BAB 9 PENENTUAN KEDUDUKAN

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "BAB 9 PENENTUAN KEDUDUKAN"

Transcript

1 Pengenalan BAB 9 PENENTUAN KEDUDUKAN Penentuan Kedudukan Tujuan Penentuan Kedudukan Titik persilangan antara 2 garis Mendapatkan kedudukan bot atau titik di mana kedalaman akan diambil Stn 3 Stn 1 Stn 2 R2 Kaedah Persilangan Kaedah Silang Alikan R1 R3 Kaedah Dua Jarak Kaedah Jarak & Bearing Beberapa kaedah bagi mendapatkan kedudukan Persilangan kedudukan secara bulatan dari 3 stesen Persilangan menggunakan kaedah Range-Range Pair Persilangan menggunakan kaedah Hyperbolic triad UTM 1

2 Hyperbola dengan foci A dan B Hyperbola dengan foci A dan B Kesan lane expansion dapat dikurangkan dengan menggunakan garisan dasar yang lebih panjang Persilangan menggunakan kaedah Hyperbolic yang diambil dari carta Loran Kaedah Optik Kaedah Akustik 4 KAEDAH PENENTUDUDUKAN Kaedah Elektronik (EPS) Kaedah Langsung (tali bersenggat) Kaedah Bezaan GPS (DGPS) UTM 2

3 Kaedah Optik Sekstan Menggunakan alat optik bagi dapatkan kedudukan bot. Sesuai untuk kerja penentududukan di sungai, tasik dan kawasan yang berhampiran dengan persisir pantai sehingga 3 km. Contoh: sekstan, teodolit/edm dan stesen penuh. Antara kaedah penentududukan menggunakan kaedah optik : a) Secara persilangan (2 teodolit) b) Silang alikan (sekstan) c) Julat julat (EDM) d) Julat bering (stesen penuh) Kesemua alat optik mesti berada di persisir kecuali sekstan yang boleh berada di atas bot. Alat mudah alih untuk mengukur sudut antara 2 objek rujukan sehingga 140 o berjauhan. Dibahagikan kepada 3 jenis : 1) Vernier 2) Mikrometer dram 3) Digital elektronik Bacaan sekstan adalah sehingga 0.1 minit. Bagi mengukur sudut mengufuk antara stesen-stesen kawalan. Bagi setiap titik peruman, 2 sudut sekstan dibaca daripada bot terhadap 3 titik kawalan. Dengan menggunakan 3 stesen kawalan dan 2 sudut kandung, maka kedudukan bot dapat dihitung. Contoh-contoh sekstan Penentududukan menggunakan sekstan Teodolit Alat yang digunakan untuk mengukur sudut mengufuk dan sudut tegak. Perlu didirikan di atas kakitiga dan dilaraskan sebelum digunakan. Terdapat dalam 2 jenis : 1) Teodolit optik (bacaan sehingga 1, 5, 10 dan 20 ) 2) Teodolit digital (bacaan sehingga perpuluhan) Penentududukan dibuat dengan menggunakan 2 teodolit secara serentak di 2 stesen kawalan. Contoh-contoh teodolit digital UTM 3

4 Stesen Penuh Penentududukan Menggunakan Geodimeter 422 Gabungan teodolit, pengukur jarak elektronik (EDM) dan perisian dalam 1 unit. Penyimpan data elektronik samada jenis dalaman (internal) atau luaran (external) digunakan untuk menyimpan segala data yang dicerap. Contoh alat yang digunakan ialah Geodimeter 422. Dibekalkan dengan sistem pengaras ufuk dwi-paksi elektronik untuk mengurangkan pemusingan alat semasa kerja pengarasan dilakukan. Mempunyai perisian dalaman yang dapat memproses dam mempamirkan data yang diterima daripada pengukur sudut elektronik, pengukur jarak elektronik dan pengimbang aras dwipaksi. Antara komponen utama : a) Teodolit dan Sistem Pengukur Jarak Elektronik b) Papan Kekunci c) Pemapar d) Mikropemproses Geodimeter 422 Penentududukan Menggunakan Geodimeter 422 (samb.) Kaedah Elektronik (EPS) Dalam penentududukan hidrografi, Geodimeter 422 berfungsi sebagai stesen rujukan. Geodimeter 422 akan menghantar isyarat kepada prisma di atas bot. Oleh itu bering dan jarak bot dari stesen rujukan dapat diperolehi dan koordinat bot yang bergerak dapat diketahui. Menggunakan gelombang radio untuk mengukur jarak antara 2 titik. Jarak yang dapat diukur bergantung kepada frekuensi yang digunakan. Biasanya mempunyai satu induk (master) di atas bot. Beberapa penurut (slave) pula diletakkan di stesen kawalan pesisir. Induk di atas bot akan memancarkan gelombang radio dan akan diterima oleh penurut. Penurut akan memancarkan balik gelombang radio tetapi dengan frekuensi yang berlainan. Antara peralatan sistem EPS Penentududukan menggunakan EPS UTM 4

5 Unit Pengukuran Jarak Digital (DDMU) Penentududukan Menggunakan Trisponder Sistem Trisponder Transponder Induk Transponder Penurut Trasponder induk dan DDMU ditempatkan di atas bot. Transponder penurut akan ditempatkan di atas bot. Menggunakan gelombang mikro (gelombang elektromagnetik) yang sangat pendek. Mempunyai frekuensi antara 3-10 GHz. Bagi menentukan jarak ; d = vt dengan v = halaju gelombang t = jangka masa pergerakan gelombang d = jarak yang dilalui oleh gelombang dalam masa t Bagi jarak dalam satu arah, perlu mengambil kira faktor masa disebabkan oleh kelengahan pusingan balik (TAD) ; d = 1 v( t ) dengan, 2 TAD v = halaju gelombang t = jangka masa pergerakan gelombang d = jarak yang dilalui oleh gelombang dalam masa t TAD = masa kelengahan pusingan balik Penentududukan Menggunakan Trisponder (samb.) Penentududukan Menggunakan Trisponder (samb.) Gelombang akan dipancarkan oleh transponder induk. Pada masa ini 1 pembilang akan menghitung setiap detik.(1 detik = 2.5 m) Isyarat ini sampai ke penurut dalam masa t 1. Setelah penurut menerima isyarat daripada induk, ia akan memancarkan satu isyarat balik kepada induk. Jangka masa antara isyarat diterima dan dihantar balik dikenali sebagai masa kelengahan pusingan balik. Apabila induk menerima balik isyarat daripada penurut dalam jangka masa t 2, pembilang akan berhenti menghitung masa. Dengan menggunakan masa kelengahan pusingan balik (TAD), jarak antara induk dan penurut akan diukur. Kedua-dua induk dan penurut menggunakan kod denyut berlainan antara satu sama lain. Ini adalah supaya induk dapat mengenalpasti jarak dari stesen penurut yang diukur. Penurut pula hanya memberikan reaksi terhadap isyarat yang telah ditetapkan untuknya sahaja. Oleh itu, lebih dari satu sistem dapat beroperasi dalam kawasan yang sama. Range Holes Range Holes (samb.) Keadaan di mana kedudukan tidak dapat diperolehi kerana isyarat tidak diterima daripada stesen rujukan. Punca : a) inteferens terhadap isyarat yang dipancarkan ke alat penerima b) Isyarat yang dihantar mengalami pantulan daripada permukaan air ataupun objek lain Biasanya merujuk kepada multipath ataupun gangguan berbilang laluan. Namun punca utama terjadinya range hole ialah permukaan air. Oleh itu, jarak ialah 2H H D = 1 2 nλ Dengan H 1 dan H 2 = ketinggian di atas permukaan laut n = integer λ = panjang gelombang D = jarak dari stesen rujukan v = fλ (nota : ) UTM 5

6 Kaedah Bezaan GPS (DGPS) GPS (Global Positioning System) - Sistem penentududukan yang berfungsi 24 jam sehari, semua tempat, dalam semua keadaan cuaca, yang menggunakan satelit GPS milik Department of Defend (DoD), Amerika Syarikat. Konsep DGPS (Differential Global Positioning System) Menganggap bahawa sebarang selisih yang mengurangkan ketepatan sesuatu sistem adalah sama bagi semua pengguna (dalam jarak yang diberi). Sekiranya selisih ini dapat dihitung pada sesuatu titik dan diberikan pembetulan pada data yang diperolehi, maka selisih-selisih ini dapat dihapuskan atau dikurangkan. Sistem GPS Kaedah Bezaan GPS (DGPS) (samb.) Penentuan Kedudukan Melalui GPS Proses Lepas (Pro-processing) Masa Hakiki (Real-time) Penentududukan menggunakan kaedah DGPS Proses lepas memberikan kedudukan sesuatu titik selepas pengukuran selesai dibuat dan setelah semua data diproses. Masa hakiki - memberikan kedudukan sesuatu titik pada masa pengukuran dibuat (masa sebenar) Kaedah bezaan masa hakiki perlukan sekurang-kurangnya 2 penerima Satu penerima (induk) didirikan pada kedudukan yang diketahui (stesen rujukan) Satu lagi penerima (penurut) didirikan pada titik yang hendak diketahui kedudukannya. Penerima induk dan penerima penurut pada titik yang hendak diketahui kedudukannya perlulah menggunakan sistem koordinat yang sama WGS 84 Penerima penurut boleh diletakkan dalam keadaan statik (tak bergerak) ataupun dinamik (bergerak) DGPS Hitungan pembetulan jarak antara satelit dan penerima induk. Maklumat mengenai koordinat kedudukan yang telah diketahui dimasukkan ke penerima induk. Penerima induk akan menentukan pembetulan jarak dengan membezakan jarak yang diukur dengan jarak sebenar. Jarak sebenar dihitung berdasarkan kepada kedudukan penerima induk yang diketahui dengan kedudukan satelit. Pembetulan jarak dihitung dan dihantar ke penerima penurut melalui perhubungan radio (pada sela jarak tertentu) Kaedah Bezaan GPS (DGPS) (samb.) Dua kaedah bagi pembetulan kedudukan pada cerapan DGPS : Kaedah pembetulan kedudukan Kaedah pembetulan julat semu Pembetulan Kedudukan Penerima induk didirikan di atas titik yang telah diketahui kedudukannya. Kombinasi satelit tertentu akan menghitung semula titik tersebut. Kedudukan yang dihitung oleh penerima GPS dibandingkan dengan kedudukan sebenar bagi mendapatkan pembetulan dalam bentuk ΔX, ΔY dan ΔZ UTM 6

7 Kaedah Bezaan GPS (DGPS) (samb.) Kaedah Bezaan GPS (DGPS) (samb.) Pembetulan Julat Semu Penerima induk menghitung jarak sebenar ke setiap satelit berdasarkan kepada kedudukan yang sudah diketahui. Dapat diperolehi daripada koordinat Cartesan induk dan koordinat Cartesan setiap satelit. Jarak yang dihitung akan dibandingkan dengan jarak yang diukur bagi mendapatkan pembetulan. Kelebihan kaedah pembetulan julat semu Pengguna yang bergerak bebas memilih satelit bagi menghitung kedudukannya. (dengan menganggap penerima induk menghantar pembetulan bagi satelit dalam pemandangan) Lebih sesuai digunakan jika jarak antara kedua-dua penerima GPS adalah jauh. Dapat memberikan pembetulan dengan kejituan lebih tinggi sekiranya peralatan dan perisian yang sama digunakan dalam membuat cerapan. Kaedah Akustik Kaedah Akustik (samb.) Sesuai untuk kerja penentududukan di luar pesisir dan laut dalam. Konsep: kedudukan diperolehi dengan menghitung jarak iaitu dengan merekodkan denyut pisitan daripada isyarat dipancarkan dan dibalikkan semula. Memerlukan ketepatan penentuan halaju bunyi dalam air. Antara komponen yang terlibat ; a) Unit pemprosesan sebagai unit untuk pemprosesan segala maklumat pengukuran b) Transduser memancar isyarat pada satu frekuensi dan menerima balik isyarat pada frekuensi yang lain c) Berup tanda di dalam air bagi sistem akustik, sama ada pasif atau aktif atau kedua-duanya sekali. Jenis-jenis berup Pinger berup aktif memancarkan isyarat secara berterusan Transponder berup yang diletakkan dalam mod bersedia sehingga dipisit oleh denyut yang sama frekuensinya. Akan membalas dengan pancaran sendiri sebaik saja dipisit. Berup gerak balas Fungsi sama dengan transponder tetapi menggunakan bekalan elektrik melalui kabel yang sambungkan kepada bot. Berup relay transponder yang mempunyai frekuensi pisitan berbeza daripada yang lain dalam jaringan yang sama. Transponder bijak transponder yang menerima arahan daripada unit pemprosesan melalui hubungan telemetri dan kemudiannya memisit satu atau lebih transponder dan memancarkannya ke unit pemprosesan. Penentududukan menggunakan kaedah akustik UTM 7

TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun

TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun TH383 Realiti Maa Transformasi 3D menggunakan multiplikasi matriks untuk hasilkan kompaun transformasi menggunakan kompaun transformasi - hasilkan sebarang transformasi dan ungkapkan sebagai satu transformasi

Διαβάστε περισσότερα

CADASTRE SURVEY (SGHU 2313)

CADASTRE SURVEY (SGHU 2313) CADASTRE SURVEY (SGHU 2313) WEEK 8-ADJUSTMENT OF OBSERVED DATA SR DR. TAN LIAT CHOON 07-5530844 016-4975551 1 OUTLINE Accuracy of field observations Misclosure in cadastre survey Bearing ('m' and 'c' correction

Διαβάστε περισσότερα

PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK

PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK 2 SKEMA MODUL PECUTAN AKHIR 20 No Jawapan Pembahagian (a) 00000 0000 0000 Jumlah 000 TIM00 #0300 TIM00 000 000 0M END Simbol dan data betul : 8 X 0.5M = 4M

Διαβάστε περισσότερα

BAB 8 PENENTUAN KEDALAMAN

BAB 8 PENENTUAN KEDALAMAN Pengenalan BAB 8 PENENTUAN KEDALAMAN Proses penentuan kedalaman/penentudalaman perlulah dijalankan dengan seberapa tepat yang boleh kerana jika berlaku kesilapan, ianya akan memberikan gambaran yang salah

Διαβάστε περισσότερα

PRAKATA 1 SENARAI JADUAL 3 SENARAI RAJAH Tafsiran Sejarah Bentuk Bumi 21

PRAKATA 1 SENARAI JADUAL 3 SENARAI RAJAH Tafsiran Sejarah Bentuk Bumi 21 TAJUK MONOGRAF : GEODESI GEOMETRIK KANDUNGAN PRAKATA 1 SENARAI JADUAL 3 SENARAI RAJAH 7 BAB 1 PENGENALAN 1.1 Tafsiran 10 1.2 Sejarah 12 1.3 Bentuk Bumi 21 BAB 2 CIRI-CIRI ELIPSOID 2.1 Sifat Khas Elip dan

Διαβάστε περισσότερα

ANALISIS LITAR ELEKTRIK OBJEKTIF AM

ANALISIS LITAR ELEKTRIK OBJEKTIF AM ANALSS LTA ELEKTK ANALSS LTA ELEKTK OBJEKTF AM Unit Memahami konsep-konsep asas Litar Sesiri, Litar Selari, Litar Gabungan dan Hukum Kirchoff. OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menerangkan

Διαβάστε περισσότερα

Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk

Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk SOALAN 1 Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk menyambungkan dua takal yang terpasang kepada dua aci selari. Garispusat takal pemacu, pada motor adalah

Διαβάστε περισσότερα

2 m. Air. 5 m. Rajah S1

2 m. Air. 5 m. Rajah S1 FAKULI KEJURUERAAN AL 1. Jika pintu A adalah segi empat tepat dan berukuran 2 m lebar (normal terhadap kertas), tentukan nilai daya hidrostatik yang bertindak pada pusat tekanan jika pintu ini tenggelam

Διαβάστε περισσότερα

Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI

Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI Bab 5 FUNGSI TRIGONOMETRI Peta Konsep 5.1 Sudut Positif dan Sudut Negatif 5. 6 Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI 5. Graf Fungsi Sinus, Kosinus dan Tangen 5.4 Identiti Asas 5.5

Διαβάστε περισσότερα

( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 )

( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 ) (1) Tentukan nilai bagi P, Q, dan R MODEL PT MATEMATIK A PUSAT TUISYEN IHSAN JAYA 1 P 0 Q 1 R 2 (4) Lengkapkan operasi di bawah dengan mengisi petak petak kosong berikut dengan nombor yang sesuai. ( 1

Διαβάστε περισσότερα

TOPIK 2 : MENGGAMBARKAN OBJEK

TOPIK 2 : MENGGAMBARKAN OBJEK 2.1 SIMETRI Definisi paksi simetri : Satu garis lipatan pada suatu bentuk geometri supaya bentuk itu dapat bertindih tepat apabila dilipat. Sesuatu bentuk geometri mungkin mempunyai lebih daripada satu

Διαβάστε περισσότερα

Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar

Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar untuk Fakultas Pertanian Uhaisnaini.com Contents 1 Sistem Koordinat dan Fungsi Sistem Koordinat dan Fungsi Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam

Διαβάστε περισσότερα

SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat:

SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat: SOALAN 1 Cakera dengan garis pusat d berputar pada halaju sudut ω di dalam bekas mengandungi minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai kelikatan µ. Anggap bahawa susuk halaju

Διαβάστε περισσότερα

Transformasi Koordinat 2 Dimensi

Transformasi Koordinat 2 Dimensi Transformasi Koordinat 2 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat 2 Dimensi Digunakan untuk mempresentasikan

Διαβάστε περισσότερα

Kalkulus Multivariabel I

Kalkulus Multivariabel I Limit dan Statistika FMIPA Universitas Islam Indonesia Operasi Aljabar pada Pembahasan pada limit untuk fungsi dua peubah adalah memberikan pengertian mengenai lim f (x, y) = L (x,y) (a,b) Masalahnya adalah

Διαβάστε περισσότερα

Matematika

Matematika Sistem Bilangan Real D3 Analis Kimia FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa D3 Analis Kimia angkatan

Διαβάστε περισσότερα

vii SENARAI KANDUNGAN BAB PERKARA MUKA SURAT

vii SENARAI KANDUNGAN BAB PERKARA MUKA SURAT vii SENARAI KANDUNGAN BAB PERKARA MUKA SURAT HALAMAN JUDUL HALAMAN PENGAKUAN HALAMAN DEDIKASI HALAMAN PENGHARGAAN ABSTRAK ABSTRACT HALAMAN KANDUNGAN SENARAI JADUAL SENARAI RAJAH SENARAI SIMBOL SENARAI

Διαβάστε περισσότερα

Tegangan Permukaan. Kerja

Tegangan Permukaan. Kerja Tegangan Permukaan Kerja Cecair lebih cenderung menyesuaikan bentuknya ke arah yang luas permukaan yang minimum. Titisan cecair berbentuk sfera kerana nisbah luas permukaan terhadap isipadu adalah kecil.

Διαβάστε περισσότερα

ASAS PENGUKURAN -FIZIK- SULAIMAN REJAB Penolong Pegawai Sains Pusat Asasi Sains, Universiti Malaya

ASAS PENGUKURAN -FIZIK- SULAIMAN REJAB Penolong Pegawai Sains Pusat Asasi Sains, Universiti Malaya ASAS PENGUKURAN -FIZIK- SULAIMAN REJAB Penolong Pegawai Sains Pusat Asasi Sains, Universiti Malaya NHB_Jun2014 1 Objektif: Adalah diharapkan diakhir kursus ini peserta akan : 1. Mengenal pasti alat-alat

Διαβάστε περισσότερα

ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1

ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1 MAKTAB RENDAH Add SAINS your company MARA BENTONG slogan Bab 1 ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1 LOGO Kandungan 1 Jenis Litar Elektrik 2 Meter Pelbagai 3 Unit Kawalan Utama 4 Kuasa Elektrik 1 1.1 Jenis

Διαβάστε περισσότερα

SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia

SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia SEE 3533 PRINSIP PERHUBUNGAN Bab III Universiti Teknologi Malaysia 1 Pengenalan Selain daripada teknik pemodulatan amplitud, terdapat juga teknik lain yang menggunakan isyarat memodulat untuk mengubah

Διαβάστε περισσότερα

Keterusan dan Keabadian Jisim

Keterusan dan Keabadian Jisim Pelajaran 8 Keterusan dan Keabadian Jisim OBJEKTIF Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat Mentakrifkan konsep kadar aliran jisim Mentakrifkan konsep kadar aliran Menerangkan konsep

Διαβάστε περισσότερα

EMT361 Keboleharapan & Analisis Kegagalan. Dr Zuraidah Mohd Zain Julai, 2005

EMT361 Keboleharapan & Analisis Kegagalan. Dr Zuraidah Mohd Zain Julai, 2005 EMT361 Keboleharapan & Analisis Kegagalan Dr Zuraidah Mohd Zain zuraidah@kukum.edu.my Julai, 2005 Overview untuk minggu 1-3 Minggu 1 Overview terma, takrifan kadar kegagalan, MTBF, bathtub curve; taburan

Διαβάστε περισσότερα

BAB 2 PEMACU ELEKTRIK

BAB 2 PEMACU ELEKTRIK BAB 2 PEMACU ELEKTRIK PENGENALAN Kebanyakan perindustrian moden dan komersial menggunakan pemacu elektrik berbanding dengan pemacu mekanikal kerana terdapat banyak kelebihan. Di antaranya ialah : a) binaannya

Διαβάστε περισσότερα

ACCEPTANCE SAMPLING BAB 5

ACCEPTANCE SAMPLING BAB 5 ACCEPTANCE SAMPLING BAB 5 PENGENALAN Merupakan salah satu daripada SQC (statistical quality control) dimana sampel diambil secara rawak daripada lot dan keputusan samada untuk menerima atau menolak lot

Διαβάστε περισσότερα

BAB 2 PEMODULATAN AMPLITUD

BAB 2 PEMODULATAN AMPLITUD BAB MODULATAN LITUD enghantaran iyarat yang engandungi akluat elalui atu aluran perhubungan eerlukan anjakan frekueni iyarat akluat kepada julat frekueni yang euai untuk penghantaran - roe ini diapai elalui

Διαβάστε περισσότερα

(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan:

(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan: MODUL 3 [Kertas 1]: MATEMATIK TAMBAHAN JPNK 015 Muka Surat: 1 Jawab SEMUA soalan. 1 Rajah 1 menunjukkan hubungan antara set A dan set B. 6 1 Set A Rajah 1 4 5 Set B (a) Nyatakan julat hubungan itu (b)

Διαβάστε περισσότερα

Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat

Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat Kalkulus 1 Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam sistem koordinat, yaitu:

Διαβάστε περισσότερα

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X. BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua

Διαβάστε περισσότερα

KEKUATAN KELULI KARBON SEDERHANA

KEKUATAN KELULI KARBON SEDERHANA Makmal Mekanik Pepejal KEKUATAN KELULI KARBON SEDERHANA 1.0 PENGENALAN Dalam rekabentuk sesuatu anggota struktur yang akan mengalami tegasan, pertimbangan utama ialah supaya anggota tersebut selamat dari

Διαβάστε περισσότερα

Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS

Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM Memahami konsep-konsep asas litar elektrik, arus, voltan, rintangan, kuasa dan tenaga elektrik. Unit OBJEKTIF KHUSUS Di akhir unit ini anda dapat : Mentakrifkan

Διαβάστε περισσότερα

MENGENALI FOTON DAN PENGQUANTUMAN TENAGA

MENGENALI FOTON DAN PENGQUANTUMAN TENAGA MENGENALI FOTON DAN PENGQUANTUMAN TENAGA Oleh Mohd Hafizudin Kamal Sebelum wujudnya teori gelombang membujur oleh Huygens pada tahun 1678, cahaya dianggap sebagai satu aliran zarah-zarah atau disebut juga

Διαβάστε περισσότερα

LITAR ELEKTRIK 1 EET101/4. Pn. Samila Mat Zali

LITAR ELEKTRIK 1 EET101/4. Pn. Samila Mat Zali LITAR ELEKTRIK 1 EET101/4 Pn. Samila Mat Zali STRUKTUR KURSUS Peperiksaan Akhir : 50% Ujian teori : 10% Mini projek : 10% Amali/praktikal : 30% 100% OBJEKTIF KURSUS Mempelajari komponen-komponen utama

Διαβάστε περισσότερα

PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari

PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari PERSAMAAN KUADRAT 0. EBT-SMP-00-8 Pada pola bilangan segi tiga Pascal, jumlah bilangan pada garis ke- a. 8 b. 6 c. d. 6 0. EBT-SMP-0-6 (a + b) = a + pa b + qa b + ra b + sab + b Nilai p q = 0 6 70 0. MA-77-

Διαβάστε περισσότερα

Kuliah 4 Rekabentuk untuk kekuatan statik

Kuliah 4 Rekabentuk untuk kekuatan statik 4-1 Kuliah 4 Rekabentuk untuk kekuatan statik 4.1 KEKUATAN STATIK Beban statik merupakan beban pegun atau momen pegun yang bertindak ke atas sesuatu objek. Sesuatu beban itu dikatakan beban statik sekiranya

Διαβάστε περισσότερα

LITAR ARUS ULANG ALIK (AU)

LITAR ARUS ULANG ALIK (AU) TA AUS UANG AK (AU) TA AUS UANG AK (AU) OBJEKTF AM Memahami litar asas arus Ulang alik dan litar sesiri yang mengandungi, dan. Unit OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menjelaskan bahawa dalam

Διαβάστε περισσότερα

Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia

Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia Kalkulus 1 Sistem Bilangan Real Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa

Διαβάστε περισσότερα

7 Unit UKUR TERABAS TIODOLIT UNIT 7 OBJEKTIF AM OBJEKTIF KHUSUS

7 Unit UKUR TERABAS TIODOLIT UNIT 7 OBJEKTIF AM OBJEKTIF KHUSUS UKUR TERABAS TIODOLIT C1005/UNIT 7/1 UNIT 7 UKUR TERABAS TIODOLIT OBJEKTIF AM Memahami dan mengetahui proses pengukuran terabas tiodolit, pengiraan koordinit dan keluasan serta pemelotannya. 7 Unit OBJEKTIF

Διαβάστε περισσότερα

Kalkulus Multivariabel I

Kalkulus Multivariabel I Fungsi Dua Peubah atau Lebih dan Statistika FMIPA Universitas Islam Indonesia 2015 dengan Dua Peubah Real dengan Dua Peubah Real Pada fungsi satu peubah f : D R R D adalah daerah asal (domain) suatu fungsi

Διαβάστε περισσότερα

PERHITUNGAN WAKTU SOLAT MENGGUNAKAN ALMANAK FALAK SYARIE. Stesen rujukan = Kg. Gedangsa (Zon 1, Selangor)

PERHITUNGAN WAKTU SOLAT MENGGUNAKAN ALMANAK FALAK SYARIE. Stesen rujukan = Kg. Gedangsa (Zon 1, Selangor) PERHITUNGAN WAKTU SOLAT MENGGUNAKAN ALMANAK FALAK SYARIE Data Contoh Hitungan Stesen rujukan = Kg. Gedangsa (Zon 1, Selangor) Latitud, φ L = 3 44' Utara Longitud, λ L = 101 23' Timur = 6 jam 45m 32s Longitud

Διαβάστε περισσότερα

LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR

LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR 1. a) Nyatakan dengan jelas Prinsip Archimedes tentang keapungan. b) Nyatakan tiga (3) syarat keseimbangan STABIL jasad terapung. c) Sebuah silinder bergaris pusat 15 cm dan tinggi 50 cm diperbuat daripada

Διαβάστε περισσότερα

TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan

TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan TKS 6112 Keandalan Struktur TEORI PELUANG* * www.zacoeb.lecture.ub.ac.id Pendahuluan Sebuah bangunan dirancang melalui serangkaian perhitungan yang cermat terhadap beban-beban rencana dan bangunan tersebut

Διαβάστε περισσότερα

RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN

RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN Jurnal Teknologi, 38(C) Jun 003: 5 8 Universiti Teknologi Malaysia RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN 5 RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN YEOH WENG KANG & JAMALUDIN MD. ALI Abstrak. Rumus untuk

Διαβάστε περισσότερα

STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER

STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER Winda Tri Wahyuningtyas Gati Annisa Hayu Plate Girder Plate girder adalah balok besar yang dibuat dari susunan yang disatukan

Διαβάστε περισσότερα

Hendra Gunawan. 16 April 2014

Hendra Gunawan. 16 April 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 16 April 014 Kuliah yang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13. Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan Persegi

Διαβάστε περισσότερα

FIZIK. Pengenalan Kepada Fizik TINGKATAN 4. Cikgu Khairul Anuar. Cikgu Desikan. Bab 1. SMK Seri Mahkota, Kuantan. SMK Changkat Beruas, Perak

FIZIK. Pengenalan Kepada Fizik TINGKATAN 4. Cikgu Khairul Anuar. Cikgu Desikan. Bab 1. SMK Seri Mahkota, Kuantan. SMK Changkat Beruas, Perak FIZIK TINGKATAN 4 Bab 1 Pengenalan Kepada Fizik Disunting oleh Cikgu Desikan SMK Changkat Beruas, Perak Cikgu Khairul Anuar Dengan kolaborasi bersama SMK Seri Mahkota, Kuantan FIZIK TINGKATAN 4 2016 Bab

Διαβάστε περισσότερα

TOPIK 1 : KUANTITI DAN UNIT ASAS

TOPIK 1 : KUANTITI DAN UNIT ASAS 1.1 KUANTITI DAN UNIT ASAS Fizik adalah berdasarkan kuantiti-kuantiti yang disebut kuantiti fizik. Secara am suatu kuantiti fizik ialah kuantiti yang boleh diukur. Untuk mengukur kuantiti fizik, suatu

Διαβάστε περισσότερα

13 M. Syuhaimi.indd 149 5/28/10 4:21:43 PM

13 M. Syuhaimi.indd 149 5/28/10 4:21:43 PM 1 4 Kumpulan Penyelidikan Komputer dan Sekuriti Rangkaian, Jabatan Kejuruteraan Elektrik, Elektronik dan Sistem, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,

Διαβάστε περισσότερα

Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua

Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Matematika, 1999, Jilid 15, bil. 1, hlm. 37 43 c Jabatan Matematik, UTM. Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan Matematik, Fakulti

Διαβάστε περισσότερα

FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK : LENGKUK KEMAGNETAN ATAU CIRI B - H

FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK : LENGKUK KEMAGNETAN ATAU CIRI B - H FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK UJIKAJI TAJUK : E : LENGKUK KEMAGNETAN ATAU CIRI B - H 1. Tujuan : 2. Teori : i. Mendapatkan lengkuk kemagnetan untuk satu

Διαβάστε περισσότερα

MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini)

MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) MODUL 3 [Kertas 2]: MATEMATIK TAMBAHAN JPNK 2015 Muka Surat: 1 1. Selesaikan persamaan serentak yang berikut: MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) 2x y = 1,

Διαβάστε περισσότερα

Transformasi Koordinat 3 Dimensi

Transformasi Koordinat 3 Dimensi Transformasi Koordinat 3 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat Tiga Dimensi (3D) Digunakan untuk mendeskripsikan

Διαβάστε περισσότερα

TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987).

TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987). II. TINJAUAN PUSTAKA 2.1 Sistem Bilangan Riil Definisi Bilangan Riil Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur panjang, bersama-sama dengan negatifnya dan nol dinamakan bilangan

Διαβάστε περισσότερα

Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu.

Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu. BAB 3 : ISI RUMAH SEBAGAI PENGGUNA SPM2004/A/S3 (a) Rajah tersebut menunjukkan keluk permintaan yang mencerun ke bawah dari kiri ke kanan. Ia menunjukkan hubungan negatif antara harga dengan kuantiti diminta.

Διαβάστε περισσότερα

SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH

SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH 72/1 NAMA :. TINGKATAN : MATEMATIK TAMBAHAN Kertas 1 September 201 2 Jam SMK SERI MUARA, 6100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JANGAN BUKA KERTAS

Διαβάστε περισσότερα

UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA

UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA KEPUTUSAN MESYUARAT KALI KE 63 JAWATANKUASA FARMASI DAN TERAPEUTIK HOSPITAL USM PADA 24 SEPTEMBER 2007 (BAHAGIAN 1) DAN 30 OKTOBER 2007 (BAHAGIAN 2) A. Ubat

Διαβάστε περισσότερα

BAB 3 PERENCANAAN TANGGA

BAB 3 PERENCANAAN TANGGA BAB 3 PERENCANAAN TANGGA 3.1. Uraian Umum Semakin sedikit tersedianya luas lahan yang digunakan untuk membangun suatu bangunan menjadikan perencana lebih inovatif dalam perencanaan, maka pembangunan tidak

Διαβάστε περισσότερα

ALIRAN BENDALIR UNGGUL

ALIRAN BENDALIR UNGGUL Bab 2 ALIRAN BENDALIR UNGGUL 2.1 Gerakan Zarah-zarah Bendalir Untuk analisis matematik gerakan bendalir, dua pendekatan biasanya digunakan: 1. Kaedah Lagrangian (a) Kajian pola aliran SATU zarah individu

Διαβάστε περισσότερα

SELAMAT DATANG KE KULIAH 12 EX2023 MAKROEKONOMI II FAKULTI EKONOMI UNIVERSITI KEBANGSAAN MALAYSIA

SELAMAT DATANG KE KULIAH 12 EX2023 MAKROEKONOMI II FAKULTI EKONOMI UNIVERSITI KEBANGSAAN MALAYSIA SELAMAT DATANG KE KULIAH 12 EX2023 MAKROEKONOMI II FAKULTI EKONOMI UNIVERSITI KEBANGSAAN MALAYSIA Prof. Madya Dr. Mohd Zainudin Saleh mzsaleh@ukm.my www.ukm.my/zainudin 29/01/2004 Kuliah 12 1 MAKROEKONOMI

Διαβάστε περισσότερα

Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND LOGO

Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND LOGO Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND Kompetensi menguraikan ciri-ciri suatu kurva normal menentukan luas daerah dibawah kurva normal menerapkan sebaran normal dalam

Διαβάστε περισσότερα

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1 Sudut Positif dan Sudut Negatif Contoh Lukiskan setiap sudut berikut dengan menggunakan rajah serta tentukan sukuan mana sudut itu berada. (a)

Διαβάστε περισσότερα

Konvergen dalam Peluang dan Distribusi

Konvergen dalam Peluang dan Distribusi limiting distribution Andi Kresna Jaya andikresna@yahoo.com Jurusan Matematika July 5, 2014 Outline 1 Review 2 Motivasi 3 Konvergen dalam peluang 4 Konvergen dalam distribusi Back Outline 1 Review 2 Motivasi

Διαβάστε περισσότερα

2.1 Pengenalan. Untuk isyarat berkala, siri Fourier digunakan untuk mendapatkan spektrum frekuensi dalam bentuk spektrum garisan.

2.1 Pengenalan. Untuk isyarat berkala, siri Fourier digunakan untuk mendapatkan spektrum frekuensi dalam bentuk spektrum garisan. . JELMAAN FOURIER DAN PENGGUNAANNYA. Pengenalan Unuk isyara berkala, siri Fourier digunakan unuk mendapakan spekrum frekuensi dalam benuk spekrum garisan. Unuk isyara ak berkala, garisan-garisan spekrum

Διαβάστε περισσότερα

BAB 1 PENGENALAN 1.1 PENDAHULUAN 1.2 PENYATAAN MASALAH

BAB 1 PENGENALAN 1.1 PENDAHULUAN 1.2 PENYATAAN MASALAH BAB 1 PENGENALAN 1.1 PENDAHULUAN Dalam perkembangan teknologi sudah berkembang pesat begitu juga teknologi penetesan yang telah sanggup menciptakan alat penetas buatan yang dikenali sebagai alat penetas

Διαβάστε περισσότερα

KEMENTERIAN PELAJARAN MALAYSIA

KEMENTERIAN PELAJARAN MALAYSIA KEMENTERIAN PELAJARAN MALAYSIA DOKUMEN STANDARD PRESTASI MATEMATIK TINGKATAN 2 FALSAFAH PENDIDIKAN KEBANGSAAN Pendidikan di Malaysia adalah satu usaha berterusan ke arah memperkembangkan lagi potensi individu

Διαβάστε περισσότερα

E513 : TEKNIK ELEKTRONIK BAB 1 : 13

E513 : TEKNIK ELEKTRONIK BAB 1 : 13 E513 : TEKNIK ELEKTRONIK BAB 1 : 13 BAB 1 ( Bahagian 2) TAJUK : PENGKELASAN LITAR BERSEPADU OBJEKTIF Di akhir topik ini pelajar akan dapat : a. Mengklasifikasikan Litar Bersepadu berdasarkan kaedah pembikinan,

Διαβάστε περισσότερα

PENGENALAN. 2. Memahami bahawa sebuah robot adalah merupakan salah satu unsur dalam satu sistem automasi.

PENGENALAN. 2. Memahami bahawa sebuah robot adalah merupakan salah satu unsur dalam satu sistem automasi. JT609 / BAB 1 / 1 BAB 1 PENGENALAN OBJEKTIF OBJEKTIF AM : Di akhir bab ini pelajar akan dapat: 1. Mengatahuii istilah dan terminologi dalam sistem robot 2. Memahami bahawa sebuah robot adalah merupakan

Διαβάστε περισσότερα

HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA

HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2006/2007 April 2007 HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA Masa : 3 jam Sila pastikan bahawa kertas peperiksaan ini mengandungi

Διαβάστε περισσότερα

PENGEMBANGAN INSTRUMEN

PENGEMBANGAN INSTRUMEN PENGEMBANGAN INSTRUMEN OLEH : IRFAN (A1CI 08 007) PEND. MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS HALUOLEO KENDARI 2012 A. Definisi Konseptual Keterampilan sosial merupakan kemampuan

Διαβάστε περισσότερα

UNIT 5 PENUKAR AU-AT (PENERUS)

UNIT 5 PENUKAR AU-AT (PENERUS) PENUKAR AU-AT (PENERUS) E4140/UNIT 5/1 UNIT 5 PENUKAR AU-AT (PENERUS) OBJEKTIF Objektif am : Mengenali dan memahami jenis-jenis litar penukaran penukar AU-AT (Penerus) Objektif khusus : Di akhir unit ini

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA

S T A T I S T I K A OLEH : WIJAYA S T A T I S T I K A OLEH : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan

Διαβάστε περισσότερα

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang

Διαβάστε περισσότερα

SEMINAR KEBANGSAAN PENDIDIKAN SAINS DAN MATEMATIK OKT 2008

SEMINAR KEBANGSAAN PENDIDIKAN SAINS DAN MATEMATIK OKT 2008 TAHAP KEFAHAMAN KEMAHIRAN KOMUNIKASI DAN MENGEKSPERIMEN DALAM KALANGAN PELAJAR TAHUN DUA PENDIDIKAN FIZIK MERENTAS PROGRAM PENGAJIAN HANIZAH BINTI MISBAH Fakulti Pendidikan Universiti Teknologi Malaysia

Διαβάστε περισσότερα

RANCANGAN MENGAJAR TAHUNAN 2003 FIZIK TINGKATAN 5

RANCANGAN MENGAJAR TAHUNAN 2003 FIZIK TINGKATAN 5 RANCANGAN MENGAJAR TAHUNAN 2003 FIZIK TINGKATAN 5 1/1 1.10 GELOMBANG Getaran a) menamakan jenis-jenis gelombang dan perbezaan di antaranya. b) menjelaskan erti getaran, jenis-jenis getaran dan bagaimana

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.

Διαβάστε περισσότερα

EPPD1023: Makroekonomi Kuliah 1: Pengenalan Kepada Makroekonomi

EPPD1023: Makroekonomi Kuliah 1: Pengenalan Kepada Makroekonomi EPPD1023: Makroekonomi Kuliah 1: Pengenalan Kepada Makroekonomi - Pengenalan - Skop Kajian Makroekonomi - Contoh Analisis Makroekonomi - Objektif Kajian Makroekonomi - Pembolehubah Makroekonomi - Dasar

Διαβάστε περισσότερα

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang

Διαβάστε περισσότερα

SEMESTER 1 : BACHELOR PENDIDIKAN (SAINS RENDAH) 2012 TAJUK KURSUS : Fizik dalam Konteks Kehidupan Harian

SEMESTER 1 : BACHELOR PENDIDIKAN (SAINS RENDAH) 2012 TAJUK KURSUS : Fizik dalam Konteks Kehidupan Harian SEMESTER 1 : BACHELOR PENDIDIKAN (SAINS RENDAH) 2012 TAJUK KURSUS : Fizik dalam Konteks Kehidupan Harian KOD KURSUS SCE3105 MATA KREDIT : 3 (2 + 1) PENGENALAN Kursus ini meneroka idea dan amalan fizik

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.

Διαβάστε περισσότερα

BAB 2 KEAPUNGAN DAN HIDROSTATIK

BAB 2 KEAPUNGAN DAN HIDROSTATIK BAB 2 KEAPUNGAN DAN HIDROSTATIK 2.1 Hukum Keapungan Archimedes Sebuah badan yang terendam di air ditindak oleh beberapa daya. Pertama ialah berat atau jisim badan itu sendiri yang dianggap bertindak ke

Διαβάστε περισσότερα

Disediakan oleh Guru Matematik Tingkatan 4 GEORGE DAVID

Disediakan oleh Guru Matematik Tingkatan 4 GEORGE DAVID Disediakan oleh Guru Matematik Tingkatan 4 GEORGE DAVID 1.1.15 MATHEMATIK TINGKATAN 4 TAHUN 2015 KANDUNGAN MUKA SURAT 1. Bentuk Piawai 3 2. Ungkapan & Persamaan Kuadratik 4 3. Sets 5 Penggal 1 4 Penaakulan

Διαβάστε περισσότερα

SENARAI KANDUNGAN HALAMAN JUDUL PENGAKUAN PENGHARGAAN ABSTRAK ABSTRACT KANDUNGAN SENARAI JADUAL SENARAI RAJAH SENARAI SINGKATAN SENARAI LAMPIRAN

SENARAI KANDUNGAN HALAMAN JUDUL PENGAKUAN PENGHARGAAN ABSTRAK ABSTRACT KANDUNGAN SENARAI JADUAL SENARAI RAJAH SENARAI SINGKATAN SENARAI LAMPIRAN vii SENARAI KANDUNGAN BAB PERKARA MUKA SURAT HALAMAN JUDUL PENGAKUAN DEDIKASI PENGHARGAAN ABSTRAK ABSTRACT KANDUNGAN SENARAI JADUAL SENARAI RAJAH SENARAI SINGKATAN SENARAI LAMPIRAN i ii iii iv v vi vii

Διαβάστε περισσότερα

Pembinaan Homeomorfisma dari Sfera ke Elipsoid

Pembinaan Homeomorfisma dari Sfera ke Elipsoid Matematika, 003, Jilid 19, bil., hlm. 11 138 c Jabatan Matematik, UTM. Pembinaan Homeomorfisma dari Sfera ke Elipsoid Liau Lin Yun & Tahir Ahmad Jabatan Matematik, Fakulti Sains Universiti Teknologi Malasia

Διαβάστε περισσότερα

BAB 1 PENDAHULUAN 1.1 PENGENALAN

BAB 1 PENDAHULUAN 1.1 PENGENALAN BAB 1 PENDAHULUAN 1.1 PENGENALAN Air merupakan keperluan asas yang penting dalam kehidupan seharian manusia. Akan tetapi, keadaan air yang menenggelami kawasan yang luas akan menimbulkan pelbagai masalah.

Διαβάστε περισσότερα

KOMPONEN ELEKTRIK (PASIF) KOMPONEN ELEKTRIK (PASIF)

KOMPONEN ELEKTRIK (PASIF) KOMPONEN ELEKTRIK (PASIF) E1001 / UNIT 2/ 1 UNIT 2 KOMPONEN ELEKTRIK (PASIF) OBJEKTIF Objektif am : Mempelajari dan memahami konsep asas bagi komponenkomponen elektrik (pasif) seperti perintang, pearuh dan pemuat. Objektif khusus

Διαβάστε περισσότερα

Kemahiran Hidup Bersepadu Kemahiran Teknikal 76

Kemahiran Hidup Bersepadu Kemahiran Teknikal 76 LOGO SEKOLAH Nama Sekolah UJIAN BERTULIS 2 Jam Kemahiran Hidup Bersepadu Kemahiran Teknikal 76 NAMA :..... ANGKA GILIRAN : TERHAD 2 BAHAGIAN A [60 markah] Jawab semua soalan pada bahagian ini di ruang

Διαβάστε περισσότερα

Pelajaran 9. Persamaan Bernoulli. Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat

Pelajaran 9. Persamaan Bernoulli. Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat Pelajaran 9 Persamaan Bernoulli OBJEKTIF Setelah selesai memelajari Pelajaran ini anda seatutnya daat Mentakrifkan konse kadar aliran jisim Mentakrifkan konse kadar aliran Menerangkan konse halaju urata

Διαβάστε περισσότερα

Pemerihalan Data. Pemerihalan Data. Sukatan kecenderungan memusat. Pengenalan. Min. Min 1/14/2011

Pemerihalan Data. Pemerihalan Data. Sukatan kecenderungan memusat. Pengenalan. Min. Min 1/14/2011 Pemerihalan Data Pemerihalan Data PM DR KMISH OSMN Sukatan kecenderungan memusat Sukatan kedudukan Sukatan serakan Sukatan serakan relatif Ukuran korelasi G603 1 G603 Pengenalan Mengeluarkan maklumat daripada

Διαβάστε περισσότερα

Lukisan Bergambar. Lukisan Skematik 2.1 NAMA, SIMBOL DAN FUNGSI KOMPONEN ELEKTRONIK

Lukisan Bergambar. Lukisan Skematik 2.1 NAMA, SIMBOL DAN FUNGSI KOMPONEN ELEKTRONIK 2.1 NAMA, SIMBOL DAN FUNGSI KOMPONEN ELEKTRONIK Satu litar elektronik dikenali juga sebagai sistem. Satu sistem elektronik terdiri daripada beberapa komponen. Setiap komponen elektronik mempunyai fungsinya

Διαβάστε περισσότερα

MODUL PENINGKATAN AKADEMIK SPM 2017 PERATURAN PEMARKAHAN KERTAS 2 (4531/2) BAHAGIAN A. 1(a) (i) P R P 1 (b)(i) Ralat rawak // ralat paralaks 1

MODUL PENINGKATAN AKADEMIK SPM 2017 PERATURAN PEMARKAHAN KERTAS 2 (4531/2) BAHAGIAN A. 1(a) (i) P R P 1 (b)(i) Ralat rawak // ralat paralaks 1 MODUL PENINGKATAN AKADEMIK SPM 207 PERATURAN PEMARKAHAN KERTAS 2 (453/2) BAHAGIAN A Nombor (a) (i) P R P (b)(i) Ralat rawak // ralat paralaks (ii) Ulang eksperimen, kira bacaan purata//kedudukan mata berserenjang

Διαβάστε περισσότερα

Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia. Mekanik Bendalir I KERJA RUMAH. Sem II Sesi 2003/04

Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia. Mekanik Bendalir I KERJA RUMAH. Sem II Sesi 2003/04 Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia Mekanik Bendalir I KERJA RUMAH Sem II Sesi 2003/04 Pensyarah: Mohd. Zubil Bahak mzubil@fkm.utm.my ext 34737 Arahan: Pelajar diwajibkan menghantar

Διαβάστε περισσότερα

BAB 4 PERENCANAAN TANGGA

BAB 4 PERENCANAAN TANGGA BAB 4 PERENCANAAN TANGGA 4. Uraian Umum Tangga merupakan bagian dari struktur bangunan bertingkat yang penting sebagai penunjang antara struktur bangunan lantai dasar dengan struktur bangunan tingkat atasnya.

Διαβάστε περισσότερα

E513 : TEKNIK ELEKTRONIK BAB 2 : 1

E513 : TEKNIK ELEKTRONIK BAB 2 : 1 E513 : TEKNIK ELEKTRONIK BAB 2 : 1 BAB 2 : TUMBESARAN HABLUR DAN PENYEDIAAN WAFER OBJEKTIF : Di akhir pelalajaran ini pelajar akan dapat : a. Mentakrifkan istilah hablur tunggal, polihablur dan amorfus

Διαβάστε περισσότερα

Amalan Pengajaran Guru Pelatih UTM Dalam Pendidikan Sains Aziz Nordin & Md.Norakmal Bin Abdul Latip Fakulti Pendidikan Universiti Teknologi Malaysia

Amalan Pengajaran Guru Pelatih UTM Dalam Pendidikan Sains Aziz Nordin & Md.Norakmal Bin Abdul Latip Fakulti Pendidikan Universiti Teknologi Malaysia Amalan Pengajaran Guru Pelatih UTM Dalam Pendidikan Sains Aziz Nordin & Md.Norakmal Bin Abdul Latip Fakulti Pendidikan Universiti Teknologi Malaysia Abstrak : Kajian ini dijalankan untuk meninjau maklumat

Διαβάστε περισσότερα

BAB 2 KONSEP ASAS KUALITI

BAB 2 KONSEP ASAS KUALITI BAB 2 KONSEP ASAS KUALITI DEFINISI KUALITI KUALITI: Merupakan sifat/ciri-ciri produk atau perkhidmatan yang boleh menyumbangkan kepada kepuasan /kehendak pengguna. Menurut ANSI/ASQC- Kualiti merupakan

Διαβάστε περισσότερα

ALIRAN LAPISAN SEMPADAN

ALIRAN LAPISAN SEMPADAN Bab 1 ALIRAN LAPISAN SEMPADAN 1.1 Kelikatan Kelikatan adalah sifat bendalir yang mengawal kadar alirannya. Ia terjadi disebabkan oleh cohesion yang wujud di antara zarah-zarah bendalir yang boleh diperhatikan

Διαβάστε περισσότερα

BAB 1 PENGENALAN. 1.1 Pendahuluan

BAB 1 PENGENALAN. 1.1 Pendahuluan BAB 1 PENGENALAN 1.1 Pendahuluan Menurut Webster s New Collegiate Dictionary (1981): " Oseanografi merupakan suatu ilmu yang berhubungan dengan maritim yang merangkumi pelbagai aspek seperti luas, kedalaman,

Διαβάστε περισσότερα

Sudut positif. Sudut negatif. Rajah 7.1: Sudut

Sudut positif. Sudut negatif. Rajah 7.1: Sudut Bab 7 FUNGSI TRIGONOMETRI Dalam bab ini kita akan belajar secara ringkas satu kelas fungsi penting untuk penggunaan dipanggil fungsi trigonometri Fungsi trigonometri pada mulana timbul dalam pengajian

Διαβάστε περισσότερα

SULIT 3472/2 SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2. Dua jam tiga puluh minit

SULIT 3472/2 SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2. Dua jam tiga puluh minit MATEMATIK TAMBAHAN Kertas 2 September 2013 2½ Jam SMK SERI MUARA, 36100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2 Dua jam tiga puluh minit JANGAN BUKA KERTAS

Διαβάστε περισσότερα

HMT 504 Morfologi dan Sintaksis Lanjutan

HMT 504 Morfologi dan Sintaksis Lanjutan UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2002/2003 Februari/Mac 2003 HMT 504 Morfologi dan Sintaksis Lanjutan Masa : 3 jam Sila pastikan bahawa kertas peperiksaan ini mengandungi

Διαβάστε περισσότερα