Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m"

Transcript

1 Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m μέσα στο επίπεδο του πλαισίου, 0.4m κάθετα σ αυτό. Τα γωνιακά υποστυλώματα είναι διατομής 0.4x0.4m. Υπάρχουν 7 ενδιάμεσα υποστυλώματα στις μεγάλες πλευρές και ένα κεντρικό στις μικρές. Η δοκός του πλαισίου έχει ύψος 1.0m, πλάτος κορμού 0.4m και πέλματα πλάτους 0.6m και πάχους 0.2m (βλ. δεξιά σχήμα). Ο άξονάς της απέχει από τη βάση των υποστυλωμάτων 8m (καθαρό ύψος υποστυλώματος 7.5m). Η δοκός έχει ομοιόμορφο οιονεί-μόνιμο φορτίο p=17.5 kn/m. Επιπλέον στηρίζει μεταλλικό στέγαστρο, το βάρος του οποίου προκαλεί αξονικές δυνάμεις: (σύνολο: 1470 kn) - 40kN στις γωνιακές κολώνες - 60kN στην κεντρική των μικρών πλευρών - 85kN στις ενδιάμεσες των μεγάλων πλευρών. Το γραμμικό φορτίο p των δοκών μεταφέρεται στο πλησιέστερο υποστύλωμα. Τα κατακόρυφα φορτία δεν προκαλούν ροπές στα υποστυλώματα. Ο σεισμός προκαλεί συνολική οριζόντια δύναμη στην κορυφή του πλαισίου ίση με τα εξής ποσοστά των oλικών οιονεί μονίμων φορτίων που ασκούνται εκεί: - παράλληλα στις μεγάλες πλευρές (Χ): 16.5%, - παράλληλα στις μικρές πλευρές (Υ) 12.5%. Η συνολική σεισμική δύναμη κατανέμεται στα υποστυλώματα σε τέμνουσες ανάλογες με τη δυσκαμψία τους. Ενδιάμεσα υποστυλώματα έχουν δυσκαμψία 12ΕΙ/Η 3 μέσα στο επίπεδο του πλαισίου (αμφίπακτα), 3ΕΙ/Η 3 κάθετα σ αυτό (πρόβολος) όπου ΕΙ η δυσκαμψία της διατομής περί τον αντίστοιχο άξονα και Η το καθαρό ύψος του υποστυλώματος. Τα γωνιακά υποστυλώματα έχουν πάντα δυσκαμψία 12ΕΙ/Η 3. Το διάγραμμα σεισμικών ροπών του υποστυλώματος στη διεύθυνση όπου λειτουργεί ως αμφίπακτο μηδενίζεται στο μέσο του θεωρητικού ύψους των 8m. Σ αυτήν όπου λειτουργεί ως πρόβολος, μηδενίζεται στο θεωρητικό

2 κόμβο της κορυφής του (8m από τη βάση). Η σεισμική ροπή στην κορυφή του υποστυλώματος μοιράζεται εξίσου ως ροπή κάμψης στις δοκούς που συνδέονται εκεί. Τα ομοιόμορφα κατανεμημένα φορτία στις δοκούς προκαλούν ροπή: (1-2.5b/L)pL 2 /8 στις παρειές στήριξης στην κεντρική κολώνα των μικρών πλευρών (όπου L=12m το θεωρητικό τους άνοιγμα και b=0.5m η διάσταση διατομής του υποστυλώματος) (1-3b/L)pL 2 /12 στις στηρίξεις των δοκών των μεγάλων πλευρών, όπου L=6m και b=0.5m. Επιπλέον, η μεταφορά των φορτίων της στέγης στα υποστυλώματα προκαλεί ροπές κάμψης στις στηρίξεις των δοκών των μεγάλων πλευρών ίσες με τη λόγω φορτίου στέγης αξονική δύναμη του υποστυλώματος (80kN) επί (L-b)/4. Οι ροπές αυτές προκαλούν εφελκυσμό στο πάνω πέλμα στην 1 η και 3 η εσωτερική στήριξη, και στο κάτω στη 2 η και 4 η. Ζητείται ο υπολογισμός των εντατικών μεγεθών σχεδιασμού και η διαστασιολόγηση κατά ΕΚ8 σε κάμψη και διάτμηση των γωνιακών και των εσωτερικών υποστυλωμάτων των πλευρών, και των δοκών στις εσωτερικές στήριξεις της κάθε πλευράς. Για τις δοκούς να ληφθεί υπόψη και η φόρτιση 1.35G. Σκυρόδεμα C20/25, χάλυβας S500, επικάλυψη οπλισμών 30mm. Κατηγορία Πλαστιμότητας Μέση (Μ) κατά ΕΚ8, =2. 1) Ολικό βάρος και σεισμικές τέμνουσες: Ολικό βάρος: (24+48) 17.5=4000 kn α) Σεισμός κατά X (μεγάλη διεύθυνση): σεισμική τέμνουσα = = 660 kn β) Σεισμός κατά Υ (μικρή διεύθυνση): σεισμική τέμνουσα = = 500 kn 2) Δυσκαμψίες υποστυλωμάτων: Ενδιάμεσο ισχυρή διεύθυνση: (EI) c,s = ,000, /12= 62,500 knm 2 Ασθενής διεύθυνση: (EI) c,w = ,000, /12= 40,000 knm 2 Γωνιακό: (EI) c,w = ,000, /12= 32,000 knm 2 ~ η μισή ενδιάμεσου ισχυρής διεύθυνσης. Δυσκαμψίες - διεύθυνση X: Πλαίσια: K X.s = 2 12(n c +1)(EI) c,s /Η 3 = 2 12 (7+1) 62500/8 3 = kn/m Ενδιάμεσα υποστυλώματα μικρών πλευρών, ως πρόβολοι: K X.w = 2 3(EI) c,w /Η 3 = /8 3 = 469 kn/m Δυσκαμψίες - διεύθυνση Y: Πλαίσια μικρών πλευρών: K Y,s = (EI) c,s /Η 3 = /8 3 =5860 kn/m 14 ενδιάμεσα υποστυλώματα μεγάλων πλευρών, ως πρόβολοι: K Y,w = 2 7 3(EI) c,w /Η 3 = = 3283 kn/m

3 3) Σεισμικές ροπές υποστυλωμάτων. α)σεισμός κατά X (μεγάλη διεύθυνση): Τα δύο πλαίσια αναλαμβάνουν σεισμική τέμνουσα: /( )=323.5 kn το καθένα, η διαφορά ( )=13 kn, αναλαμβάνεται από τις μεσαίες κολώνες των μικρών πλευρών που αναλαμβάνουν η κάθε μία 6.5 kn. Τέμνουσα ενδιάμεσων υποστυλωμάτων 323.5/8=40.4 kn; Γωνιακών υποστυλωμάτων 20.2 kn. Ροπή σχεδιασμού ενδιάμεσων υποστυλωμάτων στην ισχυρή: =161.5 knm Στην κορυφή η ροπή αυτή μοιράζεται στις δύο δοκούς εκατέρωθεν Σεισμική ροπή στη βάση μεσαίων υποστυλωμάτων μικρών: 6.5 8=52 knm b) Σεισμός κατά Y: Καθένα από τα δύο πλαίσια των στενών πλευρών αναλαμβάνει σεισμική τέμνουσα: /( )=160 kn; η διαφορά, ( )=180 kn, αναλαμβάνεται από τα 14 ενδιάμεσα υποστυλώματα των μεγάλων πλευρών, που αναλαμβάνουν το καθένα 180/14=12.9 kn. Οι μεσαίες κολώνες των στενών πλευρών αναλαμβάνουν τέμνουσα 160/2=80 kn, οι γωνιακές 40 kn η κάθε μια. Η σεισμική ροπή των μεσαίων υποστυλωμάτων είναι (βάση και κορυφή): =320 knm. Στην κορυφή μοιράζεται στις δύο δοκούς εκατέρωθεν. Σεισμική ροπή στη βάση ενδιάμεσων υποστυλωμάτων μεγάλων πλευρών: =103.2 knm (ασθενής Άξονας) Σεισμικές ροπές υποστυλωμάτων (knm) Κολώνα: Ενδιάμεση, μεγάλων πλευρές Μεσαία, μικρών πλευρών Γωνιακή Άξονας Ισχυρός Ασθενής Ισχυρός Ασθενής Κατά X Κατά Y Βάση Κορυφή Βάση Βάση Κορυφή Βάση Βάση Κορυφή Βάση Κορυφή EX EY Οι υπογραμμισμένες ροπές δίνουν αξονικές δυνάμεις στις γωνιακές 80.8/3= 26.9 kn για EX και 160/6=26.6 kn για EY (βλ. Παρακάτω 4). 4) Σεισμικές ροπές δοκών και αξονικές δυνάμεις.

