΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ ΑΘΑΝΑΣΙΟΣ Γ. ΔΡΑΚΩΤΟΣ Επιβλέποντες: ΙΩΑΝΝΗΣ ΑΘ. ΣΤΑΘΟΠΟΥΛΟΣ, Καθηγητής Ε.Μ.Π.

Διαβάστε περισσότερα

Πληροφορική ΙΙ Ενότητα 1

Πληροφορική ΙΙ Ενότητα 1 Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Ενότητα 1: Εισαγωγή Θεματική Ενότητα: Εισαγωγή στον Προγραμματισμό Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών

Οργάνωση Υπολογιστών Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό

Διαβάστε περισσότερα

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Π Π Τ Μ Τ Μ Η/Υ Π Δ Μ Π Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Φοιτητής: Ν. Χασιώτης (AM: 0000) Καθηγητής: Ι. Χατζηλυγερούδης 22 Οκτωβρίου 2010 ΑΣΚΗΣΗ 1. Δίνεται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΣΧΕΔΙΑΣΗΣ ΠΡΟΪΟΝΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΣΧΕΔΙΑΣΗΣ ΠΡΟΪΟΝΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΣΧΕΔΙΑΣΗΣ ΠΡΟΪΟΝΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ & ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Πρόγραμμα μεταπτυχιακών σπουδών: «Σχεδίαση διαδραστικών

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 «Προγραμματισμός Η/Υ» - Τετράδιο Εργαστηρίου #4 2 Γενικά Στο Τετράδιο #4 του Εργαστηρίου θα αναφερθούμε σε θέματα διαχείρισης πινάκων

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΑΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ:

ΑΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΑΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: Υλοποίηση ενός απλού Classifier System (σταθερού πλήθους κανόνων) για εφαρµογή στο πρόβληµα προσοµοίωσης ενός ψηφιακού πολυπλέκτη κα ενός

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Θέματα Συστημάτων Πολυμέσων

Θέματα Συστημάτων Πολυμέσων Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Δασική Γενετική Εισαγωγή: Βασικές έννοιες

Δασική Γενετική Εισαγωγή: Βασικές έννοιες Δασική Γενετική Εισαγωγή: Βασικές έννοιες Χειμερινό εξάμηνο 2014-2015 Γενετική Πειραματική επιστήμη της κληρονομικότητας Προέκυψε από την ανάγκη κατανόησης της κληρονόμησης οικονομικά σημαντικών χαρακτηριστικών

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 10 ΟΥ ΚΕΦΑΛΑΙΟΥ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ 1. Πως ορίζεται ο τμηματικός προγραμματισμός; Τμηματικός προγραμματισμός

Διαβάστε περισσότερα