Ανάλυση Ηλεκτρικών Κυκλωμάτων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ανάλυση Ηλεκτρικών Κυκλωμάτων"

Transcript

1 Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλιο 5: Θεωρήμτ κυκλωμάτων Οι διφάνειες κολουθούν το ιλίο του Κων/νου Ππδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: κωδ. ΕΥΔΟΞΟΣ:

2 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Έχουμε δει ότι η χρήση ισοδύνμων κυκλωμάτων σε πολλές περιπτώσεις πλοποιεί την νάλυση ενός κυκλώμτος: Αντιστάσεις συνδεδεμένες με ειδικό τρόπο (σειρά, πράλληλ, σε στέρ ή τρίγωνο) μπορούν ν ντικτστθούν πό ισοδύνμες συνδεσμολογίες. Πηγή τάσης σε σειρά με ντίστση ή πηγή ρεύμτος πράλληλ με ντίστση μπορεί ν ντικτστθεί πό ισοδύνμη συνδεσμολογί. Σε κάθε περίπτωση ντικτάστσης ενός μέρους του κυκλώμτος πό ισοδύνμο, τ ρεύμτ κι οι τάσεις πρμένουν μετάλητ στο υπόλοιπο κύκλωμ. Τ θεωρήμτ Thevenin κι Norton πρέχουν μι μεθοδολογί ντικτάστσης οποιουδήποτε γρμμικού κυκλώμτος με έν πλό ισοδύνμο.

3 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Σύμφων με το θεώρημ Thevenin, ν έχουμε οποιοδήποτε γρμμικό κύκλωμ που κτλήγει σε δύο κροδέκτες, υτό είνι ισοδύνμο με μί πηγή τάσης σε σειρά με μί ντίστση, κτλλήλων τιμών. Γρμμικό Κύκλωμ Τι σημίνει ισοδύνμο; Σημίνει πως οτιδήποτε (γρμμικό ή όχι) συνδεθεί στους κροδέκτες κι δεν θ κτλάει τη διφορά. Δηλδή ότι τάσεις, ρεύμτ ή ισχύς υπάρχουν είνι τ ίδι, είτε έχουμε το κύκλωμ είτε το ισοδύνμο. V TH R TH

4 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Έτσι, ν έχουμε έν κύκλωμ κι μς ενδιφέρει μι τάση ή έν ρεύμ σε έν μέρος του κυκλώμτος, το χωρίζουμε σε δύο υποκυκλώμτ με τέτοιο τρόπο που ν συνδέοντι με δύο γωγούς. Στη συνέχει ντικθιστούμε το μέρος του κυκλώμτος που δεν μς ενδιφέρει με το ισοδύνμό του. Προσοχή: Αν υπάρχουν εξρτημένες πηγές, υτές θ πρέπει ν πρμείνουν μζί με το μέγεθος που τις ελέγχει στο ίδιο υποκύκλωμ. V TH Κύκλωμ Α R TH Κύκλωμ Β Κύκλωμ Β

5 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Ποι είνι όμως η τιμή της πηγής τάσης κι της ντίστσης; Η τιμή της πηγής τάσης ισούτι με την τάση νοικτού κυκλώμτος μετξύ των κροδεκτών κι. Η τιμή της ντίστσης ισούτι με την ντίστση που φίνετι πό τους κροδέκτες κι ν οι νεξάρτητες πηγές μηδενιστούν. Προσοχή: Τυχόν εξρτημένες πηγές μένουν πάντ ενεργές. Κύκλωμ Α Τροποποιημένο Κύκλωμ Α V TH R TH

6 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Πηγή τάσης σε σειρά με ντίστση όμως ισοδυνμεί με πηγή ρεύμτος πράλληλ με ντίστση. Μπορούμε έτσι ν φτιάξουμε κι έν δεύτερο ισοδύνμο κύκλωμ. Αυτό είνι το ισοδύνμο Norton. Οι τιμές της πηγής ρεύμτος Norton, της πηγής τάσης Thevenin κι των ντιστάσεων συνδέοντι με μι σχέση που μοιάζει με το νόμο του Ωμ: V TH R TH Κύκλωμ Β I N R N Κύκλωμ Β Προσέξτε ότι η ντίστση Thevenin τυτίζετι με την ντίστση Norton.

7 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Πως υπολογίζουμε την τιμή της πηγής ρεύμτος Norton κι της ντίστσης Norton; Η τιμή της πηγής ρεύμτος ισούτι με το ρεύμ που διρρέει έν (υποθετικό) ρχυκύκλωμ μετξύ των κροδεκτών κι. Η τιμή της ντίστσης ισούτι με την ντίστση που φίνετι πό τους κροδέκτες κι ν οι νεξάρτητες πηγές μηδενιστούν, κριώς όπως κι στο ισοδύνμο Thevenin. Κύκλωμ Α Τροποποιημένο Κύκλωμ Α I N R TH

8 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Προσοχή στη φορά των ρευμάτων! Αν έχουμε ρει το έν ισοδύνμο κύκλωμ (Thevenin ή Norton) μπορούμε ν ρούμε το άλλο πό τις σχέσεις: Κύκλωμ Α I N Εάν το κύκλωμ περιέχει εξρτημένες πηγές είνι πιο πλός ο υπολογισμός της τάσης Thevenin κι του ρεύμτος Norton σε σχέση με τον υπολογισμό της ντίστσης. Η ντίστση τότε υπολογίζετι πό τη σχέση: I N R N Κύκλωμ Β

9 Κύκλωμ Β 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Έστω ότι έχουμε έν κύκλωμ στο οποίο μς ενδιφέρει μόνο τι συμίνει σε μί ντίστσή του. Θ μπορούσμε ν θέλουμε ν πντήσουμε στο ερώτημ γι ποι τιμή της ντίστσης υτής μεγιστοποιείτι η ισχύς που κτνλώνει. 10 V Κύκλωμ Α R 1 =10 Ω R 3 =5 Ω R 2 =10 Ω R L Η τάση Thevenin είνι η τάση νοικτού κυκλώμτος μετξύ των σημείων κι. Αφού η ντίστση R 3 δεν διρρέετι πό ρεύμ δεν έχει τάση στ άκρ της, άρ η τάση Thevenin ισούτι με την τάση στ άκρ της ντίστσης R 2, ήτοι 5 V. 10 V Κύκλωμ Α R 1 =10 Ω R 3 =5 Ω R 2 =10 Ω V TH

10 Κύκλωμ Β 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Γι ν υπολογίσουμε την ντίστση Thevenin ντικθιστούμε στο κύκλωμ Α την πηγή τάσης με ρχυκύκλωμ κι υπολογίζουμε την ντίστση που φίνετι πό τους κροδέκτες κι. Οι ντιστάσεις R 1 κι R 2 τώρ συνδέοντι πράλληλ κι η ισοδύνμή τους έχει τιμή ίση με 5 Ω. Η ντίστση υτή τώρ συνδέετι σε σειρά με την R 3, άρ η συνολική ντίστση που φίνετι πό τους κροδέκτες κι είνι 10 Ω. 10 V R 1 =10 Ω Κύκλωμ Α R 1 =10 Ω R 3 =5 Ω R 2 =10 Ω R 3 =5 Ω R 2 =10 Ω R TH R L Κύκλωμ Α

11 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Πράδειγμ 57: Χρησιμοποιήστε το θεώρημ Thevenin γι ν υπολογίσετε το ρεύμ που διρρέει την ντίστση R 1. Αφιρούμε την ντίστση R 1 κι υπολογίζουμε την τάση νοικτού κυκλώμτος: 1 i x R 2 =10 Ω R 1 =15 Ω 10 V R 2 =10 Ω 1 V TH 10 V

12 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Στη συνέχει μηδενίζουμε τις πηγές κι λέπουμε ότι η ντίστση που φίνετι πό τους κροδέκτες κι είνι 10 Ω: Στη συνέχει σχεδιάζουμε το ισοδύνμο κύκλωμ Thevenin κι τοποθετούμε σε υτό την ντίστση R 1. Το ζητούμενο ρεύμ είνι: R TH R TH =10 Ω R 2 =10 Ω V TH =20 V i x R 1 =15 Ω

13 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Πράδειγμ 58: Χρησιμοποιήστε το θεώρημ Thevenin γι ν υπολογίσετε το ρεύμ που διρρέει την ντίστση R 2. Έχουμε το ίδιο κύκλωμ με υτό του προηγούμενου πρδείγμτος, λλά το ζητούμενο μέγεθος είνι διφορετικό. Το ισοδύνμο Thevenin τώρ είνι διφορετικό. Έν κύκλωμ έχει πολλά ισοδύνμ, κθόσον το ισοδύνμο Thevenin ή Norton δεν φορά το κύκλωμ μόνο, λλά κι τον τρόπο με τον οποίο θ το χωρίσουμε στο "κύκλωμ Α" κι το "κύκλωμ Β". 1 i x R 2 =10 Ω R 1 =15 Ω 10 V

14 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Το ρεύμ της πηγής ρεύμτος τώρ διρρέει την ντίστση R 1 κι νπτύσσει στ άκρ της τάση ίση με 15 V. Η τάση Thevenin είνι: 1 V TH R 1 =15 Ω 10 V Η ντίστση Thevenin εύκολ φίνετι ότι είνι ίση με την τιμή της ντίστσης R 1, άρ R TH =15 Ω. R TH R 1 =15 Ω

15 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Στη συνέχει σχεδιάζουμε το ισοδύνμο κύκλωμ Thevenin, τοποθετούμε στους κροδέκτες του κι την ντίστση R 2 κι υπολογίζουμε το ζητούμενο ρεύμ: V TH =5 V R TH =15 Ω i x R 2 =10 Ω

16 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Δεν είμστε υποχρεωμένοι στο κύκλωμ Β ν συμπεριλάουμε μόνο έν στοιχείο. Αντί ν συμπεριλάουμε στο "κύκλωμ Β" μόνο την ντίστση R 2, μπορούμε ν συμπεριλάουμε το κύκλωμ που ποτελείτι πό την ντίστση R 2 μζί με την πηγή τάσης. Τώρ έχουμε άλλες τιμές γι την τάση κι την ντίστση Thevenin: Κύκλωμ Α Κύκλωμ R 2 =10 Ω 1 R 1 =15 Ω 10 V i x 1 R 1 =15 Ω V TH

17 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Στο ισοδύνμο κύκλωμ θ άλουμε το «κύκλωμ Β» που είχμε φιρέσει. Το ζητούμενο ρεύμ που διρρέει την ντίστση R 2 είνι: V TH =15 V R TH =15 Ω R 2 =10 Ω i x 10 V Θ πρέπει ν μελετάμε προσεκτικά έν κύκλωμ που μς δίνετι κι θέλουμε ν υπολογίσουμε κάποι πόκρισή του, διότι μπορούμε ν φτιάξουμε πολλά ισοδύνμ γι έν κύκλωμ κι συνήθως υπάρχει κάποιο ισοδύνμο που πλουστεύει πολύ τους υπολογισμούς μς.

18 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Πράδειγμ 59: Χρησιμοποιήστε το θεώρημ Thevenin γι ν υπολογίσετε τ ρεύμτ Ι 1, Ι 2 κι Ι 3. Αφιρούμε την ντίστση R 1. Το ρεύμ της πηγής ρεύμτος 1 Α διέρχετι πό την πηγή τάσης, άρ Ι 2 =1 Α, κι στον κόμο Β θροίζετι με το ρεύμ της πηγής ρεύμτος 2 Α, με ποτέλεσμ η ντίστση R 2 ν διρρέετι πό ρεύμ ίσο με 3 Α. Άρ στ άκρ της νπτύσσετι τάση ίση με 30 V. Η τάση Thevenin είνι: 1 1 I 1 I 5 V V 1 2 V 2 R 1 =10 Ω R 2 =10 Ω Γ I 5 V V 1 2 V 2 V TH R 2 =10 Ω I 3 I Γ

19 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Η ντίστση Thevenin είνι ίση με την ντίστση R 2, άρ R TH =10 Ω. Το ρεύμ Ι 1 που ζητείτι προκύπτει πό το ισοδύνμο κύκλωμ Thevenin: V TH =35 V R TH =10 Ω I 1 R 1 =10 Ω Επνερχόμενοι στο ρχικό κύκλωμ κι χρησιμοποιώντς την τιμή που ρήκμε γι το Ι 1 θ προκύψει ότι το ρεύμ Ι 2 ισούτι με 0,75 Α κι ότι το ρεύμ Ι 3 ισούτι με 1,25 Α. 1 I 1 R 1 =10 Ω I 5 V V 1 2 V 2 I 3 2 R 2 =10 Ω Γ

20 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Μπορούμε όμως ν φτιάξουμε κι άλλ ισοδύνμ κυκλώμτ Thevenin. Αφιρούμε την ντίστση R 2. Η τάση Thevenin είνι: 1 I 1 I 5 V V 1 2 V 2 R 1 =10 Ω V TH 2 Η ντίστση Thevenin είνι ίση με την ντίστση R 1, άρ R TH =10 Ω. Το ρεύμ Ι 3 προκύπτει πό το ισοδύνμο κύκλωμ Thevenin: V TH =25 V Γ R TH =10 Ω I 3 R 2 =10 Ω

21 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Αφιρώντς την πηγή τάσης πό το κύκλωμ μπορούμε ν φτιάξουμε έν κόμ ισοδύνμο Thevenin που εξυπηρετεί στον υπολογισμό του ρεύμτος I 2. Η τάση Thevenin τώρ είνι: 1 I 1 V 1 V 2 V TH R 1 =10 Ω R 2 =10 Ω Γ I 3 2 Η ντίστση Thevenin είνι το άθροισμ των δύο ντιστάσεων: I 1 V 1 V 2 R TH I 3 R 1 =10 Ω R 2 =10 Ω Γ

22 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Στη συνέχει σχεδιάζουμε το ισοδύνμο κύκλωμ κι τοποθετούμε στους κροδέκτες του την πηγή τάσης που είχμε φιρέσει. Το ρεύμ που θέλουμε ν υπολογίσουμε είνι υτό που διρρέει την πηγή τάσης. Γράφουμε την εξίσωση που προκύπτει πό την εφρμογή του νόμου τάσεων του Kirchhoff στο μονδικό ρόχο: V TH =10 V R TH =20 Ω I 2 5 V

23 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Πράδειγμ 510: Χρησιμοποιήστε το θεώρημ Norton γι ν υπολογίσετε το ρεύμ που διρρέει την ντίστση R 3. Αφιρούμε την ντίστση R 3 κι στη θέση της άζουμε ρχυκύκλωμ. Από το νόμο τάσεων του Kirchhoff στο ρόχο που περιλμάνει την πηγή τάσης 20 V, την ντίστση R 1 κι το ρχυκύκλωμ προκύπτει ότι το ρεύμ που διρρέει την ντίστση R 1 είνι: 20 V I 1 R 1 =10 Ω I 2 I 3 R 2 =10 Ω R 3 =20 Ω 10 V

24 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Με το ίδιο σκεπτικό υπολογίζουμε κι το ρεύμ Ι 2 : I 1 R 1 =10 Ω I 2 R 2 =10 Ω I 3 Από το νόμο ρευμάτων τώρ του Kirchhoff στον κόμο ρίσκουμε το ρεύμ Norton: 20 V R 3 =20 Ω 10 V I 1 R 1 =10 Ω I 2 R 2 =10 Ω Η ντίστση Norton είνι: R N

25 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Σχεδιάζουμε το ισοδύνμο κύκλωμ Norton κι τοποθετούμε σε υτό την ντίστση R 3. Το ρεύμ που τη διρρέει προκύπτει εύκολ πό τη σχέση του διιρέτη ρεύμτος: I N =3 R N =5 Ω I 3 R 3 =20 Ω

26 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Πράδειγμ 511: Χρησιμοποιείστε το θεώρημ Thevenin γι ν υπολογίσετε την τάση v x. Το ρεύμ της εξρτημένης πηγής διρρέει την R 1. Η πτώση τάσης στ άκρ της είνι: 10 V R 1 =5 Ω 0,1 v x R 2 =15 Ω v x R 3 =10 Ω Η πτώση τάσης στην ντίστση R 2 είνι μηδέν κι η τάση που ελέγχει την εξρτημένη πηγή ρεύμτος ισούτι με την τάση Thevenin V TH : 10 V R 1 =5 Ω 0,1 v x R 2 =15 Ω v x V TH

27 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Βρχυκυκλώνουμε τους κροδέκτες κι γι ν υπολογίσουμε το ρεύμ Norton, με συνέπει μηδενίζετι η εξρτημένη πηγή ρεύμτος. Μηδενικής τιμής πηγή ρεύμτος είνι νοικτοκύκλωμ, οπότε το ζητούμενο ρεύμ Norton διρρέει το μονδικό ρόχο του κυκλώμτος. Από το νόμο τάσεων του Kirchhoff έχουμε: 10 V R 1 =5 Ω 0,1 v x R 2 =15 Ω v x I N Η ντίστση Thevenin είνι:

28 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Γι ν ρούμε τη ζητούμενη τάση σχεδιάζουμε το ισοδύνμο κύκλωμ κι εφρμόζουμε τη σχέση του διιρέτη τάσης: V TH =20 V R TH =40 Ω v x R 3 =10 Ω Η ντίστση Thevenin δεν υπολογίζετι εύκολ ότν έχουμε εξρτημένη πηγή, κθώς δεν προκύπτει πό συνδυσμό ντιστάσεων. Μπορούμε όμως ν χρησιμοποιήσουμε έν τέχνσμ. R 1 =5 Ω 0,1 v x R 2 =15 Ω v R TH x

29 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Θέτουμε μί πηγή τάσης V s μετξύ των κροδεκτών κι. Αν ρούμε το ρεύμ Ι που δίνει η πηγή τάσης υτή στο κύκλωμ τότε η ντίστση Thevenin θ δίνετι πό τη σχέση: R 1 =5 Ω 0,1 v x R 2 =15 Ω v x I V s Μάλιστ μπορούμε ν δώσουμε μί υθίρετη τιμή στην πηγή τάσης, έστω V s =1 V. Σύμφων με το νόμο ρευμάτων του Kirchhoff στον κόμο Α έχουμε:

30 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Το ρεύμ που δίνει η πηγή τάσης τώρ δίνετι πό το νόμο του Ωμ στην ντίστση R 2 : R 1 =5 Ω 0,1 v x R 2 =15 Ω I v x V s Άρ η ντίστση μετξύ των κροδεκτών κι είνι: Αυτή είνι η ντίστση Thevenin.

31 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Ενλλκτικά μπορούμε ν τοποθετήσουμε μι πηγή ρεύμτος I s, έστω τιμής ίσης με 1 Α, κι ν υπολογίσουμε την τάση που νπτύσσετι στ άκρ της. H ντίστση Thevenin θ δίνετι πό το νόμο του Ωμ: R 1 =5 Ω 0,1 v x R 2 =15 Ω v x I s V Γράφουμε την εξίσωση που προκύπτει πό την εφρμογή του νόμου ρευμάτων του Kirchhoff στον κόμο Α: H τάση V κι η ζητούμενη τάση V συνδέοντι με τη σχέση:

32 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Από τις δύο πρπάνω εξισώσεις έχουμε: R 1 =5 Ω 0,1 v x R 2 =15 Ω v x I s V Άρ η ντίστση Thevenin είνι:

33 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Γι ν επληθεύσουμε τ ποτελέσμτ που ρήκμε γι την τάση v x ς την υπολογίσουμε με τη μέθοδο ρόχων. Η τάση v x είνι: 10 V R 1 =5 Ω 0,1 v x R 2 =15 Ω v x R 3 =10 Ω I 1 I 2 Πρώτ γράφουμε την εξίσωση της εξρτημένης πηγής ρεύμτος: Στη συνέχει γράφουμε το νόμο τάσεων του Kirchhoff στο ρόχο που δεν περιέχει την πηγή ρεύμτος: Άρ:

34 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Ότν περιλμάνετι εξρτημένη πηγή σε έν κύκλωμ πιτείτι ιδιίτερος χειρισμός γι την εύρεση της ντίστσης (Thevenin ή Norton). Εργζόμστε ως εξής: ) Αν το κύκλωμ έχει κι νεξάρτητες πηγές, ρίσκουμε την τάση Thevevin κι το ρεύμ Norton. Η ντίστση Thevenin R TH (=R N ) δίνετι πό τη σχέση: ) Αν το κύκλωμ δεν έχει νεξάρτητες πηγές, τότε: κι το ισοδύνμο Thevenin κι Norton τυτίζοντι, φού ποτελούντι μόνο πό μί ντίστση. Η τιμή της ντίστσης μπορεί ν υπολογιστεί με ένν πό τους δύο επόμενους τρόπους.

35 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton γ) Μηδενίζουμε όλες τις νεξάρτητες πηγές του κυκλώμτος (ν υπάρχουν). Τοποθετούμε μι πηγή τάσης V s στους νοικτούς κροδέκτες του κυκλώμτος κι υπολογίζουμε το ρεύμ Ι που δίνει (έτσι ώστε η πηγή τάσης που άλμε ν πρέχει ισχύ). Μπορούμε ν δώσουμε όποι τιμή θέλουμε στην πηγή τάσης. Η ντίστση Thevenin R TH (=R N ) δίνετι πό τη σχέση: Τροποποιημένο Κύκλωμ Α I V s

36 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton δ) Μηδενίζουμε όλες τις νεξάρτητες πηγές του κυκλώμτος (ν υπάρχουν). Τοποθετούμε μι πηγή ρεύμτος I s στους νοικτούς κροδέκτες του κυκλώμτος κι υπολογίζουμε την τάση V που νπτύσσετι στ άκρ της πηγής ρεύμτος (έτσι ώστε η πηγή ρεύμτος που άλμε ν πρέχει ισχύ. Αν μς διευκολύνει μπορούμε ν δώσουμε όποι τιμή θέλουμε στην πηγή ρεύμτος. Η ντίστση Thevenin R TH (=R N ) δίνετι πό τη σχέση: Τροποποιημένο Κύκλωμ Α V I s

37 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Πράδειγμ 512: Γι ποι τιμή της ντίστσης R L μεγιστοποιείτι η ισχύς που υτή κτνλώνει; Πόση είνι η μέγιστη ισχύς που μπορεί ν κτνλώσει μί ντίστση πό το κύκλωμ υτό; Θ ρούμε το ισοδύνμο Thevenin του κυκλώμτος χωρίς την ντίστση R L. Ότν η ντίστση R L ισούτι με την ντίστση Thevenin, τότε η ισχύς που κτνλώνει είνι η μέγιστη δυντή. 10 V 10 V R 1 =15 Ω V x R 1 =15 Ω v x 0,1 v x R 2 =5 Ω R 3 =10 Ω 0,1 v x R 2 =5 Ω R 3 =10 Ω V TH R L

38 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Ότν φιρεθεί η ντίστση R L το ρεύμ της εξρτημένης πηγής ρεύμτος ρέει μέσω της ντίστσης R 2, οπότε η τάση στ άκρ της, είνι: 10 V R 1 =15 Ω v x 0,1 v x R 2 =5 Ω R 3 =10 Ω V TH Η τάση Thevenin είνι μικρότερη πό την τάση μετξύ των κόμων Α κι Β κτά την πρπάνω τάση: Η τάση v x μπορεί ν υπολογιστεί πό τη σχέση του διιρέτη τάσης, κθώς οι ντιστάσεις R 1 κι R 3 διρρέοντι πό ίσ ρεύμτ:

39 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Οπότε η τάση στ άκρ της ντίστσης R 2 είνι: 0,1 v x Τέλος η τάση Thevenin είνι: 10 V R 1 =15 Ω v x R 2 =5 Ω R 3 =10 Ω V TH Γι ν υπολογίσουμε την ντίστση Thevenin θ υπολογίσουμε το ρεύμ Norton. Τοποθετούμε ρχυκύκλωμ μετξύ των κροδεκτών κι κι υπολογίζουμε το ρεύμ που διρρέει το ρχυκύκλωμ. 10 V R 1 =15 Ω v x 0,1 v x R 2 =5 Ω R 3 =10 Ω I N

40 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Η εξρτημένη πηγή ρεύμτος κι οι ντιστάσεις R 2 κι R 3 συνδέοντι πράλληλ μετξύ των κόμων Α κι Β. Σύμφων με το νόμο ρευμάτων του Kirchhoff στον κόμο Α έχουμε: 10 V R 1 =15 Ω v x 0,1 v x R 2 =5 Ω R 3 =10 Ω I N

41 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Το ρεύμ Norton υπολογίζετι πό το νόμο ρευμάτων του Kirchhoff στον κόμο του κροδέκτη : 10 V R 1 =15 Ω v x 0,1 v x R 2 =5 Ω R 3 =10 Ω I N Η ντίστση Thevenin είνι:

42 5 Θεωρήμτ κυκλωμάτων 5.3 Θεωρήμτ Thevenin κι Norton Άρ η ντίστση R L κτνλώνει τη μέγιστη ισχύ ότν ισούτι με 8 Ω. Η μέγιστη ισχύς θ είνι: V TH =2 V R TH =8 Ω R L =8 Ω

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλιο 12: Ανάλυση κυκλωμάτων ημιτονοειδούς διέγερσης Οι διφάνειες κολουθούν το ιλίο του Κων/νου Ππδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα Κεφάλιο 2 ο Γρμμικά Δικτυώμτ Έν ηλεκτρικό κύκλωμ ή δικτύωμ ποτελείτι πό ένν ριθμό πλών κυκλωμτικών στοιχείων, όπως υτά που νφέρθηκν στο Κεφ.1, συνδεδεμένων μετξύ τους. Το κύκλωμ θ περιέχει τουλάχιστον

Διαβάστε περισσότερα

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει

Διαβάστε περισσότερα

ΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ

ΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 8 ΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ.1 ΕΙΣΑΓΩΓΗ Στη µέτρηση της ωµικής λλά κι της σύνθετης ντίστσης µε υψηλή κρίβει χρησιµοποιούντι οι γέφυρες µέτρησης. Γι τη µέτρηση της ωµικής ντίστσης η πηγή τροφοδοσίς της γέφυρς

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Α) Προβλήμτ ευθύγρμμης ομλά επιτχυνόμενης κίνησης. ) Απλής εφρμογής τύπων Ακολουθούμε τ εξής βήμτ: i) Συμβολίζουμε τ δεδομέν κι ζητούμεν με τ ντίστοιχ σύμβολ που θ χρησιμοποιούμε.

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 5: Θεωρήματα κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 3: Συνδυασμός αντιστάσεων και πηγών Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι.

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι. ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ Α ΟΜΑΔΑΣ (i Ο συντεεστής διεύθυνσης της ευθείς ΑΒ είνι: 6 ( (ii Ο συντεεστής διεύθυνσης της ευθείς ΓΔ είνι: ( (iii Ο συντεεστής διεύθυνσης κάθε ευθείς κάθετης προς την ΓΔ έχει

Διαβάστε περισσότερα

3. Μέθοδος Ρεύματος Απλών Κόμβων 4. Κυκλώματα με Ελεγχόμενες Πηγές 5. Αρχή της Υπέρθεσης

3. Μέθοδος Ρεύματος Απλών Κόμβων 4. Κυκλώματα με Ελεγχόμενες Πηγές 5. Αρχή της Υπέρθεσης ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πνεπιστήμιο Ιωννίνων ΑΝΑΛΥΣΗ ΔΙΚΤΥΟΥ Ι ο Κεφάλιο Γ. Τσιτούχς Τμήμ Μηχνικών Η/Υ κι Πληροφορικής Διάρθρωση. Ανάλση Δικτύο. Μέθοδος Κομβικών Τάσεων. Μέθοδος Ρεύμτος Απλών Κόμβων 4.

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) x (5 + 3)x + 5 3 = (...).(...) ι) x + (5 3)x 5 3 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 3 0x (Μονάδες 3) β) Ν λύσετε την εξίσωση 7x 3 = (10x + x 3 ) (Μονάδες 3,5) Θέμ 3ο Ν πργοντοποιήσετε

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN Ν6_(6)_Σττιστική στη Φυσική Αγωγή 08_Πλινδρόμηση κι συσχέτιση Γούργουλης Βσίλειος Κθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Σε ορισμένες περιπτώσεις πιτείτι η νίχνευση της σχέσης μετξύ δύο ποσοτικών μετβλητών

Διαβάστε περισσότερα

αριθμών Ιδιότητες της διάταξης

αριθμών Ιδιότητες της διάταξης Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 12: Ανάλυση κυκλωμάτων ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.

Διαβάστε περισσότερα

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Εισγωγή: Όπως στη κθημερινή μς ζωή, γι ν συνεννοηθούμε χρησιμοποιούμε προτάσεις, έτσι κι στ Μθημτικά χρησιμοποιούμε «Μθημτικές» προτάσεις. Γι πράδειγμ στη κθημερινή

Διαβάστε περισσότερα

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α YΠΡΒΛΗ ρισμός: Υπερολή με εστίες κι λέγετι ο γεωμ. τόπος των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων πό τ κι είνι στθερή κι μικρότερη του Έ. Τη στθερή υτή διφορά τη συμολίζουμε

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

ΦΥΕ 14 ΕΚΤΗ ΕΡΓΑΣΙΑ ΠΡΟΘΕΣΜΙΑ ΠΑΡΑ ΟΣΗΣ 19 ΙΟΥΛΙΟΥ 2004

ΦΥΕ 14 ΕΚΤΗ ΕΡΓΑΣΙΑ ΠΡΟΘΕΣΜΙΑ ΠΑΡΑ ΟΣΗΣ 19 ΙΟΥΛΙΟΥ 2004 Άσκηση (5 µονάδες) ΦΥΕ 4 ΕΚΤΗ ΕΡΓΑΣΙΑ ΠΡΟΘΕΣΜΙΑ ΠΑΡΑ ΟΣΗΣ 9 ΙΟΥΛΙΟΥ 4 Τρί σηµεικά φορτί τοποθετούντι στις κορυφές ενός τετργώνου πλευράς όπως φίνετι στο σχήµ. Υπολογίστε την διεύθυνση κι το µέτρο του ηλεκτρικού

Διαβάστε περισσότερα

Η έννοια του διανύσματος

Η έννοια του διανύσματος Η έννοι του δινύσμτος Από τη γεωμετρί είμστε εξοικειωμένοι με την έννοι του ευθυγράμμου τμήμτος: δύο διφορετικά σημεί Α κι Β μις ευθείς (ε), ορίζουν το ευθύγρμμο τμήμ ΑΒ Έν ευθύγρμμο τμήμ λέγετι προσντολισμένο,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: 3. 3.4 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Πράδειγμ. Ν υολογισθούν τ ορισμέν ολοκληρώμτ: ΘΕΜΑ Β i. ii. (

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου II

Συστήματα Αυτομάτου Ελέγχου II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώττο Εκπιδευτικό Ίδρυμ Πειριά Τεχνολογικού Τομέ Συστήμτ Αυτομάτου Ελέγχου II Ενότητ #3: Ευστάθει Συστημάτων - Αλγεβρικό Κριτήριο Routh Δημήτριος Δημογιννόπουλος Τμήμ Μηχνικών Αυτομτισμού

Διαβάστε περισσότερα

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΣΧΕΤΙΚ ΜΕ ΤΙΣ ΚΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΙ Τ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ ΠΕΡΙΠΤΩΣΗ η: Συνρτήσεις ζήτησης κτά arshall Υπόθεση: Το χρηµτικό

Διαβάστε περισσότερα

Πρόχειρες σημειώσεις. Βασισμένες στο βιβλίο του Σ.Γ. ΦΡΑΓΚΟΠΟΥΛΟΥ: ΒΑΣΙΚΗ ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ. Μέρος Α: Κυκλώματα συνεχούς ρεύματος

Πρόχειρες σημειώσεις. Βασισμένες στο βιβλίο του Σ.Γ. ΦΡΑΓΚΟΠΟΥΛΟΥ: ΒΑΣΙΚΗ ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ. Μέρος Α: Κυκλώματα συνεχούς ρεύματος Πρόχειρες σημειώσεις Βσισμένες στο ιλίο του Σ.Γ. ΦΡΑΓΚΟΠΟΥΛΟΥ: ΒΑΣΙΚΗ ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Μέρος Α: Κυκλώμτ συνεχούς ρεύμτος Κ. Μουτζούρης Τμήμ Ηλεκτρονικής, ΤΕΙ Αθήνς Θερινό εξάμηνο 009

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας Μθηµτικά Κτεύθυνσης Γ Λυκείου Θέµτ Θεωρίς ΑΠΟΔΕΙΞΕΙΣ. N ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων κι - είνι συµµετρικές ως προς την ευθεί y που διχοτοµεί τις γωνίες Oy κι Oy Aς πάρουµε µι

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ σε κάθε ριθµό το γράµµ που ντιστοιχεί

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 13 Ε_3.ΦλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνί: Κυρική 8 Απριλίου 13 ιάρκει Εξέτσης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4

Διαβάστε περισσότερα

Θεωρήματα, Προτάσεις, Εφαρμογές

Θεωρήματα, Προτάσεις, Εφαρμογές Θεωρήμτ, Προτάσεις, Εφρμογές Μιγδικοί Ιδιότητες συζυγών: Αν z i κι z γ δi είνι δυο μιγδικοί ριθμοί, τότε: Μέτρο: z z z z z z z z 3 z z z z 4 z z z z Αν z, z είνι μιγδικοί ριθμοί, τότε z z z z z z z z 3

Διαβάστε περισσότερα

είναι n ανεξάρτητες τυποποιημένες κανονικές τυχαίες μεταβλητές, δηλαδή, αν Z i

είναι n ανεξάρτητες τυποποιημένες κανονικές τυχαίες μεταβλητές, δηλαδή, αν Z i Οι Κτνομές χ, t κι F Οι Κτνομές χ, t κι F Σε υτή την ενότητ προυσιάζουμε συνοπτικά τρεις συνεχείς κτνομές οι οποίες, όπως κι η κνονική κτνομή, είνι πολύ χρήσιμες στη Σττιστική Συμπερσμτολογί Είνι ξιοσημείωτο,

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ ΚΩΝΙΚΕΣ ΤΜΕΣ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Ποι είνι η εξίσωση του κύκλου με κέντρο το (0,0); ρ (0,0) M(,) C Έστω έν σύστημ συντετγμένων στο επίπεδο κι C ο κύκλος με κέντρο το σημείο (0,0) κι κτίν ρ. Γνωρίζουμε πό

Διαβάστε περισσότερα

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής 6 3. Η ΥΠΕΡΒΟΛΗ Ορισμός Υπερολής Έστω E κι Ε δύο σημεί ενός επιπέδου. Ονομάζετι υπερολή με εστίες τ σημεί E κι Ε ο εωμετρικός τόπος C των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων

Διαβάστε περισσότερα

Γ.3. Εξισώσεις 2ου βαθμού. Απαραίτητες γνώσεις Θεωρίας 3.3. Θεωρία 5. θεωρία 6.

Γ.3. Εξισώσεις 2ου βαθμού. Απαραίτητες γνώσεις Θεωρίας 3.3. Θεωρία 5. θεωρία 6. Γ.3 3.3 Εξισώσεις ου θμού Απρίτητες νώσεις Θεωρίς Θεωρί 5. Τι ονομάζουμε εξίσωση δευτέρου θμού (ή δευτεροάθμι εξίσωση) μ ένν άνωστο κι τι δικρινουσά της; Ονομάζουμε εξίσωση δευτέρου θμού μ ένν άνωστο κάθε

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Στην προηγούµενη ενότητ συζητήσµε µετσχηµτισµούς της µορφής Y g( µίς τυχίς µετβλητής Όµως σε έν πολυµετβλητό φινόµενο ενδέχετι ν θέλουµε ν µετσχηµτίσουµε τις ρχικές

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Οι ερωτήσεις Α Ψ του σχολικού βιβλίου [1]

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Οι ερωτήσεις Α Ψ του σχολικού βιβλίου [1] ΛΓΕΒΡ ΛΥΚΕΙΟΥ Οι ερωτήσεις του σχολικού βιβλίου [] Εισγωγικό Κεφάλιο. 9 3 Γι = - 3, η υπόθεση είνι ληθής, ενώ το συμπέρσμ ψευδές Το σύνολο λήθεις της υπόθεσης είνι το = 3, 3, ενώ του συμπεράσμτος είνι

Διαβάστε περισσότερα

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ SOOW-SWAN Εισγωγή Η νάλυση της θεωρίς της οικονομικής μεγέθυνσης θ ξεκινήσει νλύοντς το πιο πλό δυνμικό υπόδειγμ

Διαβάστε περισσότερα

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης: Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 3: Συνδυασμός αντιστάσεων και πηγών Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

Ονοματεπώνυμο. Τμήμα

Ονοματεπώνυμο. Τμήμα Ηλεκτρομγνητισμός (6-7-9) Ονομτεπώνυμο Τμήμ ΘΕΜΑ 1 A. Έν σωμάτιο με φορτίο -6. n τοποθετείτι στο κέντρο ενός μη γώγιμου σφιρικού φλοιού εσωτερικής κτίνς c κι εξωτερικής 5 c. Ο σφιρικός φλοιός περιέχει

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΗ: Παρουσίασα τις αποδείξεις κάπως αναλυτικά ώστε να γίνουν πιο κατανοητές.εσείς μπορείτε να τις παρουσιάσετε πιο λιτά.

ΣΗΜΕΙΩΣΗ: Παρουσίασα τις αποδείξεις κάπως αναλυτικά ώστε να γίνουν πιο κατανοητές.εσείς μπορείτε να τις παρουσιάσετε πιο λιτά. ΣΗΜΕΙΩΣΗ: Προυσίσ τις ποδείξεις κάπως νλυτικά ώστε ν γίνουν πιο κτνοητές.εσείς μπορείτε ν τις προυσιάσετε πιο λιτά. Δίνετι τυχόν ορθογώνιο τρίγωνο ΑΒΓ( ˆΑ=1 =1 ορθή) κι Δ η προβολή της κορυφής Α στην υποτείνουσ.ν

Διαβάστε περισσότερα

Η έννοια της συνάρτησης

Η έννοια της συνάρτησης Η έννοι της συνάρτησης Τι ονομάζουμε πργμτική συνάρτηση; Έστω Α έν υποσύνολο του R Ονομάζουμε πργμτική συνάρτηση με πεδίο ορισμού το Α μι διδικσί (κνόν), με την οποί κάθε στοιχείο A ντιστοιχίζετι σε έν

Διαβάστε περισσότερα

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ Θέρµνση Ψύξη ΚλιµτισµόςΙΙ Ψυχροµετρί Εργστήριο Αιολικής Ενέργεις Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κτσπρκάκης Ξηρόςκιυγρός τµοσφιρικόςέρς Ξηρόςκιυγρόςτµοσφιρικός έρς Ξηρός τµοσφιρικός έρς: ο πλλγµένος πό τους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ΙΑΝΥΣΜΑΤΑ - ΘΕΩΡΙΑ & ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ε (ρχή) φορές (πέρς) 1. Τι ορίζετι ως διάνυσµ ; Το διάνυσµ ορίζετι ως έν προσντολισµένο

Διαβάστε περισσότερα

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση. Μετρικές σχέσεις στ τρίγων Α Μετρικές σχέσεις σε ορθογώνιο τρίγωνο Α Προβολή σηµείου σε ευθεί Ορθή προβολή Α ονοµάζετι το ίχνος της κάθετης που φέρνουµε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς

Διαβάστε περισσότερα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα Λύσεις ης Εργσίς. Γράψτε κι σχεδιάστε ποιοτικά στο ίδιο διάγρµµ κθέν πό τ επόµεν v δινύσµτ στη µορφή x y : () Το διάνυσµ που συνδέει την ρχή του συστήµτος συντετγµένων µε το σηµείο Ρ(,-). () Το διάνυσµ

Διαβάστε περισσότερα

ν = 2, από τους οποίους όμως γνωρίζουμε μόνο 5, αυτούς που προκύπτουν για

ν = 2, από τους οποίους όμως γνωρίζουμε μόνο 5, αυτούς που προκύπτουν για 165 4.5 ΠΡΩΤΟΙ ΑΡΙΘΜΟΙ Εισγωγή Δύο πό τ σημντικότερ ποτελέσμτ σχετικά με τους πρώτους ριθμούς ήτν γνωστά ήδη πό την ρχιότητ. Το γεγονός ότι κάθε κέριος νλύετι με μονδικό τρόπο ως γινόμενο πρώτων εμφνίζετι

Διαβάστε περισσότερα

ν ν = α 0 α β = ( ) β α = α ( α β)( α β)

ν ν = α 0 α β = ( ) β α = α ( α β)( α β) Γ ΓΥΜΝΑΣΙΟΥ ν 0 ν = 1 = β β ν 1= ν µ = ν + µ ν ν µ 1 µ = ν = ν ( ν ) µ ν ν = ν µ β = β ( β) ν = ν βν ν > 0 τότε 2 = β = β β = β Ιδιότητες υνάµεων ν > β τότε + γ > β+ γ. ν > β κι γ > δ τότε + γ > β+ δ.

Διαβάστε περισσότερα

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση. . Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών

Διαβάστε περισσότερα

Θέματα Εξετάσεων Φεβρουαρίου 2011:

Θέματα Εξετάσεων Φεβρουαρίου 2011: ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ Θέμτ Εξετάσεων Φεβρουρίου : ΘΕΜΑ μονάδες Πρέπει με κυβικές b-splnes ν πρεμβάλετε, κτά σειρά, τ εξής σημεί:,,,,,,,8, 7, κι,. Ας είνι

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ Φυσική Κτεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ Θέµ ο κ ΙΑΓΩΝΙΣΜΑ Α. (Βάλτε σε κύκλο το γράµµ µε τη σωστή πάντηση) Αν υξήσουµε την πόστση µετξύ δύο ετερόσηµων σηµεικών ηλεκτρικών φορτίων,. η δυνµική

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 4: Συστηματικές μέθοδοι επίλυσης κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 978-960-93-7110-0 κωδ.

Διαβάστε περισσότερα

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων

Διαβάστε περισσότερα

1) Ποια είναι η αρχική ή παράγουσα; Τι σχέση έχει µε την f. 3) Υπάρχει µια παράγουσα για κάθε συνάρτηση ή περισσότερες;

1) Ποια είναι η αρχική ή παράγουσα; Τι σχέση έχει µε την f. 3) Υπάρχει µια παράγουσα για κάθε συνάρτηση ή περισσότερες; ΛΟΓΙΣΜΟΣ ) Ποι είνι η ρχική ή πράγουσ; Τι σχέση έχει µε την f. Έστω f µι συνάρτηση ορισµένη σ έν διάστηµ. Αρχική ή πράγουσ της f στο θ ονοµάζετι κάθε συνάρτηση F που είνι πργωγίσιµη στο κι ισχύει F ()

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: 3. 3.4 Μέρος Β του σχολικού ιλίου]. ΣΗΜΕΙΩΣΕΙΣ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Εμδό προλικού χωρίου Έστω ότι θέλουμε ρούμε

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo.

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo. Ορισμός συντελεστή διεύθυνσης ευθείς Έστω συνάρτηση κι M, έν σημείο της γρφικής της πράστσης. υπάρχει το κι είνι πργμτικός ριθμός λ, τότε ορίζουμε ως εφπτομένη της στο σημείο M, την ευθεί (ε) που διέρχετι

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Στο διπλνό ορθοώνιο τρίωνο, έχουμε φέρει πλά το ύψος που κτλήει στην υποτείνουσ. Είνι προφνές ότι, με υτό τον τρόπο, το μεάλο ορθοώνιο τρίωνο χωρίστηκε σε δύο μικρότερ ορθοώνι, τ κι. Σε

Διαβάστε περισσότερα

Επομένως μια ακολουθία α είναι γεωμετρική πρόοδος αν και μόνο αν ισχύει α, δηλαδή το πηλίκο δύο διαδοχικών όρων είναι σταθερό.

Επομένως μια ακολουθία α είναι γεωμετρική πρόοδος αν και μόνο αν ισχύει α, δηλαδή το πηλίκο δύο διαδοχικών όρων είναι σταθερό. Ε. 5. Γεωμετρική Πρόοδος Απρίτητες γώσεις Θεωρίς Γεωμετρική πρόοδος Γεωμετρική Πρόοδο (Γ.Π.) οομάζουμε μι κολουθί κάθε όρος της προκύπτει πό το προηγούμεό του με πολλπλσισμό επί το ίδιο πάτοτε μη μηδεικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ Β Γενικό μέρος των συνρτήσεων Τι λέμε σύνολο τιμών μις συνάρτησης με πεδίο ορισμού το σύνολο A ; Σύνολο τιμών της λέμε το σύνολο που έχει γι στοιχεί του τις τιμές

Διαβάστε περισσότερα

Αλγόριθµοι Άµεσης Απόκρισης

Αλγόριθµοι Άµεσης Απόκρισης Αλγόριθµοι Άµεσης Απόκρισης Εγχειρίδιο Φροντιστηρικών Ασκήσεων Ιωάννης Κργιάννης Ιούνιος 008 Το πρόν εγχειρίδιο περιέχει σκήσεις κι νοιχτά προβλήµτ σχετικά µε το ντικείµενο του µθήµτος Αλγόριθµοι Άµεσης

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι

Διαβάστε περισσότερα

7. Κωνικές τομές Τύποι - Βσικές έννοιες ΚΩΝΙΚΕΣ ΤΟΜΕΣ: Τύποι - Βσικές έννοιες Α. ΚΥΚΛΟΣ Εξίσωση κύκλου με κέντρο Ο( 0, 0 ) κι κτίν ρ : + =ρ Εξίσωση εφ

7. Κωνικές τομές Τύποι - Βσικές έννοιες ΚΩΝΙΚΕΣ ΤΟΜΕΣ: Τύποι - Βσικές έννοιες Α. ΚΥΚΛΟΣ Εξίσωση κύκλου με κέντρο Ο( 0, 0 ) κι κτίν ρ : + =ρ Εξίσωση εφ Ο μθητής που έχει μελετήσει τo κεφάλιο των κονικών τομών θ πρέπει ν είνι σε θέση: Ν προσδιορίζει την εξίσωση του κύκλου με κέντρο την ρχή των ξόνων. Με τη μέθοδο της συμπλήρωσης τετργώνου υπολογίζοντι

Διαβάστε περισσότερα

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1. Λύση

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1. Λύση 39th International Physics Olympiad - Hanoi - Vietnam - 8 11 Υπολογισμός της πόστσης TG Λύση 3 3 3 Ο όγκος του νερού στην κοιλότητ είνι V = 1cm = 1 m Το μήκος του πυθμέν της κοιλότητς είνι d = L atan 6

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μθητής που έχει μελετήσει το κεφάλιο υτό θ πρέπει ν είνι σε θέση:. Ν γνωρίζει τις έννοιες πράγουσ ή ρχική συνάρτηση, όριστο ολοκλήρωμ κι ν μπορεί ν υπολογίζει πλά όριστ ολοκληρώμτ με τη οήθει των μεθόδων

Διαβάστε περισσότερα

Ευθύγραμμες Κινήσεις (Συμπυκνωμένα)

Ευθύγραμμες Κινήσεις (Συμπυκνωμένα) Εθύγρμμες Κινήσεις (Σμπκνωμέν) Χρήση Λελεδάκης Κωστής ( koleygr@gmailcom ) Οι σημειώσεις πεθύνοντι σε κάποιον πο θέλει ν μάθει ή ν θμηθεί τ βσικά στοιχεί των εθύγρμμων κινήσεων (χωρίς πργώγος κι ολοκληρώμτ)

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ.

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ. Ιόνιο Πνεπιστήμιο - Τμήμ Πληροορικής Μθημτικός Λογισμός Ενότητ: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ Πνγιώτης Βλάμος Αδειες Χρήσης Το πρόν εκπιδευτικό υλικό υπόκειτι σε άδειες χρήσης Cativ Commo

Διαβάστε περισσότερα

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ Υπενθυµίζουµε ότι ν στ σηµεί Α, Β ενός άξον ντιστοιχίζοντι οι πργµτικοί ριθµοί, ντίστοιχ τότε: ( ΑΒ) = Β Α Α Β Σχετικά µε την πόστση δύο σηµείων στο κρτεσινό

Διαβάστε περισσότερα

Μέρος Α - Kεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.8. Δυνάμεις ρητών αριθμών με εκθέτη φυσικό

Μέρος Α - Kεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.8. Δυνάμεις ρητών αριθμών με εκθέτη φυσικό Μέρος Α - Kεφάλιο 7ο - Θετικοί κι Αρνητικοί Αριθμοί - 37 - Α.7.8. Δυνάμεις ρητών ριθμών με εκθέτη φυσικό ΔΡΑΣΤΗΡΙΟΤΗΤΑ Ένς υπολογιστής μολύνθηκε πό κάποιο ιό, ο οποίος είχε την ιδιότητ ν κτστρέφει τ ηλεκτρονικά

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1.

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Δύο μηχνικά κύμτ ίδις συχνότητς διδίδοντι σε ελστική χορδή. Αν λ 1 κι λ 2 τ μήκη κύμτος υτών των κυμάτων ισχύει: ) λ 1 λ 2 γ) λ 1 =λ 2 Δικιολογήστε την πάντησή

Διαβάστε περισσότερα

ΠΕΡΙΚΛΗΣ Γ. ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΟΡΟΣΗΜΟ ΖΩΓΡΑΦΟΥ

ΠΕΡΙΚΛΗΣ Γ. ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΟΡΟΣΗΜΟ ΖΩΓΡΑΦΟΥ ΠΕΡΙΚΛΗΣ Γ ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΚΕΝΤΡΙΚΗ ΔΙΑΘΕΣΗ Τρυλντώνη 8, 577 Ζωγράφου Τηλ: 747344 747395 email:info@orosimoeu wwworosimoeu ISBN: 978-68-873--4 ΕΚΔΟΣΕΙΣ

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙ: 15/0/015 ΘΕΜ 1 ο Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις 1-4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 7: Μεταβατική απόκριση κυκλωμάτων RL και RC Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι Έςτω :RR, ςυνεχήσ ςυνάρτηςη κι,,cr Αποδείξτε ότι ) d d β) d d γ) d c c d c c δ) d c c c d ε) d στ) d Απάντηση:, εάν η είνι περιττή d, εάν η είνι άρτι Πρόκειτι γι πολύ βσική άσκηση, που είνι εφρμογή της

Διαβάστε περισσότερα

Yποθέτουμε ότι αρχικά είναι φορτισμένος ο πυκνωτής με φορτίο Q ο. Mετά το κλείσιμο του κυκλώματος και σε τυχούσα χρονική στιγμή ισχύει:

Yποθέτουμε ότι αρχικά είναι φορτισμένος ο πυκνωτής με φορτίο Q ο. Mετά το κλείσιμο του κυκλώματος και σε τυχούσα χρονική στιγμή ισχύει: 0 Kεφ. TAΛANTΩΣEIΣ (prt, pges 0-4 Πράδειγμ 5. Tο κύκλωμ LC Yποθέτουμε ότι ρχικά είνι φορτισμένος ο πυκνωτής με φορτίο Q ο. Mετά το κλείσιμο του κυκλώμτος κι σε τυχούσ χρονική στιγμή ισχύει: O ς κνόνς Kirchhff

Διαβάστε περισσότερα

Η θεωρία στα μαθηματικά της

Η θεωρία στα μαθηματικά της Η θεωρί στ μθημτικά της Γ γυμνσίου ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ ΤΑΞΗΣ ((ΑΛΓΕΒΡΑ)) ο ΚΕΦΑΛΑΙΙΟ 1 Αλγγεεριικέέςς Πρσττάσεειιςς Α. 1. 1 1. Τι ονομάζετε δύνμη ν με άση τον πργμτικό κι εκθέτη το φυσικό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α) Ν ποδείξετε ότι ν µι συνάρτηση f

Διαβάστε περισσότερα

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 5 ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονί συνάρτησης Οι έννοιες γνησίως ύξουσ συνάρτηση, γνησίως φθίνουσ συνάρτηση είνι γνωστές πό προηγούμενη τάξη Συγκεκριμέν,

Διαβάστε περισσότερα

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ρρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλει: Τομές Μθημτικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 ευτέρ, 5 Μ ου 5 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α A. Έστω μι συνάρτηση, η οποί είνι ορισμένη σε έν κλειστό

Διαβάστε περισσότερα

f(x) dx ή f(x) dx f(x) dx

f(x) dx ή f(x) dx f(x) dx ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Ορισμός. Αν η f είνι ολοκληρώσιμη στο διάστημ [ a, ) ή στο διάστημ (,], τότε ονομάζουμε γενικευμένο ολοκλήρωμ είδους το ολοκλήρωμ της μορφής f() d ή - f() d Ορισμός. Το σημείο

Διαβάστε περισσότερα

για την εισαγωγή στο Λύκειο

για την εισαγωγή στο Λύκειο Τυπολόγιο 1 Μθημτικά γι την εισγωγή στο Λύκειο Νίκος Κρινιωτάκης ΠΡΓΜΤΙΚΟΙ ΡΙΘΜΟΙ Σύνολ ριθμών Φυσικοί ριθμοί Ν {,1,,3,...,} Οι φυσικοί δικρίνοντι σε: Άρτιους είνι της μορφής ν κ, κ Ν (διιρούντι με το

Διαβάστε περισσότερα

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a, ΕΡΩΤΗΣΕΙΣ Σ Λ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ - Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη σωστό ή λάθος δίπλ στο γράμμ που ντιστοιχεί σε κάθε πρότση

Διαβάστε περισσότερα

Κεφάλαιο 11 Διαγράμματα Φάσεων

Κεφάλαιο 11 Διαγράμματα Φάσεων Κεφάλιο 11 Διγράμμτ Φάσεων Συχνά, σε πολλές διεργσίες, νμιγνύουμε δύο ή κι περισσότερ διφορετικά υλικά, κι πρέπει ν πντήσουμε στο ερώτημ: ποιά θ είνι η φύση του υλικού που θ προκύψει πό υτή την νάμιξη:

Διαβάστε περισσότερα

Θεωρία και Πολιτική της. Οικονομικής Μεγέθυνσης. Πανεπιστημιακές Παραδόσεις. Θεόδωρος Παλυβός

Θεωρία και Πολιτική της. Οικονομικής Μεγέθυνσης. Πανεπιστημιακές Παραδόσεις. Θεόδωρος Παλυβός Πνεπιστήμιο Μκεδονίς Τμήμ Οικονομικών Επιστημών Θερί κι Πολιτική της Οικονομικής Μεγέθυνσης Πνεπιστημικές Πρδόσεις Θεόδρος Πλυβός Ενότητ Εισγγή στη Γενική Ισορροπί κι την Οικονομική της Ευημερίς Mare-Esrt-Léon

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:...

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:... ΑΝΑΛΟΓΙΕΣ Μι νθοδέσμη έχει 5 λευκά κι 15 κόκκιν γρύφλλ. Τι μπορούμε ν πρτηρήσουμε; ότι τ κόκκιν είνι κτά δέκ περισσότερ πό τ λευκά, λλά κι ότι τ κόκκιν γρύφλλ είνι τρεις φορές περισσότερ πό τ λευκά Η μέτρηση

Διαβάστε περισσότερα

ιάλεξη 2 Βασικά ερωτήµατα 12/10/2016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος

ιάλεξη 2 Βασικά ερωτήµατα 12/10/2016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµ Οικονοµικών Επιστηµών Ακδηµϊκό έτος 2016-17 ιάλεξη 2 ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΤΗΣ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ (διβάζουμε κεφ. 4 πό Μ. Χλέτσο κι σημειώσεις στο eclass) Αντωνισμός, οικονομική

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 6: Παθητικά στοιχεία αποθήκευσης ενέργειας Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ.

Διαβάστε περισσότερα

(( ) ( )) ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Μάθημα: Ηλεκτροτεχνία Ι Διδάσκων: Α. Ντούνης. Α Ομάδα ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΑΜ ΗΜΕΡΟΜΗΝΙΑ 5/2/2014. Διάρκεια εξέτασης: 2,5 ώρες

(( ) ( )) ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Μάθημα: Ηλεκτροτεχνία Ι Διδάσκων: Α. Ντούνης. Α Ομάδα ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΑΜ ΗΜΕΡΟΜΗΝΙΑ 5/2/2014. Διάρκεια εξέτασης: 2,5 ώρες ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Μάθημα: Ηλεκτροτεχνία Ι Διδάσκων: Α Ντούνης Α Ομάδα ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΑΜ ΗΜΕΡΟΜΗΝΙΑ 5//014 Θέμα 1 ο (0 μόρια) Διάρκεια εξέτασης:,5 ώρες α) Να υπολογιστεί η ισοδύναμη αντίσταση για το παρακάτω

Διαβάστε περισσότερα

Προτάσεις που χρησιμοποιούνται στη λύση ασκήσεων και χρειάζονται απόδειξη. Πρόταση 1

Προτάσεις που χρησιμοποιούνται στη λύση ασκήσεων και χρειάζονται απόδειξη. Πρόταση 1 Προτάσεις που χρησιμοποιούντι στη λύση σκήσεων κι χρειάζοντι πόδειξη Πρότση 1 Έστω η συνάρτηση f: A R η οποί είνι γνησίως ύξουσ Ν δείξετε ότι ) η f ντιστρέφετι ) η f -1 είνι γνησίως ύξουσ στο f(α) γ) Οι

Διαβάστε περισσότερα

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους 0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.

Διαβάστε περισσότερα

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( )

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( ) 9 Ορισμένο ολοκλήρωμ συνάρτησης Η συνάρτηση F( = f t dt Θεωρούμε τη συνεχή συνάρτηση f:a R με A = [,] Χωρίζουμε το [,] σε ν ισομήκη υοδιστήμτ ου το κθέν έχει μήκος Δ = Σε κάθε υοδιάστημ ου σχημτίζετι ν

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 13: Ισχύς σε κυκλώματα ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.

Διαβάστε περισσότερα

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα.

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα. 1 9.1 9. Μετρικές σχέσεις στο ορθογώνιο τρίγωνο ΘΕΩΡΙ 1. προβολή του στην ε προβολή του στην ε προβολή του στην ε ε. Τρίγωνο ορθογώνιο στο κι ύψος. Τότε = = = = β + γ κι ντίστροφ = 1 υ = 1 β + 1 γ ν δίνοντι

Διαβάστε περισσότερα

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Εργστήριο Φυσικής Τμήμτος Πληροφορικής κι Τεχνολογίς Υπολογιστών Τ.Ε.Ι. Λμίς Ηλεκτρικό φορτίο Εισγωγή στην έννοι του Ηλεκτρικού Φορτίου Κάθε σώμ περιέχει στην φυσική του κτάστση ένν πάρ πολύ μεγάλο ριθμό

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 8: Βηματική απόκριση κυκλωμάτων RL και R Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

f (x) = g(x) p(x) = q(x). ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ

f (x) = g(x) p(x) = q(x). ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΓΕΝΙΚΑ ΠΕΡΙ ΕΞΙΣΩΣΕΩΝ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Έστω f (x), g(x) είνι δύο πρστάσεις µις µετβλητής x πού πίρνει τιµές στο σύνολο Α. Εξίσωση µε ένν άγνωστο λέγετι κάθε ισότητ της µορφής f (x) =

Διαβάστε περισσότερα