4 Μεγάλες πλευρές, δοκοί 8-ανοιγμάτων, στον κόμβο με υποστυλώματα: 161.5/2 = 80.8 knm; στην παρειά 80.8 (1-0.5/6) = 74 knm. Δοκοί δύο ανοιγμάτων στο θεωρητικό κόμβο με υποστυλώματα: 320/2 = 160 knm; στην παρειά 160 (1-0.5/12) = 153 knm. Αξονικές δυνάμεις αναπτύσσονται σε υποστυλώματα μονο λόγω διαφοράς τεμνουσών των εκατέρωθεν δοκών, πράγμα που συμβαίνει μόνο στις γωνιακές κολώνες, όπου: N = 80.8/3= 26.9 kn για EX και 160/6=26.6 kn για EY. 5) Αξονικές δυνάμεις υποστυλωμάτων λόγω κατακόρυφων. Στην κορυφή: Μεσαία υποστυλώματα στενής πλευράς: Από τη στέγη: 60 kn; από δοκό =210 kn; Σύνολο: 270 kn Ενδιάμεσα υποστυλώματα μεγάλων πλευρών: Από τη στέγη: 85 kn; από δοκό =105 kn; Σύνολο: 190 kn Γωνιακά: Από τη στέγη: 40 kn; Από δοκό 17.5 (3+6)=157.5 kn; Σύνολο: kn Στις βάσεις: Προστίθενται =37.5 kn στις ενδιάμεσες κολώνες, =30 kn στις γωνιακές. 6) Κατακόρυφοι οπλισμοί υποστυλωμάτων. Λόγω μονορόφου δεν γίνεται ικανοτικός υποστυλωμάτων. f cd =20/1.5=13.33 MPa; f ctm =2.2 MPa; f yd =500/1.15=434.8 MPa; ε yd =434.8/200000=0.217%; d 1 = c+d bh +d bl /2 ~ /2 ~0.05m. Από τον Πίνακα για τις κολώνες: Μεσαίο υποστύλωμα μικρών πλευρών: Στην ισχυρή διεύθυνση M Ed =320 knm, Ν Ed = = kn Ενδιάμεσο υποστύλωμα μεγάλων πλευρών: στην ισχυρή διεύθυνση M Ed = knm, στην ασθενή Μ Ed knm, Ν Ed = = kn Γωνιακές κολώνες: M Ed = 160 knm, Ν Ed = = 201 kn a) Μεσαίο υποστύλωμα στενής πλευράς στον ισχυρό άξονα: d 1 /h =0.1, ν d = 307.5/( )=0.115, μ d = 320/( )=0.24

5 ω 1 =0.25; A s1 = 0.25 ( ) /434.8= 1533 mm 2 5Φ20 (1571 mm 2 ) στις στενές πλευρές και 1Φ20 στο μέσο των μεγάλων, οι μεσαίες ράβδοι συγκρατούνται με συνδετήρα, σύνολο 12Φ20 (3770 mm 2 ) ρ = 3770/( )= Ροπή αντοχής κολώνας: Προσμετρώντας τη μισή γωνιακή ράβδο στις πλευρές για να προκύψει ομοιόμορφα κατανεμημένος οπλισμός σε κάθε μία από αυτές: ω 1 = ω 2 = 1257/( ) 434.8/13.333=0.205, ω vd = 2 628/( ) 434.8/13.333= Στη βάση: ν d = 0.115, άρα: M Rd,c = 354 knm Κορυφή: ν d = 270/( )=0.101 : M Rd,c = 350 knm. b) Ενδιάμεσα υποστυλώματα μεγάλων πλευρών. Ισχυρή διεύθυνση: d 1 /h =0.1, ν d = 227.5/( )=0.085, μ d = 161.5/( )= ω 1d =0.11; A s1 = 0.11 ( ) /434.8= 675 mm 2 Ασθενής διεύθυνση: d 1 /h =0.125, ν d = 0.085, μ d =103.2/( )= Αρα ω 1d =0.10; A s1 = 0.1 ( ) /434.8= 613 mm 2 Τοποθετούνται 3Φ20 (942 mm 2 ) στις στενές πλευρές και 1Φ20 στη μέση των μεγάλων (συγκράτηση με συνδετήρα). Σύνολο: 8Φ20 (2513 mm 2 ) ρ = 2513/( )= > ρ min. Ροπή αντοχής ισχυρής διεύθυνσης: Με θεώρηση ομοιόμορφα κατανεμημένου οπλισμού: ω 1d = ω 2d = 628/( ) 434.8/13.333=0.1025, ω vd = 2ω 2d = Βάση: ν d = M Rd,c = 236 knm Κορυφή: ν d = 190/( )=0.071, M Rd,c = 231 knm. c) Γωνιακές κολώνες: d 1 /h =0.125, ν d = 201/( )=0.094, μ d =160/( )= Άρα ω 1d =0.2, A s1 = 0.2 ( ) /434.8= 980 mm 2 3Φ20 (942 mm 2 ) σε κάθε πλευρά (με τη μεσαία ράβδο να συγκρατείται από συνδετήρες) 8Φ20 (2513 mm 2 ) ρ = 2513/( )= > ρ min.=0.001 Ροπή αντοχής για maxn = = 224 kn στην κορυφή, maxn=224+30=254 kn στη βάση, minn =

6 = 171 kn στην κορυφή; minn = = 201 kn στη βάση. Για ομοιόμορφο οπλισμό: ω 1d = ω 2d = 628/( ) 434.8/13.333=0.128, ω vd = 2ω 2d = Στη βάση για maxn: ν d = 254/( )=0.119, M Rd,c = knm Στην κορυφή maxn: ν d = 224/( )=0.105, M Rd,c = 170 knm Στη βάση minn: ν d = 201/( )=0.0942, M Rd,c = 168 knm. Στην κορυφή για minn: ν d = 171/( )=0.08, M Rd,c = knm. 8) Υποστύλωμα σε διάτμηση. Τέμνουσες σχεδιασμού (kn) Υποστύλωμα: Εσωτερική μακράς πλευράς Μεσαία στενής πλευράς Γωνιακή Άξονας Ισχυρός Ισχυρός Κατά X Κατά Y EX- Ανάλυση EY- Ανάλυση Ικανοτικές maxn minn 1.1 ( )/7.5= ( )/7.5= ( )/7.5= ( )/7.5=48.9 Για ένα ρομβοειδή και ένα περιμετρικό συνδετήρα: n l = 2+ 2= σκέλη στις γωνιακές κολώνες. Σ όλες τις άλλες n l = =3.562 σκέλη στον ισχυρό άξονα, n l = =3.25 σκέλη κατά τον ασθενή. Κατά ΕΚ2 : V Rd,max = 0.3 (1-20/250) bd(1+ν d ) sin2θ = 3312bd(1+ν d )sin2θ. Γωνιακές: Για maxn στη βάση, minn στην κορυφή. Οι υπόλοιπες κολώνες: μέση τιμή Ν. Μεσαίο υποστύλωμα: V Rd,max = ( /( )) = 660sin2θ Ενδιάμεσες κολώνες, ισχυρή διεύθυνση: V Rd,max = ( /( )) ( ) = 651sin2θ Γωνιακές: maxn: V Rd,max = ( /( ))=519sin2θ minn: V Rd,max = (1+170/( ))=500sin2θ Ελάχιστος οπλισμός εκτός κρισίμων περιοχών Φ6/400 (70.7 mm 2 /m/σκελος); δίνει στην ισχυρή διεύθυνση: V Rd,s = 0.9dN/ n l dcotθ = 0.12dN+27.67n l dcotθ Μεσαία κολώνα στενών πλευρών, ισχυρή διεύθυνση: V Rd,s = cotθ = cotθ Για cotθ=2.5, V Rd,s = kn, V Rd,max = kn>> V Ed = kn

7 Ενδιάμεσες κολώνες μακρών πλευρών, ισχυρή διεύθυνση: V Rd,s = cotθ = cotθ Για cotθ=2.5, V Rd,s = kn, V Rd,max = 449 kn, >> V Ed = 68.5 kn. Γωνιακές: Για maxn: V Rd,s = cotθ = cotθ Για cotθ=2.5, V Rd,s = 93.2 kn, V Rd,max = 358 kn, >> V Ed = 50.2 kn Για minn: V Rd,s = cotθ = cotθ. Για cotθ=2.5, V Rd,s = 89.8 kn, V Rd,max = 345 kn, >> V Ed = 48.9 kn. Στις ακραίες κρίσιμες περιοχές μήκους 1.25 m-long (: H cl /6). Μέγιστη απόσταση συνδετήρων 8d bl = 160 mm Ογκομετρικό μηχανικό ποσοστό συνδετήρων > Συνδετήρες Φ6/160 δίνουν στις ενδιάμεσες κολώνες: wd = 28.3 (434.8/13.33) 2 ( )/( ) = > Η απαίτηση: a wd > 30 d yd b c /b o δίνει a wd < 0 για =2, b c = 400 mm, b o = = 334 mm, yd = και d = (η μέγιστη τιμή σ' όλες τις κολώνες, στη βάση των γωνιακών): 9) Ροπές στήριξης δοκών για τα κατακόρυφα φορτία: Στην παρειά μεσαίας στήριξης στις στενές πλευρές: /8 ( /12)=282 knm Στην παρειά ενδιάμεσων στηρίξεων στις μακρές πλευρές: /12 ( /6)=39.5 knm Στις στηρίξεις των μακρών δοκών για τη μεταφορά των αντιδράσεων της στέγης (αρνητική ροπή στην 1 η και 3 η εσωτερική στήριξη, θετική στη 2 η και 4 η ): /4=117 knm 10) Ροπές σχεδιασμού δοκών στην παρειά στήριξης. Μακρές δοκοί: Σεισμικός συνδυασμός: Σεισμική ροπή: 74 knm; Οιονεί-μόνιμες δράσεις: 39.5 knm (αρνητική) ±117 knm (αρνητική στην 1 η και 3 η, θετική στη 2 η και 4 η στήριξη). Ολική αρνητική: = knm;

