Ανάλυση και Πρόβλεψη Χρονοσειρών

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ανάλυση και Πρόβλεψη Χρονοσειρών"

Transcript

1 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ Ανάλυση και Πρόβλεψη Χρονοσειρών Διπλωματική εργασία της Γεωργίας Μαργιά Επιβλέπων καθηγητής: Κουγιουμτζής Δημήτρης Επίκουρος καθηγητής, Γενικού Τμήματος Πολυτεχνικής Σχολής ΑΠΘ ΘΕΣΣΑΛΟΝΙΚΗ 2009

2 ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή στις Χρονοσειρές Χρονοσειρές Ανάλυση Χρονοσειρών Μέθοδοι Εξομάλυνσης Διάσπαση Χρονοσειρών Ανάλυση ΑRIMA Μέθοδοι Εξομάλυνσης Απλός Κινητός Μέσος Απλή Εκθετική Εξομάλυνση Διπλός Κινητός Μέσος Μέθοδος Brown Μέθοδος Hol Μέθοδος Winers Διάσπαση Χρονοσειρών Ανάλυση Εποχικότητας Ανάλυση Μακροχρόνιας Τάσης Ανάλυση Κυκλικότητας και μη-κανονικότητας Διαμόρφωση προβλέψεων Εφαρμογές Χρονοσειρών με τις μεθόδους εξομάλυνσης και διάσπασης χρονοσειρών Πρόβλεψη τιμών Χρονοσειράς με τη μέθοδο Brown Πρόβλεψη τιμών Χρονοσειράς με τη μέθοδο Hol Σύγκριση μεθόδων προβλέψεων Brown και Hol Πρόβλεψη τιμών Χρονοσειράς με τη μέθοδο Winers Πρόβλεψη τιμών Χρονοσειράς με τη μέθοδο της διάσπασης Χρονοσειρών Σύγκριση των μεθόδων Winers και διάσπασης Χρονοσειρών Ανάλυση ARIMA Η συνάρτηση αυτοσυσχέτισης Η συνάρτηση μερικών αυτοσυσχετίσεων Ο τελεστής ολίσθησης Β Αυτοπαλίνδρομα Υποδείγματα AR Υποδείγματα κινητού μέσου όρου ΜΑ Αυτοπαλίνδρομα υποδείγματα κινητού μέσου όρου ARMA Ολοκληρωμένα Αυτοπαλίνδρομα υποδείγματα κινητού μέσου όρου ARIMA Ολοκληρωμένα Αυτοπαλίνδρομα υποδείγματα κινητού μέσου όρου ARIMA με εποχικότητα Ανάλυση χρονοσειρών με τη μέθοδο ARIMA... 70

3 6. Εφαρμογές χρονοσειρών με τη μέθοδο ARIMA Χρονοσειρά Touriss Χρονοσειρά Inflaion Χρονοσειρά Temp Συμπεράσματα Βιβλιογραφία Παράρτημα (Κώδικας)... 94

4 Κεφάλαιο 1: Εισαγωγή στις χρονοσειρές Η ανάλυση χρονοσειρών αποτελεί μια αναγκαία και από τις πλέον βασικές λειτουργίες της διοίκησης των επιχειρήσεων ενώ η πρόβλεψη χρονοσειρών αποτελεί μία απαραίτητη πηγή πληροφόρησης, η οποία υποστηρίζει τη λήψη αποφάσεων. Κάθε επιχείρηση ή οργανισμός λαμβάνει αποφάσεις με βάση προβλέψεις οικονομικών μεγεθών που προέρχονται από την επεξεργασία των διαθέσιμων δεδομένων και την εφαρμογή των κατάλληλων μεθόδων πρόβλεψης. Τα διοικητικά στελέχη καλούνται να λάβουν σημαντικές αποφάσεις που αφορούν τις μελλοντικές εξελίξεις της ίδιας της επιχείρησης. Για παράδειγμα, αποφάσεις που αφορούν τις παραγόμενες ποσότητες των προϊόντων, το σχεδιασμό της παραγωγικής διαδικασίας, τις ανάγκες σε ανθρώπινους και λοιπούς πόρους, το ύψος των διαφημιστικών δαπανών και πολλές άλλες, βασίζονται κατά κύριο λόγο στην πρόβλεψη της μελλοντικής ζήτησης. Συνεπώς η πρόβλεψη της ζήτησης των προϊόντων ή των υπηρεσιών αποτελεί μία από τις πιο σημαντικές λειτουργίες των επιχειρήσεων και των οργανισμών. 1.1 Χρονοσειρές Το σύνολο των δεδομένων, τα οποία συλλέγονται διαχρονικά και εκφράζουν την εξέλιξη των τιμών μιας μεταβλητής κατά τη διάρκεια ίσων διαδοχικών χρονικών περιόδων, ονομάζεται χρονοσειρά (ή χρονολογική σειρά, ime series). Ειδικότερα, η χρονοσειρά αποτελείται από ένα σύνολο παρατηρήσεων μιας μεταβλητής, οι τιμές της οποίας ειναι ιεραρχημένες με βάση τη χρονική περίοδο στην οποία αναφέρονται, π.χ. έτος, τρίμηνο, μήνας κ.α. Παραδείγματα χρονοσειρών είναι οι μηνιαίες πωλήσεις ενός προϊόντος μιας επιχείρησης κατά την τελευταία τετραετία, το ετήσιο ακαθάριστο εθνικό προϊον μιας χώρας, η ημερήσια τιμή κλεισίματος μιας μετοχής στο Χρηματιστήριο, οι ωριαίες θερμοκρασίες που ανακοινώνονται απο το μετεωρολογικό γραφείο μιας πόλης και άλλα πολλά. Μαθηματικά μία χρονοσειρά ορίζεται από τις τιμές Y 1,Y 2, κάποιας μεταβλητής Y (θερμοκρασία, τιμή κλεισίματος μετοχής κτλ) κατά τις χρονικές στιγμές 1, 2, Επομένως το Y είναι μια συνάρτηση του, και αυτό συμβολίζεται ως Y=F(). Η γραφική παράσταση της συνάρτησης Y=F() παρουσιάζει την εξέλιξη της μεταβλητής Y στο χρόνο. Είναι ενδιαφέρον να θεωρούμε τη γραφική παράσταση μίας χρονοσειράς ως μία γραφική παράσταση που περιγράφει την κίνηση ενός σημείου καθώς κυλά ο χρόνος, που ειναι σε πολλές περιπτώσεις ανάλογη με την κίνηση ενός φυσικού σωματιδίου που κινείται υπό την επίδραση φυσικών δυνάμεων. Αντί να προκαλείται από φυσικές δυνάμεις-αίτια, όμως, η κίνηση μιας χρονοσειράς μπορεί να εξαρτάται από ένα συνδυασμό οικονομικών, κοινωνιολογικών, ψυχολογικών και άλλων αιτιών. Η εμπειρία από πολλές περιπτώσεις χρονοσειρών αποκαλύπτει κάποιες μορφές χαρακτηριστικών κινήσεων (characerisic movemens), που εμφανίζονται μερικές ή όλες σε κάποιο βαθμό. Η ανάλυση αυτών των κινήσεων έχει ιδιαίτερη αξία σε πολλές περιπτώσεις, όπως είναι η πρόβλεψη (forecasing) των μελλοντικών κινήσεων.

5 1.2 Ανάλυση Χρονοσειρών Η ανάλυση χρονοσειρών (ime series analysis) ασχολείται αποκλειστικά με τη διερεύνηση της διαχρονικής συμπεριφοράς των τιμών μιας μεταβλητής, οι παρατηρήσεις της οποίας προέρχονται από χρονοσειρά. Η πρόβλεψη των μελλοντικών τιμών της μεταβλητής σύμφωνα με την ανάλυση χρονοσειρών μπορεί να προέλθει απο τις παρακάτω κατηγορίες μεθόδων προβλέψεων: Μέθοδοι Εξομάλυνσης Διάσπαση χρονοσειρών Ανάλυση ARIMA Για την επιλογή της κατάλληλης μεθόδου χρησιμοποιούνται τα κριτήρια αξιολόγησης των μεθόδων προβλέψεων. Τα κριτήρια αυτά βασίζονται στις τιμές των αποκλίσεων των προβλεπόμενων τιμών από τις αντίστοιχες πραγματικές τιμές της χρονοσειράς. Για μία μεταβλητή Y, η απόκλιση της προβλεπόμενης τιμής της Υˆ από την αντίστοιχη πραγματική τιμή της Y για την περίοδο, όπου =1,2,3,..,n, ονομάζεται σφάλμα της πρόβλεψης (forecas error), συμβολίζεται με e και ορίζεται ως: e = Y - Υˆ Η παραπάνω σχέση εκφράζει για κάθε περίοδο τη διαφορά μεταξύ της πραγματικής τιμής Y και της αντίστοιχης προβλεπόμενης τιμής Υˆ που προήλθε από τη μέθοδο πρόβλεψης που χρησιμοποιήθηκε. Επομένως, για να προσδιορίσουμε την αξιοπιστία μιας συγκεκριμένης μεθόδου πρόβλεψης, θα πρέπει να μελετήσουμε τη διαχρονική συμπεριφορά των τιμών των σφαλμάτων της πρόβλεψης. Αυτό γίνεται με την εφαρμογή διάφορων κριτηρίων, σύμφωνα με τα οποία αξιολογούμε τη χρησιμοποιούμενη μέθοδο πρόβλεψης. Κάθε ένα από τα κριτήρια αυτά ορίζεται από μία συγκεκριμένη συναρτησιακή σχέση των σφαλμάτων της πρόβλεψης και μπορεί να χρησιμοποιηθεί όχι μόνο για την αξιολόγηση μιας μεθόδου πρόβλεψης αλλά και για την επιλογή της καλύτερης μεταξύ δύο ή περισσοτέρων εναλλακτικών μεθόδων προβλέψεων. Τα κριτήρια αυτά είναι: Μέση απόλυτη απόκλιση MAD (Mean Absolue Deviaion) Η μέση απόλυτη απόκλιση ορίζεται ως το άθροισμα των απόλυτων τιμών του σφάλματος της πρόβλεψης διαιρούμενο με τον αριθμό των περιόδων n, στις οποίες έγιναν προβλέψεις, δηλαδή: n n 1 MAD = Y Yˆ 1 = e n n = 1 Το MAD εκφράζει τη μέση τιμή των απόλυτων αποκλίσεων των προβλεπόμενων τιμών της χρονοσειράς από τις αντίστοιχες πραγματικές και έχει τα ακόλουθα χαρακτηριστικά. Πρώτον, η μονάδα μέτρησης του είναι η ίδια με εκείνη των τιμών της χρονοσειράς και έτσι είναι εύκολη η ερμηνεία του. Δεύτερον, στον υπολογισμό του λαμβάνονται υπ όψιν μόνο οι απόλυτες τιμές των σφαλμάτων και όχι οι πραγματικές τιμές τους. Αυτό σημαίνει ότι το MAD είναι ανεξάρτητο από θετικές ή = 1

