TEHNIKA HLAĐENJA. Teorija apsorpcijskih rashladnih uređaja temelji se na termodinamici smjesa, jer rade sa smjesama dviju ili više tvari.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "TEHNIKA HLAĐENJA. Teorija apsorpcijskih rashladnih uređaja temelji se na termodinamici smjesa, jer rade sa smjesama dviju ili više tvari."

Transcript

1 . APSORPCIJSKI RASHLADNI UREĐAJI Teoij psopcijski slni ueđj temelji se n temoinmici smjes, je e s smjesm viju ili više tvi. Rzlikuju se vije gupe: slni ueđji s kontinuinim pogonom (češće se pimjenjuju) slni ueđji s iskontinuinim pogonom (ovje se neće zmtti). Diskontinini pogon se njčešće koisti zbog tog što je sobent kut tv. Većin psopcijski ueđj s kontinuinim pogonom i s vojnim smjesm, ko što su vo monijk (H O NH 3 ), ili litijev bomi vo (LiB H O). D bi se zumio psopcijski slni ueđj, potebno je poznvti osnove temoinmike smjes. Ktk pikz n je u nstvku... DVOJNE SMJESE Smjese obivmo miješnjem jenostvni tvi. Smjese mogu biti omogene i eteogene. Homogene smjese imju svugje isti tlk p, tempetuu T ( ), gustoću ρ, i sstv (u svim, m kko mlim volumenim ). Tipične omogene smjese sstvljene su iz v plin, li im i omogeni smjes i ko kpljevin (np lkool i vo) i kuti tvi. Heteogene smjese nemju ov svojstv. Pimje eteogene smjese je np. smjes voe i ulj. Homogene smjese se ne mogu bez potošk stviti n sstvne ijelove. Heteogene smjese možemo smim meničkim sestvim, teoetski bez potošk, zvojiti n omogene fze iz koji su sstvljene. Smjese mogu biti sstvljene iz vije ili više tvi. Smjese koje se sstoje iz vije tvi nzivju se vojne ili binne smjese. Što se smjes sstoji iz više tvi zmtnj su zmšenij. Stnje smjese se može jenoznčno oeiti ko je poznt tlk p, tempetu T, i sstv. Tv Tv Svojstv tvi oznčvmo s. Svojstv tvi oznčvmo s. s s Svojstv smjese oznčvmo bez ctice. v v Smjes mse M kg sži M kg tvi i M tvi. Mseni uio tvi u kg smjese oznčvmo s. M M M M + M M + M M Ako u kg smjese im kg tvi on im - kg tvi. 78

2 z čistu tv vijei 0 z čistu tv vijei sstv smjese keće se o 0 o... Toplinske pojve ko miješnj (s i bez ovođenj topline) Sl... Ustljeno miješnje (miješnje se ovij ko pconst.) Ko miješnj ielni plinov jenke tempetue tempetu se pilikom miješnj ne mijenj ukoliko se izvn ne ovoi niti ovoi toplin. To ost točno vži i z elne plinove ukoliko ne nstju kemijske ekcije. Ko miješnj kpljevin više nije tko. Ko neki smjes pilikom mješnj tempetu ste, ok se ko ugi jvlj sniženje tempetue tj. općenito govoeći tempetu se mijenj. Želimo li miješnje bue izveeno tko tempetu smjese bue jenk početnoj tempetui momo mješlištu ovesti ili ovesti toplinu. Tu toplinu nzivmo izotemn toplin miješnj i oznčujemo je s t, on ovisi o vsti smjese i sstvu, ko neki smjes i o tempetui. T toplin može biti t > 0 ko toplinu teb ovoiti i t < 0 ko toplinu teb ovoiti, ili t 0 ko ne teb ovoiti ni ovoiti. t se izžv u kj/kg smjese. Z 0 i t 0 0 tv ( H O ) ( t ) 0 0 ( t ) 0 tv ( NH 3 ) pkonst t ne ovisi o tempetui Sl... Toplin miješnj voe i monijk t ovisi o tempetui Sl..3. Toplin miješnj voe i etnol Tvi i n slikm.. i.3. su pije miješnj imle tempetuu 0 C. 79

3 Ako je t > 0, tebmo ovoiti toplinu ožimo istu tempetuu, p je t moguće miješnjem viju tvi ostviti lđenje. Toplin miješnj je u uskoj vezi s entlpijom smjese. Pem pvom glvnom stvku vijei. - vp v p Ako se miješnje ovij ko p const., slijei p0 i p - t kj/kg smjese - entlpij smjese nkon miješnj - entlpij tvi (suionik) pije miješnj ( ) + - specifičn entlpij tvi ko tempetue - specifičn entlpij tvi ko tempetue ko se z entlpiju smjese nkon miješnj piše:, on je t t - {( - ) + } t + {( - ) + }... Mekelov - ijgm ' konst + ( ) t t >0 t <0 '' ( ) 0 tv tv Sl..4. Toplin miješnj i izoteme u - ijgmu t obiveno mjeenjim i uneseno u ijgm. Z t 0 entlpij smjese jenk je entlpiji tvi pije miješnj. 80