8 Ολική θετική: = knm. 1.35G +1.50Q: Αρνητική: 1.35 ( ) = 211 knm (< knm); Θετική: 1.35 ( ) = knm (< knm). Αν θεωρήσουμε ένα κινούμενο συγκεκριμένο φορτίο kn, προστίθεται αρνητική ροπή ( ) = knm και θετική ( ) = 30.3 knm, δίνοντας συνολικές: Αρνητική: = knm (> knm); Θετική: = 134 knm (< knm). Δοκοί στενών πλευρών: Σεισμικός συνδυασμός: Σεισμική ροπή: 153 knm: Οιονεί-μόνιμες δράσεις: 282 knm: Ολική αρνητική: = 435 knm; Ολική θετική: < g+1.5Q: Ολική αρνητική: = 381 knm (< 435 knm). 11) Διαμήκεις οπλισμοί δοκών (παρειές στήριξης). d 1 = c+d bh +d bl /2 ~ /2 ~0.05m. d = = 0.95 m;: Χρειάζεται επιφανειακός οπλισμός στις δύο πλευρές με μέγιστη απόσταση 300 mm και ολικό ποσοστό Τοποθετούνται Φ10 στο μέσο του ύψους και στη στάθμη πέλματος (6Φ10 σύνολο). Ελάχιστος οπλισμός πελμάτων: ρ min =0.5f ctm /f yk = /500=0.0022; A s,min = = 836 mm 2 ; προσμετρώντας τα 2Φ10 (157 mm 2 ): Χρειάζονται 5Φ14 (770 mm 2 ), δίνοντας σύνολο 927 mm 2. Επιπλέον, 4Φ10 (314 mm 2 ) στην άλλη επιφάνεια του προεξέχοντος τμήματος, δίνονται 1241 mm 2 για κάθε πέλμα (χωρίς τα 2Φ10 του μέσου). A s,1 = A s,2 =770 mm 2 ; ω 1d = ω 2d = 770/( ) 434.8/13.333= Περιλαμβάνοντας 6Φ10 (471 mm 2 ) στη ροπή αντοχής d 1 /d =50/950=0.053, ν d =0, ω vd = 471/( ) 434.8/13.333=0.016: M Rd,c = knm

9 Ο ελάχιστος οπλισμός αρκεί σ όλο το μήκος των δοκών της μεγάλης πλευράς. Στις δοκούς της μικρής πλευράς χρειάζεται να προστεθούν ( )/( )=100 mm 2 : επιπλέον 1Φ14 (154 mm 2 ) M Rd,c =451.9 knm 12) Τέμνουσες σχεδιασμού δοκών. Τέμνουσες από ανάλυση: Δοκοί μεγάλων πλευρών: Σεισμικός συνδυασμός: Σεισμική τέμνουσα: 74/5.5 = 13.5 kn; Οιονεί μόνιμες δράσεις (στην παρειά υποστυλώματος): /2 ±2 117/5.5 = 48 ± 42.5 kn; Σύνολο στην παρειά εσωτερικού υποστυλώματος: = 104 kn; Σύνολο σε απόσταση d = 0.95 m από την παρειά εσωτερικού υποστυλώματος: = 87.5 kn. Στήριξη σε 1 η εσωτερική κολώνα: Από μόνιμες δράσεις: = kn. Σύνολο: = 114 kn. Σε απόσταση d=0.95 m από παρειά 1 ης εσωτερικής κολώνας: =97.5 kn Θεμελιώδης συνδυασμός δράσεων 1.35G+1.5Q: Στην παρειά εσωτερικής κολώνας: 1.35 ( ) = 422 kn; Σε απόσταση d = 0.95 m από την παρειά εσωτερικής κολώνας: 1.35 ( ) (1-0.95/5.5) = 348 kn Στην παρειά 1 ης εσωτερικής κολώνας: 1.35 ( ) = 436 kn. Σε απόσταση d = 0.95 m από την παρειά 1 ης εσωτερικής κολώνας: 1.35 ( ) (1-0.95/5.5) = 362 kn

10 Δοκός στενής πλευράς: Σεισμικός συνδυασμός: Σεισμική τέμνουσα: 153/11.55 = 13.2 kn; Στην παρειά γωνιακής κολώνας: Από οιονεί μόνιμες δράσεις : (3/8) =75.8 kn, σύνολο = 89 kn. Σε απόσταση d=0.95 m από την παρειά γωνιακής κολώνας: =72.5 kn Στην παρειά της μεσαίας κολώνας: Από οιονεί μόνιμες δράσεις (5/8) =126.3 kn, σύνολο =139.5 kn Σε απόσταση d=0.95 m από την παρειά της μεσαίας κολώνας: = kn Θεμελιώδης συνδυασμός 1.35G+1.5Q: Στην παρειά γωνιακής κολώνας: = kn; Σε απόσταση d = 0.95 m από την παρειά γωνιακής κολώνας: = 98 kn Στην παρειά μεσαίας κολώνας: =170.5 kn; Σε απόσταση d = 0.95 m από την παρειά γωνιακής κολώνας: = kn. Ικανοτικές τέμνουσες (για τη μέγιστη αξονική του υποστυλώματος). Μεγάλου μήκους δοκοί: Εσωτερική στήριξη: V CD = /( )= 42 kn. Ολική τέμνουσα στην παρειά εσωτερικής κολώνας: = kn. Ολική τέμνουσα σε απόσταση d = 0.95 m από την παρειά εσωτερικής κολώνας: = 116 kn Στήριξη σε γωνιακή κολώνα: Από οιονεί-μόνιμες δράσεις: = -4.5 kn. Για τη φορά του σεισμού που προκαλεί εφελκυσμό στη γωνιακή κολώνα: V CD = [ / /( )]/5.55 = 50.5 kn Ολική τέμνουσα: = 55 kn Ολική τέμνουσα σε απόσταση d=0.95 m από την παρειά στήριξης σε γωνιακή κολώνα: =71.5 kn Στήριξη σε γωνιακή κολώνα: Από οιονεί-μόνιμες δράσεις: 100 kn. Σύνολο: = kn.

11 Ολική τέμνουσα σε απόσταση d=0.95 m από την εσωτερική κολώνα: =138 kn Δοκός στενών πλευρών. Στην παρειά γωνιακής κολώνας (ο σεισμός που προκαλεί θλίψη στη γωνιακή κολώνα): V CD = [ / /( )]/11.55 = 30 kn Λόγω οιονεί-μονίμων δράσεων: 75.8 kn; σύνολο: = 106 kn. Ολική τέμνουσα σε απόσταση d=0.95 m από την παρειά γωνιακής δοκού: =89.5 kn Στην παρειά της μεσαίας κολώνας (ο σεισμός προκαλεί εφελκυσμό στη γωνιακή κολώνα): V CD = [ / /( )]/11.55 = 30.5 kn Λόγω οιονεί-μονίμων δράσεων: kn; σύνολο: = 157 kn. Ολική τέμνουσα σε απόσταση d=0.95m από παρειά γωνιακού υποστυλώματος: =140 kn Τέμνουσες σχεδιασμού (kn) (υπογραμμίζονται οι καθοριστικές). Δοκοί μεγάλων πλευρών Δοκοί μικρών πλευρών Διατομή κοντά σε: 1 η εσωτερική κολώνα 3 η, 5 η εσωτερική κολώνα Γωνιακή κολώνα Μεσαία κολώνα Απόσταση από παρειά 0 d=0.95m 0 d=0.95m 0 d=0.95m 0 d=0.95m Θεμελιώδης συνδυασμός Σεισμικός συνδυασμός Ικανοτική τέμνουσα Σεισμική τέμνουσα σχεδιασμού Καθοριστικός είναι ο συνδυασμός 1.35G+1.5Q. 13) Διαστασιολόγηση δοκών σε διάτμηση. V Rd,max = 0.3 (1-20/250) sin2θ= 1260sin2θ Για cotθ = 2.5: V Rd,max =868 kn > 436 kn V Rd,s = (A sw /s)cotθ = (A sw /s)cotθ. Σε ακραίες κρίσιμες περιοχές μήκους 1 m: s w < 8 14 = 112 mm: Φ6/110 (514 mm 2 /m) Για cotθ = 2.5: V Rd,s = 478 kn > 362 kn Εκτός κρισίμων: min w = /500= , mina sw /s= =286 mm 2 /m; για Φ6: s < 197 mm: Δοκός στενών πλευρών Φ6/200 (283 mm 2 /m). w = 283/( ) = ~min w Για cotθ = 2.5: V Rd,s = 263 kn > kn Μεγάλου μήκους δοκοί: Φ6/150 (377 mm 2 /m). Για cotθ = 2.5: V Rd,s = 351 kn ~ 362 kn

W H W H. 3=1.5εW. F =εw 2. F =0.5 εw. Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων

W H W H. 3=1.5εW. F =εw 2. F =0.5 εw. Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων 1 Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων F 3=1.5εW W H F =εw W F =0.5 εw 1 Υ4 Δ1 Υ Δ1 W H Υ3 Υ1 H Π L L To τριώροφο επίπεδο πλαίσιο του σχήματος έχει (θεωρητικό) ύψος ορόφου

Διαβάστε περισσότερα

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού EN 1998 - ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ σελ.1 γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού εφελκυσμός άνω ίνα {L} i=1 εφελκυσμός άνω ίνα {R} i=2 N sd.l

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * 1 η σειρά ΑΣΚΗΣΗ 1 Ζητείται ο έλεγχος σε κάμψη μιάς δοκού ορθογωνικής διατομής 250/600 (δηλ. Πλάτους 250 mm και ύψους 600 mm) για εντατικά μεγέθη: Md = 100 KNm Nd = 12 KN Προσδιορίστε

Διαβάστε περισσότερα

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος

Διαβάστε περισσότερα

Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής 3 για συνδυασμό. Λύση. Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις 3 περιπτώσεις

Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής 3 για συνδυασμό. Λύση. Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις 3 περιπτώσεις Εφαρμογή 9 Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής για συνδυασμό φόρτισης.5g.5q. Xάλυβας συνδετήρων S400 Λύση Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις περιπτώσεις φόρτισης που αναφέρονται

Διαβάστε περισσότερα

Διάτρηση: Εφαρμογή Την επιμέλεια της εφαρμογής είχε η Γαλήνη Καλαϊτζοπούλου

Διάτρηση: Εφαρμογή Την επιμέλεια της εφαρμογής είχε η Γαλήνη Καλαϊτζοπούλου Διάτρηση: Εφαρμογή Την επιμέλεια της εφαρμογής είχε η Γαλήνη Καλαϊτζοπούλου Υποστύλωμα διαστάσεων 0.50*0.50m θεμελιώνεται σε πλάκα γενικής κοιτόστρωσης πάχους h=0.70m. Η πλάκα είναι οπλισμένη με διπλή

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο:

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 6-6-009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο Δίνεται ο ξυλότυπος

Διαβάστε περισσότερα

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος Μικρή επανάληψη 2 Βασικές παράμετροι : Γεωμετρία Εντατικά μεγέθη στο ΚΒ Καταστατικές σχέσεις υλικού Μετατόπιση του σημείου εφαρμογής των εξωτερικών δράσεων: Γενική περίπτωση Μας διευκολύνει στην αντιμετώπιση

Διαβάστε περισσότερα

Παράδειγμα 1. Διαστασιολόγηση δοκού Ο/Σ

Παράδειγμα 1. Διαστασιολόγηση δοκού Ο/Σ Τ.Ε.Ι. K.M. Τμήμα ΠΓ&ΜΤΓ Κατασκευές Οπλισμένου Σκυροδέματος Ι Διδάσκων: Παναγόπουλος Γιώργος Παράδειγμα 1. Διαστασιολόγηση δοκού Ο/Σ Δίνεται η κάτοψη του σχήματος που ακολουθεί και ζητείται να εξεταστεί

Διαβάστε περισσότερα

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0) Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 11-9-2009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

Διαβάστε περισσότερα

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Μάθημα: Δομική Μηχανική 3 Διδάσκουσα: Μαρίνα Μωρέττη Ακαδ. Έτος 014 015 Παράδειγμα

Διαβάστε περισσότερα

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει:

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει: Ενότητα Ζ ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ 1.1 Περιγραφή Δοκιδωτών Πλακών Δοκιδωτές πλάκες, γνωστές και ως πλάκες με νευρώσεις, (σε αντιδιαστολή με τις συνήθεις πλάκες οι οποίες δηλώνονται

Διαβάστε περισσότερα

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0) Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 26-6-2009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

Διαβάστε περισσότερα

Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...

Ονοματεπώνυμο φοιτητή:... ΑΕΜ:... Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Δομικών Έργων Χειμερινό Εξάμηνο 00-0 Διάρκεια εξέτασης: ώρες Εξέταση Θεωρίας: ΘΕΜΕΛΙΩΣΕΙΣ Διδάσκων: Κίρτας Εμμανουήλ

Διαβάστε περισσότερα

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Διατμητική αστοχία τοιχώματος ισογείου Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Ανάλογα με τη στατική φόρτιση δημιουργούνται περιοχές στο φορέα όπου έχουμε καθαρή κάμψη ή καμπτοδιάτμηση. m(x)

Διαβάστε περισσότερα

2ο Mέρος: Αριθμητικά παραδείγματα

2ο Mέρος: Αριθμητικά παραδείγματα 5.5m 0.4m Y T1Y 300/25 X BY1 25/50 BY2 25/50 BY3 25/50 1.2m BX9 25/50 0.4m Τ3Χ 375/25 0.4m BX10 25/50 C7 40/40 C8 40/40 BY4 25/50 Π1Υ 25/270 BY5 25/50 BY6 25/50 BX6 25/50 BX7 25/50 BX8 25/50 BX4 25/50

Διαβάστε περισσότερα

Σέρρες 20-1-2006. Βαθμολογία:

Σέρρες 20-1-2006. Βαθμολογία: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι (Εργαστήριο) Διδάσκοντες: Λιαλιαμπής Ι., Μελισσανίδης Σ., Παναγόπουλος Γ. A Σέρρες 20-1-2006 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία:

Διαβάστε περισσότερα

ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ

ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ Ημερίδα: ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΚΤΙΡΙΩΝ & ΓΕΩΤΕΧΝΙΚΩΝ ΕΡΓΩΝ Σ.Π.Μ.Ε. ΗΡΑΚΛΕΙΟ 14.11.2008 ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π.

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Ασκήσεις ιδάσκων: Παναγόπουλος Γεώργιος Ονοµατεπώνυµο: Σέρρες 18-6-2010 Εξάµηνο Α Βαθµολογία: ΖΗΤΗΜΑ 1 ο (µονάδες 4.0) ίνεται

Διαβάστε περισσότερα

Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης.

Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης. Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης. 1. Ανατροπής ολίσθησης. 2. Φέρουσας ικανότητας 3. Καθιζήσεων Να γίνουν οι απαραίτητοι έλεγχοι διατομών και να υπολογισθεί ο απαιτούμενος

Διαβάστε περισσότερα

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών Σύντομη επανάληψη διαστασιολόγησης δοκών, στύλων και τοιχείων από Ο/Σ Πλαίσιο υπό φορτία βαρύτητας

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων

Διαβάστε περισσότερα

Σέρρες Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 4.0)

Σέρρες Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 4.0) Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι (Εργαστήριο) Διδάσκοντες: Λιαλιαμπής Ι., Μελισσανίδης Σ., Παναγόπουλος Γ. A Σέρρες 18-1-2008 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία:

Διαβάστε περισσότερα

ΑΚΑΔ. ΕΤΟΣ ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Η ΕΠΙΛΥΣΗ ΤΟΥΣ ΕΓΙΝΕ ΣΤΟ ΜΑΘΗΜΑ

ΑΚΑΔ. ΕΤΟΣ ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Η ΕΠΙΛΥΣΗ ΤΟΥΣ ΕΓΙΝΕ ΣΤΟ ΜΑΘΗΜΑ 1 ΑΚΑΔ. ΕΤΟΣ 2016 17 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Η ΕΠΙΛΥΣΗ ΤΟΥΣ ΕΓΙΝΕ ΣΤΟ ΜΑΘΗΜΑ Σύνθεση & Σχεδιασμός Κατασκευών Οπλισμένου Σκυροδέματος Τμήμα Πολιτικών Μηχανικών Παν/μιο Πατρών ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ ΣΤΟIΧΕIΑ

Διαβάστε περισσότερα

4.5 Αµφιέρειστες πλάκες

4.5 Αµφιέρειστες πλάκες Τόµος B 4.5 Αµφιέρειστες πλάκες Οι αµφιέρειστες πλάκες στηρίζονται σε δύο απέναντι παρυφές, όπως η s1 στην εικόνα της 4.1. Αν µία αµφιέρειστη πλάκα στηρίζεται επιπρόσθετα σε µία ή δύο ακόµη παρυφές και

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 1: Πλευρικός λυγισμός δοκού γέφυρας Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΕΝΙΣΧΥΣΗ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΣΕ ΔΙΑΤΜΗΣΗ

ΕΝΙΣΧΥΣΗ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΣΕ ΔΙΑΤΜΗΣΗ 49 ΚΕΦΑΛΑΙΟ 5 ΕΝΙΣΧΥΣΗ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΣΕ ΔΙΑΤΜΗΣΗ 5.1 Γενικά Η ενίσχυση στοιχείων οπλισμένου σκυροδέματος σε διάτμηση με σύνθετα υλικά επιτυγχάνεται μέσω της επικόλλησης υφασμάτων ή, σπανιότερα,

Διαβάστε περισσότερα

Εφαρμόζοντας τον ΕΥΡΩΚΩΔΙΚΑ 8

Εφαρμόζοντας τον ΕΥΡΩΚΩΔΙΚΑ 8 Τ.Ε.Ε./ Τ.Κ.Μ. ΣΕΜΙΝΑΡΙΑ ΜΙΚΡΗΣ ΔΙΑΡΚΕΙΑΣ ΕΙΣΗΓΗΣΗ Εφαρμόζοντας τον ΕΥΡΩΚΩΔΙΚΑ 8 ΧΡΗΣΤΟΣ ΙΓΝΑΤΑΚΗΣ ΚΑΘΗΓΗΤΗΣ Α.Π.Θ. ΘΕΣΣΑΛΟΝΙΚΗ ΝΟΕΜΒΡΙΟΣ 2014 1 ΠΡΟΣΟΜΟΙΩΣΗ ΑΝΑΛΥΣΗ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΑΠΛΩΝ ΚΤΙΡΙΩΝ ΟΠΛΙΣΜΕΝΟΥ

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Εργαστήριο ιδάσκοντες: Παναγόπουλος Γ., Σους Ι.

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Εργαστήριο ιδάσκοντες: Παναγόπουλος Γ., Σους Ι. ΤΕΙ ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Εργαστήριο ιδάσκοντες: Παναγόπουλος Γ, Σους Ι Ονοµατεπώνυµο: ΑΕΜ Σέρρες 6-6-2013 Βαθµολογία: ίνεται ο ξυλότυπος του σχήµατος

Διαβάστε περισσότερα

Άσκηση 1. Παράδειγμα απλά οπλισμένης πλάκας

Άσκηση 1. Παράδειγμα απλά οπλισμένης πλάκας Άσκηση 1. Παράδειγμα απλά οπλισμένης πλάκας Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα:

Διαβάστε περισσότερα

Π1 Ππρ. Δ1 (20x60cm) Σ1 (25x25cm) Άσκηση 1 η

Π1 Ππρ. Δ1 (20x60cm) Σ1 (25x25cm) Άσκηση 1 η Πλάκες 1 ο μάθημα εργαστηρίου 1 Άσκηση 1 η Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα:

Διαβάστε περισσότερα

f cd = θλιπτική αντοχή σχεδιασμού σκυροδέματος f ck = χαρακτηριστική θλιπτική αντοχή σκυροδέματος

f cd = θλιπτική αντοχή σχεδιασμού σκυροδέματος f ck = χαρακτηριστική θλιπτική αντοχή σκυροδέματος v ΣΥΜΒΟΛΑ Λατινικά A b A g A e A f = εμβαδόν ράβδου οπλισμού = συνολικό εμβαδόν διατομής = εμβαδόν περισφιγμένου σκυροδέματος στη διατομή = εμβαδόν διατομής συνθέτων υλικών A f,tot = συνολικό εμβαδόν συνθέτων

Διαβάστε περισσότερα

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

Άσκηση 3. Παράδειγμα σταυροειδώς οπλισμένων πλακών

Άσκηση 3. Παράδειγμα σταυροειδώς οπλισμένων πλακών Άσκηση 3. Παράδειγμα σταυροειδώς οπλισμένων πλακών Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα:

Διαβάστε περισσότερα

3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 3.1 ΑΝΟΧΕΣ ΔΙΑΣΤΑΣΕΩΝ [ΕΚΟΣ 5.2] Ισχύουν μόνο για οικοδομικά έργα. Απαιτούνται ιδιαίτερες προδιαγραφές για μη οικοδομικά έργα l: Ονομαστική τιμή διάστασης Δl: Επιτρεπόμενη

Διαβάστε περισσότερα

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...

Διαβάστε περισσότερα

Κατασκευές Οπλισμένου Σκυροδέματος Ι

Κατασκευές Οπλισμένου Σκυροδέματος Ι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχ/κών και Μηχ/κών Τοπογραφίας και Γεωπληροφορικής Τ.Ε. Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 4: Θλιβόμενο υποστύλωμα. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών. Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές Ι. Άσκηση 4: Θλιβόμενο υποστύλωμα. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών. Εργαστήριο Μεταλλικών Κατασκευών Σιδηρές Κατασκευές Ι Άσκηση 4: Θλιβόμενο υποστύλωμα Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Θεωρητικά στοιχεία περί σεισμού και διαστασιολόγησης υποστυλωμάτων

Θεωρητικά στοιχεία περί σεισμού και διαστασιολόγησης υποστυλωμάτων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Μάθημα: Δομική Μηχανική 3 Διδάσκουσα: Μαρίνα Μωρέττη Ακαδ. Έτος 014 015 Θεωρητικά

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 5 Ιουνίου 1 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΡΑΠΤΗ

Διαβάστε περισσότερα

M cz V cz. c x. V cy. M fx V fx. M fy V fy b x. x b y

M cz V cz. c x. V cy. M fx V fx. M fy V fy b x. x b y c c V c c cz V cz V V Υποστύλωμα με τη διατομή του σχήματος (κατακόρυφοι οπλισμοί 4Ø88Ø4) αναπτύσσει τα εξής εντατικά μεγέθη στη διατομή βάσης, σύμφωνα με τα αποτελέσματα της ανάλυσης για σεισμό (Ε) και

Διαβάστε περισσότερα

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών Κελύφη οπλισμένου σκυροδέματος Κελύφη Ο/Σ Καμπύλοι επιφανειακοί φορείς μικρού πάχους Εντατική

Διαβάστε περισσότερα

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ: ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : --, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......

Διαβάστε περισσότερα

ΣΕΙΣΜΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΔΕΞΑΜΕΝΗΣ

ΣΕΙΣΜΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΔΕΞΑΜΕΝΗΣ ΣΕΙΣΜΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΔΕΞΑΜΕΝΗΣ Δεξαμενή νερού έχει παχειά τοιχώματα σκυροδέματος, ορθογωνική κάτοψη 5.0x7.0m και ύψος 6m, στηρίζεται δε σε 4 γωνιακά υποστυλώματα με ύψος από την κορυφή της θεμελίωσής τους

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Ασκήσεις ιδάσκων: Παναγόπουλος Γεώργιος Ονοµατεπώνυµο: Σέρρες 29-1-2010 Εξάµηνο Α Βαθµολογία: ΖΗΤΗΜΑ 1 ο (µονάδες 6.0) Στο

Διαβάστε περισσότερα

Παράδειγμα 8: Σεισμικός Σχεδιασμός κλιμακοστασίου και θεμελίωσης H B. Υποστυλώματα A

Παράδειγμα 8: Σεισμικός Σχεδιασμός κλιμακοστασίου και θεμελίωσης H B. Υποστυλώματα A F=2x(6/7)εW 6 F=2x(5/7)εW 5 F=2x(4/7)εW 4 1 Παράδειγμα 8: Σεισμικός Σχεδιασμός κλιμακοστασίου και θεμελίωσης F=2x(3/7)εW 3 F=2x(2/7)εW 2 W W W W W H H B B 1.5m A A 0.1m M A A 1.5m B B 3.0m F=(2/7)εW 1

Διαβάστε περισσότερα

Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα.

Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα. CSI Hellas, Φεβρουάριος 2004 Τεχνική Οδηγία 1 Πέδιλα στα οποία εδράζονται υποστυλώµατα ορθογωνικής διατοµής Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί

Διαβάστε περισσότερα

Advanced Center of Excellence in Structural and Earthquake Engineering University of Patras, European Commission, Framework Programme 7

Advanced Center of Excellence in Structural and Earthquake Engineering University of Patras, European Commission, Framework Programme 7 1 Σχεδιασµός πολυορόφου κτηρίου µε δύο υπόγεια (Τροποιηµένο παράδειγµα Λισαβώνας 02-2011) Μ.Ν.Φαρδής Τµήµα Πολιτικών Μηχανικών Πανεπιστηµίου Πατρών Σεµινάρια Ευρωκωδίκων στη υτική Ελλάδα Advanced Center

Διαβάστε περισσότερα

Άσκηση 2. Παράδειγμα μονοπροέχουσας απλά οπλισμένης πλάκας

Άσκηση 2. Παράδειγμα μονοπροέχουσας απλά οπλισμένης πλάκας Άσκηση. Παράδειγμα μονοπροέχουσας απλά οπλισμένης πλάκας Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών,

Διαβάστε περισσότερα

25x30. 25x30. Π2 Πρ1. Π1 Πρ2. Άσκηση 3 η

25x30. 25x30. Π2 Πρ1. Π1 Πρ2. Άσκηση 3 η Πλάκες ο εργαστήριο 1 Άσκηση 3 η Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα: Η εκλογή

Διαβάστε περισσότερα

ΕΚΛΟΓΗ ΕΝΙΑΙΟΥ ΠΑΧΟΥΣ ΠΛΑΚΩΝ

ΕΚΛΟΓΗ ΕΝΙΑΙΟΥ ΠΑΧΟΥΣ ΠΛΑΚΩΝ Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Β Κατασκευές Οπλισµένου Σκυροδέµατος Ι ιδάσκοντες: Μητούλης Στ., Παναγόπουλος Γ., Σους Ι. Σέρρες 8-6-01 ΥΠΟΛΟΓΙΣΜΟΣ ΕΠΙΚΑΛΥΨΗΣ ΠΛΑΚΩΝ Επικάλυψη c min για συνθήκες

Διαβάστε περισσότερα

3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe

3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe 3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe 67 3.2 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe Στις επόμενες σελίδες παρουσιάζεται βήμα-βήμα ο τρόπος με τον οποίο μπορεί

Διαβάστε περισσότερα

Παρουσίαση Ευρωκώδικα 2 Εφαρµογή στο FESPA. Χάρης Μουζάκης Επίκουρος Καθηγητής Ε.Μ.Π

Παρουσίαση Ευρωκώδικα 2 Εφαρµογή στο FESPA. Χάρης Μουζάκης Επίκουρος Καθηγητής Ε.Μ.Π Παρουσίαση Ευρωκώδικα 2 Επίκουρος Καθηγητής Ε.Μ.Π Εισαγωγή Ο Ευρωκώδικας 2 περιλαµβάνει τα ακόλουθα µέρη: Μέρος 1.1: Γενικοί κανόνες και κανόνες για κτίρια Μέρος 1.2: Σχεδιασµός για πυρασφάλεια Μέρος 2:

Διαβάστε περισσότερα

Τα θεµέλια είναι τα δοµικά στοιχεία ή φορείς που µεταφέρουν µε επάρκεια τα φορτία του κτιρίου (µόνιµα, κινητά, σεισµός, άλλοι συνδυασµοί) στο έδαφος.

Τα θεµέλια είναι τα δοµικά στοιχεία ή φορείς που µεταφέρουν µε επάρκεια τα φορτία του κτιρίου (µόνιµα, κινητά, σεισµός, άλλοι συνδυασµοί) στο έδαφος. Τα θεµέλια είναι τα δοµικά στοιχεία ή φορείς που µεταφέρουν µε επάρκεια τα φορτία του κτιρίου (µόνιµα, κινητά, σεισµός, άλλοι συνδυασµοί) στο έδαφος. Προβλέπεται άρα Έλεγχος του φορέα: σχεδιασµός και όπλιση

Διαβάστε περισσότερα

ΕΔΡΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΗΕΑ 320

ΕΔΡΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΗΕΑ 320 ΕΔΡΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΗΕΑ 320 Έργο Υπολογισμός συνδέσεων ροπής COPYRIGHT 1999-2013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Σύνδεση_Έδραση_Ορ0_Κ3_MTC.tss - Σελίδα 2/11 1. Παραδοχές μελέτης Οι συνδέσεις ροπής δοκού

Διαβάστε περισσότερα

Βασικές Αρχές Σχεδιασμού Υλικά

Βασικές Αρχές Σχεδιασμού Υλικά Βασικές Αρχές Σχεδιασμού Υλικά Δομική Μηχανική ΙΙΙ Χρ. Ζέρης Σχολή Πολιτικών Μηχανικών, ΕΜΠ Το Ευρωπαϊκό πλαίσιο Μελετών και Εκτέλεσης έργων ΕΝ 10080 Χάλυβας οπλισμού Νοέμ. 2013 Χ. Ζέρης 2 ΕΚΩΣ, ΕΝ1992:

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται

Διαβάστε περισσότερα

Υπολογισμός συνδέσεως διαγωνίου. Σύνδεση διαγωνίου Δ (1) με τη δοκό Δ1.1 (1) και το στύλο Κ 1 (1)

Υπολογισμός συνδέσεως διαγωνίου. Σύνδεση διαγωνίου Δ (1) με τη δοκό Δ1.1 (1) και το στύλο Κ 1 (1) Υπολογισμός συνδέσεως διαγωνίου Σύνδεση διαγωνίου Δ 100.1 (1) με τη δοκό Δ1.1 (1) και το στύλο Κ 1 (1) Έργο Υπολογισμός συνδέσεως διαγωνίου COPYRIGHT 1999-2013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Connection1_MTC.tss

Διαβάστε περισσότερα

ΆΣΚΗΣΗ 1.: Να οπλισθεί η δοκός του ακόλουθου σχήματος με συνολικό φορτίο 1000 ΚΝ (εξωτερικό και ίδιο βάρος, όλα παραγοντοποιημένα φορτία σχεδιασμού).

ΆΣΚΗΣΗ 1.: Να οπλισθεί η δοκός του ακόλουθου σχήματος με συνολικό φορτίο 1000 ΚΝ (εξωτερικό και ίδιο βάρος, όλα παραγοντοποιημένα φορτία σχεδιασμού). 1 ΆΣΚΗΣΗ 1.: Να οπλισθεί η δοκός του ακόλουθου σχήματος με συνολικό φορτίο 1000 ΚΝ (εξωτερικό και ίδιο βάρος, όλα παραγοντοποιημένα φορτία σχεδιασμού). Πλάτος δοκού t beam =0.30m Πλάτος υποστυλωμάτων 0.50m

Διαβάστε περισσότερα

14. Θεµελιώσεις (Foundations)

14. Θεµελιώσεις (Foundations) 14. Θεµελιώσεις (Foundations) 14.1 Εισαγωγή Οι θεµελιώσεις είναι η υπόγεια βάση του δοµήµατος που µεταφέρει στο έδαφος τα φορτία της ανωδοµής. Για τον σεισµό σχεδιασµού το σύστηµα θεµελίωσης πρέπει να

Διαβάστε περισσότερα

Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων

Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Έργο Ημερομηνία : 6.12.2012 Ονομασία : Έργο Στάδιο : 1 7,00 2,00 +z 12,00 ΥΥΟ Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από

Διαβάστε περισσότερα

Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα. Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια. Κεφάλαιο 7

Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα. Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια. Κεφάλαιο 7 Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια Κεφάλαιο 7 Διαφάνειες παρουσίασης εκπαιδευτικών σεμιναρίων Γεώργιος Πενέλης, ομότιμος καθηγητής Α.Π.Θ. Ανδρέας

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 1. Εισαγωγικές έννοιες... 17 1.1 Φορτία... 17 1.2 Η φέρουσα συμπεριφορά των βασικών υλικών... 22 1.2.1 Χάλυβας... 23 1.2.2 Σκυρόδεμα... 27 1.3 Η φέρουσα συμπεριφορά

Διαβάστε περισσότερα

Εικόνα : Τετραώροφος πλαισιακός φορέας τριών υποστυλωµάτων

Εικόνα : Τετραώροφος πλαισιακός φορέας τριών υποστυλωµάτων Τόµος B Εικόνα 5.3.1-1: Τετραώροφος πλαισιακός φορέας τριών υποστυλωµάτων Σε περίπτωση υπογείου, οι σεισµικές δυνάµεις στην οροφή του είναι µηδενικές. Ωστόσο, η κατάσταση πλήρους πάκτωσης στη βάση των

Διαβάστε περισσότερα

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση

Διαβάστε περισσότερα

ΣΥΜΠΕΡΙΦΟΡΑ ΔΙΑΤΜΗΤΙΚΉΣ ΑΝΤΟΧΗΣ ΔΙΕΠΙΦΑΝΕΙΑΣ Η ΟΠΟΙΑ ΔΙΑΠΕΡΝΑΤΑΙ ΑΠΟ ΒΛΉΤΡΑ

ΣΥΜΠΕΡΙΦΟΡΑ ΔΙΑΤΜΗΤΙΚΉΣ ΑΝΤΟΧΗΣ ΔΙΕΠΙΦΑΝΕΙΑΣ Η ΟΠΟΙΑ ΔΙΑΠΕΡΝΑΤΑΙ ΑΠΟ ΒΛΉΤΡΑ 7 ο Φοιτητικό Συνέδριο «Επισκευές Κατασκευών -01», Μάρτιος 2001. ΣΥΜΠΕΡΙΦΟΡΑ ΔΙΑΤΜΗΤΙΚΉΣ ΑΝΤΟΧΗΣ ΔΙΕΠΙΦΑΝΕΙΑΣ Η ΟΠΟΙΑ ΔΙΑΠΕΡΝΑΤΑΙ ΑΠΟ ΒΛΉΤΡΑ Εργασία Νο B3 ΠΕΡΙΛΗΨΗ Στην παρούσα εργασία μελετάται το πώς

Διαβάστε περισσότερα

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών Πλάκες με νευρώσεις Πλάκες με νευρώσεις Οι πλάκες με νευρώσεις αποτελούνται από διαδοχικές πλακοδοκούς

Διαβάστε περισσότερα

Βιβλιογραφία: Αναγνωστόπουλος (Πιτιλάκης κ.α. 1999) και Πενέλης κ.α. 1995

Βιβλιογραφία: Αναγνωστόπουλος (Πιτιλάκης κ.α. 1999) και Πενέλης κ.α. 1995 Τυπόγιο: ιαστασιόγηση μεμονωμένων πεδίλων 1 Γενικοί Κανόνες ιαμόρφωσης Μεμονωμένων Πεδίλων Βιβλιογραφία: Αναγνωστόπουλος (Πιτιλάκης κ.α. 1999) και Πενέλης κ.α. 1995 C C α 0.05m D D ' σκυρόδεμα καθαριότητας

Διαβάστε περισσότερα

εν απαιτείται οπλισµός διάτµησης για διατµητική δύναµη µικρότερη ή ίση µε την τιµή V Rd,c

εν απαιτείται οπλισµός διάτµησης για διατµητική δύναµη µικρότερη ή ίση µε την τιµή V Rd,c Χ. Κααγιάννης, Πολιτικός Μηχ. ΕΜΠ,. Μηχ. ΚΑΘΗΓΗΤΗΣ Κατασκευών Ωπλισµένου Σκυοδέµατος και Αντισεισµικού Σχεδιασµού ΠΡΟΕ ΡΟΣ ΤΜΗΜΑΤΟΣ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΘ Συνοπτική Παουσίαση Σχεδιασµού έναντι ιάτµησης

Διαβάστε περισσότερα

ΙΑΠΩΝΙΚΕΣ ΟΔΗΓΙΕΣ ΑΠΟΤΙΜΗΣΗΣ V? V. α = 4 / 3. Προσεγγιστικές Μέθοδοι. Ιαπωνικές Οδηγίες Αποτίµησης. V =Σ V +α Σ V +α ΣV

ΙΑΠΩΝΙΚΕΣ ΟΔΗΓΙΕΣ ΑΠΟΤΙΜΗΣΗΣ V? V. α = 4 / 3. Προσεγγιστικές Μέθοδοι. Ιαπωνικές Οδηγίες Αποτίµησης. V =Σ V +α Σ V +α ΣV Τµήµα Πολιτικών Μηχανικών, Πανεπιστήµιο Πατρών ΤΟ ΚΑΝΟΝΙΣΤΙΚΟ ΠΛΑΙΣΙΟ ΓΙΑ ΤΙΣ ΕΠΕΜΒΑΣΕΙΣ Προσεγγιστικές Μέθοδοι ΙΑΠΩΝΙΚΕΣ ΟΔΗΓΙΕΣ ΑΠΟΤΙΜΗΣΗΣ καθ. Στέφανος Η. Δρίτσος Πάτρα, Οκτώβριος 015 1 Ιαπωνικές Οδηγίες

Διαβάστε περισσότερα

Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων

Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 02.11.2005 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 199211 : Καθιζήσεις Μέθοδος

Διαβάστε περισσότερα

Κεφάλαιο 3. Κανόνες διαμόρφωσης δομικών στοιχείων

Κεφάλαιο 3. Κανόνες διαμόρφωσης δομικών στοιχείων 3.4 ΥΠΟΣΤΥΛΩΜΑΤΑ 3.4.1 Γεωμετρικά στοιχεία [ΕΚΟΣ 18.4.2, 5] Ελάχιστες διαστάσεις διατομής (1) Σχήμα 3.12 Ελάχιστες διαστάσεις διατομής στύλων Περιορισμός θλιπτικής καταπόνησης υποστυλωμάτων υπό το σεισμικό

Διαβάστε περισσότερα

BETONexpress, www.runet.gr

BETONexpress, www.runet.gr Πέδιλα ΠΕΡΙΕΧΟΜΕΝΑ 1. Υπ ολογισμοί τμήματος κατασκευής : ΠΕΔΙΛΟ-001, Μεμονωμένο, κεντρικό πέδιλο, με ροπ ή και σεισμό 1.1. Διαστάσεις-Υλικά-Φορτία 1.2. Κανονισμοί 1.3. Ελεγχοι φέρουσας ικανότητας εδάφους

Διαβάστε περισσότερα

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας ομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι ιδάσκοντες :Χ. Γαντές.Βαμβάτσικος Π. Θανόπουλος Νοέμβριος 04 Άσκηση

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

Μόρφωση χωρικών κατασκευών από χάλυβα

Μόρφωση χωρικών κατασκευών από χάλυβα Εθνικό Μετσόβιο Πολυτεχνείο Χάρης Ι. Γαντές Επίκουρος Καθηγητής Μόρφωση χωρικών κατασκευών από χάλυβα Επιστημονική Ημερίδα στα Πλαίσια της 4ης Διεθνούς Ειδικής Έκθεσης για τις Κατασκευές Αθήνα, 16 Μαίου

Διαβάστε περισσότερα

s,min ΕΚΩΣ : Ελάχιστος οπλισμός τουλάχιστο Ø12 ανά max 15cm (Ø12/15cm=7.54cm²) ποιότητας ισοδύναμης με S400/S500 (υγρά εδάφη Ø14/15cm)

s,min ΕΚΩΣ : Ελάχιστος οπλισμός τουλάχιστο Ø12 ανά max 15cm (Ø12/15cm=7.54cm²) ποιότητας ισοδύναμης με S400/S500 (υγρά εδάφη Ø14/15cm) Τυπόγιο: ιαστασιόγηση μεμονωμένων πεδίλων 1 Γενικοί Κανόνες ιαμόρφωσης Μεμονωμένων Πεδίλων Βιβλιογραφία: Αναγνωστόπουλος κ.α. (01) και Πενέλης κ.α. (1995) C C α 0.05m D α D ' σκυρόδεμα καθαριότητας (~10cm)

Διαβάστε περισσότερα

Περιεχόμενα. 1 Εισαγωγή... 17

Περιεχόμενα. 1 Εισαγωγή... 17 Περιεχόμενα 1 Εισαγωγή... 17 1.1 Αντικείμενο... 17 1. Δομικά στοιχεία με σύμμικτη δράση... 17 1.3 Κτίρια από σύμμικτη κατασκευή... 19 1.4 Περιορισμοί... 19 Βάσεις σχεδιασμού... 1.1 Δομικά υλικά... 1.1.1

Διαβάστε περισσότερα

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Ευρωκώδικες Εγχειρίδιο αναφοράς Αθήνα, Μάρτιος 01 Version 1.0.3 Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Με το Fespa έχετε τη δυνατότητα να μελετήσετε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: ΘΕΜΑ 1 Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα Μ, Q, N (3.5 μονάδες) β) η κατακόρυφη βύθιση του κόμβου 7 λόγω της φόρτισης και μιας ομοιόμορφης μείωσης της θερμοκρασίας

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ

ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ

Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σιδηρές Κατασκευές Ι Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης

Διαβάστε περισσότερα

Η επικάλυψη των ΕΠΙΚΑΛΥΨΗΣ οπλισμών υπολογίζεται ΠΛΑΚΩΝ σύμφωνα με την 4.2(σχήμα 4.1) και από

Η επικάλυψη των ΕΠΙΚΑΛΥΨΗΣ οπλισμών υπολογίζεται ΠΛΑΚΩΝ σύμφωνα με την 4.2(σχήμα 4.1) και από Τ.Ε.Ι. Τμήμα Κατασκευές ΣΕΡΡΩΝ Πολιτικών Οπλισμένου Δομικών Σκυροδέματος Έργων ΥΠΟΛΟΓΙΣΜΟΣ Ι Η επικάλυψη των ΕΠΙΚΑΛΥΨΗΣ οπλισμών υπολογίζεται ΠΛΑΚΩΝ σύμφωνα με την 4.(σχήμα 4.1) και από Β προκύπτει d1cnom+øw+øl/

Διαβάστε περισσότερα

Κόμβοι πλαισιακών κατασκευών

Κόμβοι πλαισιακών κατασκευών Κόμβοι πλαισιακών κατασκευών Κόμβοι πλαισιακών κατασκευών Κόμβοι δοκού-υποστυλώματος Κόμβοι δοκού-δοκού Βάσεις υποστυλωμάτων Κοχλιωτοί Συγκολλητοί Κόμβοι δοκού - υποστυλώματος Με μετωπική πλάκα Με γωνιακά

Διαβάστε περισσότερα

5 Κυκλικό υποστύλωμα 6 Υποστύλωμα κοίλης κυκλικής διατομής 7 Υποστύλωμα κοίλης ορθογωνικής διατομής

5 Κυκλικό υποστύλωμα 6 Υποστύλωμα κοίλης κυκλικής διατομής 7 Υποστύλωμα κοίλης ορθογωνικής διατομής ΚΕΦΑΛΑΙΟ 7 Διαστασιολόγηση υποστυλωμάτων 7.1 Γενικά Τα υποστυλώματα, μαζί με τα τοιχώματα, αποτελούν τα κατακόρυφα στοιχεία των κατασκευών από Ο/Σ. Όπως είναι αυτονόητο, τα στοιχεία αυτά είναι ιδιαίτερα

Διαβάστε περισσότερα

Στο Σχήμα 1 δίνεται η διαμόρφωση των φερόντων στοιχείων ενός τυπικού ορόφου του διώροφου κτιρίου με μια αρχική προεπιλογή των διαστάσεων τους.

Στο Σχήμα 1 δίνεται η διαμόρφωση των φερόντων στοιχείων ενός τυπικού ορόφου του διώροφου κτιρίου με μια αρχική προεπιλογή των διαστάσεων τους. Σύγκριση φέρουσας ικανότητας υφιστάμενου κτιρίου με βάση τον εφαρμοσμένο κανονισμό μελέτης του. Αποτίμηση κατά ΚΑΝ.ΕΠΕ με την χρήση της Στατικής Ανελαστικής μεθόδου PUSHOVER. ΣΥΓΚΡΙΣΗ ΦΕΡΟΥΣΑΣ ΙΚΑΝΟΤΗΤΑΣ

Διαβάστε περισσότερα

12 ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΑΡΙΘΜΗΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

12 ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΑΡΙΘΜΗΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ 12 ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΑΡΙΘΜΗΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ 1. Ζητείται ο σχεδιασμός της πλάκας Π1 πάχους 15 cm και της δοκού Δ1 διαστάσεων 25/55 στον ξυλότυπο στο Σχ. 1 και 2. Φορτία πλάκας: q k = 2 kn/m 2, g k,επ = 1,0

Διαβάστε περισσότερα

ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 260

ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 260 ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 60 Έργο Υπολογισμός συνδέσεων τέμνουσας COPYRIGHT 1999-013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Connection1_MTC.tss - Σελίδα /8 1. Παραδοχές μελέτης Οι συνδέσεις ροπής δοκού

Διαβάστε περισσότερα

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ ΚΑΝΕΠΕ ΜΕ ΠΕΙΡΑΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ ΑΠΟ ΕΝΙΣΧΥΣΕΙΣ ΔΟΚΩΝ ΜΕ ΙΟΠ

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ ΚΑΝΕΠΕ ΜΕ ΠΕΙΡΑΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ ΑΠΟ ΕΝΙΣΧΥΣΕΙΣ ΔΟΚΩΝ ΜΕ ΙΟΠ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ ΚΑΝΕΠΕ ΜΕ ΠΕΙΡΑΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ ΑΠΟ ΕΝΙΣΧΥΣΕΙΣ ΔΟΚΩΝ ΜΕ ΙΟΠ ΜΠΕΡΝΑΚΟΣ ΑΝΤΩΝΙΟΣ Περίληψη Στόχος της παρούσας εργασίας είναι η πρακτική εφαρμογή αναλυτικών προβλέψεων του ΚΑΝΕΠΕ

Διαβάστε περισσότερα

Κατασκευές Ωπλισμένου. Σκυροδέματος ΙΙ: ΑΣΚΗΣΕΙΣ ΟΚΛ

Κατασκευές Ωπλισμένου. Σκυροδέματος ΙΙ: ΑΣΚΗΣΕΙΣ ΟΚΛ Δημοκρίτειο Πανεπιστήμιο Θράκης_ Τμήμα Πολιτικών Μηχανικών_ Τομέας Δομικών Έργων Κατασκευές Ωπλισμένου Σκυροδέματος ΙΙ: ΑΣΚΗΣΕΙΣ ΟΚΛ ΣΤΟΙΧΕΙΑ ΣΕ ΚΑΘΑΡΟ ΕΦΕΛΚΥΣΜΟ Εφελκυσμός από εξωτερική φόρτιση: 0.60

Διαβάστε περισσότερα

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ: ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : 8-9-, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......

Διαβάστε περισσότερα

ΠΛΗΡΩΣΗ ΑΝΟΙΓΜΑΤΟΣ ΣΕ ΥΦΙΣΤΑΜΕΝΟ ΚΤΙΡΙΟ ΜΕ ΑΝΑΡΤΗΣΗ ΠΛΑΚΑΣ

ΠΛΗΡΩΣΗ ΑΝΟΙΓΜΑΤΟΣ ΣΕ ΥΦΙΣΤΑΜΕΝΟ ΚΤΙΡΙΟ ΜΕ ΑΝΑΡΤΗΣΗ ΠΛΑΚΑΣ ΠΛΗΡΩΣΗ ΑΝΟΙΓΜΑΤΟΣ ΣΕ ΥΦΙΣΤΑΜΕΝΟ ΚΤΙΡΙΟ ΜΕ ΑΝΑΡΤΗΣΗ ΠΛΑΚΑΣ ΠΕΛΕΚΗΣ ΙΑΣΩΝ ΠΛΑΤΗ ΜΑΡΙΑ Περίληψη Η παρούσα εργασία έχει ως στόχο να αναδείξει το θέμα της κάλυψης ανοιγμάτων σε οροφές υφιστάμενων κτιρίων.

Διαβάστε περισσότερα

Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ Ι. Μαλλής Ξ. Λιγνός I. Βασιλοπούλου Α.

Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ Ι. Μαλλής Ξ. Λιγνός I. Βασιλοπούλου Α. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εραστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

Σχεδιασµός κτηρίων Με και Χωρίς Αυξηµένες Απαιτήσεις Πλαστιµότητας: Συγκριτική Αξιολόγηση των δύο επιλύσεων

Σχεδιασµός κτηρίων Με και Χωρίς Αυξηµένες Απαιτήσεις Πλαστιµότητας: Συγκριτική Αξιολόγηση των δύο επιλύσεων Σχεδιασµός κτηρίων Με και Χωρίς Αυξηµένες Απαιτήσεις Πλαστιµότητας: Συγκριτική Αξιολόγηση των δύο επιλύσεων (βάσει των ΕΑΚ-ΕΚΩΣ) Μ.Λ. Μωρέττη ρ. Πολιτικός Μηχανικός. ιδάσκουσα Παν. Θεσσαλίας.. Παπαλοϊζου

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΣ ΚΑΤΑΣΚΕΥΗΣ (Ε.Α.Κ Ε.Κ.Ω.Σ. 2000) ΤΕΝΤΟΛΟΥΡΗΣ ΕΥΑΓΓΕΛΟΣ ΚΑΛΟΓΕΡΟΠΟΥΛΟΥ ΓΕΩΡΓΙΑ

ΕΛΕΓΧΟΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΣ ΚΑΤΑΣΚΕΥΗΣ (Ε.Α.Κ Ε.Κ.Ω.Σ. 2000) ΤΕΝΤΟΛΟΥΡΗΣ ΕΥΑΓΓΕΛΟΣ ΚΑΛΟΓΕΡΟΠΟΥΛΟΥ ΓΕΩΡΓΙΑ ΕΛΕΓΧΟΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΣ ΚΑΤΑΣΚΕΥΗΣ (Ε.Α.Κ. 2003 Ε.Κ.Ω.Σ. 2000) ΑΠΟΤΙΜΩΜΕΝΗΣ ΜΕ pushover ΑΝΑΛΥΣΗ ΚΑΤΑ ΚΑΝ.ΕΠΕ. ΤΕΝΤΟΛΟΥΡΗΣ ΕΥΑΓΓΕΛΟΣ ΚΑΛΟΓΕΡΟΠΟΥΛΟΥ ΓΕΩΡΓΙΑ Περίληψη Σκοπός της παρούσης εργασίας είναι

Διαβάστε περισσότερα

Π1. Πίνακες υπολογισμού

Π1. Πίνακες υπολογισμού Π1. Πίνακες υπολογισμού Στο παράρτημα Π1 θα παρατεθούν συγκεντρωμένοι οι πίνακες υπολογισμού που χρησιμοποιούνται κατά τη διαστασιολόγηση των δομικών στοιχείων από Ο/Σ. Πίνακας 1. Κύριες κατηγορίες περιβαλλοντικής

Διαβάστε περισσότερα

Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων

Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Μελέτη Περιγραφή Μελετητής Ημερομηνία Ρυθμίσεις : : : Pile Group - Exaple 3 Ing. Jiri Vanecek 28.10.2015 (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6 - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ

ΑΣΚΗΣΗ 6 - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ ΑΣΚΗΣΗ - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ Να γίνει πλήρης ανάλυση του μεταλλικού δικτυώματος του σχήματος. Ολες οι συνδέσεις των ράβδων στους κόμβους είναι αρθρωτού τύπου. Επί πλέον, ο ένας εκ των άνω κόμβων μπορεί

Διαβάστε περισσότερα