6 αρνητικές τιμές του σφάλματος, δηλαδή είναι ανεξάρτητο από το αν οι τιμές των προβλέψεων είναι μικρότερες (υποεκτίμηση) ή μεγαλύτερες (υπερεκτίμηση) των πραγματικών τιμών. Τρίτον, το MAD βασίζεται στην υπόθεση ότι η σοβαρότητα του σφάλματος ή το κόστος που δημιουργείται από το σφάλμα της πρόβλεψης σχετίζεται γραμμικά με το μέγεθος του σφάλματος. Μέσο σφάλμα τετραγώνου MSE (Mean Squared Error) Το μέσο σφάλμα τετραγώνου ορίζεται ως το άθροισμα των τετραγώνων των σφαλμάτων διαιρούμενο με τον αριθμό των χρονικών περιόδων n, στις οποίες έγιναν προβλέψεις, δηλαδή: n 2 n 1 MSE = ( Y Yˆ 1 2 ) = e n n = 1 = 1 Το MSE είναι η μέση τιμή των τετραγώνων των αποκλίσεων των προβλεπόμενων τιμών της χρονοσειράς από τις αντίστοιχες πραγματικές. Η μονάδα μέτρησης του MSE όμως είναι εκφρασμένη στη μονάδα μέτρησης των τιμών των παρατηρήσεων υψωμένη όμως στο τετράγωνο. Για το λόγο αυτό, μερικές φορές χρησιμοποιούμε τη θετική τιμή της τετραγωνικής του ρίζας, που ονομάζεται τετραγωνική ρίζα μέσου σφάλματος τετραγώνου RMSE (Roo Mean Squared Error) δηλαδή είναι: RMSE = MSE = 1 n n 2 e = 1 Το RMSE εκφράζεται στην ίδια μονάδα μέτρησης με εκείνη των τιμών της χρονοσειράς. Η ύπαρξη προβλέψεων που απέχουν πολύ από τις αντίστοιχες πραγματικές τιμές γίνεται πολύ περισσότερο αισθητή με το κριτήριο MSE από ότι με το κριτήριο MAD, επειδή οι τιμές των σφαλμάτων της πρόβλεψης υψώνονται στο τετράγωνο. Συνεπώς το κριτήριο MSE είναι στατιστικά περισσότερο αξιόπιστο από το κριτήριο MAD και χρησιμοποιείται συχνότερα για την επιλογή της κατάλληλης μεθόδου πρόβλεψης. Μέσο απόλυτο ποσοστιαίο σφάλμα MAPE (Mean Absolue Percenage Error) Το μέσο απόλυτο ποσοστιαίο σφάλμα εξετάζει τη συμπεριφορά της απόλυτης τιμής του σφάλματος της πρόβλεψης σε σχέση με την πραγματική τιμή της χρονοσειράς. Το MAPE ορίζεται ως το άθροισμα των απόλυτων τιμών των σφαλμάτων της πρόβλεψης προς τις αντίστοιχες πραγματικές τιμές της χρονοσειράς διαιρούμενο με τον αριθμό των χρονικών περιόδων n, στις οποίες έγιναν προβλέψεις, δηλαδή: n Y n Yˆ 1 1 e MAPE = = n Y n Y = 1 = 1

7 Το κριτήριο αυτό είναι απαλλαγμένο από μονάδες μέτρησης και το χρησιμοποιούμε για να συγκρίνουμε την ακρίβεια μιας ή περισσοτέρων μεθόδων προβλέψεων και για περισσότερες από μια χρονοσειρές. Μέσο ποσοστιαίο σφάλμα MPE (Mean Percenage Error) Το μέσο ποσοστιαίο σφάλμα το χρησιμοποιούμε όταν ενδιαφερόμαστε να προσδιορίσουμε αν η μέθοδος πρόβλεψης ελιναι μεροληπτική, δηλαδή αν οι προβλεπόμενες τιμές είναι συστηματικά μεγαλύτερες ή μικρότερες από τις αντίστοιχες πραγματικές. MPE = 1 n n = 1 Y Yˆ Y = 1 n n = 1 e Y Αναμφισβήτητα όσο πιο κοντά στο μηδέν είναι η τιμή του MPE, τόσο πιο αμερόληπτη και καλή είναι η μέθοδος πρόβλεψης που χρησιμοποιήθηκε. Αντίθετα, μεγάλες απόλυτες τιμές του MPE φανερώνουν μεγάλη μεροληψία της μεθόδου Μέθοδοι Εξομάλυνσης Οι μέθοδοι εξομάλυνσης (smoohing mehods) είναι τεχνικές με τις οποίες προσδιορίζονται οι μελλοντικές τιμές μιας μεταβλητής με βάση τον τρόπο εφαρμογής τους. Οι τεχνικές αυτές ονομάζονται μέθοδοι εξομάλυνσης, διότι η δημιουργία των προβλέψεων προέρχεται από την εξομάλυνση της διαχρονικής εξέλιξης των τιμών της μεταβλητής, ώστε να αναγνωριστεί καλύτερα ο τρόπος συμπεριφοράς της. Ορισμένες από τις μεθόδους εξομάλυνσης μπορούν να εφαρμοστούν και σε περιπτώσεις μικρού αριθμού παρατηρήσεων της μεταβλητής. Οι μέθοδοι εξομάλυνσης που θα περιγράψουμε στο επόμενο κεφάλαιο είναι: Η μέθοδος του απλού κινητού μέσου Η μέθοδο της απλής εκθετικής εξομάλυνσης Η μέθοδος του διπλού κινητού μέσου Η μέθοδος Brown Η μέθοδος Hol Η μέθοδος Winers Εάν μία χρονοσειρά είναι στάσιμη η κατάλληλη μέθοδος πρόβλεψης μελλοντικών τιμών είναι η μέθοδος των κινητών μέσων όρων. Σε μερικές χρονοσειρές όμως οι πρόσφατες παρατηρήσεις μπορεί να περιέχουν περισσότερες πληροφορίες από τις παλαιότερες και αυτό είναι πολύ σημαντικό για τις μελλοντικές προβλέψεις. Σε αυτήν την περίπτωση χρησιμοποιούμε την απλή εκθετική εξομάλυνση. Εάν η χρονοσειρά εμφανίζει κάποιο πρότυπο τάσης τότε χρησιμοποιούμε την μέθοδο της διπλής εκθετικής εξομάλυνσης, την μέθοδο Brown ή την μέθοδο Hol ενώ εάν η χρονοσειρά εμφανίζει εποχικότητα τότε χρησιμοποιούμε την μέθοδο Winers Διάσπαση Χρονοσειρών Οι χαρακτηριστικές κινήσεις μίας χρονοσειράς μπορούν να διακριθούν σε τέσσερα κύρια είδη, τα οποία συχνά ονομάζονται συνιστώσες (componens) της χρονοσειράς. Οι κινήσεις αυτές είναι οι μακροπρόθεσμες ή κύριες κινήσεις, οι

8 κυκλικές κινήσεις ή μεταβολές, οι εποχικές κινήσεις ή μεταβολές και οι ακανόνιστες ή τυχαίες κινήσεις. Η διάσπαση χρονοσειρών (ime series decomposiion) στηρίζεται στην υπόθεση ότι οι τιμές μιας χρονοσειράς σχηματίζονται από τις παραπάνω συνιστώσες που τη συνθέτουν. Για τη δημιουργία των προβλέψεων με τη μέθοδο αυτή, η χρονοσειρά διασπάται στις ανωτέρω τέσσερις συνιστώσες και προσδιορίζεται η επιρροή που έχει καθένα από αυτά στη διαμόρφωση των τιμών της μεταβλητής. Οι μακροπρόθεσμες ή κύριες κινήσεις ή τάση αναφέρονται στη γενική κατεύθυνση που φαίνεται ότι ακολουθεί η γραφική παράσταση μίας χρονοσειράς κατά μία μεγάλη διάρκεια χρόνου. Σε πολλές περιπτώσεις οι τιμές των παρατηρήσεων ορισμένων χρονοσειρών τείνουν να αυξάνονται ή να μειώνονται με αρκετά σταθερό ρυθμό για μεγάλα χρονικά διαστήματα. Η συμπεριφορά αυτή εκφράζεται από την τάση που φανερώνει τη μακροχρόνια εξέλιξη της χρονοσειράς, η οποία μπορεί να είναι ανοδική ή καθοδική. Η τάση οφείλεται συνήθως σε πληθυσμιακές αλλαγές, σε τεχνολογικές αλλαγές, σε οικονομικούς παράγοντες, όπως π.χ. στον πληθωρισμό, στην αύξηση της παραγωγικότητας κ.α. Οι κυκλικές κινήσεις ή κυκλικότητα αναφέρονται με μακροπρόθεσμες ταλαντώσεις γύρω από τη γραμμή ή καμπύλη τάσης. Η κυκλικότητα εμφανίζεται ακανόνιστα με κυματοειδή μορφή και διαρκεί για χρονικό διάστημα πολύ μεγαλύτερο του έτους. Η συμπεριφορά αυτή των τιμών των χρονοσειρών αποδίδεται κυρίως στους οικονομικούς κύκλους, οι οποίοι οφείλονται σε μεταβαλλόμενες οικονομικές, τεχνολογικές και άλλες συνθήκες. Επειδή όμως οι οικονομικοί κύκλοι δεν εμφανίζονται με την ίδια περιοδικότητα ή και την ίδια μορφή, για το λόγο αυτό το στοιχείο της κυκλικότητας, σε αντίθεση με την τάση και την εποχικότητα, δεν θεωρείται ότι συμβάλλει άμεσα στη δημιουργία προβλέψεων. Ωστόσο, η κυκλικότητα μπορεί να χρησιμοποιηθεί για να προσδιοριστεί η μέχρι τώρα εξέλιξη των τιμών της χρονοσειράς. Οι εποχικές κινήσεις ή εποχικότητα αναφέρονται στην ταυτόσημη ή σχεδόν ταυτόσημη εξέλιξη που έχει μία χρονοσειρά κατά τη διάρκεια κάποιων συγκεκριμένων μηνών ή τριμήνων διαδοχικών ετών. Η εποχικότητα οφείλεται σε επαναλαμβανόμενα γεγονότα. Τα δεδομένα ορισμένων χρονοσειρών αναφέρονται σε χρονικές περιόδους μικρότερες του έτους, όπως μήνες ή τρίμηνα, με αποτέλεσμα να παρατηρούνται εποχικές διακυμάνσεις, οι οποίες εμφανίζονται κατά τη διάρκεια του έτους και επαναλαμβάνονται με την ίδια ή περίπου την ίδια μορφή από έτος σε έτος. Για παράδειγμα η μηνιαία κατανάλωση παγωτού είναι μεγαλύτερη κατά την καλοκαιρινή περίοδο και μικρότερη κατά την χειμερινή περίοδο. Γενικά, το φαινόμενο της εποχικότητας οφείλεται κυρίως σε μεταβολές του καιρού, σε πολιτικές της διοίκησης αναφορικά με περιόδους εκπτώσεων, καθώς και σε άλλους παράγοντες όπως θρησκευτικούς, κοινωνικούς κ.α. Οι εποχικές διακυμάνσεις, επειδή παρουσιάζονται με συστηματικό τρόπο συνήθως, μπορούν εύκολα να αναλυθούν και να προσδιοριστούν και κατά συνέπεια να χρησιμοποιηθούν για την πρόβλεψη των μελλοντικών τιμών της χρονοσειράς, κάτι που συμβαίνει άλλωστε και με την τάση. Οι ακανόνιστες ή τυχαίες κινήσεις αναφέρονται στις σποραδικές, ακανόνιστες (irregular) κινήσεις μιας χρονοσειράς λόγω τυχαίων παραγόντων και γεγονότων. Οι τυχαίες κινήσεις επηρεάζουν τις τιμές των χρονοσειρών κατά ένα τυχαίο και μη συστηματικό τρόπο, ο οποίος δεν μπορεί να προσδιοριστεί. Η συνιστώσα αυτή λοιπόν δεν είναι δυνατόν να χρησιμοποιηθεί στη διαμόρφωση των μελλοντικών τιμών των χρονοσειρών. Οι τυχαίες κινήσεις οφείλονται σε όλους εκείνους τους τυχαίους και απρόσμενους παράγοντες που επηρεάζουν τις τιμές των χρονοσειρών και οι οποίοι δεν προσδιορίζονται από την τάση, την εποχικότητα και την κυκλικότητα. Οι παράγοντες αυτοί μπορεί να είναι πόλεμοι, σεισμοί, απρόσμενες καιρικές μεταβολές,

9 απεργίες, διαδόσεις για συγκεκριμένο προϊον, αιφνίδιες μεταβολές στις προτιμήσεις των καταναλωτών, απρόσμενες αλλαγές στη νομοθεσία κ.α. Σε μία συγκεκριμένη χρονοσειρά είναι δυνατόν να μην συνυπάρχουν και οι τέσσερις συνιστώσες αλλά μόνο κάποιες από αυτές. Η ανάλυση χρονοσειρών συνίσταται στην περιγραφή (εν γένει με μαθηματικό τρόπο) των συνιστωσών κινήσεων που υπάρχουν. Η γραφική παράσταση μιας χρονοσειράς απεικονίζεται στο παρακάτω διάγραμμα. Τα δεδομένα προέρχονται από τις μηνιαίες πωλήσεις μιας Χ εταιρείας για το χρονικό διάστημα Οι πωλήσεις είναι σε χιλιάδες ευρώ. Στην παρακάτω χρονοσειρά συνυπάρχουν και οι τέσσερις συνιστώσες sales Sep98 Jan00 May01 Oc02 Feb04 Jul05 Nov06 Time Διάγραμμα 1.1: Γραφική παράσταση χρονοσειράς Για την ανάλυση των χρονοσειρών χρησιμοποιούμε τους ακόλουθους συμβολισμούς: Y = Πραγματική τιμή της χρονοσειράς Τ = Τάση S = Εποχικότητα C = Κυκλικότητα Ι = Τυχαίες κινήσεις όπου = 1,2,3...,n. Η εξέταση των στοιχείων αυτών γίνεται σύμφωνα με κάποιο μαθηματικό υπόδειγμα που φανερώνει τον τρόπο με τον οποίο οι παρατηρήσεις της χρονοσειράς προσδιορίζονται από τις συνιστώσες της χρονοσειράς. Τα χρησιμοποιούμενα

10 υποδείγματα είναι το προσθετικό μοντέλο (addiive model) και το πολλαπλασιαστικό μοντέλο (muliplicaive model). Στο προσθετικό μοντέλο οι πραγματικές τιμές της χρονοσειράς για κάθε περίοδο θεωρούνται ως το άθροισμα των τεσσάρων συνιστωσών και δημιουργούνται με τον ακόλουθο τρόπο: Y = Τ + S + C + Ι Από την παραπάνω σχέση είναι φανερό ότι όλες οι συνιστώσες είναι εκφρασμένα στην ίδια μονάδα μέτρησης με εκείνη των παρατηρήσεων της χρονοσειράς. Αντίθετα στο πολλαπλασιαστικό μοντέλο οι πραγματικές τιμές της χρονοσειράς προσδιορίζονται από το γινόμενο των τεσσάρων συνιστωσών, δηλαδή ως ακολούθως: Y = Τ S C Ι Στο μοντέλο αυτό μόνο η τάση είναι εκφρασμένη στην ίδια μονάδα μέτρησης με εκείνη της χρονοσειράς Y ενώ τα στοιχεία C, S και Ι είναι δείκτες ανεξάρτητοι από μονάδες μέτρησης. Από τα δύο παραπάνω μοντέλα το προσθετικό μοντέλο χρησιμοποιείται λιγότερο συχνά στην πράξη, επειδή είναι δύσκολο στην ανάλυση του για υπολογιστικούς κυρίως λόγους. Επίσης βασίζεται στην υπόθεση ότι οι συνιστώσες της χρονοσειράς είναι ανεξάρτητες μεταξύ τους, που σημαίνει για παράδειγμα, ότι η τάση δεν επηρεάζει την εποχικότητα στον υπολογισμό των τιμών της χρονοσειράς. Η παραδοχή αυτή μπορεί να είναι σωστή κυρίως για φυσικά φαινόμενα, αλλά σπάνια ισχύει σε επιχειρησιακές και οικονομικές εφαρμογές, στις οποίες συνήθως η τάση επηρεάζει μεταξύ των άλλων και τις εποχικές διακυμάνσεις. Στη συνέχεια της διπλωματικής θα χρησιμοποιήσουμε το πολλαπλασιαστικό μοντέλο, δεδομένου ότι για τους παραπάνω πρακτικούς και θεωρητικούς λόγους το μοντέλο αυτό πλεονεκτεί του προσθετικού για την ανάλυση των οικονομικών χρονοσειρών Ανάλυση ARIMA Τα μοντέλα πολλαπλής γραμμικής παλινδρόμησης περιγράφονται από την εξίσωση: Y = bo + b1 X 1 + b2 X bp X p + e όπου Υ η εξαρτημένη μεταβλητή και Χ 1, Χ 2,..., Χ p οι ανεξάρτητες μεταβλητές. Η εξίσωση Y = bo + b1 Y 1 + b2y bpy p + e είναι μία εξίσωση πολλαπλής παλινδρόμησης με τη διαφορά ότι οι ανεξάρτητες μεταβλητές είναι τιμές της χρονοσειράς σε προηγούμενες χρονικές περιόδους. Το παραπάνω υπόδειγμα ονομάζεται αυτοπαλίνδρομο υπόδειγμα (auoregression model) και συμβολίζεται AR( p). Συνεπώς τα υποδείγματα AR εκφράζουν το Υ σαν γραμμική συνάρτηση των p παρελθουσών πραγματικών τιμών του Υ. Επίσης η εξίσωση Y = bo + e b1 e 1 b2e 2... bqe q είναι μία εξίσωση πολλαπλής παλινδρόμησης με τη διαφορά ότι οι ανεξάρτητες μεταβλητές είναι τιμές των σφαλμάτων προηγούμενων χρονικών περιόδων (διαφορά προβλεφθείσας τιμής από την πραγματική). Το παραπάνω υπόδειγμα ονομάζεται υπόδειγμα κινητού μέσου όρου ( moving average) και συμβολίζεται ΜΑ(q ). Συνεπώς τα υποδείγματα ΜΑ εκφράζουν το Υ σαν γραμμικό συνδυασμό παρελθόντων σφαλμάτων πρόβλεψης. Τα αυτοπαλίνδρομα υποδείγματα AR(p ) μπορούν να συνδυαστούν αποτελεσματικά με τα υποδείγματα κινητού μέσου όρου MA(q ) και να σχηματίσουν μια χρήσιμη ομάδα υποδειγμάτων χρονοσειρών τα οποία ονομάζονται αυτοπαλίνδρομα υποδείγματα κινητού μέσου όρου (auoregressive moving average

11 models) και συμβολίζονται ARMA(p,q). Τα υποδείγματα αυτά μπορούν να χρησιμοποιηθούν μόνο για σταθερές (στάσιμες) χρονοσειρές. Ωστόσο μπορούν να επεκταθούν και σε μη σταθερές (μη στάσιμες) χρονοσειρές με τη χρήση της μεθόδου της διαφόρισης. Σε αυτήν την περίπτωση ονομάζονται ολοκληρωμένα ( inegraed I) αυτοπαλίνδρομα μοντέλα κινητού μέσου όρου (auoregressive inegraed moving average models) και συμβολίζονται ως ARIMA(p,d,q) όπου p είναι η τάξη του αυτοπαλίνδρομου υποδείγματος, d η τάξη της διαφόρισης για την επίτευξη σταθερότητας και q η τάξη του κινητού μέσου όρου υποδείγματος. Το μοντέλο λευκού θορύβου (whie noise) εκφράζεται ως ARIMA(0,0,0) ενώ το μοντέλο τυχαίου περιπάτου ως ARIMA(0,1,0). Κεφάλαιο 2: Μέθοδοι Εξομάλυνσης Με τις μεθόδους εξομάλυνσης προσδιορίζουμε τις μελλοντικές τιμές μιας μεταβλητής στηριζόμενοι αποκλειστικά στις διαθέσιμες παρατηρήσεις της και ανεξάρτητα από τη σχέση που μπορεί να έχει η μεταβλητή αυτή με άλλη ή άλλες μεταβλητές. Κύριο χαρακτηριστικό της εφαρμογής αυτών των μεθόδων είναι ότι μπορούμε, χωρίς μεγάλο υπολογιστικό βαθμό δυσκολίας, να διαμορφώσουμε εύκολα και σχετικά γρήγορα προβλέψεις για μια μεταβλητή, που προέρχονται από τη διαχρονική μελέτη του τρόπου δημιουργίας των τιμών της συγκεκριμένης μεταβλητής. Οι μέθοδοι αυτές εφαρμόζονται για μεταβλητές, τα δεδομένα των οποίων προέρχονται αποκλειστικά από χρονοσειρές, δηλαδή από παρατηρήσεις που έχουν καταγραφεί κατά τη διάρκεια ίσων διαδοχικών χρονικών περιόδων, ενώ ο αριθμός των διαθέσιμων παρατηρήσεων της μεταβλητής δεν αποτελεί κατά κανόνα ανασταλτικό παράγοντα για την εφαρμογή τους. Ορισμένες από αυτές τις μεθόδους μπορούν να χρησιμοποιηθούν ακόμα και για δείγματα παρατηρήσεων μικρού μεγέθους. Αρχικά θα αναπτύξουμε τη μέθοδο του απλού κινητού μέσου m-περιόδων, σύμφωνα με την οποία η πρόβλεψη είναι ο αριθμητικός μέσος όρος των m πιο πρόσφατων παρατηρήσεων της χρονοσειράς. Στη συνέχεια θα παρουσιάσουμε τη μέθοδο της απλής εκθετικής εξομάλυνσης σύμφωνα με την οποία η πρόβλεψη είναι ένας σταθμικός μέσος όρος των παρατηρήσεων της χρονοσειρά, οι οποίες όσο πιο πρόσφατες είναι έχουν και μεγαλύτερη βαρύτητα. Έπειτα θα περιγράψουμε τις μεθόδους του διπλού κινητού μέσου, της διπλής εκθετικής εξομάλυνσης του Brown και του Hol, οι οποίες χρησιμοποιούνται όταν οι παρατηρήσεις της χρονοσειράς εμφανίζουν τάση. Οι τρεις αυτές μέθοδοι, σε αντίθεση με τις δύο προηγούμενες, μας δίνουν την δυνατότητα να διενεργήσουμε προβλέψεις για περισσότερες από μία μελλοντικές περιόδους. Τέλος, θα αναλύσουμε τη μέθοδο Winers, η οποία εφαρμόζεται όταν στις παρατηρήσεις της χρονοσειράς υπάρχουν τα στοιχεία της τάσης και της εποχικότητας. Στόχος όλων αυτών των μεθόδων εξομάλυνσης είναι η αναγνώριση του τρόπου δημιουργίας των παρατηρήσεων της χρονοσειράς, ώστε να αποκτηθούν οι καλύτερες δυνατές προβλέψεις. Η σύγκριση εναλλακτικών μεθόδων πρόβλεψης επιτυγχάνεται με τη βοήθεια των κριτηρίων αξιολόγησης μεθόδων προβλέψεων (MAD, MSE, RMSE, MAPE, MPE) και στη συνέχεια επιλέγεται η καλύτερη δυνατή μέθοδος. 2.1 Απλός Κινητός Μέσος

12 Η μέθοδος του απλού κινητού μέσου m-περιόδων (simple moving average) είναι μία πολύ απλή μέθοδος προβλέψεων που χρησιμοποιεί ως πρόβλεψη την τιμή του αριθμητικού μέσου όρου των m πλέον πρόσφατων παρατηρήσεων της χρονοσειράς. Αυτό συμβαίνει διότι οι πλέον πρόσφατες παρατηρήσεις της χρονοσειράς θεωρούνται περισσότερο αντιπροσωπευτικές για τη δημιουργία προβλέψεων από ότι οι πιο απομακρυσμένες στο παρελθόν. Ο μέσος όρος αυτός ονομάζεται κινητός, επειδή η τιμή του δεν είναι σταθερή, αλλά αναπροσαρμόζεται κάθε φορά που μια νέα παρατήρηση της χρονοσειράς γίνεται διαθέσιμη. Οι προβλέψεις μιας χρονοσειράς Y, για =1,2,...,n, δημιουργούνται με τη μέθοδο του απλού κινητού μέσου ως εξής: m Y Y Yˆ 1 1 m + = Y j+ = Y + Y + + Y m+ = Yˆ 1 1 ( ) + m m m m ˆ + j= 1 όπου Y 1 είναι η πρόβλεψη για την περίοδο (+1) και m ο αριθμός των περιόδων που χρησιμοποιούνται για τον υπολογισμό της τιμής του μέσου όρου. Επίσης για m=1 η πρόβλεψη της επόμενης περιόδου είναι ίση με την πραγματική τιμή της προηγούμενης περιόδου, δηλαδή ισχύει η σχέση: Y =Υ ˆ +1 Συνήθως για να προσδιορίσουμε την τιμή του m για τη δημιουργία προβλέψεων σε μια χρονοσειρά, εφαρμόζουμε τη μέθοδο του απλού κινητού μέσου στη χρονοσειρά για διαφορετικές τιμές του m και επιλέγουμε εκείνη την τιμή του m που ελαχιστοποιεί την τιμή του κριτηρίου MSE ή κάποιου άλλου κριτηρίου. Παράδειγμα 2.1 Στον πίνακα 2.1 δίνονται οι εβδομαδιαίες πωλήσεις δίσκων CD ενός καταστήματος για τις τελευταίες δέκα εβδομάδες, καθώς και οι προβλέψεις με τη μέθοδο του απλού κινητού μέσου 5-περιόδων. [3] m=5 Εβδομάδα Πωλήσεις Y Ŷ ² Πίνακας 2.1: Δεδομένα παραδείγματος 2.1 και προβλέψεις με τη μέθοδο του απλού κινητού μέσου για m=5

13 Οι τιμές των προβλέψεων του παραπάνω παραδείγματος υπολογίζονται με το πρόγραμμα simmovave.m. Επιλέχθηκε η τιμή m=5 γιατί η τιμή αυτή του m ελαχιστοποιεί τα κριτήρια αξιολόγησης των μεθόδων προβλέψεων και ειδικά του κριτηρίου MSE. Η ελάχιστη τιμή του MSE υπολογίστηκε για m=5: MSE = 59 Η τιμή πρόβλεψης για την 11 εβδομάδα με την παραπάνω μέθοδο είναι: Y ˆ = Το παρακάτω διάγραμμα απεικονίζει τη γραφική παράσταση των πραγματικών τιμών της χρονοσειράς και των προβλεπόμενων τιμών που υπολογίστηκαν απο το πρόγραμμα simmovave.m Sales Time Διάγραμμα 2.1: Γραφική παράσταση πραγματικών και προβλεπόμενων τιμών της χρονοσειράς 2.2 Απλή Εκθετική Εξομάλυνση Ένα μειονέκτημα της μεθόδου του απλού κινητού μέσου m-περιόδων είναι ότι για τον υπολογισμό των προβλέψεων δίνει ίση βαρύτητα σε κάθε παρατήρηση, ανεξάρτητα από το πόσο κοντά ή μακριά βρίσκεται σε σχέση με την προβλεπόμενη περίοδο. Το μειονέκτημα αυτό μπορεί να εξαλειφθεί με τη μέθοδο της απλής εκθετικής εξομάλυνσης (simple exponenial smoohing), σύμφωνα με την οποία οι