4 Izotem z više tempetue ie pem goe, z niže pem olje. Izotemn toplin miješnj - izotemn integln toplin miješnj može se oeiti tko posui u kojoj se nlzi (- 0 ) kg tvi oveemo 0 kg tvi i izmjeimo toplinu t koju teb ovesti temp. ostne nepomjenjen, ili se posui u kojoj se nlzi (- 0 ) kg tvi postepeno oju mle količine tvi i svki put se izmjei potebn toplin miješnj. U ob slučj topline t moju biti jenke...3. Miješnje U posui su vije tvi oijeljene pegom koj se može pomicti. Sl..5. Pomjen volumen pi miješnju v v 0 - volumen pije miješnj ( ) v + v 0 Ako poignemo pegu nivo će se povisiti ili sniziti i u posui će smjes zuzeti volumen v v0. Ko neki kpljevin volumen se povećv, ko ugi smnjuje, ko neki smnjuje o nekog sstv ztim se povećv (ovo svojstvo može se koistiti ko mjeenj sstv smjese). n jenom ijelu smnjenje, n jenom povećnje volumen volumen se smnjuje Sl..6. Dijgm pomjene volumen pi miješnju 8

5 ..3.. Pvilo miješnj i tempetu miješnj Mješlištu se ovoe vije stuje o koji je svk smjes viju tvi ( i ). μ kg,, p, v, μ kg,, p, v, Mješlište kg m,, p, v, Sl..7. Uz bilnce tvi i topline pi miješnju Bilnc ukupne količine tvi je μ + μ μ je uio smjese sstv u kg smjese sstv μ je uio smjese sstv u kg smjese sstv p p p - usvjmo su tlkovi jenki Postvljju se 3 bilnce :. Ukupn bilnc tvi μ + μ. Bilnc tvi μ + μ 3. Bilnc topline μ + μ m iz. i. μ, μ m + tj izz možemo peočiti u ijgmu ko to uvstimo u 3. bilncu ( ) Sl..8. Pvc miješnj u, - ijgmu - uz poznte,, μ i poznte,, μ iz ijgm se može oeiti m i 8

6 83 ( ) ( ) MN MN MN MN m m Z miješnje vži pvilo : U, - ijgmu leži stnje smjese ko toplinski nepopusnog miješnj uvijek n pvcu miješnj. Ovo pvilo nije vezno n to u kkvom se gegtnom stnju nlze stuje miješnj. Ako su poznte izoteme u, - ijgmu možemo očitti i tempetuu smjese nkon miješnj m Sl..9. Pvc miješnj i tempetu smjese u, - ijgmu..3.. Miješnje uz ovođenje topline Ako se miješnje ne vši toplinski nepopusno t će entlpij poizveene smjese biti već ili mnj o potk koje je pvc miješnj, ovisno o tome li se toplin ovoi ili ovoi tj. li je > 0 ili je < 0. Uzmimo se mješlištu ovoi toplin. T je stnje nkon miješnj i gijnj H, entlpij nkon miješnj : Sl..0. Miješnje uz ovođenje topline u, - ijgmu 0 konst M m μ μ 0 konst M m μ μ H

7 Točk H koj pestvlj stnje smjese u, - ijgmu nkon miješnj i ovođenj topline ne leži više n pvcu miješnj već je z užinu izn pvc miješnj. Ukoliko se toplin ovoi t se točk H obije tko se nnosi o točke M pem olje...4. Ispivnje Ako se nekoj jenostvnoj tvi ovoi toplin ko konstntnog tlk, tempetu ste o tempetue venj ko koje tv počinje kipjeti stvjući mjeuiće pe. Uz ljnje ovođenje topline pe im sve više, tempetu se pilikom ispivnj ne mijenj. Tek k ispi cijel kpljevin, ko se i lje ovoi toplin tempetu počinje sti. Ako se nekoj omogenoj smjesi np. smjesi H O-NH 3 polznog sstv i tempetue ovoi toplin ko konstntnog tlk p, tempetu ste o tempetue venj ko koje smjes počinje kipjeti stvjući pi tome mjeuiće pe. Anlizom se može ustnoviti je tempetu nstle pe jenk tempetui kpljevine 3, li se sstv pe 3 zlikuje o sstv kpljevine. Sl... Ispivnje smjese u, - ijgmu Tv vije ko tlk pconst. i ko konstntne tempetue ( pestvlj tempetuu vele kpljevine i suozsićene pe tvi ) Tv vije ko tlk pconst. i ko konstntne tempetue Kpljevin stnj ugijv se o stnj, onosno o tempetue venj k se počnu stvti pvi mjeuići pe. T je p bogtij n tvi, tko je 3 > 3 vnotežni sstv pe z sstv kpljevine ko tlk p i ko tempetue. Kpljevin stnj u vnoteži je s pom stnj 3. Kko je 3 >, ljnjim ispivnjem peostl kpljevin osiomšuje n tvi. Osim tog ljnjim ispivnjem tempetu ste iko se tlk nije pomjenio. Peostl kpljevin sve je siomšnij s tvi. Znje kpljice kpljevine biti će sstv 7. Ako ovođenjem topline olzimo u stnje 4 u posui se nlzi smjes kpljevine stnj 5 i pe stnj 6 iste tempetue Sstv 5 6. ( 5 sstv kpljevine, 6 sstv pe). Ko tempetue 4 u vnoteži je kpljevin stnj 5 i p stnj 6. 84

8 Poizveen p (8) im isti sstv ko i početn kpljevin. Nkon što sv kpljevin ispi, p će se pegijti i ponšti ko svk plinsk smjes. Mogu se oeiti vnotežn stnj pe i kpljevine z zličite sstve. Linij ošenj obije se ko spojimo stnj vnotežne pe. Linij venj obije se ko spojimo stnj vele kpljevine. Z viši tlk p, te linije će ležti više je je tempetu venj viš. U kg smjese stnj 4 im ϕ kg kpljevine stnj 5 i δ kg pe stnj 6, p vijei δ +ϕ Količin tvi mo z vijeme ispivnj ostti ist, p je 4 δ 6 + ϕ5. Slijei ϕ δ Ko znog tlk nemju vojne smjese z zliku o jenostvni tvi jenu jeinu tempetuu venj već se on mijenj s sstvom. Z vijeme ispivnj ko konstntnog tlk mijenj se sstv kpljevine i sstv pe, posječni sstv ostje isti. Z vijeme ispivnj tempetu ste. U, - ijgmu linije venj i ošenj se sstju u točki z čistu tv i z čistu tv je z čiste tvi nem zlike u sstvu kpljevine i pe, ispivnje je ko konstntne tempetue. 0 0 Sl..., - ijgm z venj pi zličitim tlkovim Ko viši tlkov poučje između linije ošenj i venj je uže nego ko niži. Tv ko tlk p vije ko tempetue, tv ko tempetue. Iz ijgm se može vijeti je sstv pe koj nstje iz kpljevine sstv ovisn o tlku p. 85

9 Ko tlk p iz kpljevine zvij se vnotežn p sstv mnjeg o sstv vnotežne pe z p. Z p < p < p 3 sstv pe > > Ukpljivnje υ Sl..3. Ukpljivnje povite smjese u, - ijgmu Pegijn pu stnj sstv li se ok se ne postigne tempetu (točk ). Tu se pojvljuju pve kpljice konenzt sstv 3. Dljnjim lđenjem p postje bogtij n tvi je konenzt koji nstje im niži sstv o. Ko tempetue 4 kpljevin im sstv 6, p sstv 5. Posljenji tgovi pe koji konenziju imti će sstv 8, ko se kpljevin miješ, popimit će nkon potpune konenzcije pe sstv 7. N liniji venj leže stnj vele kpljevine, n liniji ošenj stnj suozsićene pe...6. Toplinske pojve ko ispivnj Ove pojve se ne mogu ptiti u, - ijgmu, već u, - ijgmu. Izoteme kpljevine ctju se n nije pikzn nčin, isto tko i izoteme pe z koje uzimmo su pvci buući se toplin miješnj ko p i plinov obično može znemiti, tj. 0. Z ispivnje tvi teb ovesti toplinu - f. Z ispivnje tvi teb ovesti toplinu - f. Pimje: - z vou p b, t venj 00 C, - f 56,685 kj/kg - z NH 3 p b, t ispiv. -33,5 C, - f 368,745 kj/kg Z neku tempetuu sstv kpljevine nnosimo n izotemu kpljevine, sstv pe nnosimo n izotemu pe. Izoteme u zsićenom poučju ctju se spjnjem vnotežni sstv n linijm ošenj i venj. Izoteme u poučju moke pe su to stmije što su bliže 0,. Z čiste tvi izoteme pju u ointne osi. t 86

10 Sl..4., - ijgm poučj ispivnj Sl..5. Toplinske pojve pi ispivnju D bi se pomjenilo stnje o o potebno je ovesti toplinu (sl..5). Tkođe je Z ispivnje smjese sstv potebno je ovesti toplinu 8 8 Izoteme u zsićenom poučju momo ctti z svki tlk posebno. U kpljevitom poučju istu mežu izotemi možemo pimjeniti z zličite tlkove. Z pojeine smjese to možemo pimijeniti n pegijno poučje. p < p < p 3 < p 4 Sl..6. Poučje zsićenosti z zličite tlkove 87

11 ..7. Azeotopske smjese Azeotopske se smjese ne vlju ko venj ko što je os opisno i pikzno u ijgmu, tj. linije venj i ošenj nemju ovkv tok. Im smjes s tempetunim minimumom i smjes s tempetunim mksimumom. 3 3 min ( p mx ) Sl..7., - ijgm zeotopske smjese s tempetunim minimumom venj (zličiti tlkovi) U točki A (zeotopsk točk) oiuju se linije venj i ošenj p p i kpljevin imju isti sstv. Smjes sstv vije ko jenostvn tv. Iz kpljevine sstv zvij se ko tempetue p sstv. Tempetu se ne mijenj ok cijel smjes ne ispi. Dkle, smjes ispuje ko jenostvn tv. Tempetu venj niž je o tempetu venj z bilo koji sstv ili bilo koji o suionik. Sstv z neku smjesu ovisi o tlku (točk A pomiče se s postom tlk ispivnj). Ko neki smjes pomicnje točke A je tko veliko točk A može nestti u jenoj o ointni osi. Ko smjes s tempetunim mksimumom, tempetuni je mksimum viši nego tempetu venj pvog ili ugog suionik. ( p mx min ) Sl..8., - ijgm zeotopske smjese s tempetunim mksimumom venj 88

12 ..8. Nepekino ispivnje Sl..9. Nepekino ispivnje bilnc tvi i topline Genetou pe (kotlu, kulu) se u ustljenom pogonu ovoi F & [kg/s] bogte otopine. Stv se p D & [kg/s] koj je bogtij n tvi o bogte otopine, tj. D > R. Iz geneto pe izlzi siomšn otopin F & [kg/s] sstv. Genetou se ovoi toplin Q & [ kj/s ]. Z D kg pe ovoi se toplin Q, je oveen toplin po jenom kilogmu poizveene pe. Postvljju se 3 bilnce :. Bilnc ukupne mse F& F& + D&, iz čeg slijei F& F& D&. Bilnc tvi : Bogtom otopinom ovoi se toliko tvi koliko se ovoi u pi i slboj otopini. ( F& D& ) F& D& +, okle slijei F& f - specifični optok jke otopine f i D & F& f - specifični optok slbe otopine f D & 3. bilnc topline ( F& D& ) Q & + F& D & + Q& D& ( ) + F& ( ) Q& [ kj/kg D& poizveene pe ] + ( ) [ kj/kg ] Toplinu možemo oeiti iz, -ijgm. Z oeđivnje teb znti stnj pe n izlzu iz geneto. 89

13 Rzlikuju se v gničn slučj stnj pe, ovisno o nčinu vođenj poces : Sl..0. Gnični slučjevi ovjnj pe iz geneto ) p je n izlzu u oiu s slbom otopinom, te je u gničnom slučju u vnoteži s njom ( ko ost velike povšine ) b) p je n izlzu u oiu s jkom otopinom, u gničnom slučju nstl p je u vnoteži s jkom otopinom P koj se zvij u genetou može biti u svim vnotežnim stnjim između ov v gničn slučj. Sl...Toplinske pojve pi nepekinom ispivnju - stnje jke otopine zno tempetuom i sstvom - slb otopin im tempetuu i sstv Stnje pe može biti između 8 i 9. P može biti zsićen ili pegijn, li i jenostvnosti uvijek je ctmo n liniji ošenj. Z oeđivnje spojimo i i použimo o, p n sjecištu obijemo točku 4 z sstv. u ijgmu pestvlj zliku entlpij 3-4. ( ) + ( )

14 ( ) ( ) , ( ) Pvilo pojekcij toplin Ko nepekinog ispivnj ukupn je oveen toplin D Q & &, toplin oveen po kg pe je D Q & & ili ( ) + Ako toplinu Q & želimo čunti po kg jke otopine mo biti zovoljen sljeeći izz: D F Q & & & - toplin koju teb ovesti po kg jke otopine ( ) ( ) Slično se može toplinu Q & čunti po kg slbe otopine ( ) D D F F Q & & & & & f D F D ( ) ( ) + Poveznost toplin, i može se vijeti u sljeećem ijgmu: Sl... Pvilo pojekcij toplin Iz slike slijei, onosno.

15 ..0. Apsopcij Ko konenzcije jenokomponentni tvi slni meij (vo, zk...) mo biti niže tempetue o pe koj konenzi. Ko smjes je moguće kpljevin psobi svu pu, li niti kpljevin niti slni meij ne moju imti nižu tempetuu o pe koju kpljevin psobi. Hlnij kpljevin može psobiti topliju pu i bez ovođenj topline, li je t potebn velik potok kpljevine. Apsobe je jen o osnovni ijelov psopcijski slni ueđj. Ako se u kpljevinu F & uvoi p (sl..3) o pesjek M - M, neće se psobiti cijel p, li ko ovoimo toplinu n izlzu ćemo imti kpljevinu F &. Sl..3. Apsopcij bilnc tvi i topline Kpljevin će psobiti pu ko tempetuu žimo ovoljno nisko. Općenito uzevši o pesjek M - M sv p nije psobin p M leži u zsićenom poučju. Želimo li se sv p psobi, teb ovoiti toplinu. Q & Po kg psobine pe ovoi se toplin. D& Toplin oveen po jenom kilogmu smjese F je Q F Sl..4. Apsopcij u, - ijgmu < < - tempetu slne voe 9

16 Tempetu je viš o - to je svojstvo smjes (nije moguće ko jenostvni tvi ) ϕ M - uio kpljevine, δ M - uio pe Što je točk M bliže liniji venj uio kpljevine je veći, uio pe mnji. Ovođenjem topline mijenj se smo tempetu, olzimo o stnj oznčenog točkom F u poučju kpljevine. Kpljevin stnj F može psobiti mlu količinu pe bez lđenj. Točk M bi t ležl u točki N. Imli bi toplinski nepopusno miješnje pe D & i kpljevine F &. Točk N ne smije peći liniju venj. Z psobciju iste količine pe D & ko u peonom slučju momo upotijebiti veliku količinu kpljevine F &, li ne teb sln vo. Kjnj točk je on koj leži izn - to je sjecište izoteme i linije venj z tlk p const. K bi se pešlo, jen io pe osto bi nepsobin. M - gničn točk U ovom slučju potebno je ovesti mnje topline nego u petonom slučju.... Pigušivnje Ko pigušivnj teb uočiti vije kkteistike : - sstv smjese pije pigušivnj jenk je sstvu nkon pigušivnj, tj. vijei - ko pigušivnj se ne mijenj entlpij ko pigušilištu niti ovoimo niti ovoimo toplinu, tj. vijei Sl..5. Pigušivnje u, - ijgmu Stnje je kpljevin, ok je stnje mješvin pe i kpljevine tj. točk leži u zsićenom poučju. < - tempetu nkon pigušenog ventil je niž o tempetue ispe pigušnog ventil. 93

11.2. JEDNOSTUPANJSKI APSORPCIJSKI RASHLADNI UREĐAJI

11.2. JEDNOSTUPANJSKI APSORPCIJSKI RASHLADNI UREĐAJI JEDNOSTUPANJSKI APSORPCIJSKI RASHLADNI UREĐAJI JEDNOSTAVNI JEDNOSTUPANJSKI UREĐAJ Sem njjenostvnijeg jenosteenog soijsog slnog ueđj s ontinuinim ogonom n je n slii D & [g/s] KONDENZATOR F & [g/s] GENERATOR

Διαβάστε περισσότερα

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi: tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. ANALITIČA GEOMETRIJA PROSTORA II. DIO (Pv).. Min Roić Linović 9./. Pv u otou Jenž v Nek je: T (,, ) n točk oto {,, } ni vekto mje Znom točkom oto oli mo v leln nim vektoom. T (,,) - oivoljn točk v

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

TEKSTOVI ZADATAKA (2. kolokvijum) iz Elektromagnetike (studijski program EEN, 2012/1)

TEKSTOVI ZADATAKA (2. kolokvijum) iz Elektromagnetike (studijski program EEN, 2012/1) TEKSTOV ZADATAKA (2. kolokvijum) iz Elektomgnetike (stuijski pogm EEN, 22/). Oeiti silu koj eluje n tčksto opteećenje Q smešteno izn polusfeične povone izočine nultog potencijl. 2. Oeiti elimične kpcitivnosti

Διαβάστε περισσότερα

Gravitacija ZADACI ZA SAMOSTALNI RAD STUDENATA OSNOVE FIZIKE 1

Gravitacija ZADACI ZA SAMOSTALNI RAD STUDENATA OSNOVE FIZIKE 1 Oje z fiziku eučiište Joi Juj toye itcij ADACI A AOALNI AD UDENAA ONOVE IIKE. Oeite eio obik jeec oko eje ko zno je enji ouje eje 670 k, je enj ujenot izeñu eje i jeec,8 0 8 i oć (uniezn) gitcijk kontnt

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk

Διαβάστε περισσότερα

( ) p a. poklopac. Rješenje:

( ) p a. poklopac. Rješenje: 5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p

Διαβάστε περισσότερα

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N.

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N. Osnove strojrstv Prvilo izolcije i uvjeti rvnoteže Prijeri z sostlno rješvnje 1. Gred se, duljine uležišten je u točki i obješen je n svoje krju o horizontlno uže. Izrčunjte horizontlnu i vertiklnu koponentu

Διαβάστε περισσότερα

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu

Διαβάστε περισσότερα

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH

Διαβάστε περισσότερα

4. Trigonometrija pravokutnog trokuta

4. Trigonometrija pravokutnog trokuta 4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz

Διαβάστε περισσότερα

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote

Διαβάστε περισσότερα

Rijeseni neki zadaci iz poglavlja 4.5

Rijeseni neki zadaci iz poglavlja 4.5 Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

Kinematika materijalne toke. 3. dio a) Zadavanje krivocrtnog gibanja b) Brzina v i ubrzanje a

Kinematika materijalne toke. 3. dio a) Zadavanje krivocrtnog gibanja b) Brzina v i ubrzanje a Kinemik meijlne oke 3. dio ) Zdnje kiocnog gibnj b) Bzin i ubznje 1 Kiocno gibnje meijlne oke Položj meijlne oke u skom enuku emen možemo definii n slijedee nine: 1. Vekoski nin defininj gibnj (). Piodni

Διαβάστε περισσότερα

1 Ekstremi funkcija više varijabli

1 Ekstremi funkcija više varijabli 1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,

Διαβάστε περισσότερα

1.PRIZMA ( P=2B+M V=BH )

1.PRIZMA ( P=2B+M V=BH ) .RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

niska, pojas uparivanja ( ξ ) postaje uzak. U tom slučaju, a i onda kada je ϑ

niska, pojas uparivanja ( ξ ) postaje uzak. U tom slučaju, a i onda kada je ϑ EHNIKA HAĐENJA 11 DVOSUPANJSKI APSORPCIJSKI RASHADNI UREĐAJI K je temetu sle oe is ili je temetu ojeo meij isk, ojs uij ( ) ostje uzk U tom slučju, i o k je isk, oteb je F& eliki secifiči ot jke otoie

Διαβάστε περισσότερα

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β TRUG Mngug kji im ti stnie zve se tug. snvni elementi tugl su : - Temen,, - Stnie,, ( p dgvu stnie se eležvju nsupt temenu, np nspm temen je stni, itd) - Uglvi, unutšnji α, β, γ i spljšnji α, β, γ γ α

Διαβάστε περισσότερα

Dva kondenzatora kapaciteta 4 µf i 6 µf spojena su u seriju. Koliki je rezultantni kapacitet? C 2 3 6

Dva kondenzatora kapaciteta 4 µf i 6 µf spojena su u seriju. Koliki je rezultantni kapacitet? C 2 3 6 Ztk (Anij, tehničk škol) konenztou elektonske bljesklice fotogfskog pt, čiji je kpcitet µ, pohnjen je enegij J. Koliki nboj poñe koz bljesklicu ko se koz nju konenzto potpuno ispzni? Rješenje = µ = -4,

Διαβάστε περισσότερα

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke Kioco gibje meijle oke Kiemik meijle oke. dio ) Zje kiocog gibj b) Bi i ubje Položj meijle oke u skom euku eme možemo defiii slijedee ie:. Vekoski i defiij gibj (). Piodi i defiij gibj s s (). Vekoski

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Budući da je u jednakokračnom pravokutnom trokutu visina osnovice jednaka polovini osnovice, vrijedi: a 2

Budući da je u jednakokračnom pravokutnom trokutu visina osnovice jednaka polovini osnovice, vrijedi: a 2 Zdtk (Romn, gimnzij) Sdnji jdnkokčnog tpz im duljinu 5 ko su dijgonl mđusono okomit, kolik j njgo pošin? Rjšnj udući d j u jdnkokčnom pokutnom tokutu isin osnoi jdnk poloini osnoi, ijdi: x = + = x + y

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa,

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa, Alitičk geoetrij i lier lger Vektori KOORDINATNI SUSTAV Krteijev prvokuti koorditi sustv Krteijev trodieioli prvokuti koorditi sustv čie eđusoo okoite osi: O os pscis O os ordit O os plikt točk O ishodište

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti.

Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. Osnove elektrotehnike I prcijlni ispit 3..23. RIJNT Prezime i ime: roj indeks: Profesorov prvi postult: Što se ne može pročitti, ne može se ni ocijeniti... U vzdušni pločsti kondenztor s rstojnjem između

Διαβάστε περισσότερα

a) Kosi hitac Krivolinijsko gibanje materijalne toke Sastavljeno gibanje Specijalni sluajevi kosog hica: b) Horizontalni hitac c) Vertikalni hitac

a) Kosi hitac Krivolinijsko gibanje materijalne toke Sastavljeno gibanje Specijalni sluajevi kosog hica: b) Horizontalni hitac c) Vertikalni hitac ) Kosi hic Kriolinijsko ibnje merijlne oke Ssljeno ibnje 5. dio 3 4 Specijlni slujei koso hic: b) orizonlni hic c) Veriklni hic b) orizonlni hic c) Veriklni hic 5 6 7 ) Kosi hic 8 Kosi hic (bez opor zrk)

Διαβάστε περισσότερα

σ (otvorena cijev). (34)

σ (otvorena cijev). (34) DBLOSTJN POSUD CIJVI - UNUTARNJI ILI VANJSKI TLAK 8 "Dobo je htjeti, ali teba i znati." Z. VNUČC, 9. NAPRZANJA I POMACI DBLOSTJN POSUD ILI CIJVI NASTAVAK. Debelostjena osa oteećena ntanjim tlaom Debelostjena

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006.

Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006. šnj A/ kolokvijum iz prdmt MENI SISEMI U ELEKOMUNIKACIJAMA. jnur. Zdtk. D i prikznim urđjm mogl mriti mplitud čtvrtog hrmonik u mmorijki lok tr d ud upin ditrovn zin unkcij ( t) y co π Izlz iz urđj j td

Διαβάστε περισσότερα

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

IZVOD FUNKCIJE Predpostvimo d je unkcij deinisn u nekom intervlu, i d je tčk iz intervl, iksirn. Uočimo neku proizvoljnu tčku iz tog intervl,. Ov tčk može d se pomer levo desno, p ćemo je zvti promenljiv

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata]

c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata] Zdtk (Tihomir, tehničk škol) c = 8 i. Rješenje Prikži vektor c ko linernu kombinciju vektor i b ko je = i + 3 j, b = 4 i 3 j, Nek su i b vektori i α, β relni brojevi. Vektor c = α + β b nzivmo linernom

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim

Διαβάστε περισσότερα

p d R r E 1, ν 1 Slika 15. Stezni spoj glavčina-osovina (vratilo); puna osovina (slika a), šuplja osovina (slika b)

p d R r E 1, ν 1 Slika 15. Stezni spoj glavčina-osovina (vratilo); puna osovina (slika a), šuplja osovina (slika b) BLOSTJN POSU JV - STZN SPOJ STZN SPOJ zazi za naezanja i omake ko sastavljenih cijevi mogu se abiti ko oačuna steznog soja gje elementi soja mogu biti o istog ili o azličitih mateijala.. SPOJ OSOVN GLAVČN

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog

Διαβάστε περισσότερα

4. Relacije. Teorijski uvod

4. Relacije. Teorijski uvod VI, VII i VIII dvoqs veжbi Vldimir Blti 4. Relije Teorijski uvod Podsetimo se n neke od pojmov veznih z skupove, koji su nm potrebni z uvođeƭe pojm relije. Dekrtov proizvod skup iniemo n slede i nqin:

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A : PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Složeni cevovodi

MEHANIKA FLUIDA. Složeni cevovodi MEHANIKA FLUIDA Složeni cevovoi.zaata. Iz va velia otvorena rezervoara sa istim nivoima H=0 m ističe voa roz cevi I i II istih prečnia i užina: =00mm, l=5m i magisalni cevovo užine L=00m, prečnia D=50mm.

Διαβάστε περισσότερα

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školsk 0./04. godin TEST MATEMATIKA UPUTE ZA RAD Test koji trebš riješiti im 0 zdtk. Z rd je predviđeno 0 minut. Zdtke ne morš rditi prem redoslijedu

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F

SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F SLIČNOST TROUGLOV Z dve figure F i F kžemo d su slične ( s koefiijentom sličnosti k ) ko postoji trnsformij sličnosti koj figuru F prevodi u figuru F. Činjeniu d su dve figure slične obeležvmo s F F. Sličnost

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

α =. n n n Vježba 001 Koliko stranica ima pravilni mnogokut ako jedan njegov unutarnji kut iznosi 144? Rezultat: n = 10.

α =. n n n Vježba 001 Koliko stranica ima pravilni mnogokut ako jedan njegov unutarnji kut iznosi 144? Rezultat: n = 10. Zdtk (Mrij, gimzij) Koliko stric im prvili mogokut ko jed jegov uutrji kut izosi 8? Rješeje Formul z veličiu jedog uutrjeg kut prvilog mogokut je: ( ) 8 α = ( ) 8 8 = / 8 = ( ) 8 8 = 8 6 8 8 = 6 7 = 6

Διαβάστε περισσότερα

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Istosmjerni krugovi. 1. zadatak. Na trošilu će se trošiti maksimalna snaga u slučaju kada je otpor čitavog trošila jednak unutrašnjem otporu izvora.

Istosmjerni krugovi. 1. zadatak. Na trošilu će se trošiti maksimalna snaga u slučaju kada je otpor čitavog trošila jednak unutrašnjem otporu izvora. Strnic: X stosmjerni krugovi Prilgođenje n mksimlnu sngu. Rješvnje linernih mrež: Strnic: X. zdtk Otpor u kominciji prem slici nlzi se u posudi u kojoj vld promjenjiv tempertur. Pri temperturi ϑ = 0 C,

Διαβάστε περισσότερα

FURIJEOVI REDOVI ZADACI ( II

FURIJEOVI REDOVI ZADACI ( II FURIJEOVI REDOVI ZADACI ( II deo Primer. Fukciju f ( = rzviti u Furijeov red segmetu [,] ztim izrčuti sumu red. ( Rešeje: Kko je f ( = = = f ( zkjučujemo d je fukcij pr. Koristimo formue: = f ( = + ( cos

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

Sortiranje prebrajanjem (Counting sort) i Radix Sort

Sortiranje prebrajanjem (Counting sort) i Radix Sort Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

MEHANIKA FLUIDA I Što valja zapamtiti 9 3. STATIKA FLUIDA. p (izražava ravnotežu masenih sila i sila tlaka).

MEHANIKA FLUIDA I Što valja zapamtiti 9 3. STATIKA FLUIDA. p (izražava ravnotežu masenih sila i sila tlaka). MENIK FLUID I Što vlj zpmtiti 9. STTIK FLUID snovn jedndžb sttike (slučj i ) p fi ili f rdp (izržv rvnotežu mseni sil i sil tlk). i Iz osnovne jedndžbe sttike imjući n umu svojstv rdijent zključuje se:

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Priprema za ispit - RJEŠENJA

Priprema za ispit - RJEŠENJA Priprem z ispit - RJEŠENJA 1. Odredi duljinu strnie i kutove trokut ABC ko je = 16 m, = 11.2 m te + = 93⁰. = 16 m = 11.2 m + = 93⁰,,, =? Njprije ćemo izrčunti kut jer je = 180⁰ - ( + ) = 87⁰ No, sd znmo

Διαβάστε περισσότερα

PRIMENA INTEGRALA

PRIMENA INTEGRALA www.mtmtinj.com PRIMENA INTEGRALA P ngo što knmo s izčunvnjm povšin, dužin luk, zpmin ili povšin otcion povši momo odditi: - pomoću p tčk ispitmo tok i nctmo kivu kivko j to nophodno - gnic intgl nđmo

Διαβάστε περισσότερα

Dinamika krutog tijela. 14. dio

Dinamika krutog tijela. 14. dio Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

ILIŠTA U RIJECI Zavod za elektroenergetiku. Elektrostatika. Električni potencijal Električni napon. Osnove elektrotehnike I: Elektrostatika

ILIŠTA U RIJECI Zavod za elektroenergetiku. Elektrostatika. Električni potencijal Električni napon. Osnove elektrotehnike I: Elektrostatika TEHNIČKI FKULTET SVEUČILI ILIŠT U RIJECI Zavod za elektoenegetiku Studij: Peddiplomski stučni studij elektotehnike Kolegij: Osnove elektotehnike I Pedavač: v. ped. m.sc. anka Dobaš Elektostatika Elektični

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Osnovna škola. b) Koliko prstenova treba objesiti na kukicu s lijeve strane na slici 2 da bi poluga bila u ravnoteži? 1 3 F/N

Osnovna škola. b) Koliko prstenova treba objesiti na kukicu s lijeve strane na slici 2 da bi poluga bila u ravnoteži? 1 3 F/N ŠKOLSKO/OPĆINSKO NTJENJE IZ FIZIKE 2.2.2009. Osnovn škol Uut: U svim zdcim gdje je to otrebno koristiti g = 10 N/kg. 1. zdtk (7 bodov) ) Slik 1 rikzuje olugu u rvnoteži n kojoj se nlze dv rsten i neoznti

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα