ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ"

Transcript

1 ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΟΦΙΑ ΠΑΝΑΓΙΩΤΙΔΟΥ ΣΕΠΤΕΜΒΡΙΟΣ 05

2

3 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ.... Στοχαστικές διαδικασίες.... Μαρκοβιανές αλυσίδες διακριτού χρόνου..... Πιθανότητες μετάβασης..... Εξισώσεις Chapma - Kolmogorov Κατηγορίες καταστάσεων Μακροπρόθεσμη ισορροπία Χρόνος πρώτης διέλευσης Πιθανότητα απορρόφησης Μέση μακροπρόθεσμη ανταμοιβή ανά μονάδα χρόνου Έλεγχος Μαρκοβιανών αλυσίδων διακριτού χρόνου Πεπερασμένος χρονικός ορίζοντας Άπειρος χρονικός ορίζοντας Μαρκοβιανές αλυσίδες συνεχούς χρόνου Πιθανότητες μετάβασης και ρυθμοί μετάβασης Μακροπρόθεσμη ισορροπία Ασκήσεις... 4 ΟΥΡΕΣ ΑΝΑΜΟΝΗΣ Γενικά Δομή και βασικά χαρακτηριστικά των συστημάτων αναμονής Συμβολισμοί και σχέσεις του Little Συμβολισμοί Σχέσεις του Little Ο ρόλος της εκθετικής κατανομής Διαδικασίες γεννήσεων-θανάτων Μαρκοβιανά συστήματα αναμονής Απλά συστήματα αναμονής Μ/Μ/s i

4 .6. Συστήματα αναμονής με περιορισμένη χωρητικότητα Συστήματα αναμονής με περιορισμένο πληθυσμό Μη Μαρκοβιανά συστήματα αναμονής Συστήματα αναμονής Μ/G/ Συστήματα αναμονής Μ/D/ Συστήματα αναμονής Μ/Er/ Συστήματα αναμονής με κανόνες προτεραιότητας Συστήματα χωρίς διακοπή της τρέχουσας εξυπηρέτησης Συστήματα με διακοπή της τρέχουσας εξυπηρέτησης Δίκτυα συστημάτων αναμονής Δίκτυα συστημάτων αναμονής σε σειρά Δίκτυα Jackso Βελτιστοποίηση συστημάτων αναμονής Ασκήσεις... 0 ii

5 ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ. Στοχαστικές διαδικασίες Στοχαστική διαδικασία (stochastic process) είναι μια σειρά τυχαίων μεταβλητών X t με παράμετρο τη μεταβλητή t που συμβολίζει το χρόνο t T. Όταν το σύνολο Τ είναι το σύνολο των πραγματικών αριθμών τότε η διαδικασία ονομάζεται συνεχούς χρόνου, ενώ όταν το σύνολο Τ είναι το σύνολο των ακέραιων αριθμών τότε η διαδικασία ονομάζεται διακριτού χρόνου. Για παράδειγμα σε μια διαδικασία συνεχούς χρόνου το Χ t μπορεί να συμβολίζει τον αριθμό των πελατών σε μια εταιρία παροχής υπηρεσιών τη χρονική στιγμή t, ενώ σε μια διαδικασία διακριτού χρόνου το Χ t μπορεί να συμβολίζει το επίπεδο του αποθέματος προϊόντων στο τέλος κάθε ημέρας t. Οι στοχαστικές διαδικασίες χρησιμοποιούνται συνήθως για να περιγράψουν την κατάσταση ή τη συμπεριφορά ενός συστήματος που λειτουργεί για κάποια χρονική περίοδο. Υποθέτουμε ότι η συμπεριφορά του συστήματος περιγράφεται πλήρως από M αμοιβαίως αποκλειόμενες δυνατές καταστάσεις, οι οποίες συμβολίζονται 0,,...,M. Η τυχαία μεταβλητή Χ t αντιπροσωπεύει την κατάσταση του συστήματος τη χρονική στιγμή t και συνεπώς παίρνει τις τιμές 0,,...,M.. Μαρκοβιανές αλυσίδες διακριτού χρόνου Μαρκοβιανές αλυσίδες ονομάζονται οι στοχαστικές διαδικασίες που έχουν τη Μαρκοβιανή ιδιότητα. Συγκεκριμένα, t Μια στοχαστική διαδικασία X έχει τη Μαρκοβιανή ιδιότητα αν και μόνο αν t 0 0 t t t t t P X j X k,x k,...,x k,x i P X j X i για t 0,,... και για κάθε i, j,k 0,k,...,kt. Πρακτικά, η Μαρκοβιανή ιδιότητα σημαίνει ότι η υπό συνθήκη πιθανότητα οποιασδήποτε μελλοντικής κατάστασης εξαρτάται μόνο από την τρέχουσα κατάσταση και είναι ανεξάρτητη από όλες τις προηγούμενες καταστάσεις (έλλειψη μνήμης)... Πιθανότητες μετάβασης Οι υπό συνθήκη πιθανότητες PXt j Xt i μιας Μαρκοβιανής αλυσίδας ονομάζονται πιθανότητες μετάβασης (trasitio probabilities) ενός βήματος. Αν ισχύει

6 0 P X j X i P X j X i p για κάθε i, j και t,,..., τότε οι πιθανότητες t t ij μετάβασης δε μεταβάλλονται με την πάροδο του χρόνου και ονομάζονται στάσιμες (statioary). Με ανάλογο τρόπο ορίζονται και οι πιθανότητες μετάβασης βημάτων t t 0 ij P X j X i P X j X i p που αντιπροσωπεύουν την υπό συνθήκη πιθανότητα το σύστημα να βρίσκεται στην κατάσταση j μετά από βήματα (χρονικές περιόδους) αν έχει ξεκινήσει από την κατάσταση i. Σημειώνεται ότι 0 ij p 0 για i j. Οι πιθανότητες μετάβασης έχουν τις ακόλουθες ιδιότητες: 0 ij p για i j και ij p 0 για κάθε i, j και 0,,,... M pij για κάθε i και 0 j0,,,... και συνήθως παρατίθενται στο M M την ακόλουθη μορφή: ή για την απλούστερη μορφή: μητρώο πιθανοτήτων μετάβασης P που έχει 0... M 0 p00 p 0... p 0M P p0 p... p M M pm0 p M... p MM 0... M 0 p00 p 0... p0m P p0 p... p M M pm0 p M... pmm Οι Μαρκοβιανές αλυσίδες με τις οποίες θα ασχοληθούμε στη συνέχεια του κεφαλαίου θα είναι Μαρκοβιανές αλυσίδες με πεπερασμένο αριθμό καταστάσεων και στάσιμες πιθανότητες μετάβασης... Εξισώσεις Chapma - Kolmogorov Οι εξισώσεις Chapma - Kolmogorov παρέχουν τη δυνατότητα υπολογισμού των πιθανοτήτων μετάβασης βημάτων μιας στοχαστικής διαδικασίας:

7 M m m ij ik kj k 0 p p p για κάθε i, j και 0 m. Οι εξισώσεις Chapma - Kolmogorov πρακτικά περιγράφουν ότι για να μεταβεί η αλυσίδα από την κατάσταση i στην κατάσταση j σε βήματα θα βρεθεί αναγκαστικά σε κάποια κατάσταση k σε m (λιγότερα από ) βήματα. Συνεπώς, οι πιθανότητες μετάβασης υπολογίζονται αθροίζοντας τις πιθανότητες διέλευσης από όλες τις πιθανές καταστάσεις k. Με χρήση των εξισώσεων Chapma - Kolmogorov ουσιαστικά αποδεικνύεται ότι p ij P PP P και P P P... P P P P P P και συνεπώς το μητρώο μετάβασης βημάτων μιας Μαρκοβιανής αλυσίδας μπορεί να υπολογιστεί από τη -ιοστή δύναμη του μητρώου μετάβασης ενός βήματος. Αν είναι γνωστή η κατανομή της πιθανότητας της αρχικής κατάστασης, τότε είναι απλός ο προσδιορισμός των πιθανοτήτων PX j P X 0 i, i 0,,...,M M 0 ij. i0 από τη σχέση P X j P X i p Παράδειγμα. Η εβδομαδιαία ζήτηση ενός προϊόντος, D t, ακολουθεί κατανομή Poisso με μέση τιμή λ τεμάχιο. Αν υπάρχει έλλειψη του προϊόντος τη χρονική στιγμή της ζήτησης η συγκεκριμένη ζήτηση χάνεται (δεν μπορεί να ικανοποιηθεί με καθυστέρηση). Η πολιτική παραγγελιών του καταστήματος είναι η ακόλουθη: στο τέλος κάθε εβδομάδας t ελέγχεται το απόθεμα του συγκεκριμένου προϊόντος Χ t και παραγγέλνονται 3 τεμάχια αν και μόνο αν X 0, τα οποία παραλαμβάνονται και είναι διαθέσιμα νωρίς το πρωί της Δευτέρας οπότε και μπορούν να χρησιμοποιηθούν για να καλύψουν τη ζήτηση της εβδομάδας t. Το αρχικό απόθεμα της πρώτης εβδομάδας είναι X 0 3 τεμάχια του προϊόντος. α) Να οριστούν οι δυνατές καταστάσεις της Μαρκοβιανής αλυσίδας {Χ t } και να καταστρωθεί το στοχαστικό μητρώο P των πιθανοτήτων μετάβασης p ij. β) Να υπολογιστεί η πιθανότητα το τελικό απόθεμα της δεύτερης εβδομάδας να είναι μικρότερο από τεμάχια. α) Οι δυνατές καταστάσεις της Μαρκοβιανής αλυσίδας που περιγράφει τη διαδικασία παραγγελιών και πωλήσεων του συγκεκριμένου προϊόντος είναι οι X 03,,, που αντιπροσωπεύουν τον αριθμό των τεμαχίων του συγκεκριμένου προϊόντος που υπάρχουν σε απόθεμα στο τέλος κάθε εβδομάδας t. t t 3

8 Η κατάσταση της αλυσίδας στο τέλος της εβδομάδας t περιγράφεται από την τυχαία μεταβλητή X t, η οποία εξαρτάται μόνο από την κατάσταση της αλυσίδας στο τέλος της προηγούμενης εβδομάδας τη σχέση X t και τη ζήτηση της τρέχουσας εβδομάδας t D και δίνεται από X t max 3D t, 0 X t 0 max X t D t, 0 X t 0 για t 0,,,... Εφόσον η κατάσταση της αλυσίδας στο τέλος της εβδομάδας t, X t, δεν εξαρτάται από τις παρελθοντικές καταστάσεις του συστήματος αποθεμάτων του συγκεκριμένου προϊόντος η t στοχαστική διαδικασία X έχει τη Μαρκοβιανή ιδιότητα. Για τον υπολογισμό των πιθανοτήτων μετάβασης p ij της Μαρκοβιανής αλυσίδας απαιτείται ο υπολογισμός των παρακάτω πιθανοτήτων που αφορούν την εβδομαδιαία ζήτηση του συγκεκριμένου προϊόντος D : P D e, P D0 P D 0 0, 368 0, P D e, e PD, P D P D 0, 368 0, 368 0, Άρα το μητρώο των πιθανοτήτων μετάβασης είναι: P D P D 0368, 0368, 084, 0080, , 080 0, 84 0, 368 0, 368 P 0, 63 0, , 64 0, 368 0, , 080 0, 84 0, 368 0, 368 Σημειώνεται ότι οι πιθανότητες μετάβασης της ης και 4ης σειράς είναι ίσες μεταξύ τους διότι όταν το τελικό απόθεμα μιας εβδομάδας είναι 0 ή 3 η επόμενη εβδομάδα ξεκινά πάντα με αρχικό απόθεμα 3 τεμαχίων. β) Ζητείται η πιθανότητα P X X p p όπου οι πιθανότητες ως εξής: 30 p και 3 p υπολογίζονται από τις εξισώσεις Chapma - Kolmogorov 4

9 3 30 3k k k 0 p p p p p p p p p p p 0, 080 0, 080 0, 84 0, 63 0, 3680, 64 0, 3680, 080 0, k k k 0 p p p p p p p p p p p 0, 080 0, 84 0, 84 0, 368 0, 3680, 368 0, 3680, 84 0, 86 Άρα τελικά P X X 3 p p 0, 49 0, 86 0, 535. Εναλλακτικά μπορεί να υπολογιστεί το μητρώο μετάβασης βημάτων P 0080, 084, 0368, 0368, 0080, 084, 0368, 0368, 0, 63 0, , 63 0, PP 0, 64 0, 368 0, , 64 0, 368 0, , 084, 0368, 0368, 0080, 084, 0368, 0368, 0, 49 0, 86 0, 300 0, , 05, 033, 033, 035, 039, 033, 0097, 0, 49 0, 86 0, 300 0, 65 και να υπολογιστεί η ζητούμενη πιθανότητα όπως και πριν P X X 3 p p 0, 49 0, 86 0, 535. Παράδειγμα. Σε ένα τυχερό παίγνιο ένας παίκτης διαθέτει και σε κάθε επανάληψη του παιχνιδιού κερδίζει με πιθανότητα p 0 ή χάνει με πιθανότητα p. Το παιχνίδι τελειώνει είτε όταν ο παίκτης συγκεντρώσει 3 είτε όταν χάσει όλα του τα χρήματα. Να οριστούν οι δυνατές καταστάσεις της Μαρκοβιανής αλυσίδας {Χ t } που περιγράφει το συγκεκριμένο παίγνιο και να καταστρωθεί το στοχαστικό μητρώο P των πιθανοτήτων μετάβασης p ij. Το συγκεκριμένο παίγνιο είναι μια Μαρκοβιανή αλυσίδα με καταστάσεις που δηλώνουν το ποσό που ενδέχεται να έχει στην κατοχή του ο παίκτης μετά από κάποια επανάληψη του παιχνιδιού, δηλαδή 0,,, 3. Το μητρώο των πιθανοτήτων μετάβασης ενός βήματος (μιας επανάληψης του παιχνιδιού) είναι το ακόλουθο 5

10 P p 0 p 0 0 p 0 p Κατηγορίες καταστάσεων Μια κατάσταση j ονομάζεται προσιτή (accessible) από μια άλλη κατάσταση i αν και μόνο αν υπάρχει κάποιο για το οποίο ij p 0. Με άλλα λόγια, αν το σύστημα ξεκινήσει από την κατάσταση i είναι εφικτό να εισέλθει κάποια στιγμή στην κατάσταση j. Στο παράδειγμα. παρατηρούμε ότι ij p 0 για κάθε i,j άρα κάθε κατάσταση είναι προσιτή από κάθε άλλη κατάσταση. Στο παράδειγμα. η κατάσταση 3 είναι προσιτή από την κατάσταση, αλλά η κατάσταση δεν είναι προσιτή από την κατάσταση 3. Αν η κατάσταση j είναι προσιτή από την i και η κατάσταση i είναι προσιτή από τη j τότε οι καταστάσεις i και j επικοινωνούν (commuicate). Στο παράδειγμα. όλες οι καταστάσεις επικοινωνούν. Στο παράδειγμα. οι καταστάσεις και 3 δεν επικοινωνούν, ενώ οι καταστάσεις και επικοινωνούν. Γενικά ισχύουν οι εξής ιδιότητες: Κάθε κατάσταση επικοινωνεί με τον εαυτό της. Αν η κατάσταση i επικοινωνεί με την κατάσταση j, τότε και η κατάσταση j επικοινωνεί με την κατάσταση i. Αν η κατάσταση i επικοινωνεί με την κατάσταση j και η κατάσταση j επικοινωνεί με την κατάσταση k, τότε η κατάσταση i επικοινωνεί με την κατάσταση k. Οι δύο πρώτες ιδιότητες προκύπτουν από τον ορισμό της επικοινωνίας ενώ η τρίτη ιδιότητα προκύπτει από τις εξισώσεις Chapma - Kolmogorov. Συνέπεια αυτών είναι ότι όλες οι καταστάσεις μιας αλυσίδας εμπίπτουν σε μία ή περισσότερες κλάσεις έτσι ώστε οι καταστάσεις που επικοινωνούν να ανήκουν στην ίδια κλάση. Σημειώνεται ότι μία κλάση μπορεί να αποτελείται από μία μόνο κατάσταση. Αν σε μία Μαρκοβιανή αλυσίδα όλες οι καταστάσεις επικοινωνούν, δηλαδή υπάρχει μόνο μία κλάση, τότε η αλυσίδα λέγεται αδιαχώριστη (irreducible). 6

11 Η Μαρκοβιανή αλυσίδα του καταστάσεις επικοινωνούν. παραδείγματος. είναι αδιαχώριστη καθώς όλες της οι Στο παράδειγμα. υπάρχουν 3 κλάσεις: μία κλάση περιέχει την κατάσταση 0, μία κλάση περιέχει τις καταστάσεις και που επικοινωνούν και μία κλάση περιέχει την κατάσταση 3. Μια κατάσταση i ονομάζεται μεταβατική (trasiet) εάν υπάρχει πιθανότητα η αλυσίδα, εφόσον αναχωρήσει από την i να μην επανέλθει ποτέ σε αυτή. Ουσιαστικά, η κατάσταση i είναι μεταβατική αν και μόνο αν υπάρχει μια κατάσταση j η οποία είναι προσιτή από την i αλλά η i δεν είναι προσιτή από την j. Προφανώς, μια Μαρκοβιανή αλυσίδα "επισκέπτεται" μια μεταβατική κατάσταση μόνο για πεπερασμένο αριθμό φορών. Μια κατάσταση i ονομάζεται επανερχόμενη (recurret) εάν είναι βέβαιο ότι η αλυσίδα εφόσον αναχωρήσει από την i θα επανέλθει με βεβαιότητα κάποια στιγμή σε αυτή. Ουσιαστικά, η κατάσταση i είναι επανερχόμενη αν και μόνο αν δεν είναι μεταβατική. Προφανώς, μια ατέρμονη Μαρκοβιανή αλυσίδα "επισκέπτεται" μια επανερχόμενη κατάσταση άπειρες φορές. Μια κατάσταση i ονομάζεται απορροφητική (absorbig) εάν η αλυσίδα, εφόσον επισκεφτεί την κατάσταση i δεν αναχωρεί ποτέ από αυτήν. Ουσιαστικά, η κατάσταση i είναι απορροφητική αν και μόνο αν pii. Η απορροφητική κατάσταση είναι ειδική περίπτωση της επανερχόμενης κατάστασης. Μια αλυσίδα που παραμένει για συνεχόμενα βήματα σε μια κατάσταση i λέμε ότι επιστρέφει στην i. Οι καταστάσεις σε μια κλάση είναι είτε όλες επανερχόμενες είτε όλες μεταβατικές. Επιπλέον, σε μια Μαρκοβιανή αλυσίδα με πεπερασμένο αριθμό καταστάσεων δεν μπορεί όλες οι καταστάσεις να είναι μεταβατικές. Συνεπώς, σε κάθε αδιαχώριστη Μαρκοβιανή αλυσίδα με πεπερασμένο αριθμό καταστάσεων όλες οι καταστάσεις είναι επανερχόμενες. Στο παράδειγμα. όλες οι καταστάσεις είναι επανερχόμενες καθώς η αλυσίδα είναι αδιαχώριστη με πεπερασμένο αριθμό καταστάσεων. Στο παράδειγμα. οι καταστάσεις και είναι μεταβατικές καθώς υπάρχει πιθανότητα η αλυσίδα να μην επιστρέψει ποτέ σε αυτές (αν εισέλθει είτε στην κατάσταση 0 είτε στην κατάσταση 3), ενώ οι καταστάσεις 0 και 3 είναι απορροφητικές καθώς εάν η αλυσίδα εισέλθει σε οποιαδήποτε από αυτές τις δύο καταστάσεις δεν αναχωρεί ποτέ από αυτές. Μια κατάσταση i λέμε ότι έχει περίοδο m όταν ii p 0 για κάθε που δεν είναι ακέραιο πολλαπλάσιο του m και ο m είναι ο μεγαλύτερος ακέραιος με αυτή την ιδιότητα. 7

12 Στο παράδειγμα. αν η αλυσίδα ξεκινήσει από την κατάσταση, υπάρχει πιθανότητα να επανέλθει σε αυτή την κατάσταση μόνο κατά τα βήματα, 4,...κλπ, οπότε η κατάσταση έχει περίοδο m. Μια κατάσταση που έχει περίοδο λέγεται απεριοδική (aperiodic). Προφανώς, αν υπάρχουν δύο συνεχόμενα βήματα κατά τα οποία η αλυσίδα μπορεί να παραμείνει στην ίδια κατάσταση τότε η κατάσταση αυτή είναι απεριοδική. Οι καταστάσεις σε μια κλάση έχουν όλες την ίδια περίοδο m. Στο παράδειγμα. η κατάσταση έχει επίσης περίοδο m καθώς ανήκει στην ίδια κλάση με την κατάσταση και άρα έχουν την ίδια περίοδο. Σε μια Μαρκοβιανή αλυσίδα με πεπερασμένο αριθμό καταστάσεων, οι επανερχόμενες και απεριοδικές καταστάσεις ονομάζονται εργοδικές (ergodic). Αν όλες οι καταστάσεις μιας Μαρκοβιανής αλυσίδας είναι εργοδικές τότε η Μαρκοβιανή αλυσίδα λέγεται επίσης εργοδική. Στο παράδειγμα. όλες οι καταστάσεις είναι απεριοδικές καθώς pii 0 για κάθε i (η αλυσίδα μπορεί να μείνει δύο συνεχόμενα βήματα στην ίδια κατάσταση). Δεδομένου ότι όλες οι καταστάσεις της αλυσίδας είναι επανερχόμενες και απεριοδικές και ο αριθμός τους είναι πεπερασμένος, όλες οι καταστάσεις είναι εργοδικές και κατά συνέπεια η Μαρκοβιανή αλυσίδα του παραδείγματος. είναι εργοδική...4 Μακροπρόθεσμη ισορροπία Οι αδιαχώριστες εργοδικές Μαρκοβιανές αλυσίδες οδηγούνται μακροπρόθεσμα σε ισορροπία ή αλλιώς σε μόνιμη κατάσταση (steady state). Συγκεκριμένα, αποδεικνύεται ότι κάθε αδιαχώριστη εργοδική Μαρκοβιανή αλυσίδα βρίσκεται μακροπρόθεσμα στην κατάσταση j με πιθανότητα π j η οποία είναι ανεξάρτητη από την αρχική κατάσταση i και ισούται με το όριο π j ij lim p 0. Οι πιθανότητες π j ονομάζονται πιθανότητες μόνιμης κατάστασης (steady state probabilities) της Μαρκοβιανής αλυσίδας και ικανοποιούν το ακόλουθο σύστημα εξισώσεων μόνιμης κατάστασης (steady state equatios) π M π p για j 0,,...,M, j i ij i0 M j0 π. j 8

13 Το σύστημα εξισώσεων μόνιμης κατάστασης αποτελείται από M εξισώσεις και περιέχει M αγνώστους. Για την επίλυση του συστήματος μία εκ των πρώτων M εξισώσεων μπορεί να διαγραφεί, όχι όμως η τελευταία καθώς τότε το σύστημα γίνεται αόριστο. Ο όρος πιθανότητα μόνιμης κατάστασης χρησιμοποιείται για να εκφράσει το γεγονός ότι η διαδικασία βρίσκεται μακροπρόθεσμα (μετά την παρέλευση μεγάλου αριθμού βημάτων) σε μια κατάσταση j με πιθανότητα που είναι ανεξάρτητη από την αρχική κατάσταση (ή την κατανομή πιθανότητας η διαδικασία να βρίσκεται σε κάθε πιθανή αρχική κατάσταση). Σημειώνεται επίσης ότι η πιθανότητα μόνιμης κατάστασης σε καμία περίπτωση δεν υπονοεί ότι η διαδικασία παραμένει μόνιμα σε κάποια κατάσταση. Τουναντίον, η διαδικασία εξακολουθεί να κάνει μεταβάσεις μεταξύ των καταστάσεων με πιθανότητες μετάβασης p ij που εξακολουθούν να δίνονται από το μητρώο πιθανοτήτων μετάβασης ενός βήματος. Επιπλέον, σημειώνεται ότι οι πιθανότητες μόνιμης κατάστασης π j, δεδομένου ότι εκφράζουν την πιθανότητα η διαδικασία να βρεθεί μακροπρόθεσμα σε κάθε κατάσταση j ανεξάρτητα από την αρχική κατάσταση, μπορούν να υπολογιστούν έμμεσα μέσω του μητρώου μετάβασης ενός (αρκούντως) μεγάλου αριθμού βημάτων. Συγκεκριμένα, σε κάθε αδιαχώριστη εργοδική Μαρκοβιανή αλυσίδα παρατηρείται ότι οι τιμές των πιθανοτήτων μετάβασης κάθε σειράς του μητρώου i για μεγάλες τιμές του τείνουν στην τιμή p ij π j για κάθε j. Συνεπώς όλες οι σειρές ενός μητρώου μετάβασης "πολλών" βημάτων συγκλίνουν μεταξύ τους και καταλήγουν να έχουν τα ίδια στοιχεία, τα οποία είναι ίσα με τις αντίστοιχες πιθανότητες μόνιμης κατάστασης για κάθε j. Παράδειγμα.3 Να υπολογιστούν οι πιθανότητες μόνιμης κατάστασης για το σύστημα διαχείρισης αποθεμάτων του παραδείγματος.. Επιπλέον, να υπολογιστούν το μέσο τελικό απόθεμα και η μέση συχνότητα παραγγελιών του συστήματος μακροπρόθεσμα. Πριν από τον ακριβή υπολογισμό των πιθανοτήτων μόνιμης κατάστασης από το σύστημα εξισώσεων μόνιμης κατάστασης, θα υπολογίσουμε τα μητρώα μετάβασης περισσοτέρων των βημάτων ώστε να παρατηρήσουμε τη σύγκλιση των πιθανοτήτων μετάβασης στις τιμές των πιθανοτήτων μόνιμης κατάστασης. Συγκεκριμένα, έχουμε ήδη υπολογίσει στο παράδειγμα. το μητρώο μετάβασης P 0, 49 0, 86 0, 300 0, , 05, 033, 033, 0, 35 0, 39 0, 33 0, 097 0, 49 0, 86 0, 300 0, 65 P το οποίο έχει τη μορφή 9

14 Με αντίστοιχο τρόπο υπολογίζεται το μητρώο μετάβασης 4 βημάτων 0, 49 0, 86 0, 300 0, 650, 49 0, 86 0, 300 0, , 83 0, 5 0, 33 0, 33 0, 83 0, 5 0, 33 0, 33 P P P 0, 35 0, 39 0, 33 0, 097 0, 35 0, 39 0, 33 0, 097 0, 49 0, 86 0, 300 0, 650, 49 0, 86 0, 300 0, 65 0, 89 0, 86 0, 6 0, 64 0, 8 0, 85 0, 67 0, 66 0, 84 0, 83 0, 63 0, 7 0, 89 0, 86 0, 6 0, 64 και το μητρώο μετάβασης 8 βημάτων 089, 086, 06, 064, 089, 086, 06, 064, , 8 0, 85 0, 68 0, 66 0, 8 0, 85 0, 68 0, 66 P P P 0, 84 0, 83 0, 63 0, 7 0, 84 0, 83 0, 63 0, 7 089, 086, 06, 064, 089, 086, 06, 064, 0, 86 0, 85 0, 63 0, 66 0, 86 0, 85 0, 63 0, 66 0, 86 0, 85 0, 63 0, 66 0, 86 0, 85 0, 63 0, 66 Στο μητρώο 8 P παρατηρούμε ότι όλες οι σειρές έχουν πλέον την ίδια μορφή και οι πιθανότητες μετάβασης για κάθε j είναι ίσες μεταξύ τους και ανεξάρτητες από την τιμή του i. Πρακτικά, αυτό σημαίνει ότι η πιθανότητα να βρεθεί η διαδικασία στην κατάσταση j μετά από 8 εβδομάδες είναι η ίδια, ανεξάρτητα από την ακριβή τιμή του αρχικού αποθέματος. Συγκεκριμένα, το τελικό απόθεμα της 8ης εβδομάδας θα είναι 0 με πιθανότητα 0,86, με πιθανότητα 0,85, με πιθανότητα 0,63 και 3 με πιθανότητα 0,66. Στις ίδιες τιμές πιθανότητας θα καταλήγαμε και για οποιοδήποτε μητρώο μετάβασης περισσότερων των 8 βημάτων, καθώς η διαδικασία έχει ήδη συγκλίνει στις πιθανότητες μόνιμης κατάστασης. Αναλυτικά, ο ακριβής υπολογισμός των πιθανοτήτων μόνιμης κατάστασης γίνεται μέσω του συστήματος εξισώσεων μόνιμης κατάστασης που έχει την ακόλουθη μορφή π0 π0 p00 π p0 π p0 π3 p30 π π0 p0 π p π p π3 p3 π π0p0 πp πp π3p3 π3 π0 p03 πp3 π p3 π3 p33 0

15 π0 ππ π3. Αντικαθιστώντας τις τιμές των πιθανοτήτων μετάβασης p ij έχουμε το ακόλουθο σύστημα π 0, 080π 0, 63π 0, 64π 0, 080π π 0, 84π 0, 368π 0, 368π 0, 84π 0 3 π 0, 368π 0, 368π 0, 368π 0 3 π 0, 368π 0, 368π π0 ππ π3, από το οποίο μία εκ των 4 πρώτων εξισώσεων διαγράφεται (π.χ. η πρώτη) και επιλύοντάς το προκύπτουν οι ακόλουθες τιμές για τις πιθανότητες μόνιμης κατάστασης, π 0 086, π 0, 85 π 063, π 3 066,, οι οποίες ουσιαστικά ταυτίζονται με τις αντίστοιχες τιμές του μητρώου 8 P. Το μέσο τελικό απόθεμα του συστήματος μακροπρόθεσμα υπολογίζεται από τη σχέση 3 j0 jπ π π 3π, 309 j 3 και άρα ισούται με,309 τεμάχια του συγκεκριμένου προϊόντος. Παραγγελίες γίνονται μόνο όταν το τελικό απόθεμα μιας εβδομάδας είναι 0, άρα με πιθανότητα π 0 086, (μέσος αριθμός παραγγελιών ανά εβδομάδα). Συνεπώς, κατά μέσο όρο γίνεται μία παραγγελία κάθε π 0 0, 86 35, εβδομάδες. Αίροντας την υπόθεση των αδιαχώριστων εργοδικών αλυσίδων ισχύουν τα ακόλουθα για τις πιθανότητες μόνιμης κατάστασης: Αν μια κατάσταση j είναι μεταβατική, τότε αποδεικνύεται ότι lim p ij 0 για κάθε i, που σημαίνει ότι η πιθανότητα μόνιμης κατάστασης των μεταβατικών καταστάσεων είναι 0. Αν μια κατάσταση είναι περιοδική, τότε το όριο lim p ij μπορεί να μην υπάρχει. Αν όμως η αλυσίδα είναι αδιαχώριστη με πεπερασμένο αριθμό καταστάσεων υπάρχει πάντα το όριο κατάστασης. k lim pij π j, όπου οι πιθανότητες j k π ικανοποιούν τις εξισώσεις μόνιμης

16 Παράδειγμα.4 Να υπολογιστούν οι πιθανότητες μόνιμης κατάστασης για μια διαδικασία που έχει δύο καταστάσεις και το ακόλουθο μητρώο πιθανοτήτων μετάβασης 0 P Παρατηρούμε ότι αν η διαδικασία ξεκινήσει από την κατάσταση 0 τη χρονική στιγμή 0 θα επανέλθει στην κατάσταση 0 τις χρονικές στιγμές, 4, 6,... κοκ., ενώ θα βρίσκεται στην κατάσταση κατά τις χρονικές στιγμές, 3, 5,... κοκ. (και οι δύο καταστάσεις έχουν περίοδο m ). Συνεπώς, p για όλες τις ζυγές τιμές του και p για όλες τις μονές τιμές του, οπότε το όριο lim p 00 δεν υπάρχει. Υπάρχει όμως το όριο lim p π 05, k k i0 0 καθώς επίσης και το όριο k lim pi π 05,. k Οι τιμές των π 0 και π θα μπορούσαν να προκύψουν και από την επίλυση του ακόλουθου συστήματος εξισώσεων μόνιμης κατάστασης π0 π0p00 πp0 π π0p0 πp π 0 π, που μετά από αντικατάσταση των πιθανοτήτων μετάβασης p ij γίνεται π π π π 0 π 0 0 π, το οποίο, διαγράφοντας μία εκ των πρώτων εξισώσεων, οδηγεί στη λύση π 0 05, π 05,.

17 Παρατηρούμε λοιπόν ότι η διαδικασία θα βρίσκεται μακροπρόθεσμα το 50% του χρόνου στην κατάσταση 0 (κατά τις ζυγές χρονικές στιγμές) και το υπόλοιπο 50% του χρόνου στην κατάσταση (κατά τις μονές χρονικές στιγμές)...5 Χρόνος πρώτης διέλευσης Ο αριθμός των βημάτων που κάνει μια διαδικασία για να μεταβεί από μια κατάσταση i σε μια κατάσταση j για πρώτη φορά ονομάζεται χρόνος πρώτης διέλευσης (first passage time) από την κατάσταση i στην κατάσταση j. Αντίστοιχα, ο αριθμός των βημάτων που κάνει μια διαδικασία ξεκινώντας από μια κατάσταση i μέχρι να επιστρέψει στην ίδια κατάσταση για πρώτη φορά ονομάζεται χρόνος πρώτης επαναφοράς στην κατάσταση i. Τόσο ο χρόνος πρώτης διέλευσης όσο και ο χρόνος πρώτης επαναφοράς είναι τυχαίες μεταβλητές με κατανομή πιθανότητας που εξαρτάται από τις πιθανότητες μετάβασης της διαδικασίας. Αν ορίσουμε ij f την πιθανότητα η πρώτη διέλευση από την κατάσταση i στην κατάσταση j να γίνει σε βήματα, τότε ισχύουν οι ακόλουθες αναδρομικές σχέσεις ij f p ij ij pik fkj k j f... ij pik fkj k j f, που μπορούν να χρησιμοποιηθούν για τον υπολογισμό οποιασδήποτε πιθανότητας ij f. Πολλές φορές βέβαια είναι απλούστερος και ταυτοχρόνως πιο χρήσιμος ο υπολογισμός του μέσου χρόνου πρώτης μετάβασης από την κατάσταση i στην κατάσταση j, ο οποίος συμβολίζεται μ ij, και ισούται με μ ij fij ij αν f ij αν f Όταν fij (δηλαδή όταν η κατάσταση j είναι επανερχόμενη), τότε ο μέσος χρόνος πρώτης μετάβασης μ ij ικανοποιεί τη σχέση μ p μ. ij ik kj k j 3

18 Ουσιαστικά η σχέση αυτή λαμβάνει υπ' όψιν ότι η πρώτη μετάβαση από την κατάσταση i θα είναι είτε απευθείας στην κατάσταση j είτε σε κάποια άλλη κατάσταση k. Στην πρώτη περίπτωση (που εμφανίζεται με πιθανότητα p ij ) ο μέσος χρόνος πρώτης μετάβασης ισούται με. Στη δεύτερη περίπτωση (που εμφανίζεται με πιθανότητα χρόνος πρώτης μετάβασης μ ij ισούται με μkj p ik για k μ ij j) ο μέσος. Συνδυάζοντας τις δύο αυτές περιπτώσεις με τις αντίστοιχες πιθανότητες καταλήγουμε στην προαναφερθείσα σχέση που μπορεί να χρησιμοποιηθεί για τον υπολογισμό του μ ij. Παράδειγμα.5 Για τα δεδομένα του παραδείγματος. και για αρχικό απόθεμα ίσο με 3 τεμάχια του προϊόντος να υπολογιστεί: α) η πιθανότητα η πρώτη παραγγελία να τεθεί στο τέλος της πρώτης εβδομάδας β) η πιθανότητα η πρώτη παραγγελία να τεθεί στο τέλος της δεύτερης εβδομάδας γ) ο μέσος χρόνος μέχρι την πρώτη παραγγελία α) Ζητείται η πιθανότητα 30 f που δίνεται από τη σχέση f30 p 30 0, 080. β) Ζητείται η πιθανότητα 30 f που δίνεται από τη σχέση 30 3k k k 0 f p f p f p f p f p p p p p p 0, 84 0, 63 0, 3680, 64 0, 3680, 080 0, 43. γ) Ζητείται ο μέσος χρόνος πρώτης διέλευσης από την κατάσταση 3 στην κατάσταση 0, μ 30, που υπολογίζεται από το ακόλουθο σύστημα εξισώσεων μ p μ p μ p μ μ p μ p μ p μ μ p μ p μ p μ, το οποίο μετά από αντικατάσταση των τιμών των p ij γίνεται μ 0, 84μ 0, 368μ 0, 368μ μ 0, 368μ 0, 368μ μ 0, 368μ

19 Επίλυση του συστήματος οδηγεί στη λύση μ 0 58, εβδομάδες μ 0 5, εβδομάδες μ , εβδομάδες, οπότε ο μέσος χρόνος μέχρι την πρώτη παραγγελία ισούται με 3,5 εβδομάδες. Για τον υπολογισμό του ζητούμενου χρόνου μ 30, βέβαια, χρειάστηκε να υπολογιστούν και οι χρόνοι μ 0 και μ 0. Ο μέσος χρόνος πρώτης επαναφοράς μ ii υπολογίζεται απλούστερα μέσω των πιθανοτήτων μόνιμης κατάστασης της διαδικασίας π i από τη σχέση μ ii για κάθε i. π i Στο παράδειγμα., όπου έχουν ήδη υπολογιστεί οι ακόλουθες τιμές για τις πιθανότητες μόνιμης κατάστασης π0 0,86 π 0,85 π 0,63 π3 0,66, οι αντίστοιχοι μέσοι χρόνοι πρώτης επαναφοράς για κάθε κατάσταση είναι (σε εβδομάδες) μ00 3,50 μ 3,5 μ 3,80 μ33 6,0. π π π π Πιθανότητα απορρόφησης Η πιθανότητα μια διαδικασία που ξεκινάει από την κατάσταση i να μεταβεί κάποια στιγμή σε μια κατάσταση απορρόφησης k ονομάζεται πιθανότητα απορρόφησης στην κατάσταση k δεδομένης της αρχικής κατάστασης i και συμβολίζεται f ik. Προφανώς, σε μια τέτοια περίπτωση μετά τη μετάβαση στην κατάσταση k η διαδικασία παραμένει για πάντα σε αυτή την κατάσταση ( pkk ). Αν υπάρχουν περισσότερες από μία απορροφητικές καταστάσεις σε μια αλυσίδα ενδιαφέρει συνήθως ο υπολογισμός των επιμέρους πιθανοτήτων απορρόφησης. Οι πιθανότητες αυτές μπορούν να υπολογιστούν λύνοντας το ακόλουθο σύστημα εξισώσεων f M p f για κάθε i 0,,...,M, ik ij jk j0 όπου fkk και fik 0 αν η κατάσταση i είναι επανερχόμενη και i k. 5

20 Παράδειγμα.6 Για τα δεδομένα του παραδείγματος. να υπολογιστεί η πιθανότητα το παιχνίδι να τελειώσει με νίκη του παίκτη δεδομένου ότι αρχικά διαθέτει. Ζητείται η πιθανότητα f 3 που υπολογίζεται από το ακόλουθο σύστημα εξισώσεων f3 p0 f03 p f3 p f3 p3 f33 f3 p0 f03 p f3 p f3 p3 f33, όπου f33 και f03 0 καθώς η κατάσταση 0 είναι επανερχόμενη (απορροφητική) και διαφορετική της κατάστασης 3. Με αντικατάσταση των πιθανοτήτων μετάβασης από το αντίστοιχο μητρώο μετάβασης το σύστημα παίρνει τη μορφή και η επίλυσή του οδηγεί στη λύση f pf 3 3 f p f p 3 3 f 3 p και p p f 3 p. p p Αν για παράδειγμα p τότε f3 3, f Μέση μακροπρόθεσμη ανταμοιβή ανά μονάδα χρόνου Συνήθως, σε μια Μαρκοβιανή αλυσίδα η κατάσταση X t ή η μετάβαση από μια κατάσταση X t i σε μια άλλη κατάσταση X t j συνδέεται με μια ανταμοιβή που μπορεί να αντιστοιχεί είτε σε κάποιο κόστος είτε σε κάποιο κέρδος και συμβολίζεται αντίστοιχα C X t Q ή i C X i,x j Q. Ο υπολογισμός της μέσης ανταμοιβής ανά μονάδα t t ij χρόνου είναι σημαντικός για την οικονομική αποτίμηση του συστήματος που περιγράφεται από τη Μαρκοβιανή αλυσίδα και παρουσιάζεται αναλυτικά στη συνέχεια για διάφορες περιπτώσεις. Πεπερασμένος χρονικός ορίζοντας Η συνολική αναμενόμενη ανταμοιβή μιας διαδικασίας σε βήματα όταν αυτή ξεκινάει από την κατάσταση i συμβολίζεται αναδρομικές εξισώσεις M C i και υπολογίζεται για κάθε i και από τις ακόλουθες, C i p Q C j Q p C j ij ij i ij j0 j0 M 6

21 όπου M Q E Q p Q είναι η άμεση αναμενόμενη ανταμοιβή (αναμενόμενη i ij ij ij j0 ανταμοιβή του επόμενου βήματος) όταν η διαδικασία βρίσκεται στην κατάσταση i και είναι η ανταμοιβή για τελική κατάσταση j. Η αντίστοιχη αναμενόμενη ανταμοιβή ανά μονάδα χρόνου της διαδικασίας όταν αυτή ξεκινάει από την κατάσταση i συμβολίζεται Άπειρος χρονικός ορίζοντας C i C i και υπολογίζεται από τη σχέση C i. Η μέση μακροπρόθεσμη ανταμοιβή ανά μονάδα χρόνου μιας διαδικασίας, είναι προφανώς ανεξάρτητη της αρχικής και τελικής κατάστασης της διαδικασίας και δίνεται από τη σχέση Χρησιμοποιώντας το γεγονός ότι C lime Q lim E Q ij ij. t t C0 j η προηγούμενη σχέση γίνεται Γενικότερα, αν k ij k lim p π M C lim E Q π Q t i0 ij i i. η X t είναι αδιαχώριστη Μαρκοβιανή αλυσίδα με πεπερασμένο αριθμό καταστάσεων η X t συνδέεται με μια αλληλουχία ανεξάρτητων τυχαίων μεταβλητών t την ίδια κατανομή για κάθε t j D που έχουν για σταθερό ακέραιο m η άμεση ανταμοιβή της διαδικασίας τη χρονική στιγμή t είναι C X t,dt m η σειρά X 0,X,...,X t είναι ανεξάρτητη της Dt m, τότε η μακροπρόθεσμη μέση ανταμοιβή της διαδικασίας ανά μονάδα χρόνου δίνεται από τη σχέση M πiqi όπου Q i E C X t i,d t m i0. 7

22 Παράδειγμα.7 Υποθέστε ότι η επιχείρηση που διαχειρίζεται το προϊόν του παραδείγματος. υφίσταται ένα κόστος διατήρησης αποθέματος αν στο τέλος κάποιας εβδομάδας υπάρχουν τεμάχια του συγκεκριμένου προϊόντος στην αποθήκη. Συγκεκριμένα, το κόστος που υφίσταται έχει τη μορφή 0 για i 0 για i Qi 8 για i 8 για i 3 Να υπολογιστεί το μέσο μακροπρόθεσμο εβδομαδιαίο κόστος διατήρησης αποθέματος της επιχείρησης. Το μέσο μακροπρόθεσμο εβδομαδιαίο κόστος διατήρησης αποθέματος της επιχείρησης είναι ανεξάρτητο του αρχικού αποθέματος και δίνεται από τη σχέση 3 C πiq i 0, 860 0, 85 0, 638 0, 668 5, 66. i0 Παράδειγμα.8 Υποθέστε ότι στο σύστημα διαχείρισης αποθεμάτων του παραδείγματος. το κόστος παραγγελίας είναι 300, το κόστος διατήρησης ανά μονάδα τελικού αποθέματος (ανά εβδομάδα) είναι 5, η τιμή πώλησης ανά μονάδα προϊόντος είναι 00 και το κόστος έλλειψης ανά μονάδα προϊόντος είναι 30 επιπλέον της απώλειας κέρδους. Να υπολογιστεί το μέσο μακροπρόθεσμο εβδομαδιαίο κέρδος της επιχείρησης. Στην περίπτωση αυτή, το εβδομαδιαίο κέρδος της επιχείρησης εξαρτάται και από τη μετάβαση από μια κατάσταση X t i σε μια άλλη κατάσταση X t j ή πιο συγκεκριμένα και από τη ζήτηση της εβδομάδας Dt. Συνεπώς, το μέσο μακροπρόθεσμο εβδομαδιαίο κέρδος θα υπολογιστεί από τη σχέση M M i i i t t, C π Q π EC X i,d i0 i0 όπου το εβδομαδιαίο κέρδος C X C X t i,d t t i,dt υπολογίζεται ως εξής: t t 00mi D, max D 3, 0 για i 0 00mi D t,x t 30max Dt X t, 0 5 X t για i Το μέσο εβδομαδιαίο κέρδος αν το τελικό απόθεμα της προηγούμενης εβδομάδας είναι X 0 είναι t 8

23 t 0 t 00 t t 3 0 Q0 EC X,D E mi D, E max D, 00P D P D 3P D t t t 30P D 4 P D 5 3P D 6... t t t, όπου οι πιθανότητες PD d τεμάχιο. Άρα τελικά t δίνονται από την κατανομή Poisso με μέση τιμή Q , 368 0, 84 30, , 05 0, 00330, , 368. Με ανάλογο τρόπο υπολογίζεται το μέσο εβδομαδιαίο κέρδος για τις υπόλοιπες τιμές της t t t t Q EC X,D 00E mi D, 30E max D 0, 5 00P D 30P D P D 3 3P D t t t t 000, , 84 0, 0630, , 388 t t t t Q EC X,D 00E mi D, 30E max D, P D P D 30P D 3 P D t t t t 00 0, 368 0, , 06 0, , 63 t t t t Q3 EC X 3,D 00E mi D, 3 30E max D 30, 5 00P Dt P Dt 3P Dt 3 30P D 4 P D 5 3P D t t t 00 0, 368 0, 84 30, , 05 0, , , 633. Άρα το μέσο μακροπρόθεσμο εβδομαδιαίο κέρδος είναι M πiq i 0, 8605, 3680, 850, 388 0, 6366, 63 0, 6679, , 97. i0 Εναλλακτικά, το μέσο μακροπρόθεσμο εβδομαδιαίο κέρδος μπορεί να υπολογιστεί ως εξής: Το μέσο τελικό απόθεμα του συστήματος μακροπρόθεσμα είναι X t 3 jπ j ππ 3π 3, 309 τεμάχια. j0 9

24 Το μέσο αρχικό απόθεμα του συστήματος μακροπρόθεσμα είναι 3π π π 3π 67, τεμάχια. 0 3 Άρα οι μέσες εβδομαδιαίες πωλήσεις είναι, 67, 309 0, 858 τεμάχια. Η τιμή αυτή είναι μικρότερη της μέσης εβδομαδιαίας ζήτησης που ισούται με τεμάχιο καθώς μέρος της ζήτησης χάνεται ελλείψει αποθέματος κατά τη χρονική στιγμή εμφάνισης της ζήτησης. Άρα η μέση εβδομαδιαία έλλειψη είναι Συνδυάζοντας όλα τα παραπάνω έχουμε 0, 858 0, 4 τεμάχια. μέσο μέσες μακροπρόθεσμο τιμή κόστος πιθανότητα εβδομαδιαίες εβδομαδιαίο πώλησης παραγγελίας παραγγελίας πωλήσεις κέρδος κόστος μέση κόστος μέσο έλλειψης εβδομαδιαία διατήρησης τελικό αποθέματος έλλειψη αποθέματος απόθεμα 000, , , 4 5, , Έλεγχος Μαρκοβιανών αλυσίδων διακριτού χρόνου Ο έλεγχος των Μαρκοβιανών αλυσίδων διακριτού χρόνου αποσκοπεί στη βελτιστοποίηση της διαδικασίας μέσω της επιλογής κατάλληλων δράσεων ή αλλιώς μέσω της λήψης κατάλληλων αποφάσεων k ( k,,...,k ), οι οποίες επηρεάζουν τόσο τις πιθανότητες μετάβασης pij k όσο και τις άμεσες ανταμοιβές ij Q k της διαδικασίας. Υπάρχουν διάφορες μέθοδοι βελτιστοποίησης της λειτουργίας των Μαρκοβιανών αλυσίδων διακριτού χρόνου οι οποίες παρουσιάζονται αναλυτικά στη συνέχεια για διάφορες περιπτώσεις..3. Πεπερασμένος χρονικός ορίζοντας Στόχος είναι η βελτιστοποίηση (ελαχιστοποίηση ή μεγιστοποίηση) της συνολικής αναμενόμενης ανταμοιβής μιας διαδικασίας σε βήματα. Το πρόβλημα αυτό αντιμετωπίζεται με τη μέθοδο του στοχαστικού Δυναμικού Προγραμματισμού και τη χρήση αναδρομικών εξισώσεων υπολογισμού της συνολικής αναμενόμενης ανταμοιβής της διαδικασίας σε βήματα, C i,k, όταν αυτή ξεκινάει από την κατάσταση i και λαμβάνεται η απόφαση k και 0

25 όλες οι επόμενες αποφάσεις είναι βέλτιστες. Συγκεκριμένα, για πρόβλημα ελαχιστοποίησης οι αναδρομικές εξισώσεις έχουν τη μορφή M M * * * C i mikci,kmik pijk QijkC j mik Qik pijkc j j0 j0 όπου Q k p kq k M i ij ij j0, είναι η άμεση αναμενόμενη ανταμοιβή (αναμενόμενη ανταμοιβή του επόμενου βήματος) όταν η διαδικασία βρίσκεται στην κατάσταση i και * λαμβάνεται η απόφαση k, ενώ C j είναι η βέλτιστη ανταμοιβή για τελική κατάσταση j. 0 Η αντίστοιχη βέλτιστη αναμενόμενη ανταμοιβή ανά μονάδα χρόνου της διαδικασίας όταν αυτή ξεκινάει από την κατάσταση i συμβολίζεται C * * i * C i C. i και υπολογίζεται από τη σχέση Θεμέλιο του Δυναμικού Προγραμματισμού αποτελεί η αρχή βελτιστοποίησης του Bellma σύμφωνα με την οποία: η βέλτιστη πολιτική (αποφάσεις) για τα επόμενα στάδια δεν εξαρτάται από την πολιτική των προηγούμενων σταδίων. Η διαδικασία βελτιστοποίησης ξεκινά με τον προσδιορισμό των βέλτιστων αποφάσεων για κάθε κατάσταση i στο τελευταίο στάδιο της διαδικασίας ( ) και στη συνέχεια, με δεδομένη τη βέλτιστη πολιτική (απόφαση σε κάθε κατάσταση) του σταδίου προσδιορίζεται η βέλτιστη πολιτική του σταδίου (,,...). Παράδειγμα.9 Η λειτουργία μιας μηχανής χαρακτηρίζεται από 4 καταστάσεις: τέλεια λειτουργία (κατάσταση 0), μικρή δυσλειτουργία (κατάσταση ), σημαντική δυσλειτουργία (κατάσταση ), πλήρης βλάβη (κατάσταση 3). Η μηχανή ελέγχεται στο τέλος κάθε εβδομάδας και ο έλεγχος αποκαλύπτει με ακρίβεια την κατάστασή της. Σύμφωνα με τα διαθέσιμα ιστορικά στοιχεία, το μητρώο πιθανοτήτων μετάβασης p ij από κάθε κατάσταση i στο τέλος μιας εβδομάδας σε οποιαδήποτε κατάσταση j στο τέλος της επόμενης εβδομάδας, εφόσον δεν υπάρξει κάποια βελτιωτική παρέμβαση στη μηχανή, είναι το ακόλουθο P

26 Επειδή η κατάσταση 3 είναι απορροφητική, εάν η μηχανή βρεθεί σε αυτή την κατάσταση στο τέλος κάποιας εβδομάδας επισκευάζεται πλήρως (απόφαση k 3) και επανέρχεται με βεβαιότητα στην κατάσταση 0 στο τέλος της επόμενης εβδομάδας με κόστος 6000 (συνολικό κόστος επισκευής και απώλειας παραγωγικού χρόνου). Η πλήρης επισκευή με το ίδιο κόστος μπορεί να επιλεγεί και όταν η μηχανή βρίσκεται στην κατάσταση ή στην κατάσταση, δεδομένου ότι λειτουργία της μηχανής στην κατάσταση ή στην αρχή της επόμενης εβδομάδας συνοδεύεται από μέσο εβδομαδιαίο κόστος παραγωγής ελαττωματικών προϊόντων ίσο με 3000 ή 000, αντίστοιχα. Μια πρόσθετη εναλλακτική απόφαση, η οποία είναι διαθέσιμη μόνο στην κατάσταση είναι η μερική συντήρηση της μηχανής (απόφαση k ) που την επαναφέρει με βεβαιότητα στην κατάσταση στο τέλος της επόμενης εβδομάδας με συνολικό κόστος Στην κατάσταση 0 δε γίνεται καμία ενέργεια συντήρησης (απόφαση k ), ενώ στην κατάσταση 3 η απόφαση είναι πάντα k 3. Έστω ότι η μηχανή θα λειτουργήσει για 4 συνολικά εβδομάδες και ότι στο τέλος του χρόνου αυτού το αναμενόμενο κόστος θα είναι 0, 000, 4000 ή 6000 ανάλογα με την τελική της κατάσταση, 0,, ή 3, αντίστοιχα. Να προσδιοριστεί η βέλτιστη πολιτική συντήρησης της μηχανής, δηλαδή η βέλτιστη απόφαση στο τέλος κάθε εβδομάδας που η μηχανή θα βρίσκεται στην κατάσταση (k ή 3) ή στην κατάσταση (k ή ή 3). Για τη βέλτιστη πολιτική να υπολογιστεί το αναμενόμενο συνολικό κόστος και το αναμενόμενο εβδομαδιαίο κόστος (συμπεριλαμβανομένου και του τελικού κόστους) αν η μηχανή ξεκινήσει από την κατάσταση 0. Από τα δεδομένα έχουμε * * * * C C C C , ενώ οι πιθανότητες μετάβασης συναρτήσει των εναλλακτικών αποφάσεων k, Κατάσταση Απόφαση Πιθανότητες μετάβασης pij k, είναι i k pi0 k pi k pi k pi3 k

27 Από τη σχέση Q k p kq k Κατάσταση 0: M προκύπτουν οι ακόλουθες τιμές i ij ij j0 Q 0 0, Κατάσταση : Κατάσταση : Q 000, Q , Q 3000, Q 4000, Q , Κατάσταση 3: Q Για τον προσδιορισμό της βέλτιστης πολιτικής απαιτείται ο υπολογισμός της συνολικής αναμενόμενης ανταμοιβής της διαδικασίας σε βήματα όταν αυτή ξεκινάει από την κατάσταση i και λαμβάνεται η απόφαση k και όλες οι επόμενες αποφάσεις είναι βέλτιστες, C i,k, από τη σχέση * C i,k Q k p k C j i ij j0 M για κάθε i,k, ξεκινώντας από το τελευταίο στάδιο ( ). Η βέλτιστη απόφαση για κάθε κατάσταση i προκύπτει από τη σχέση M * * C i mikci,k mik Qik pijk C j. j0 Άρα για (αρχή της τέταρτης και τελευταίας εβδομάδας) έχουμε τον ακόλουθο πίνακα i k 0 * C i,k C i Εν συνεχεία, για (αρχή της τρίτης εβδομάδας) και θεωρώντας ότι στην αρχή της τέταρτης εβδομάδας θα ληφθεί η βέλτιστη απόφαση σε κάθε κατάσταση έχουμε τον ακόλουθο πίνακα * k 3

28 i k * C i,k C i * k , 5 403, , 5 53, Ομοίως, για 3 (αρχή της δεύτερης εβδομάδας) και θεωρώντας ότι στην αρχή της τρίτης εβδομάδας θα ληφθεί η βέλτιστη απόφαση σε κάθε κατάσταση έχουμε τον ακόλουθο πίνακα i k 3 0 * C i,k C i , , , , , 5 003, , , 5 93, 5 93, , 5 003, , 5 003, 5 003,5 3 Τέλος, για 4 (αρχή της πρώτης εβδομάδας) και θεωρώντας ότι στην αρχή της δεύτερης εβδομάδας θα ληφθεί η βέλτιστη απόφαση σε κάθε κατάσταση έχουμε τον ακόλουθο πίνακα i k 4 0 * C i,k C i , 5 003, , , , 5 003, , , , 5 656, , 5 003, 5 67, , 5 656, , 5 656, 5 656, * k * k

29 Η βέλτιστη πολιτική συντήρησης, δηλαδή οι βέλτιστες αποφάσεις για κάθε κατάσταση στο τέλος κάθε μιας από τις 4 εβδομάδες, παρουσιάζονται στην τελευταία στήλη των αντίστοιχων πινάκων. Παρατηρήστε ότι η βέλτιστη πολιτική σταθεροποιείται όσο απομακρυνόμαστε από το τέλος του χρονικού ορίζοντα (όσο το μεγαλώνει), καθώς οι τελικές συνθήκες έχουν όλο και μικρότερη επίδραση στο συνολικό οικονομικό αποτέλεσμα. Το αναμενόμενο συνολικό κόστος αν η μηχανή ξεκινήσει στην κατάσταση 0 είναι * C , 98, ενώ το αντίστοιχο αναμενόμενο εβδομαδιαίο κόστος είναι.3. Άπειρος χρονικός ορίζοντας * * C , 98 C , Στόχος είναι η βελτιστοποίηση (ελαχιστοποίηση ή μεγιστοποίηση) της μέσης αναμενόμενης ανταμοιβής μιας διαδικασίας που λειτουργεί επ' άπειρον. Η βέλτιστη πολιτική (βέλτιστη απόφαση * k ή * d i σε κάθε κατάσταση i) μιας τέτοιας διαδικασίας είναι ανεξάρτητη του αριθμού των βημάτων που απομένουν μέχρι τη λήξη της διαδικασίας, καθώς αυτά είναι θεωρητικά άπειρα, και μπορεί να προσδιοριστεί με χρήση των ακόλουθων μεθόδων: Απαρίθμηση και σύγκριση όλων των εναλλακτικών πολιτικών Μέθοδος γραμμικού προγραμματισμού Αλγόριθμος βελτίωσης πολιτικής Απαρίθμηση και σύγκριση όλων των εναλλακτικών πολιτικών Για κάθε μία από τις δυνατές πολιτικές της διαδικασίας R j d0r j,dr j,...,dm R j προσδιορίζονται οι πιθανότητες μόνιμης κατάστασης i j ανταμοιβές για κάθε κατάσταση i j μακροπρόθεσμη ανταμοιβή από τη σχέση π R και οι αναμενόμενες άμεσες Q R και υπολογίζεται η αντίστοιχη μέση M j i j i j C R π R Q R. i0 Εν συνεχεία, συγκρίνονται οι μέσες αναμενόμενες ανταμοιβές όλων των εναλλακτικών πολιτικών και επιλέγεται η πολιτική με τη βέλτιστη (ελάχιστη ή μέγιστη) μέση αναμενόμενη ανταμοιβή. Προφανώς, η μέθοδος αυτή είναι κατάλληλη μόνο για μικρό αριθμό εναλλακτικών πολιτικών. 5

30 Παράδειγμα.0 Αν η μηχανή του παραδείγματος.9 πρόκειται να λειτουργεί για πολύ μεγάλο χρονικό διάστημα (πρακτικά άπειρο) να προσδιοριστεί το μακροπρόθεσμο αναμενόμενο εβδομαδιαίο κόστος (αγνοώντας το τελικό κόστος που πρακτικά είναι αμελητέο όταν ) για κάθε μία από τις ακόλουθες πολιτικές και να επιλεγεί η βέλτιστη: Πολιτική R a : k κατάσταση (ή d ), k στην κατάσταση (ή d ) Πολιτική R b : k κατάσταση (ή d ), k στην κατάσταση (ή d ) Πολιτική R c : k κατάσταση (ή d ), k 3 στην κατάσταση (ή d 3) Πολιτική R d : k 3 κατάσταση (ή d 3), k 3 στην κατάσταση (ή d 3) Για τον υπολογισμό του μακροπρόθεσμου μέσου εβδομαδιαίου κόστους της κάθε πολιτικής απαιτείται να προσδιοριστούν οι αντίστοιχες πιθανότητες μόνιμης κατάστασης καθώς επίσης και οι αναμενόμενες άμεσες ανταμοιβές. Τα μητρώα των πιθανοτήτων μετάβασης για κάθε μία από τις 4 εναλλακτικές πολιτικές είναι τα ακόλουθα: P R a P R c P R b P R d Οπότε για την πολιτική R a προκύπτει το ακόλουθο σύστημα εξισώσεων μόνιμης κατάστασης π π π π π π π π π π π π π π0 ππ π3 6

31 με λύση 3 π0 7 π 3 Οι αντίστοιχες αναμενόμενες άμεσες ανταμοιβές είναι π 3 3 π. 3 Q0 0 Q 000 Q 3000 Q και συνεπώς το μέσο μακροπρόθεσμο εβδομαδιαίο κόστος της πολιτικής R a είναι 7 CR a , Ομοίως, για την πολιτική R b προκύπτει το ακόλουθο σύστημα εξισώσεων μόνιμης κατάστασης με λύση π0 π π π π π π π π π π π π π0 ππ π3 5 5 π 7 Οι αντίστοιχες αναμενόμενες άμεσες ανταμοιβές είναι π 3 π. Q0 0 Q 000 Q 4000 Q και συνεπώς το μέσο μακροπρόθεσμο εβδομαδιαίο κόστος της πολιτικής R b είναι 5 CR b , Για την πολιτική R c προκύπτει το ακόλουθο σύστημα εξισώσεων μόνιμης κατάστασης π0 π π3 7 3 π π π

32 π π π π π π π0 ππ π3 με λύση π0 7 π Οι αντίστοιχες αναμενόμενες άμεσες ανταμοιβές είναι π 3 π. Q0 0 Q 000 Q 6000 Q και συνεπώς το μέσο μακροπρόθεσμο εβδομαδιαίο κόστος της πολιτικής R c είναι 7 CR c , 7. Τέλος, για την πολιτική R d προκύπτει το ακόλουθο σύστημα εξισώσεων μόνιμης κατάστασης π0 ππ π3 με λύση π0 π π π 7 π 8 0 π 6 0 π π0 ππ π3 7 π 6 Οι αντίστοιχες αναμενόμενες άμεσες ανταμοιβές είναι π 3 3 π. 3 Q0 0 Q 6000 Q 6000 Q και συνεπώς το μέσο μακροπρόθεσμο εβδομαδιαίο κόστος της πολιτικής R d είναι 7 CRd

33 Άρα η βέλτιστη πολιτική είναι η πολιτική R b με μέσο μακροπρόθεσμο εβδομαδιαίο κόστος 666,67. Στην πολιτική αυτή, άλλωστε, συνέκλινε και η λύση του παραδείγματος.9 για μεγάλες τιμές του. Σε περιπτώσεις που ο αριθμός των εναλλακτικών πολιτικών είναι σχετικά μεγάλος η μέθοδος της απαρίθμησης και σύγκρισης όλων των εναλλακτικών πολιτικών γίνεται αρκετά χρονοβόρα και γι' αυτό χρησιμοποιούνται άλλες μέθοδοι που οδηγούν σε ταχύτερο προσδιορισμό της βέλτιστης πολιτικής. Μέθοδος γραμμικού προγραμματισμού Όπως έχει ήδη αναφερθεί μια πολιτική εκφράζεται από το αντίστοιχο σύνολο των αποφάσεων σε κάθε κατάσταση της διαδικασίας R d0r,dr,...,dm R μια πολιτική θα μπορούσε να περιγραφεί από ένα μητρώο της μορφής. Ισοδύναμα, 0... M... K D0 D 0... D0K D D... D K DM D M... DMK όπου κάθε D ( i 0,,...,M και k,,...,k ) είναι μια δυαδική μεταβλητή που παίρνει την ik τιμή αν και μόνο αν η απόφαση k λαμβάνεται στην κατάσταση i, αλλιώς παίρνει την τιμή 0. Κάθε σειρά, λοιπόν, του μητρώου που προσδιορίζει μια πολιτική R περιέχει ακριβώς ένα στοιχείο που ισούται με και όλα τα υπόλοιπα στοιχεία της σειράς είναι 0. Για παράδειγμα, το μητρώο της βέλτιστης πολιτική R b του παραδείγματος.0 έχει τη μορφή PRb που σημαίνει ότι δε γίνεται καμία ενέργεια συντήρησης στις καταστάσεις 0 και, γίνεται μερική συντήρηση στην κατάσταση και πλήρης επιδιόρθωση της μηχανής στην κατάσταση 3. Ουσιαστικά, η μεταβλητή D ik εκφράζει την υπό συνθήκη πιθανότητα να ληφθεί η απόφαση k όταν η διαδικασία βρίσκεται στην κατάσταση i D P απόφαση k κατάσταση i. ik 9

34 Για τον προσδιορισμό της βέλτιστης πολιτικής με τη μέθοδο του γραμμικού προγραμματισμού ορίζονται οι μεταβλητές y ( i 0,,...,M και k,,...,k ik ) που εκφράζουν την πιθανότητα η διαδικασία να βρεθεί μακροπρόθεσμα στην κατάσταση i και να ληφθεί η απόφαση k y P απόφαση k και κατάσταση i. ik Προφανώς οι μεταβλητές y ik συνδέονται με τις μεταβλητές κατάστασης π i μέσω των σχέσεων D ik και τις πιθανότητες μόνιμης y π D ik i ik π i K y. k ik Λόγω των εξισώσεων μόνιμης κατάστασης της διαδικασίας οι μεταβλητές στους ακόλουθους περιορισμούς y ik υπόκεινται M M K π yik, i i0 i0 k M K M K για κάθε j 0 π π p y y p k j i ij jk ik ij i0 k i0 k,,...,m. Συνοψίζοντας, το γραμμικό πρότυπο, η επίλυση του οποίου οδηγεί στον προσδιορισμό της βέλτιστης πολιτικής, έχει μεταβλητές απόφασης τις μακροπρόθεσμη μέση ανταμοιβή ανά μονάδα χρόνου και περιορισμούς mi/ maxc M K i0 k ik i y ik y Q k, αντικειμενική συνάρτηση τη (i) M K yik, i0 k (ii) K M K yjk yik pij k0 για κάθε j 0 k i0 k,,...,m και (iii) yik 0 για κάθε i 0,,...,M και k,,...,k. Ένας από τους M περιορισμούς (ii) πλεονάζει και διαγράφεται και έτσι έχουμε τελικά M περιορισμούς και KM μεταβλητές απόφασης. 30

35 Επίλυση του παραπάνω γραμμικού προτύπου οδηγεί στον προσδιορισμό των βέλτιστων τιμών y ik και κατ' επέκταση και των βέλτιστων τιμών D ik μέσω των σχέσεων D ik y π ik i K y k ik y ik. Αποδεικνύεται ότι στη βέλτιστη λύση του παραπάνω γραμμικού προτύπου για κάθε κατάσταση i υπάρχει ακριβώς ένα k για το οποίο ισχύει yik 0 και κατά συνέπεια ακριβώς ένα k για το οποίο ισχύει Dik. Με άλλα λόγια, η βέλτιστη πολιτική είναι καθοριστική (συγκεκριμένη βέλτιστη απόφαση Παράδειγμα. * k σε κάθε κατάσταση i). Να προσδιοριστεί η βέλτιστη πολιτική μεταξύ όλων των εναλλακτικών πολιτικών του παραδείγματος.0 με τη μέθοδο του γραμμικού προγραμματισμού. Λαμβάνοντας υπ' όψιν τις δυνατές εναλλακτικές αποφάσεις σε κάθε κατάσταση ορίζουμε τις μεταβλητές απόφασης y 0, y, y 3, y, y, y 3 και y 33. Οι πιθανότητες μετάβασης, pij k, καθώς και οι αναμενόμενες άμεσες ανταμοιβές, Q k, i συναρτήσει των εναλλακτικών αποφάσεων k είναι Κατάσταση Απόφαση Αναμενόμενη άμεση ανταμοιβή i k Qi k Πιθανότητες μετάβασης pi0 k pi k pi k pi3 k Άρα το γραμμικό πρότυπο έχει αντικειμενική συνάρτηση την και περιορισμούς mic 000y 6000y 3000y 4000y 6000y 6000y y0 y y3 y y y3 y33 3

36 y y y y y y3 y0 y y y y y3 y0 y y y33 y0 y y και y 0 για κάθε i 03,,, και k 3,,. ik Η βέλτιστη λύση του παραπάνω γραμμικού προτύπου είναι y0, 5 y, y, y 0, y, y3 0, y33 με ελάχιστη τιμή της αντικειμενικής συνάρτησης 666,67. Προφανώς, η λύση αυτή ταυτίζεται με την πολιτική R b που είχε προκύψει ως βέλτιστη στο παράδειγμα.0. Αλγόριθμος βελτίωσης πολιτικής Ο αλγόριθμος βελτίωσης πολιτικής είναι μια ιδιαίτερα αποτελεσματική μέθοδος προσδιορισμού της βέλτιστης πολιτικής καθώς οδηγεί συνήθως πολύ γρήγορα (μετά από μικρό αριθμό επαναλήψεων της διαδικασίας) στη βέλτιστη λύση ακόμη κι αν ο αριθμός των εναλλακτικών πολιτικών είναι αρκετά μεγάλος. Η ταχύτητα της μεθόδου αυτής για μεγάλα προβλήματα (μεγάλος αριθμός εναλλακτικών πολιτικών) είναι μεγαλύτερη τόσο από αυτή του γραμμικού προγραμματισμού όσο και από αυτή της απαρίθμησης και σύγκρισης όλων των εναλλακτικών πολιτικών. Ο αλγόριθμος βελτίωσης πολιτικής βασίζεται στην ακόλουθη σχέση που ισχύει για κάθε κατάσταση i όταν εφαρμόζεται συγκεκριμένη πολιτική R όπου g R v R Q k p k v R, i i ij j j0 M g R : η μακροπρόθεσμη μέση ανταμοιβή ανά μονάδα χρόνου με την πολιτική R i v R v R j : η επίδραση στη συνολική μέση ανταμοιβή αν η διαδικασία ξεκινήσει από την κατάσταση i έναντι του να ξεκινήσει από την κατάσταση j 3

37 Τα στάδια-βήματα εκτέλεσης του αλγορίθμου είναι τα ακόλουθα: Αρχικό στάδιο (εφαρμογή για ): Επιλογή μιας αυθαίρετης αρχικής πολιτικής R Επαναληπτικό στάδιο (εφαρμογή για κάθε ): Βήμα : Προσδιορισμός των τιμών g R, i v R για κάθε i 0,,...,M. Με χρήση των τιμών pij k, Q k της πολιτικής R και θέτοντας αυθαίρετα i M 0 v R επιλύεται το σύστημα των M εξισώσεων και προσδιορίζονται οι Βήμα : Βελτίωση πολιτικής Με χρήση των τιμών πολιτική i i ij j j0 M g R v R Q k p k v R για i 0,,...,M i M άγνωστοι g R, v R για i 0,,...,M. i v R της τρέχουσας πολιτικής διαμορφώνεται μια εναλλακτική R, της οποίας οι αποφάσεις di R k για κάθε κατάσταση i 0,,...,M προκύπτουν από τη βελτιστοποίηση (ελαχιστοποίηση ή μεγιστοποίηση) της σχέσης Βήμα 3: Έλεγχος τερματισμού M mi/ max Q k p k v R v R k i ij j i j0 Η διαδικασία τερματίζεται αν η πολιτική R ταυτίζεται με την πολιτική R και η πολιτική αυτή είναι η βέλτιστη. Αλλιώς θέτουμε και επιστρέφουμε στο Βήμα. Ο αλγόριθμος βελτίωσης πολιτικής έχει δύο βασικές ιδιότητες:. g R gr κάθε βήμα). για κάθε και πρόβλημα ελαχιστοποίησης (η πολιτική βελτιώνεται σε. Η βέλτιστη πολιτική προσδιορίζεται σε πεπερασμένο αριθμό βημάτων (ο αλγόριθμος συγκλίνει πάντα). Παράδειγμα. Να προσδιοριστεί η βέλτιστη πολιτική μεταξύ όλων των εναλλακτικών πολιτικών του παραδείγματος.0 με χρήση του αλγορίθμου βελτίωσης πολιτικής και αρχική δοκιμαστική πολιτική την R a. 33

38 Αρχικό στάδιο: Η αρχική πολιτική είναι η R Ra d R. 3 3 Επαναληπτικό στάδιο για : Βήμα : Προσδιορισμός των τιμών g R, i pij k, Q k της πολιτικής i και προκύπτει η λύση R και θέτοντας 34 με d R d R d R και 0 v R για i 0,, με χρήση των τιμών v R. Επιλύεται το σύστημα g R v R v R v R g R v R 000 v R v R 4 8 g R v R 3000 v R 6000 g R v R 0 gr, v R, v R, 93 Βήμα : Βελτίωση πολιτικής Με χρήση των τιμών οι αποφάσεις i i v R 54. v R διαμορφώνεται μια εναλλακτική πολιτική R, της οποίας d R k για τις καταστάσεις και (στις καταστάσεις 0 και 3 δεν υπάρχουν εναλλακτικές αποφάσεις) προκύπτουν από την ελαχιστοποίηση της σχέσης Για την κατάσταση έχουμε 3 mi/ max Qik pijk v jrvir. j0 k k : Q p v R p v R p v R p v R v R k 3 : Q 3 p 3v R p 3v R p 3v R p 3v R v R και, προφανώς, dr. Για την κατάσταση έχουμε

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ Τομέας Οργάνωσης Παραγωγής & Βιομηχανικής Διοίκησης Σημειώσεις του μαθήματος: ΣΤΟΧΑΣΤΙΚΑ ΠΡΟΤΥΠΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Γιώργος Λυμπερόπουλος

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ ΑΛΥΣΙΔΕΣ ΜΑΡΚΟΦ & ΕΦΑΡΜΟΓΕΣ Ν. ΔΕΡΒΑΚΟΥ Σημειώσεις Παραδόσεων Αθήνα 23 ΑΛΥΣΙΔΕΣ ΜΑΡΚΟΦ & ΕΦΑΡΜΟΓΕΣ Ι. ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ Ορισμός : Στοχαστική διαδικασία ή ανέλιξη είναι η διατεταγμένη

Διαβάστε περισσότερα

Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov

Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov Γ. Κορίλη, Αλυσίδες Markov 3- http://www.seas.upe.edu/~tcom5/lectures/lecture3.pdf Αλυσίδες Markov Αλυσίδες Markov ιακριτού Χρόνου Υπολογισµός Στάσιµης Κατανοµής Εξισώσεις Ολικού Ισοζυγίου Εξισώσεις Λεπτοµερούς

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων 1ο Σετ Ασκήσεων - Λύσεις

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων 1ο Σετ Ασκήσεων - Λύσεις Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων ο Σετ Ασκήσεων - Λύσεις Νοέμβριος - Δεκέμβριος 205 Ερώτημα (α). Η νοσοκόμα ακολουθεί μια Ομογενή Μαρκοβιανή Αλυσίδα Διακριτού Χρόνου με χώρο καταστάσεων το σύνολο

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2014-2015 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας

Διαβάστε περισσότερα

Μαρκοβιανές Αλυσίδες

Μαρκοβιανές Αλυσίδες Μαρκοβιανές Αλυσίδες { θ * } Στοχαστική Ανέλιξη είναι μια συλλογή τ.μ. Ο χώρος Τ (συνήθως είναι χρόνος) μπορεί να είναι είτε διακριτός είτε συνεχής και καλείται παραμετρικός χώρος. Το σύνολο των δυνατών

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Νικος Χαλιδιας Μαθηματικό Τμήμα κατεύθυνση Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών Πανεπιστημιο Αιγαιου

Νικος Χαλιδιας Μαθηματικό Τμήμα κατεύθυνση Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών Πανεπιστημιο Αιγαιου Νικος Χαλιδιας Μαθηματικό Τμήμα κατεύθυνση Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών Πανεπιστημιο Αιγαιου Λημμα Εστω A ένα σύνολο άπειρου πλήθους θετικών ακέραιων αριθμών των οποίων

Διαβάστε περισσότερα

1 + ρ ρ ρ3. iπ i = Q = λ λ i=0. n=0 tn. n! Qn, t 0

1 + ρ ρ ρ3. iπ i = Q = λ λ i=0. n=0 tn. n! Qn, t 0 Στοχαστικές Διαδικασίες ΙΙ Ιανουάριος 07 Διαδικασίες Markov σε Συνεχή Χρόνο - Παραδείγματα Μ. Ζαζάνης Πρόβλημα. Εστω ένα σύστημα M/M//3 στο οποίο οι αφίξεις είναι Poisson με ρυθμό λ και οι δύο υπηρέτες

Διαβάστε περισσότερα

0 1 0 0 0 1 p q 0 P =

0 1 0 0 0 1 p q 0 P = Στοχαστικές Ανελίξεις - Σεπτέμβριος 2015 ΟΔΗΓΙΕΣ (1) Απαντήστε σε όλα τα θέματα. Τα θέματα είναι ισοδύναμα. (2) Οι απαντήσεις να είναι αιτιολογημένες. Απαντήσεις χωρίς να φαίνεται η απαιτούμενη εργασία

Διαβάστε περισσότερα

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου 200-04-25. ιαδικασίες γεννήσεων-θανάτων. Ορισµός Οι διαδικασίες γεννήσεων-θανάτων (birth-death rocesses) αποτελούν µια σπουδαία κλάση αλυσίδων Markov (διακριτού ή συνεχούς χρόνου). Η ιδιαίτερη συνθήκη

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Σκοποί ενότητας Κατά τη διάρκεια των καθημερινών μας

Διαβάστε περισσότερα

Πρόλογος Κατανόηση της εφοδιαστικής αλυσίδας Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41

Πρόλογος Κατανόηση της εφοδιαστικής αλυσίδας Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41 Περιεχόμενα Πρόλογος...7 1 Κατανόηση της εφοδιαστικής αλυσίδας...9 2 Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41 3 Πρόβλεψη της ζήτησης σε μια εφοδιαστική αλυσίδα...109 4 Συγκεντρωτικός προγραμματισμός

Διαβάστε περισσότερα

Στοχαστικές Ανελίξεις- Φεβρουάριος 2015

Στοχαστικές Ανελίξεις- Φεβρουάριος 2015 Στοχαστικές Ανελίξεις- Φεβρουάριος 2015 ΟΔΗΓΙΕΣ (1) Απαντήστε σε όλα τα θέματα. Τα θέματα είναι ισοδύναμα. (2) Οι απαντήσεις να είναι αιτιολογημένες. Απαντήσεις χωρίς να φαίνεται η απαιτούμενη εργασία

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Προβλήματα Μαρκοβιανών Αλυσίδων

Προβλήματα Μαρκοβιανών Αλυσίδων Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανολόγων Μηχανικών Προβλήματα Μαρκοβιανών Αλυσίδων Γιώργος Λυμπερόπουλος 2009 1. Να βρεθούν οι κλάσεις καταστάσεων στις παρακάτω Μαρκοβιανές αλυσίδες και να σημειωθεί αν

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

P (M = n T = t)µe µt dt. λ+µ

P (M = n T = t)µe µt dt. λ+µ Ουρές Αναμονής Σειρά Ασκήσεων 1 ΑΣΚΗΣΗ 1. Εστω {N(t), t 0} διαδικασία αφίξεων Poisson με ρυθμό λ, και ένα χρονικό διάστημα η διάρκεια του οποίου είναι τυχαία μεταβλητή T, ανεξάρτητη της διαδικασίας αφίξεων,

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ. Από το βιβλίο: Κώστογλου, Β. (2015). Επιχειρησιακή Έρευνα. Θεσσαλονίκη: Εκδόσεις Τζιόλα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ. Από το βιβλίο: Κώστογλου, Β. (2015). Επιχειρησιακή Έρευνα. Θεσσαλονίκη: Εκδόσεις Τζιόλα ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ 1 Εισαγωγικά Απόθεμα εννοείται κάθε είδους αγαθό, το οποίο μπορεί να αποθηκευτεί με στόχο την τρέχουσα ή μελλοντική χρησιμοποίησή του. Αποθέματα συναντώνται σε κάθε

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανάλυση Ουράς Αναμονής M/G/1 Αρχές Ανάλυσης Ουράς M/G/1 Ενσωματωμένη Αλυσίδα Markov (Embedded Markov Chain) Τύποι Pollaczeck - Khinchin (P-K) για Ουρές M/G/1 Μέσες Τιμές

Διαβάστε περισσότερα

«ΔΙΑΚΡΙΤΕΣ ΜΑΡΚΟΒΙΑΝΕΣ ΑΛΥΣΙΔΕΣ»

«ΔΙΑΚΡΙΤΕΣ ΜΑΡΚΟΒΙΑΝΕΣ ΑΛΥΣΙΔΕΣ» ΤΕΙ ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΔΙΑΚΡΙΤΕΣ ΜΑΡΚΟΒΙΑΝΕΣ ΑΛΥΣΙΔΕΣ» Του σπουδαστή ΣΤΑΜΟΥΛΗ ΓΕΩΡΓΙΟΥ Επιβλέπων Δρ ΓΕΡΟΝΤΙΔΗΣ ΙΩΑΝΝΗΣ Αναπληρωτής Καθηγητής ΚΑΒΑΛΑ 006 ΠΕΡΙΕΧΟΜΕΝA Σελίδα ΕIΣΑΓΩΓΗ 3

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

Ανάλυση Χρόνου, Πόρων & Κόστους

Ανάλυση Χρόνου, Πόρων & Κόστους ΠΜΣ: «Παραγωγή και ιαχείριση Ενέργειας» ιαχείριση Ενέργειας και ιοίκηση Έργων Ανάλυση Χρόνου, Πόρων & Κόστους Επ. Καθηγητής Χάρης ούκας, Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστημάτων Αποφάσεων & ιοίκησης

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2)

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2) ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 8/3/2017 ΠΑΡΑΜΕΤΡΟΙ (1/4) (Επανάληψη) Ένταση φορτίου (traffic intensity)

Διαβάστε περισσότερα

Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές

Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές 3. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΟΣ 3. Τι Είναι Απόθεμα Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές. Απόθεμα Α, Β υλών και υλικών συσκευασίας: Είναι το απόθεμα των υλικών που χρησιμοποιούνται

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Γραµµική Εκτίµηση Τυχαίων Σηµάτων

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Γραµµική Εκτίµηση Τυχαίων Σηµάτων EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Εκτίµηση Τυχαίων Σηµάτων FIR φίλτρα: Ορίζουµε

Διαβάστε περισσότερα

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός:

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός: ΕΤΥ: Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Χειμερινό Εξάμηνο 2014-15 Τελική Εξέταση 28/02/15 Διάρκεια Εξέτασης: 3 Ώρες Ονοματεπώνυμο: Αριθμός Μητρώου: Υπογραφή: Ερώτημα: 1 2 3 4 5 6 Σύνολο Μονάδες:

Διαβάστε περισσότερα

Στοχαστικές Ανελίξεις- Ιούλιος 2015

Στοχαστικές Ανελίξεις- Ιούλιος 2015 Στοχαστικές Ανελίξεις- Ιούλιος 2015 ΟΔΗΓΙΕΣ (1) Απαντήστε σε όλα τα θέματα. Τα θέματα είναι ισοδύναμα. (2) Οι απαντήσεις να είναι αιτιολογημένες. Απαντήσεις χωρίς να φαίνεται η απαιτούμενη εργασία είναι

Διαβάστε περισσότερα

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0 ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής Δεσμευμένη αξιοπιστία Η δεσμευμένη αξιοπιστία R t είναι η πιθανότητα το σύστημα να λειτουργήσει για χρονικό

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ

ΔΙΟΙΚΗΣΗ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ- ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ (ΔΔΕ) ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ (MASTER) ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΕΡΓΩΝ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΩΝ» ΔΙΟΙΚΗΣΗ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ Αντικατάσταση Μηχανημάτων

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 9/3/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

Νικος Χαλιδιας Μαθηματικό Τμήμα κατεύθυνση Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών Πανεπιστημιο Αιγαιου

Νικος Χαλιδιας Μαθηματικό Τμήμα κατεύθυνση Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών Πανεπιστημιο Αιγαιου Νικος Χαλιδιας Μαθηματικό Τμήμα κατεύθυνση Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών Πανεπιστημιο Αιγαιου Θεωρημα 1 Εστω s S μια οποιαδήποτε κατάσταση μιας αδιαχώριστης Μαρκοβιανής αλυσίδας.

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Ορισμός των Ορθολογικών Προσδοκιών για Μία Περίοδο

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία

Διαβάστε περισσότερα

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας»

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Άσκηση 1. Έστω ότι μια επιχείρηση αντιμετωπίζει ετήσια ζήτηση = 00 μονάδων για ένα συγκεκριμένο προϊόν, σταθερό κόστος παραγγελίας

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης

Διάλεξη 04: Παραδείγματα Ανάλυσης Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

Κεφ. 9 Ανάλυση αποφάσεων

Κεφ. 9 Ανάλυση αποφάσεων Κεφ. 9 Ανάλυση αποφάσεων Η θεωρία αποφάσεων έχει ως αντικείμενο την επιλογή της καλύτερης στρατηγικής. Τα αποτελέσματα κάθε στρατηγικής εξαρτώνται από παράγοντες, οι οποίοι μπορεί να είναι καταστάσεις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΠΟΘΕΜΑΤΩΝ. Ι. Προσδιοριστικά Μοντέλα αποθεµάτων

ΘΕΩΡΙΑ ΑΠΟΘΕΜΑΤΩΝ. Ι. Προσδιοριστικά Μοντέλα αποθεµάτων ΘΕΩΡΙΑ ΑΠΟΘΕΜΑΤΩΝ Οι αποφάσεις σχετικά µε την διαχείριση ή «πολιτική» των αποθεµάτων που πρέπει να πάρει κάποιος, ασχολείται µε το «πόσο» πρέπει να παραγγείλει (ή να παράγει) και «πότε» να παραγγείλει

Διαβάστε περισσότερα

7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ

7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ 7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ Για να αναπτυχθούν οι βασικές έννοιες της δυναμικής του εργοστασίου εισάγουμε εδώ ορισμένους όρους πέραν αυτών που έχουν ήδη αναφερθεί σε προηγούμενα Κεφάλαια π.χ. είδος,

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: Logistics και Συστήματα JIT. Επιβλέπων Καθηγητής :Ιωάννης Κωνσταντάρας Σπουδάστρια :Κοντάρα Δέσποινα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: Logistics και Συστήματα JIT. Επιβλέπων Καθηγητής :Ιωάννης Κωνσταντάρας Σπουδάστρια :Κοντάρα Δέσποινα ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: Logistics και Συστήματα JIT Επιβλέπων Καθηγητής :Ιωάννης Κωνσταντάρας Σπουδάστρια :Κοντάρα Δέσποινα Κεφάλαιο 1ο: Logistics Κεφάλαιο 2ο: Συστήματα J.I.T. Logistics Ορισμος των Logistics

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL ΠΡΟΒΛΗΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ( Μαθηματικών Γ Γυμνασίου έκδοση ΙΑ 99 σελ. 236 / Έχει γίνει μετατροπή των δρχ. σε euro.) Ένας κτηνοτρόφος πρόκειται να αγοράσει

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΣΥΝΔΥΑΣΤΙΚΗΔΟΜΗ:

Διαβάστε περισσότερα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο Υπόδειγμα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο Υπόδειγμα Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες Το Πρωτοβάθμιο Υπόδειγμα Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Ορισμός των Ορθολογικών Προσδοκιών για Μία Περίοδο στο Μέλλον Η ορθολογική

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Αν το αποτέλεσμα ενός τυχαίου πειράματος είναι - ένας αριθμός R, τότε μπορεί να εκφραστεί με μία τ.μ. Χ R - αριθμοί R τότε μπορεί να εκφραστεί με ένα τ.δ. Χ

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 12 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΘΕΜΑ 1 ο Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Μία εταιρεία παροχής ολοκληρωμένων ευρυζωνικών υπηρεσιών μελετά την

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Μοντέλα Διαχείρισης Αποθεμάτων

Μοντέλα Διαχείρισης Αποθεμάτων Μοντέλα Διαχείρισης Αποθεμάτων 2 Εισαγωγή (1) Ο όρος απόθεμα αναφέρεται σε προϊόντα και υλικά που αποθηκεύονται από την επιχείρηση για μελλοντική χρήση Τα αποθέματα μπορεί να περιλαμβάνουν Πρώτες ύλες

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Τυχαία Σήματα Γενίκευση τυχαίων διανυσμάτων Άπειρο σύνολο πιθανά αριθμήσιμο από τυχαίες μεταβλητές Παραδείγματα τυχαίων σημάτων: Τηλεπικοινωνίες: Σήμα πληροφορίας

Διαβάστε περισσότερα

Το µαθηµατικό µοντέλο του Υδρονοµέα

Το µαθηµατικό µοντέλο του Υδρονοµέα Ερευνητικό έργο: Εκσυγχρονισµός της εποπτείας και διαχείρισης του συστήµατος των υδατικών πόρων ύδρευσης της Αθήνας Το µαθηµατικό µοντέλο του Υδρονοµέα Ανδρέας Ευστρατιάδης και Γιώργος Καραβοκυρός Τοµέας

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων

Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Διάλεξη 6: Εισαγωγή στην Ουρά M/G/1 Δρ Αθανάσιος Ν Νικολακόπουλος ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής 18 Νοεμβρίου 2016

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μαθηματική τεχνική για αντιμετώπιση προβλημάτων λήψης πολυσταδιακών αποφάσεων Συστηματική διαδικασία εύρεσης εκείνου του συνδυασμού αποφάσεων που βελτιστοποιεί τη συνολική απόδοση

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων ΚΕΦΑΛΑΙΟ 4 ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων Η περιγραφή του ΔΑΣΕΣ στο προηγούμενο κεφάλαιο έγινε με σκοπό να διευκολυνθούν οι αποδείξεις

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΤΜΗΜΑ ΔΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΑ: ) ΠΙΝΑΚΕΣ ) ΟΡΙΖΟΥΣΕΣ ) ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4) ΠΑΡΑΓΩΓΟΙ ΜΑΡΙΑ ΡΟΥΣΟΥΛΗ ΚΕΦΑΛΑΙΟ ΠΙΝΑΚEΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Πίνακας

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

Fermat, 1638, Newton Euler, Lagrange, 1807

Fermat, 1638, Newton Euler, Lagrange, 1807 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου

Διαβάστε περισσότερα

Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις

Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Προγραμματισμός & Έλεγχος Παραγωγής Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Στέλλα Σοφιανοπούλου Καθηγήτρια Πειραιάς 2012 Ενότητα 6.1 2 Τυπικά δεδομένα Ενότητα 6.3 Δοκιμή με σταθερή

Διαβάστε περισσότερα

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα Επανέκδοση

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 Συστήµατα αναµονής Οι ουρές αναµονής αποτελούν καθηµερινό και συνηθισµένο φαινόµενο και εµφανίζονται σε συστήµατα εξυπηρέτησης, στα οποία η ζήτηση για κάποια υπηρεσία δεν µπορεί να

Διαβάστε περισσότερα

3. Προσομοίωση ενός Συστήματος Αναμονής.

3. Προσομοίωση ενός Συστήματος Αναμονής. 3. Προσομοίωση ενός Συστήματος Αναμονής. 3.1. Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων,

Διαβάστε περισσότερα

Επαναληπτικές μέθοδοι

Επαναληπτικές μέθοδοι Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό Πληροφοριακά Συστήματα Διοίκησης Εισαγωγή στον Γραμμικό Προγραμματισμό Τι είναι ο Γραμμικός Προγραμματισμός; Είναι το σημαντικότερο μοντέλο στη Λήψη Αποφάσεων Αντικείμενό του η «άριστη» κατανομή περιορισμένων

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΣΑΡΩΣΗΣ ΚΑΙ ΑΞΙΟΠΙΣΤΙΑ ΣΥΣΤΗΜΑΤΩΝ

ΣΤΑΤΙΣΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΣΑΡΩΣΗΣ ΚΑΙ ΑΞΙΟΠΙΣΤΙΑ ΣΥΣΤΗΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Μεταξύ δύο περιορισμών, ο ένας πρέπει να ισχύει Έστω ότι για την κατασκευή ενός προϊόντος

Διαβάστε περισσότερα

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional).

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional). 3. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΥΣ Η Μέθοδος των Πεπερασµένων Στοιχείων Σηµειώσεις 3. Ενεργειακή θεώρηση σε συνεχή συστήµατα Έστω η δοκός του σχήµατος, µε τις αντίστοιχες φορτίσεις. + = p() EA = Q Σχήµα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις

Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Προγραμματισμός & Έλεγχος Παραγωγής Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Στέλλα Σοφιανοπούλου Καθηγήτρια Πειραιάς 2012 Ενότητα 7.1.2 Παράδειγμα προβλήματος χρονικού προγραμματισμού

Διαβάστε περισσότερα

Προγραμματισμός και έλεγχος αποθεμάτων. Source: Corbis

Προγραμματισμός και έλεγχος αποθεμάτων. Source: Corbis Προγραμματισμός και έλεγχος αποθεμάτων Source: Corbis Προγραμματισμός και έλεγχος αποθεμάτων Προγραμματισμός και έλεγχος αποθεμάτων Στρατηγική παραγωγής Η αγορά απαιτεί μια ποσότητα προϊόντων και υπηρεσιών

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη 5 ο Εξάμηνο 4 ο ΜΑΘΗΜΑ Δημήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τμήμα Στατιστικής & Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών

Διαβάστε περισσότερα

8. Πολλαπλές μερικές παράγωγοι

8. Πολλαπλές μερικές παράγωγοι 94 8 Πολλαπλές μερικές παράγωγοι Οι μερικές παράγωγοι,,, αν υπάρχουν, μιας συνάρτησης : U R R ( U ανοικτό ) είναι αυτές συναρτήσεις από το U στο R, επομένως μπορεί να ορισθεί για αυτές η έννοια της μερικής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@fme.aegean.gr Τηλ: 7035468 σ-άλγεβρα

Διαβάστε περισσότερα