14 προβλέψεις δημιουργούνται με βάση κάποιο σταθμικό μέσο όρο, έτσι ώστε να δίνεται διαφορετική βαρύτητα σε κάθε παρατήρηση. Πιο συγκεκριμένα, με τη μέθοδο αυτή δίνεται πολύ μεγαλύτερη βαρύτητα στις πιο πρόσφατες παρατηρήσεις, από αυτή που δίνεται στις πιο απομακρύσμενες. Για να κατανοήσουμε το μηχανισμό λειτουργίας της μεθόδου ας θεωρήσουμε ότι οι προβλέψεις της χρονοσειράς δημιουργούνται ως εξής: ˆ 2 Y + 1 = ay + a(1 a) Y 1 + a(1 a) Y (Α) όπου η παράμετρος α ονομάζεται σταθερά εξομάλυνσης (smoohing consan) και λαμβάνει τιμές μεταξύ 0 και 1 δηλαδή 0 a 1 Έτσι, σύμφωνα με την παραπάνω σχέση η πρόβλεψη Y 1 προκύπτει ως ένας σταθμικός μέσος όρος των παρατηρήσεων της χρονοσειράς, αφού το άθροισμα των συντελεστών της σχέσης (Α) είναι ίσο με τη μονάδα. Όσο πιο μεγάλη είναι η τιμή της παραμέτρου α, τόσο μεγαλύτερη βαρύτητα δίνεται στις πιο πρόσφατες παρατηρήσεις και πολύ μικρή εως μηδαμινή βαρύτητα στις πιο απομακρυσμένες. Η παραπάνω σχέση μπορεί να γραφεί και με τη μορφή: Y = ay + (1 a) Yˆ ˆ + 1 Η σχέση αυτή είναι η μαθηματική έκφραση της μεθόδου της απλής εκθετικής εξομάλυνσης και ορίζεται για =2,3,,n με αρχική συνθήκη Y ˆ 2 = Y1. Η τιμή της παραμέτρου α μπορεί να καθοριστεί από τον ερευνητή, ιδιαίτερα όταν αυτός έχει προηγούμενη εμπειρία για τη συγκεκριμένη χρονοσειρά. Ωστόσο, είναι πιο αντικειμενικό η άριστη τιμή του α να προσδιορίζεται από τα δεδομένα της χρονοσειράς. Ειδικότερα, εφαρμόζοντας τη μέθοδο της απλής εκθετικής εξομάλυνσης στις παρατηρήσεις της χρονοσειράς για τιμές του α από το μηδέν μέχρι τη μονάδα επιλέγουμε εκείνη την τιμή του α που ελαχιστοποιεί την τιμή του κριτηρίου MSE ή κάποιου άλλου κριτηρίου. Παράδειγμα 2.2 Στον πίνακα 2.2 δίνονται οι εβδομαδιαίες πωλήσεις υποδημάτων, μιας Χ επιχείρησης, των τελευταίων 15 εβδομάδων καθώς επίσης και οι προβλέψεις της χρονοσειράς με τη μέθοδο της απλής εκθετικής εξομάλυνσης. [3] ˆ + α=0,28 Εβδομάδα Πωλήσεις Υ Ŷ e² , ,2 368, ,5 61,38 9,3 86, ,2 67,85-31,3 979, ,9 63,75 15,7 246, ,3 65,19-9,6 92, ,4 63,54 12,1 146, ,4 65, ,1 66,2-7,3 53, ,8 64,49-5,3 28, ,5 61,78 18,7 349,69

15 12 74,2 65,06 0,7 0, ,62 0,8 0, ,1 69,69-0,9 0, ,2 70,92-0,9 0,81 Πίνακας 2.2: Δεδομένα παραδείγματος 2.2 και προβλέψεις με τη μέθοδο της απλής εκθετικής εξομάλυνσης για α=0,28 Οι τιμές των προβλέψεων του παραπάνω παραδείγματος υπολογίζονται με το πρόγραμμα simexpsmo.m. Επιλέχθηκε η τιμή α=0.28 γιατί η τιμή αυτή του α ελαχιστοποιεί την τιμή του κριτηρίου αξιολόγησης των μεθόδων προβλέψεων MSE. Η ελάχιστη τιμή του MSE (για όλες τις τιμές της χρονοσειράς) υπολογίστηκε για α = 0,28: MSE = 119,64 Η τιμή πρόβλεψης για την 16 εβδομάδα με την παραπάνω μέθοδο είναι: Y ˆ = 71,56 16 Το παρακάτω διάγραμμα απεικονίζει τη γραφική παράσταση των πραγματικών τιμών της χρονοσειράς και των προβλεπόμενων τιμών που υπολογίστηκαν απο το πρόγραμμα simexpsmo.m Sales Time

16 Διάγραμμα 2.2: Γραφική παράσταση πραγματικών και προβλεπόμενων τιμών της χρονοσειράς 2.3 Διπλός Κινητός Μέσος Η μέθοδος του διπλού κινητού μέσου (double moving average) μπορεί να χρησιμοποιηθεί για την πρόβλεψη των τιμών μιας χρονοσειράς, οι παρατηρήσεις της οποίας παρουσιάζουν ανοδική ή πτωτική πορεία που εκφράζεται από κάποια γραμμική τάση. Για τη διαμόρφωση των προβλέψεων με τη μέθοδο αυτή υπολογίζεται ένας δεύτερος κινητός μέσος από τον απλό κινητό μέσο, ενώ στη συνέχεια λαμβάνεται υπ όψιν και η γραμμική τάση των παρατηρήσεων της χρονοσειράς. Για το λόγο αυτό η μέθοδος ονομάζεται πολύ συχνά και μέθοδος του γραμμικού κινητού μέσου (linear moving average). Η εφαρμογή της μεθόδου του διπλού κινητού μέσου βασίζεται στην ακόλουθη διαδικασία: i. Υπολογίζεται ο απλός κινητός μέσος m-περιόδων, Μ, ως: m 1 M + 1 = Y j+ 1 m j= 1 ii. Υπολογίζεται ο διπλός κινητός μέσος m-περιόδων, Μ, ως: m 1 M + 1 = M j+ 1 m j= 1 iii. Υπολογίζεται η διαφορά α ως: α = 2M M iv. Υπολογίζεται ο παράγοντας προσαρμογής για την τάση, b, ως: b 2 = ( M M ) m 1 v. Υπολογίζεται η πρόβλεψη Y ˆ + h για την h μελλοντική περίοδο ως: Y ˆ = a + hb + h όπου h είναι ένας ακέραιος θετικός αριθμός. Η μέθοδος αυτή, σε αντίθεση με τις δύο προηγούμενες μεθόδους προβλέψεων που παρουσιάσαμε, μπορεί για h>1 να χρησιμοποιηθεί για τη διενέργεια προβλέψεων για περισσότερες από μία μελλοντικές περιόδους, ενώ για h=1 δίνει την πρόβλεψη για την επόμενη περίοδο. Βέβαια, η χρήση της προϋποθέτει την ύπαρξη μεγαλύτερου αριθμού παρατηρήσεων, ιδιαίτερα μάλιστα όταν η τιμή του m είναι σχετικά μεγάλη. Όπως και στη μέθοδο του απλού κινητού μέσου, όταν η τιμή του m δεν είναι γνωστή, επιλέγουμε εκείνη την τιμή που ελαχιστοποιεί την τιμή του κριτηρίου MSE ή κάποιου άλλου κριτήριου στα δεδομένα της χρονοσειράς, εφαρμόζοντας τη μέθοδο για διάφορες τιμές του m. Παράδειγμα 2.3 Στον πίνακα 2.3 παρουσιάζονται οι προβλέψεις των δεδομένων της χρονοσειράς του παραδείγματος 2.1 που προκύπτουν από την εφαρμογή της μεθόδου του διπλού κινητού μέσου 3-περιόδων. [3] Y M M' a b Ŷ

17 , ,33 246,11 260,56 7, ,67 250,56 262,78 6,11 267,78-17, ,67 254,44 248,89-2,78 268,89-8, ,89 256,11 1,11 246,11 23,89 Πίνακας 2.3: Δεδομένα παραδείγματος 2.3 με τη μέθοδου του διπλού κινητού μέσου για m=3 Οι τιμές των προβλέψεων του παραπάνω παραδείγματος υπολογίζονται με το πρόγραμμα doumovave.m. Επιλέχθηκε η τιμή m=3 γιατί η τιμή αυτή του m ελαχιστοποιεί την τιμή του κριτηρίου αξιολόγησης των μεθόδων προβλέψεων MSE. Η ελάχιστη τιμή του MSE (για όλες τις τιμές της χρονοσειράς) υπολογίστηκε για m=3: MSE = 293,54 Η τιμή πρόβλεψης για την 11, 12 και 13 εβδομάδα με την παραπάνω μέθοδο είναι: Y ˆ = 257,22 11 Y ˆ 12 = 258,33 Y ˆ 13 = 259,44 Το παρακάτω διάγραμμα απεικονίζει τη γραφική παράσταση των πραγματικών τιμών της χρονοσειράς και των προβλεπόμενων τιμών που υπολογίστηκαν απο το πρόγραμμα doumovave.m Sales Y() Yforecas() Time

18 Διάγραμμα 2.3: Γραφική παράσταση πραγματικών και προβλεπόμενων τιμών της χρονοσειράς 2.4 Μέθοδος Brown (διπλή εκθετική εξομάλυνση) Η μέθοδος της διπλής εκθετικής εξομάλυνσης (double exponenial smoohing), η οποία ονομάζεται και μέθοδος Brown, είναι μια άλλη μέθοδος προβλέψεων που χρησιμοποιείται σε χρονοσειρές, οι παρατηρήσεις των οποίων παρουσιάζουν τάση. Η βασική φιλοσοφία της μεθόδου αυτής είναι παραπλήσια με εκείνη της μεθόδου του διπλού κινητού μέσου, δηλαδή η εξομάλυνση των παρατηρήσεων της χρονοσειράς γίνεται δύο φορές, ενώ στη διαμόρφωση των προβλέψεων λαμβάνεται υπ όψιν και η τάση. Η εφαρμογή της μεθόδου της διπλής εκθετικής εξομάλυνσης στηρίζεται στην ακόλουθη διαδικασία: i. Εξομαλύνονται οι αρχικές παρατηρήσεις της χρονοσειράς με τη μέθοδο της απλής εκθετικής εξομάλυνσης ως ακολούθως: A = ay + ( 1 a) A 1 όπου α είναι η σταθερά εξομάλυνσης, για 0 a 1, Α οι εξομαλυνθείσες τιμές της χρονοσειράς που προκύπτουν από την πρώτη εξομάλυνση, για = 2,3,...,n, ενώ για =1 ορίζεται ως αρχική συνθήκη Α 1 = Υ 1. ii. Εξομαλύνονται οι εξομαλυνθείσες τιμές Α της χρονοσειράς με τη μέθοδο της απλής εκθετικής εξομάλυνσης ως ακολούθως: A = + ( 1 ) aa a A 1 όπου Α είναι οι εξομαλυνθείσες τιμές της χρονοσειράς που προκύπτουν από τη δεύτερη εξομάλυνση, για = 2,3,,n ενώ για =1, Α 1=Α 1. iii. Υπολογίζεται η διαφορά α ως: α = 2 Α Α iv. Υπολογίζεται ο παράγοντας προσαρμογής για την τάση, b, ως: a b = ( A A ) 1 a v. Υπολογίζεται η πρόβλεψη Y ˆ + h για την h μελλοντική περίοδο ως: Y ˆ + h = a + hb όπου h είναι ένας ακέραιος θετικός αριθμός. Η μέθοδος αυτή μπορεί να εφαρμοστεί για τη διαμόρφωση προβλέψεων για περισσότερες από μία μελλοντικές περιόδους σε αντίθεση με τη μέθοδο της απλής εκθετικής εξομάλυνσης, η οποία παρέχει προβλέψεις μόνο για την επόμενη χρονική περίοδο. Επίσης, αν η τιμή της σταθεράς εξομάλυνσης α δεν είναι γνωστή, κάτι που συμβαίνει όταν εφαρμόζουμε τη μέθοδο για πρώτη φορά στα δεδομένα μιας χρονοσειράς, επιλέγουμε κατά τα γνωστά εκείνη την τιμή του α που ελαχιστοποιεί την τιμή του κριτηρίου MSE ή κάποιου άλλου κριτηρίου. Σημειώνουμε ότι ο αριθμός των παρατηρήσεων που απαιτούνται για την εφαρμογή της μεθόδου αυτής είναι

19 αρκετά μικρότερος από τον αντίστοιχο αριθμό της μεθόδου του διπλού κινητού μέσου. Παράδειγμα 2.4 Στον πίνακα 2.4 δίνονται οι εβδομαδιαίες πωλήσεις υποδημάτων, μιας Χ επιχείρησης, των τελευταίων 15 εβδομάδων καθώς επίσης και οι προβλέψεις της χρονοσειράς με τη μέθοδο της διπλής εκθετικής εξομάλυνσης. [3] Y A A' a b Ŷ e ,2 58,3 56,28 60,33 0, ,2 3 84,5 61,45 56,9 65,99 0,62 60,61 23, ,2 60,46 57,32 63,59 0,43 66,62-13, ,9 61,47 57,82 65,12 0,5 64,02 4, ,3 61,21 58,23 64,19 0,4 65,62-6, ,4 62,43 58,73 66,13 0,5 64,6 6,8 8 67,4 63,03 59,25 66,81 0,52 66,64 0, ,1 62,68 59,66 65,7 0,41 67,33-7, ,8 61,73 59,91 63,56 0,25 66,11-11, ,5 63,14 60,3 65,99 0,39 63,81 9, ,2 64,47 60,8 68,14 0,5 66,38 7, ,74 61,39 70,08 0,6 68,65 6, ,1 66,74 62,03 71,45 0,64 70,68 3, ,2 67,51 62,7 72,34 0,66 72,1 1,11 Πίνακας 2.4: Δεδομένα παραδείγματος 2.4 και προβλέψεις με τη μέθοδο της διπλής εκθετικής εξομάλυνσης για α=0,12 Οι τιμές των προβλέψεων του παραπάνω παραδείγματος υπολογίζονται με το πρόγραμμα brown.m. Επιλέχθηκε η τιμή α=0.12 γιατί η τιμή αυτή του α ελαχιστοποιεί την τιμή του κριτηρίου αξιολόγησης των μεθόδων προβλέψεων MSE. Η ελάχιστη τιμή του MSE (για όλες τις τιμές της χρονοσειράς) υπολογίστηκε για α = 0,12: MSE = Η τιμή πρόβλεψης για την 16, 17 και 18 εβδομάδα με την παραπάνω μέθοδο είναι: Y ˆ 16 = 73 Y ˆ 17 = 73,65 Y ˆ = 74,31 18

20 Το παρακάτω διάγραμμα απεικονίζει τη γραφική παράσταση των πραγματικών τιμών της χρονοσειράς και των προβλεπόμενων τιμών που υπολογίστηκαν απο το πρόγραμμα brown.m Y() Yforecas() Sales Time Διάγραμμα 2.4: Γραφική παράσταση πραγματικών και προβλεπόμενων τιμών της χρονοσειράς 2.5 Μέθοδος Hol (εκθετική εξομάλυνση με προσαρμογή στην τάση) Η εκθετική εξομάλυνση με προσαρμογή στην τάση (exponenial smoohing adjused for r), γνωστή και ως μέθοδος Hol, χρησιμοποιείται κι αυτή όταν υπάρχει τάση στις παρατηρήσεις της χρονοσειράς. Η μέθοδος Hol έχει δύο παραμέτρους εξομάλυνσης, την παράμετρο α για την εξομάλυνση των τιμών της χρονοσειράς και την παράμετρο β για την εξομάλυνση της τάσης, σε αντίθεση με τη μέθοδο της διπλής εξομάλυνσης του Brown που έχει μόνο μια. Η εφαρμογή της μεθόδου Hol βασίζεται στην ακόλουθη διαδικασία: i. Η εξομάλυνση των τιμών της χρονοσειράς γίνεται με την ακόλουθη σχέση: A ay + 1 a)( A T ) = ( 1 + 1

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΗΡΑΚΛΕΙΟ 2007 ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ

ΗΡΑΚΛΕΙΟ 2007 ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ 1.1 Γιατί οι επιχειρήσεις έχουν ανάγκη την πρόβλεψη σελ.1 1.2 Μέθοδοι πρόβλεψης....σελ.2 ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ 2.1 Υπόδειγμα του Κινητού μέσου όρου.σελ.5 2.2 Υπόδειγμα

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή

Διαβάστε περισσότερα

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Τμηματικό e-mal : dap_ode@yahoo.gr www.dap-pape.gr

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων. Προβλέψεις

Τεχνικές Προβλέψεων. Προβλέψεις ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προβλέψεις http://www.fsu.gr - lesson@fsu.gr

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΡΟΒΛΕΨΕΙΣ ΠΩΛΗΣΕΩΝ ΤΩΝ Ι.Χ. ΑΥΤΟΚΙΝΗΤΩΝ ΣΕ ΔΕΚΑΠΕΝΤΕ ΧΩΡΕΣ ΜΕΛΗ ΤΗΣ ΕΥΡΩΠΑΪΚΗΣ

Διαβάστε περισσότερα

Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Επιλογή Μεθόδου Συνδυασμός Μεθόδου Διάλεξη 10

Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Επιλογή Μεθόδου Συνδυασμός Μεθόδου Διάλεξη 10 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Επιλογή Μεθόδου Συνδυασμός Μεθόδου Διάλεξη 10 Επιλογή κατάλληλης

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $)

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $) Χρονολογικά δεδομένα Ένα διάγραμμα που παριστάνει την εξέλιξη των τιμών μιας μεταβλητής στο χρόνο χρονόγραμμα (ή χρονοδιάγραμμα). Κύρια μέθοδος παρουσίασης χρονολογικών δεδομένων είναι η πολυγωνική γραμμή

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ (Time-series Analysis)

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ (Time-series Analysis) ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ (Time-series Analysis) Δρ Ιωάννης Δημόπουλος Καθηγητής Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας Τι είναι η χρονολογική σειρά Χρονολογική σειρά ή Χρονοσειρά

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης Σφάλματα Μετρήσεων 4.45 Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης Διάστημα εμπιστοσύνης βρίσκονται εκτός του Διαστήματος Εμπιστοσύνης 0.500 X 0.674σ 1 στις 0.800 X 1.8σ 1 στις

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

Ανάλυση χρονοσειρών ΚΕΦΑΛΑΙΟ 8. Εισαγωγή

Ανάλυση χρονοσειρών ΚΕΦΑΛΑΙΟ 8. Εισαγωγή ΚΕΦΑΛΑΙΟ 8 Ανάλυση χρονοσειρών Εισαγωγή Η ανάλυση χρονοσειρών αποσκοπεί στην ανεύρεση των χαρακτηριστικών εκείνων που συµβάλουν στην κατανόηση της ιστορικής συµπεριφοράς µιας µεταβλητής και επιτρέπουν

Διαβάστε περισσότερα

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο 5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Συστημάτων Προβλέψεων & Προοπτικής Forecasting System Unit

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Συστημάτων Προβλέψεων & Προοπτικής Forecasting System Unit ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Συστημάτων Προβλέψεων & Προοπτικής Forecasting System Unit Τεχνικές Προβλέψεων 2 η Ενότητα http://www.fsu.gr -

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΑΝΑΛΥΣΗ ΥΔΡΟΛΟΓΙΚΩΝ ΧΡΟΝΙΚΩΝ ΣΕΙΡΩΝ

ΕΦΑΡΜΟΣΜΕΝΗ ΑΝΑΛΥΣΗ ΥΔΡΟΛΟΓΙΚΩΝ ΧΡΟΝΙΚΩΝ ΣΕΙΡΩΝ Διατμηματικό πρόγραμμα μεταπτυχιακών σπουδών ΥΔΡΑΥΛΙΚΗ ΜΗΧΑΝΙΚΗ Δρ Βασίλειος Κιτσικούδης και Δρ Σπηλιώτης Μιχάλης ΕΦΑΡΜΟΣΜΕΝΗ ΑΝΑΛΥΣΗ ΥΔΡΟΛΟΓΙΚΩΝ ΧΡΟΝΙΚΩΝ ΣΕΙΡΩΝ ΞΑΝΘΗ, 2015 Παραδείγματα από Τριβέλλα Θ.

Διαβάστε περισσότερα

Στατιστική ΙΙΙ(ΣΤΑΟ 230) Χρονολογικές Σειρες-Κινητοι Μέσοι, Αφελείς Μέθοδοι και Αποσύνθεση (εκδ. 2η)

Στατιστική ΙΙΙ(ΣΤΑΟ 230) Χρονολογικές Σειρες-Κινητοι Μέσοι, Αφελείς Μέθοδοι και Αποσύνθεση (εκδ. 2η) Στατιστική ΙΙΙ-(ΣΤΑΟ 230) Χρονολογικές Σειρες-Κινητοι Μέσοι, Αφελείς Μέθοδοι και Αποσύνθεση (εκδ. 2η) Γεώργιος Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης Στατιστική

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Αποσύνθεση Χρονοσειράς Διάλεξη 2

Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Αποσύνθεση Χρονοσειράς Διάλεξη 2 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Αποσύνθεση Χρονοσειράς Διάλεξη 2 Αποσύνθεση (Decomposition)

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100 Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς

Διαβάστε περισσότερα

ΠΡΟΒΛΕΨΕΙΣ. Δημ. Εμίρης. Πειραιάς, 2012. Αναπλ. Καθηγητής

ΠΡΟΒΛΕΨΕΙΣ. Δημ. Εμίρης. Πειραιάς, 2012. Αναπλ. Καθηγητής ΠΡΟΒΛΕΨΕΙΣ Δημ. Εμίρης Αναπλ. Καθηγητής Πειραιάς, 2012 ΕΙΣΑΓΩΓΗ Οι προβλέψεις(forecasing) είναι απαραίτητες για ένα μεγάλο αριθμό αποφάσεων σχεδιασμού και προγραμματισμού Μακροπρόθεσμες αποφάσεις: Εισαγωγή

Διαβάστε περισσότερα

ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΘΕΜΑ: ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ ΜΙΑ ΘΕΩΡΗΤΙΚΗ ΕΜΠΕΙΡΙΚΗ ΠΡΟΣΕΓΓΙΣΗ. Υπό των φοιτητών:

ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΘΕΜΑ: ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ ΜΙΑ ΘΕΩΡΗΤΙΚΗ ΕΜΠΕΙΡΙΚΗ ΠΡΟΣΕΓΓΙΣΗ. Υπό των φοιτητών: ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΘΕΜΑ: ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ ΜΙΑ ΘΕΩΡΗΤΙΚΗ ΕΜΠΕΙΡΙΚΗ ΠΡΟΣΕΓΓΙΣΗ Υπό των φοιτητών: ΑΓΓΕΛΟΠΟΥΛΟΣ ΠΑΝΑΓΙΩΤΗΣ (6470)

Διαβάστε περισσότερα

Προγραμματισμός Ζήτησης και Προμηθειών της ΕΑ. Δημοκρίτειο Πανεπιστήμιο, Τμήμα Μηχανικών Παραγωγής & Διοίκησης 1

Προγραμματισμός Ζήτησης και Προμηθειών της ΕΑ. Δημοκρίτειο Πανεπιστήμιο, Τμήμα Μηχανικών Παραγωγής & Διοίκησης 1 Προγραμματισμός Ζήτησης και Προμηθειών της ΕΑ Δημοκρίτειο Πανεπιστήμιο, Τμήμα Μηχανικών Παραγωγής & Διοίκησης 1 4. Πρόβλεψη Ζήτησης στην ΕΑ Δημοκρίτειο Πανεπιστήμιο, Τμήμα Μηχανικών Παραγωγής & Διοίκησης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 3ο Κίβδηλες παλινδρομήσεις Μια από τις υποθέσεις που χρησιμοποιούμε στην ανάλυση της παλινδρόμησης είναι ότι οι χρονικές σειρές που χρησιμοποιούμε

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

Ορισµός. Ανάλυση Χρονοσειρών

Ορισµός. Ανάλυση Χρονοσειρών Ορισµός Με τον όρο Χρονοσειρές εννοούµε µια σειρά από παρατηρήσεις που παίρνονται σε ορισµένες χρονικές στιγµές ή περιόδους που ισαπέχουν µεταξύ τους. Συµβολίζοντας µε Χi τις n χρονικές στιγµές (έτη, µήνες,

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών Χρηματοοικονομικών Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών Χρηματοοικονομικών Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών Χρηματοοικονομικών Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ Σημειώσεις Πανεπιστημιακών Παραδόσεων ΑΛΕΞΑΝΔΡΟΣ ΜΗΛΙΏΝΗΣ ΟΚΤΩΒΡΙΟΣ 205 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ 3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων

Διαβάστε περισσότερα

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ . ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ (RANK REGRESSION).1 Μονότονη Παλινδρόμηση (Monotonic Regression) Από τη γραφική παράσταση των δεδομένων του προηγουμένου προβλήματος παρατηρούμε ότι τα ζευγάρια (Χ i, i )

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

Χρονοσειρές - Μάθημα 5

Χρονοσειρές - Μάθημα 5 Χρονοσειρές - Μάθημα 5 Εκτίμηση μοντέλου MA(q) στοχαστική διαδικασία AR() X X X X Z Z ~ WN(, Z) στοχαστική διαδικασία MA(q) X Z Z Z Z q q στοχαστική διαδικασία ARMA(,q) X X X X Z Z Z Z q q Εκτίμηση διαδικασίας

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Data Analytics Και Ευφυή Συστήματα Πρόβλεψης Δεδομένων Σε Χρονοσειρά. Εφαρμογή Στον Εναρμονισμένο Δείκτη Τιμών Καταναλωτή.

Data Analytics Και Ευφυή Συστήματα Πρόβλεψης Δεδομένων Σε Χρονοσειρά. Εφαρμογή Στον Εναρμονισμένο Δείκτη Τιμών Καταναλωτή. Data Analytics Και Ευφυή Συστήματα Πρόβλεψης Δεδομένων Σε Χρονοσειρά. Εφαρμογή Στον Εναρμονισμένο Δείκτη Τιμών Καταναλωτή. Τόγιας Παναγιώτης ΤΕΙ Δυτικής Ελλάδας ptogias@outlook.com Μαργαρίτης Σωτήρης ΤΕΙ

Διαβάστε περισσότερα

Επαυξημένος έλεγχος Dickey - Fuller (ADF)

Επαυξημένος έλεγχος Dickey - Fuller (ADF) ΜΑΘΗΜΑ 5ο Επαυξημένος έλεγχος Dickey - Fuller (ADF) Στον έλεγχο των Dickey Fuller (DF) και στα τρία υποδείγματα που χρησιμοποιήσαμε προηγουμένως κάνουμε την υπόθεση ότι ο διαταρακτικός όρος e είναι μια

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

Οργάνωση και Διοίκηση Πωλήσεων

Οργάνωση και Διοίκηση Πωλήσεων Οργάνωση και Διοίκηση Πωλήσεων Ενότητα 4: Η ΠΡΟΒΛΕΨΗ ΠΩΛΗΣΕΩΝ Αθανασιάδης Αναστάσιος Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και Οικονομία Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Μέθοδοι Εξομάλυνσης ΙΙΙ-Εφαρμογές)

Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Μέθοδοι Εξομάλυνσης ΙΙΙ-Εφαρμογές) Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Μέθοδοι Εξομάλυνσης ΙΙΙ-Εφαρμογές) Γεώργιος Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης Στατιστική ΙΙΙ(ΣΤΑΟ 230) Περιγραφή

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων. Προβλέψεις

Τεχνικές Προβλέψεων. Προβλέψεις ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προβλέψεις http://www.fsu.gr - lesson@fsu.gr

Διαβάστε περισσότερα

3η Ενότητα Προβλέψεις

3η Ενότητα Προβλέψεις ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 4 ο ) http://www.fsu.gr

Διαβάστε περισσότερα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Ορισμός των Ορθολογικών Προσδοκιών για Μία Περίοδο

Διαβάστε περισσότερα

ΦΑΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΠΟΧΙΚΗ ΔΙΟΡΘΩΣΗ ΧΡΟΝΟΛΟΓΙΚΩΝ ΣΕΙΡΩΝ

ΦΑΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΠΟΧΙΚΗ ΔΙΟΡΘΩΣΗ ΧΡΟΝΟΛΟΓΙΚΩΝ ΣΕΙΡΩΝ ΦΑΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΠΟΧΙΚΗ ΔΙΟΡΘΩΣΗ ΧΡΟΝΟΛΟΓΙΚΩΝ ΣΕΙΡΩΝ Υπό Δρος ΔΙΟΝΥΣΙΟΥ Ε. ΚΑΡΑΜΠΑΛΗ Τράπεζα της Ελλάδος 1. ΕΙΣΑΓΩΓΗ Σκοπός της εργασίας αυτής είναι η εξέταση της συμπεριφοράς των χρονολογικών σειρών

Διαβάστε περισσότερα

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 5 ΟΥ ΕΞΑΜΗΝΟΥ

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 5 ΟΥ ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ SOS & ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΩΝ 5 ΟΥ ΕΞΑΜΗΝΟΥ www.dap papei.gr 2 ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Τι θα γράψω: Στις εξετάσεις τα θέματα περιλαμβάνουν ερωτήσεις και ασκήσεις (κυρίως ασκήσεις) όπου

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών. Μάθημα: Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών

Εθνικό Μετσόβιο Πολυτεχνείο Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών. Μάθημα: Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών Μάθημα: Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών 4. Διαχείριση Αλυσίδας Προμηθειών Μέθοδοι Προβλέψεων Μάθημα: Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών Περιεχόμενα 4.1 Διαχείριση Αλυσίδας Προμηθειών Στοιχεία

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

Ανάλυση Νεκρού Σημείου Σημειώσεις

Ανάλυση Νεκρού Σημείου Σημειώσεις Ανάλυση Νεκρού Σημείου Σημειώσεις ΜΑΘΗΜΑ: ΣΥΣΤΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ Αν. Καθ. Δημήτρης Ασκούνης Εισαγωγή Η ανάλυση του Νεκρού Σημείου είναι ένα σπουδαίο χρηματοοικονομικό μέσο και αποτελεί βασικά μια αναλυτική

Διαβάστε περισσότερα

Βραχυπρόθεσμη τοπική μετεωρολογική πρόγνωση με αναζήτηση ανάλογων καταστάσεων

Βραχυπρόθεσμη τοπική μετεωρολογική πρόγνωση με αναζήτηση ανάλογων καταστάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Βραχυπρόθεσμη τοπική μετεωρολογική πρόγνωση με αναζήτηση ανάλογων καταστάσεων Γεώργιος Θεοδωρόπουλος Επιβλέπων

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα : Τεχνο-οικονομικά Συστήματα

Μεταπτυχιακό Πρόγραμμα : Τεχνο-οικονομικά Συστήματα Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών 1 1 8. Προβλέψεις & Ζήτηση Εισηγητής : Επικ. Καθ. Δ. Ασκούνης Περιεχόμενα 2 Στοιχεία και Διαχείριση Ζήτησης Ποιοτικές Μέθοδοι Προβλέψεων Μέθοδος Delphi Ποσοτικές

Διαβάστε περισσότερα

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Μοντέλα Παλινδρόμησης Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εισαγωγή (1) Σε αρκετές περιπτώσεις επίλυσης προβλημάτων ενδιαφέρει η ταυτόχρονη μελέτη δύο ή περισσότερων μεταβλητών, για να προσδιορίσουμε με ποιο

Διαβάστε περισσότερα

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή

Διαβάστε περισσότερα

Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών

Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών Φοιτητής: Μαρκόπουλος

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011 2012 ΕΠΙΧ

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

1.1. ΟΜΑΔΑ Α. Στις παρακάτω ερωτήσεις να σημειώσετε το χαρακτηρισμό Σ (σωστό) ή Λ (λάθος).

1.1. ΟΜΑΔΑ Α. Στις παρακάτω ερωτήσεις να σημειώσετε το χαρακτηρισμό Σ (σωστό) ή Λ (λάθος). ΑΘ. ΧΑΡΙΤΩΝΙΔΗΣ : ΑΟΘ για ΕΠΑΛ ΚΕΦΑΛΑΙΟ 1 ο 1 ΚΕΦΑΛΑΙΟ 1Ο : ΒΑΣΙΚΕΣ ΟΙΚΟΝΟΜΙΚΕΣ ΕΝΝΟΙΕΣ 1.1. ΟΜΑΔΑ Α 1.1.1. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ Στις παρακάτω ερωτήσεις να σημειώσετε το χαρακτηρισμό Σ (σωστό) ή Λ (λάθος).

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΧΡΟΝΟΛΟΓΙΚΩΝ ΔΕΔΟΜΕΝΩΝ- ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΤΕΧΝΙΚΗ ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΑΓΟΡΩΝ

ΚΕΦΑΛΑΙΟ 4 ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΧΡΟΝΟΛΟΓΙΚΩΝ ΔΕΔΟΜΕΝΩΝ- ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΤΕΧΝΙΚΗ ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΑΓΟΡΩΝ ΚΕΦΑΛΑΙΟ 4 ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΧΡΟΝΟΛΟΓΙΚΩΝ ΔΕΔΟΜΕΝΩΝ- ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΤΕΧΝΙΚΗ ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΑΓΟΡΩΝ ΕΙΣΑΓΩΓΗ 4. Κατηγοριοποίηση στατιστικών δεδομένων α) Χρονικά δεδομένα (ime seies d) Συγκεντρώνονται

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Παρακολούθηση Χρονοσειράς Διάλεξη 11

Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Παρακολούθηση Χρονοσειράς Διάλεξη 11 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Παρακολούθηση Χρονοσειράς Διάλεξη 11 Παρακολούθηση (1 από

Διαβάστε περισσότερα

Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Εφαρμογες Εξομάλυνσης-Τεχνική Ανάλυση)

Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Εφαρμογες Εξομάλυνσης-Τεχνική Ανάλυση) Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Εφαρμογες Εξομάλυνσης-Τεχνική Ανάλυση) Γεώργιος Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης Στατιστική ΙΙΙ(ΣΤΑΟ 230)

Διαβάστε περισσότερα

ΕΚΤΙΜΗΣΕΙΣ, ΠΡΟΒΛΕΨΕΙΣ ΚΑΙ ΠΡΟΒΟΛΕΣ ΠΛΗΘΥΣΜΟΥ (POPULATION PROJECTIONS)

ΕΚΤΙΜΗΣΕΙΣ, ΠΡΟΒΛΕΨΕΙΣ ΚΑΙ ΠΡΟΒΟΛΕΣ ΠΛΗΘΥΣΜΟΥ (POPULATION PROJECTIONS) ΚΕΦΑΛΑΙΟ 8 ΕΚΤΙΜΗΣΕΙΣ, ΠΡΟΒΛΕΨΕΙΣ ΚΑΙ ΠΡΟΒΟΛΕΣ ΠΛΗΘΥΣΜΟΥ (OULATION ROJECTIONS) Η κύρια πηγή στατιστικών δεδοµένων που αφορούν το µέγεθος και τη σύνθεση του πληθυσµού είναι η απογραφή. Η απογραφή πληθυσµού

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΠΟΛΙΤΙΚΟ ΒΑΡΟΜΕΤΡΟ. Φεβρουάριος Μηνιαία εκτίμηση εκλογικής επιρροής. Με βάση τη μεθοδολογία ανάλυσης χρονολογικών σειρών

ΠΟΛΙΤΙΚΟ ΒΑΡΟΜΕΤΡΟ. Φεβρουάριος Μηνιαία εκτίμηση εκλογικής επιρροής. Με βάση τη μεθοδολογία ανάλυσης χρονολογικών σειρών ΠΟΛΙΤΙΚΟ ΒΑΡΟΜΕΤΡΟ Φεβρουάριος 2010 Μηνιαία εκτίμηση εκλογικής επιρροής Με βάση τη μεθοδολογία ανάλυσης χρονολογικών σειρών Η ταυτότητα της έρευνας, στην οποία στηρίζεται η τρέχουσα μηνιαία εκτίμηση της

Διαβάστε περισσότερα

ΠΡΟΒΛΕΨΕΙΣ. Δημ. Εμίρης. Πειραιάς, Αναπλ. Καθηγητής

ΠΡΟΒΛΕΨΕΙΣ. Δημ. Εμίρης. Πειραιάς, Αναπλ. Καθηγητής ΠΡΟΒΛΕΨΕΙΣ Δημ. Εμίρης Αναπλ. Καθηγητής Πειραιάς, 2012 ΕΙΣΑΓΩΓΗ Οι προβλέψεις(forecasing) είναι απαραίτητες για ένα μεγάλο αριθμό αποφάσεων σχεδιασμού και προγραμματισμού Μακροπρόθεσμες αποφάσεις: Εισαγωγή

Διαβάστε περισσότερα

ΠΡΟΕΚΛΟΓΙΚΟ ΒΑΡΟΜΕΤΡΟ

ΠΡΟΕΚΛΟΓΙΚΟ ΒΑΡΟΜΕΤΡΟ ΠΡΟΕΚΛΟΓΙΚΟ ΒΑΡΟΜΕΤΡΟ Εκτίμηση εκλογικού αποτελέσματος Βουλευτικών εκλογών 4 ης Οκτωβρίου 2009 Με βάση τη μεθοδολογία ανάλυσης χρονολογικών σειρών Η ταυτότητα των ερευνών, στις οποίες στηρίζεται η παρούσα

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά

Επιχειρησιακά Μαθηματικά Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά () ΑΘΗΝΑ ΝΟΕΜΒΡΙΟΣ 01 1 Τηλ:10.93.4.450 Πεδίο Ορισμού Οικονομικών Συναρτήσεων Οι οικονομικές συναρτήσεις (συνάρτηση Ζήτησης, συνάρτηση

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων. Προετοιμασία & Ανάλυση Χρονοσειράς

Τεχνικές Προβλέψεων. Προετοιμασία & Ανάλυση Χρονοσειράς ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προετοιμασία & Ανάλυση Χρονοσειράς http://www.fsu.gr

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα

Διαβάστε περισσότερα

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model)

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) ΜΑΘΗΜΑ 4 ο 1 Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) Αυτοσυσχέτιση (Serial Correlation) Lagrange multiplier test of residual

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ: ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ: ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ: ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΝΑΛΥΣΗ ΧΡΟΝΟΛΟΓΙΚΩΝ ΣΕΙΡΩΝ: ΠΡΟΒΛΕΠΟΝΤΑΣ ΤΟ ΜΕΛΛΟΝ, ΚΑΤΑΝΟΩΝΤΑΣ ΤΟ

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος.

ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος. :\Documens and Seings\kpig\Deskop\basikh askhsh aaaa.doc ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος. ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΕΞΕΙΔΙΚΕΥΣΗ-ΕΚΤΙΜΗΣΗ-ΑΝΑΛΥΣΗ- ΠΡΟΒΛΕΨΗ- ΣΕΝΑΡΙΑ ΚΑΙ ΤΟΝ ΑΡΙΣΤΟ

Διαβάστε περισσότερα

Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ

Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ 1. Εισαγωγή Όπως έχουμε τονίσει, η κατανόηση του τρόπου με τον οποίο προσδιορίζεται η τιμή ενός αγαθού απαιτεί κατανόηση των δύο δυνάμεων της αγοράς, δηλαδή της ζήτησης

Διαβάστε περισσότερα

E[ (x- ) ]= trace[(x-x)(x- ) ]

E[ (x- ) ]= trace[(x-x)(x- ) ] 1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες μεταβλητές λέγονται ποσοτικές; (ΓΕΛ 2005) 2. Πότε μια ποσοτική μεταβλητή ονομάζεται διακριτή και πότε συνεχής; (ΓΕΛ 2005,2014) 3. Τι ονοµάζεται απόλυτη

Διαβάστε περισσότερα

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 48 49 5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 5 ΕΙΣΑΓΩΓΗ ΟΡΙΣΜΟΣ: Κάθε συνάρτηση : A B με Α R n και Β R ονομάζεται πραγματική συνάρτηση n μεταβλητών ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι Αν Α R n και Β R n τότε έχουμε διανυσματική συνάρτηση

Διαβάστε περισσότερα

Εισαγωγή. Ανάλυση Νεκρού Σημείου Σημειώσεις. Σημασία Νεκρού Σημείου

Εισαγωγή. Ανάλυση Νεκρού Σημείου Σημειώσεις. Σημασία Νεκρού Σημείου Εισαγωγή Ανάλυση Νεκρού Σημείου Σημειώσεις ΜΑΘΗΜΑ: ΣΥΣΤΗΜΑΤΑ ΙΟΙΚΗΣΗΣ Αν. Καθ. ημήτρης Ασκούνης Η ανάλυση του Νεκρού Σημείου είναι ένα σπουδαίο χρηματοοικονομικό μέσο και αποτελεί βασικά μια αναλυτική

Διαβάστε περισσότερα

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Χρήσιμες Οδηγίες Με την βοήθεια του λογισμικού E-views να απαντήσετε στα ερωτήματα των επόμενων σελίδων, (οι απαντήσεις πρέπει να περαστούν

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος 5 Κεφάλαιο Βασικές αριθμητικές πράξεις 5 Τέσσερις πράξεις 5 Σύστημα πραγματικών αριθμών 5 Γραφική αναπαράσταση πραγματικών αριθμών 6 Οι ιδιότητες της πρόσθεσης και του πολλαπλασιασμού

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα