Σχήµα 20. οι οριζόντιες συνιστώσες των ταχυτήτων v! προσπτώσεως και ανακλάσεως αντιστοίχως του σφαιριδίου, T!

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σχήµα 20. οι οριζόντιες συνιστώσες των ταχυτήτων v! προσπτώσεως και ανακλάσεως αντιστοίχως του σφαιριδίου, T!"

Transcript

1 Ένα στερεό σώµα εκτελεί επίπεδη κίνηση και δύο σηµεία αυτού βρίσκονται κάποια στιγµή t στις θέσεις Α(,) και Β(,α) του επιπέδου κίνησής του (x,y) Εάν οι ταχύτητες των σηµείων αυτών έχουν το ίδιο µέτρο v και κατευθύνονται όπως στο σχήµα (9), να βρείτε την γωνιακή ταχύτητα περιστροφής του στερεού την στιγµή t Δίνεται η γωνία φ του διανύσµατος της ταχύτητας του Β µε τον άξονα x ΛΥΣΗ: Eφ όσον τα διανύσµατα των ταχυτήτων v A, v B των σηµείων Α, Β αντιστοίχως έχουν την χρονική στιγµή t τις κατευθύνσεις που φαίνονται στο σχήµα (9), η γωνιακή ταχύτητα του σώµατος πρέπει την στιγµή αυτή να είναι αντίρροπη προς το µοναδιαίο διάνυσµα k του άξονα z του καθέτου προς το επίπεδο κίνησης xy, διότι τότε θα ανταποκρίνεται στην σχέση: v B = v A + " AB () Σχήµα 9 Eάν i, j είναι τα µοναδιαία διανύσµατα των αξόνων x, y αντιστοίχως, η δια νυσµατική σχέση () γράφεται: [ ] v B "#$ i + v B %µ$ j = v A "#& i + v A %µ& j + ' k j v"#$ i + v%µ$ j = v"#& i + v%µ& j + '( k ) j v"#$ i + v%µ$ j = v"#& i + v%µ& j '( i () Από την () προκύπτουν οι σχέσεις: vµ" = vµ# v$%&" = v$%&" '( ) + µ" = µ# v$%&" = '( ) + = " ( ) # = v$%& ' H ζητούµενη γωνιακή ταχύτητα του στερεού είναι: = v"#$% & k PM fysikos

2 Mικρό σφαιρίδιο προσπίπτει επί οριζόντιου δαπέ δου υπό γωνια φ και ανακλάται υπό γωνία φ Εάν ο συνελεστής τριβής ολίσθησης µεταξύ του σφαιριδίου και του δαπέδου είναι n, να βρείτε τον συντελεστή κρούσεως σφαιριδίουδαπέδου Να δεχθείτε ότι κατα τον µικρό χρόνο επαφής του σφαιριδίου µε το δάπεδο αυτό ολισ θαίνει και στην συνέχεια αναπηδά ΛΥΣΗ: Eφαρµόζοντας για το σφαιρίδιο το θεώρηµα ώθησηςορµής κατά τον πολύ µικρό χρόνο Δt της κρούσεώς του µε το δάπεδο και κατά την διεύθυνση του οριζόντιου άξονα x, παίρνουµε την σχέση: mv x = mv x Tt mv µ" = mv µ" nn#t nnt = mv "µ# mv "µ# () Σχήµα όπου v x, v x οι οριζόντιες συνιστώσες των ταχυτήτων v, v προσπτώσεως και ανακλάσεως αντιστοίχως του σφαιριδίου, T η τριβή ολισθήσεως και N η κάθετη αντίδραση που δέχεται το σφαιρίδιο από το δάπεδο Eφαρµόζοντας για το σφαιρίδιο το ίδιο θεώρηµα για τον ίδιο χρόνο κατά την διεύθυνση του κατακόρυφου άξονα y παίρνουµε την σχέση: mv y = mv y + Nt mgt () Όµως η ώθηση m g t του βάρους m g του σφαιριδίου συγκρινόµενη προς την αντίστοιχη ώθηση N t της κρουστικής δύναµης N είναι ασήµαντη και µπορεί χωρίς αισθητό σφάλµα να παραληφθεί, οπότε η σχέση () γράφεται: mv "#$ = mv "#$ + N%t Nt = mv "#$% + mv "#$% () Διαιρώντας κατά µέλη τις () και () παίρνουµε: n = v µ" v µ" n( v v #$%" + v #$%" "#$ + v "#$ ) = v %µ$ v %µ$ (4) Eξάλλου κατά τον άξονα y η κρουση του σφαιριδίου µε το δάπεδο είναι µετωπική µε συντελεστή κρούσεως e που δίνεται από την σχέση:

3 e = v y v y = v y v y = v "#$ v "#$ v = e"#$ "#$ v (5) Συνδυάζοντας την () µε την (5) έχουµε την σχέση: % n e"#$ ( ' v "#$ "#$ + v "#$ = v +µ$ e"#$ v & ) "#$ +µ$ n( e"#$ +"#$ )"#$ = %µ$ "#$ e"#$ %µ$ e( n"#$ +%µ$ ) "#$ = (n"#$ + %µ$ ) "#$ ( ( ) #$%" ) #$%" PM fysikos e = µ" n#$%" n#$%" +µ" Στην διάταξη του σχήµατος () το κολλάρο (κ) έχει µάζα m K και µπορεί να ολισθαίνει χωρίς τριβή κατα µήκος κατα κόρυφου σταθερού οδηγού (α) Η ράβδος ΑΒ είναι οµογενής µήκους L και µάζας m Ρ, η δε άκρη της Α είναι αρθρωµένη στο κολλάρο ενώ η άλλη της άκρη Β είναι αρθρωµένη στο κέντρο κυκλικού δίσκου, ο οποίος µπορεί να ολισθαίνει επί λείου οριζόντιου δαπέδου Αρχικά το σύστηµα κρατείται ακίνητο µε την ράβδο υπό κλίση φ ως προς την οριζόντια διεύθυνση και κάποια στιγµή αφήνεται ελεύθερο Να βρείτε την ταχύτητα του κολλάρου την στιγµή που η ράβδος γίνεται οριζόντια Δίνεται η επιτάχυνση g της βαρύτητας και η ροπή αδρά νειας Ι=m Ρ L της ράβδου ως προς άξονα διερχόµενο από το άκρο της και κάθετο στην ράβδο ΛΥΣΗ: Καθώς το κολλάρο κινείται προς τα κάτω κατά µήκος του οδηγού (α) η ράβδος ΑΒ εκτελεί επίπεδη κίνηση, που ισοδυναµεί µε περιστροφή αυτής περί οριζόντιο άξονα που διέρχεται από το εκάστοτε στιγµιαίο κέντρο περιστροφής Κ της ράβδου, το οποίο προκύπτει ως τοµή των καθέτων ευθείων στα διανύσ µατα v A, v B των ταχυτήτων στις άκρες Α και Β της ράβδου (σχ ) Είναι προ φανές ότι την στιγµή που η ράβδος γίνεται οριζόντια το Κ τείνει στο άκρο Β της ράβδου και εκείνη την στιγµή η ταχύτητά του µηδενίζεται, µε αποτέλεσµα να µηδενίζεται και η ταχύτητα του κέντρου του δίσκου, ο οποίος ολισθαίνει πάνω στο οριζόντιο δάπεδο αφού αυτό είναι λείο Εξάλλου κατά την κίνηση του συστήµατος η µηχανική του ενέργεια δεν µεταβάλλεται, δηλαδή µπορούµε να γράψουµε την σχέση: K "# + U "# = K $%& + U $%& + m gh + m K g A B " = m Kv A + I# +

4 m g L "µ# + m gl"µ# = m v K A K + m ( L v A L) 6 $ m glµ" # + m ' $ m & K) = v K A % ( + m ' # & ) % 6 ( Σχήµα Σχήµα Σχήµα glµ" ( m # + m K ) = v A ( m K + m # ) $ m v A = glµ" # + m K ' & ) % m K + m # ( όπου η γωνιακή ταχύτητα της ράβδου την στιγµή που γίνεται οριζόντια και v A η ζητούµενη ταχύτητα του κολλάρου ΥΓ Ο αναγνώστης χρησιµοποιώντας ανάλογους συλλογισµούς µπορεί, να δώ σει λύση στο επόµενο θέµα Στην διάταξη του σχήµατος (4) το κολλάρο (κ) µπορεί να ολισθαίνει χωρίς τριβή κατα µήκος κατακόρυφου σταθερού οδηγού (α) Η ράβ δος ΑΒ είναι οµογενής µήκους L και µάζας m Ρ, µε την άκρη της Α Σχήµα 4 αρθρωµένη στο κολλάρο, ενώ η άλλη της άκρη Β είναι αρθρωµένη στο κέντρο κυκλικού δίσκου ακτίνας R και µάζας m Δ, ο οποίος µπορεί

5 να ολισθαίνει επί λείου οριζόντιου δαπέδου Αρχικά το σύστηµα είναι ακίνητο µε την ράβδο οριζόντια και κάποια στιγµή αρχίζει να δρά επί του κολλάρου κατακόρυφη προς τα πάνω δύναµη που θέτει το σύστη µα σε κίνηση Να βρεθεί η κινητική ενέργεια του συστήµατος την στιγµή που το κολλάρο έχει αποκτήσει ταχύτητα v A, αν την στιγµή αυτή η ράβδος παρουσιάζει κλίση φ ως προς την οριζόντια διεύθυν ση Δίνεται η ροπή αδράνειας Ι C =m Ρ L της ράβδου ως προς άξονα κάθετο στην ράβδο και διερχόµενο από το κέντρο της PM fysikos Aβαρής ράβδος µήκους L, είναι στερεωµένη σε κυκλική στεφάνη ακτίνας R και το ένα ακρο της βρίσκεται στο κέν τρο Κ της στεφάνης, ενώ µπορεί να στρέφεται σε κατακόρυφο επίπε δο περί σταθερό οριζόντιο άξονα που διέρχεται από το άλλο της άκρο O Ένα µικρό δακτυλίδι µάζας m, είναι περασµένο στην στεφάνη και µπορεί να ολισθαίνει χωρίς τριβή κατα µήκος αυτής Mε την βοήθεια ενός µηχανισµού το σύστηµα ράβδοςστεφάνη τίθεται σε περιστρο φική κίνηση στην διάρκεια της οποίας η γωνία θ της ράβδου µε την κατακόρυφη διεύθυνση µεταβάλλεται µε τον χρόνο t σύµφωνα µε την σχέση: = "µ ( # t) όπου θ σταθερή ποσότητα και = gr i) Eάν a K είναι η επιτάχυνση του κέντρου Κ της στεφάνης στο σύστη µα αναφοράς του εδάφους και e το µοναδιαίο εφαπτοµενικό διάνυσ µα της τροχιάς του δακτυλιδιού σε πολικές συντεταγµένες και στο σύ στηµα αναφοράς της στεφάνης, να δείξετε την σχέση: a ( e K " ) = L #µ " $ % d$ ( ' & ) d $ + +, " $ όπου θ η γωνία µε την κατακόρυφη διεύθυνση της επιβατικής ακτί νας του δακτυλιδιού, ως προς το κέντρο Κ (σχ 5) ii) Xρησιµοποιώντας την παραπάνω σχέση να βρείτε την διαφορική εξίσωση που καθορίζει την σχετική κίνηση του δακτυλιδιού ως προς την στεφάνη iii) Eάν οι αρχικές συνθήκες κίνησης επίβάλλουν τόσο στην στεφάνη όσο και στο δακτυλίδι να εκτελούν µικρές κινήσεις, δηλαδή όταν οι γωνίες φ και θ είναι πολύ µικρές, να δείξετε ότι το δακτυλίδι εκτελεί στο σύστηµα αναφοράς της στεφάνης εξαναγκασµένη ταλάντωση χω ρίς απόσβεση Δίνεται η επιτάχυνση g της βαρύτητας

6 ΛΥΣΗ: i) Έστω x K, y K οι συντεταγµένες του άκρου Κ της ράβδου ως προς το σταθερό σύστηµα ορθογώνιων αξόνων Οxy (σύστηµα αναφοράς του εδάφους) κατά µια τυχαία στιγµή t που η ράβδος σχηµατίζει γωνία θ µε τον άξονα Οy To διάνυσµα θέσεως του Κ ως προς το Ο την στιγµή t θα είναι: OK = x K i + y K j = Lµ" i + L#$%" j () όπου i, j τα µοναδιαία διανύσµατα των αξόνων Οx και Οy αντιστοίχως, Παρα γωγίζοντας την () δύο φορές ως προς τον χρόνο t παίρνουµε την επιτάχυνση a K του Κ στο σύστηµα αναφοράς του εδάφους, δηλαδή θα έχουµε: d OK % = L"#$ d$ ( % ' i L+µ$ d$ ( ' & ) & ) j d OK, # = L µ" d" & % ( $ ' + )+" d ", # i L )+" d" & % ( $ ' + µ" d " j, # a K = L µ" d" & % ( $ ' + )+" d ", # i L )+" d" & % ( $ ' + µ" d " j () Σχήµα 5 To µοναδιαίο εφαπτοµενικό διάνυσµα e της τροχιάς του δακτυλιδιού στο κινητό σύστηµα αξόνων Κx y (σύστηµα αναφοράς της στεφάνης) εκφράζεται µέσω της σχέσεως: e = "#$ i %µ j () όπου φ η γωνία της επιβατικής ακτίνας του δακτυλιδιού ως προς το Κ, µε τον

7 άξονα Κy (σχ 5) Από τις σχέσεις () και () θα έχουµε για το εσωτερικό γινό µενο ( a K e " ) την σχέση: a ( ( e K " ) =L#$%" &µ' d' + ), + #$%' d ' ( d' + + L&µ" #$%' ), + &µ' d ' a ( e K " ) =L #$%&'µ" 'µ&#$%" ( d& + ), d & + #$%&#$%" + 'µ&'µ" a ( e K " ) = L #µ " $ % d$ ( ' & ) d $ + +, " $ (4) ii) Eξετάζοντας το δακτυλίδι στο σύστηµα αναφοράς της στεφάνης παρατη ρούµε ότι αυτό δέχεται το βάρος του w, την αντίδραση N της στεφάνης που έχει αντινική διεύθυνση και την αδρανειακή δυναµη D Alembert m a K, σύµ φωνα δε µε τον δεύτερο νόµο του Νεύτωνα θα έχουµε την σχέση: m a " = m g + N m a K (5) όπου a " η σχετική επιτάχυνση του δακτυλιδιού ως προς την στεφάνη Πολ λαπλασιάζοντας εσωτερικά και τα δύο µέλη της (5) µε το διάνυσµα e παίρνου µε: m a " # g # N # a K # ( e $ ) = m ( e $ ) + ( e $ ) m ( e $ ) ( e $ ) = m m a " # a ( # e " $ ) = g # ( g # e $ ) + m a K # ( e $ ) ( a K # e $ ) a ( # e " $ ) = g%& ' + $ ( e $ ) a K # e (5) ( $ ) a # ( e " $ ) = g%µ$ L %µ $ & ' d& ), ( + d & + $ & 4 4 Εξάλλου η επιτάχυνση a ", εκφραζόµενη σε πολικές συντεταγµένες (r, φ) έχει την µορφή: a " = d r r $ d# ', & ) % ( +, $ e r + dr ' $ d# ' & ) & ) + r d #, + % ( % ( e # (6)

8 $ a " = R d# ' & ) % ( e r +R d # e # a ( # e " $ ) = R d $ (7) διότι r=r=σταθερό και τα µοναδιαία διανύσµατα e r, e είναι ορθογώνια Συνδι άζοντας τις σχέσεις (6) και (7) παίρνουµε: R d = g"µ L "µ # $ d# ' & ) % ( d # + +, # (8) H (8) αποτελεί την ζητούµενη διαφορική εξίσωση της κίνησης του δακτιλιδιού, στο σύστηµα αναφοράς της στεφάνης iii) Eάν το σύστηµα εκτελεί µικρές κινήσεις, τότε οι γωνίες φ, θ µεταβάλλον ται χρονικά αλλά παραµένουν µικρές και µπορούµε µε καλή προσέγγιση να δεχθούµε ότι ηµφ φ, συν(φθ) και ακόµη ότι η ποσότητα ηµ(φθ)(dθ) είναι ασήµαντη σε σχέση µε την συν(φθ)(d θ ), οπότε η (8) παίρνει την προ σεγγιστική µορφή: R d = g L d " d + g R = L d " R µε d + g R = L R " A = 4L " R # $µ ( " t) d = 4L g R + g R = A"µ # t (9) Η (9) εγγυάται ότι η σχετική κίνηση του δακτυλιδιού ως προς την κυκλική στεφάνη, είναι µια εξαναγκασµένη ταλάντωση χωρίς απόσβεση PM fysikos Ένα µικρό σφαιρίδιο µάζας m έχει στερεωθεί σ ένα σηµείο του κοίλου µέρους της περιφέρειας λεπτής µεταλλικής στεφάνης µάζας Μ και ακτίνας R Η στεφάνη κρατείται µε το επίπεδό της κατακόρυφο, εφαπτόµενη σε τραχύ οριζόντιο δάπεδο, η δε ακτίνα της που αντιστοιχεί στο σφαιρίδιο σχηµατίζει γωνία φ <π µε την κατακόρυφη διεύθυνση Κάποια στιµή η στεφάνη αφήνεται ελευθερη και τότε αρχίζει να κυλίεται χωρίς ολίσθηση πάνω στο δάπεδο Να βρεθεί η διαφορική εξίσωση που περιγράφει την κίνηση της στεφάνης και να λυθεί στην περίπτωση που η γωνία φ είναι πολύ µικρή Δίνε ται η επιτάχυνση g της βαρύτητας ΛΥΣΗ: Εξετάζουµε το σύστηµα κυκλική στεφανησφαιρίδιο κατά µια χρονική στιγµή t που η επιβατική ακτίνα του σφαιριδίου σχηµατίζει γωνία φ µε την κατακόρυφη διεύθυνση Επειδή η στεφάνη κυλίεται επί του οριζόντιου δαπέ δου η τριβή T που δέχεται από αυτό είναι στατική και δεν παράγει έργο, αλλά

9 και το έργο της κάθετης αντίδρασης N του δαπέδου είναι µηδενικό, που σηµαί νει ότι η µηχανική ενέργεια του συστήµατος παραµένει σταθερή, δηλαδή µπο ρούµε να γράψουµε την σχέση: K + U = E MR + MR + mv " mgr#$%& = E () Σχήµα 6 όπου Ε σταθερή ποσότητα, v K η ταχύτητα του κέντρου Κ της στεφάνης, η γωνιακή ταχύτητα περιστροφής της, v η ταχύτητα του σφαιριδίου και Ι Κ η ρο πή αδράνειας της στεφάνης ως πρός άξονα κάθετο στο επίπεδό της και διερχό µενο από το κέντρο της Όµως έχουµε τις σχέσεις Ι Κ =MR και v K =ωr, οπότε η () γράφεται: MR + MR + mv " mgr#$%& = E MR + mv " mgr#$%& = E () Eξάλλου η επίπεδη κίνηση που εκτελεί η στεφάνη είναι ισοδύναµη µε γνήσια περιστροφή αυτής περι τον εκάστοτε στιγµιαίο άξονα περιστροφής, που είναι οριζόντιος και διέρχεται από το σηµείο επαφής Α της στεφάνης µε το δάπεδο, οπότε το µέτρο της ταχύτητας v θα είναι: v = "( A ) = " R + R R #$%& = "R ( #$%&) () H () λόγω της () γράφεται: MR + m R ( "#$%) mgr"#$% = E " d % MR $ ' # & " + mr ( () ) d % $ ' mgr() = E # (4) & Παραγωγίζοντας την (4) ως προς τον χρόνο t παίρνουµε την σχέση:

10 " d % MR $ ' d # & + " mr (µ d % $ ' # & # + mgrµ" d" & % ( = $ ' MR d # d & + mr"µ % ( $ ' [ ] d $ R M + m( "#$ ) $ d + mr )+ " % ' d # & + + mr( )+) d + mg"µ = & d$ ) + mr%µ$ ( + ' + mg%µ$ = (5) H (5) αποτελεί την διαφορική εξίσωση της κίνησης του συστήµατος στεφανησφαιρίδιο, Στην περίπτωση που η αρχική τιµή φ της γωνίας φ είναι πολύ µικρή µπόρουµε µε καλή προσεγγιση να λάβουµε ηµφ φ, συνφ και ακόµη να παραλλείψουµε τον όρο mrηµφ(dφ) ως ασήµαντη ποσότητα, οπότε η (5) παίρνει την προσεγγιστική µορφή: RM d + mg = d + mg RM = d + " = µε = mg RM (6) Η σχέση (6) δηλώνει ότι το σύστηµα στεφάνησφαιρίδιο εκτελεί στροφική αρµονική ταλάντωση κυκλικής συχνότητας ω, στην διάρκεια της οποίας η γωνία φ µεταβάλλεται µε τον χρόνο t σύµφωνα µε την σχέση: = "µ #t + $ = "#$ % ' & mg RM t ( ) PM fysikos Ένας µικρός πύραυλος αναχωρεί εκ της ηρεµίας από σηµείο Ο του οριζόντιου εδάφους κινούµενος σε κατακόρυφο επί πεδο Οxy Λόγω της εκροής καυσαέριων η µάζα του πυραύλου ελατ τώνεται µε τον χρόνο t σύµφωνα µε την σχέση: m = m e kt όπου m, k θετικές και σταθερές ποσότητες, ενώ µε κατάλληλο µηχα νισµό η σχετική ταχύτητα των καυσαερίων ως προς τον πύραυλο δια τηρεί σταθερό µέτρο v Eάν κατά την κίνηση του πυραύλου η γωνία θ που σχηµατίζει ο άξονας συµµετρίας του µε την κατακόρυφη διεύ θυνση µεταβάλλεται µε τον χρόνο t ακολουθώντας την σχέση θ=θ +αt,

11 όπου θ, α θετικές σταθερές (σχ 7), να βρείτε τις εξισώσεις κίνησης του πυραύλου Δίνεται η επιτάχυνση g της βαρύτητας και ότι κατά την στιγµή της απογείωσης του πυραύλου (t=) οι συντεταγµένες του είναι x()=y()= Η αντίσταση του αέρα θα θεωρηθεί ασήµαντη ΛΥΣΗ: O πύραυλος από την στιγµή της πυροδότησής του (t=) και µέχρις ότου εξαντληθούν τα καυσιµά του δέχεται το βάρος του w και την προωθητική δύναµη F από τα εξερχόµενα καυσαέρια, η οποία είναι αντίρροπη της σχετικής ταχύτητας v " των καυσαερίων ως προς τον πύραυλο (σχ 7) Σύµφωνα µε τον δεύτερο νόµο του Νεύτωνα για την κίνηση του πυραύλου ισχύει η σχέση: m d v = w + F m d v = m g + dm v " () όπου m η µάζα του πυραύλου την στιγµή που τον έξετάζουµε και dm ο ρυθµός ελάττωσης της µάζας του, λόγω εκροής καυσαερίων Όµως κάθε στιγµή t η µάζα του πυραύλου σύµφωνα µε τα δεδοµένα του προβλήµατος είναι: m = m e kt dm = m ke kt = km οπότε η () γράφεται: Σχήµα 7 m d v = m g km v " d v = g k v " () Εάν v x, v y είναι οι συνιστώσες της ταχύτητας v του πυραύλου κατά την χρο νική στιγµή t η σχέση () γράφεται: dv x dv x i + dv y j = g j k v" #µ$ i + v " %&$ j i + dv y j = g j + kv µ" i + #$%" j

12 dv x = kv µ" dv y = gk + kv #$%" & ' ( όπου i, j τα µοναδιαία διανύσµατα των αξόνων x και y αντιστοίχως Ολοκλη ρώνοντας την πρώτη εκ των σχέσεων () παίρνουµε: v x = # kv µ" + C = kv # µ ( $t + " ) + C v x = kv "#$ ( t + % ) + C (4) όπου C σταθερά ολοκλήρωσης που θα προκύψει από την αρχική συνθήκη v x ()=, οπότε η προηγούµενη σχέση δίνει: () = kv "#$% + C C = kv "#$% Έτσι η (4) παίρνει την µορφή: v x = kv "#$ ( t + % ) + kv "#$% v x = k [ "#$% "#$ t + % ] dx k x = & [ "#$% "#$ t + % ] + C x = k ' t"#$% &µ t + % ) () [ ] = k "#$% "#$ t + %, + C (5) +, όπου η σταθερά ολοκλήρωσης C θα προκύψει από την αρχική συνθήκη x()=, οπότε η προηγούµενη σχέση δίνει: = kµ" + C # C = kµ" # Έτσι η (5) παίρνει την µορφή: x = k ' t"#$% &µ t + % ) (), +, + k&µ% &µ% x = k ' t"#$% &µ t + % ) (), +, (6) Mε ανάλογη διαδικασία από την πρώτη εκ των σχέσεων () παίρνουµε τελικώς

13 για την yσυντεταγµένη του πυραύλου την σχέση: y = k & ( '( "#$% "#$(t + % ) ) t"#$% + + gt (7) PM fysikos

Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση.

Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση. Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση. i) Εάν Κ είναι το στιγµιαίο κέντρο περιστροφής του στερεού κάποια στιγµή και C η αντίστοιχη θέση του κέντρου µάζας

Διαβάστε περισσότερα

i) Nα βρείτε την ταχύτητα του κέντρου της στεφάνης αµέσως µετά την κρού ση, η οποία θεωρείται βραχείας διάρκειας.

i) Nα βρείτε την ταχύτητα του κέντρου της στεφάνης αµέσως µετά την κρού ση, η οποία θεωρείται βραχείας διάρκειας. Mια κυκλική στεφάνη ακτίνας R, της οποίας η µάζα θεωρείται συγκεντρωµένη στην περιφέρεια της, κυλίεται ισοταχώς πάνω σε οριζόντιο επίπεδο το δε κέντρο της έχει ταχύτητα v. Kάποια στιγµή η στε φάνη προσκρούει

Διαβάστε περισσότερα

των Α και Β αντιστοίχως είναι παράλληλες (σχ. 12) που σηµαί Σχήµα 11 Σχήµα 12

των Α και Β αντιστοίχως είναι παράλληλες (σχ. 12) που σηµαί Σχήµα 11 Σχήµα 12 Δύο ακριβώς όµοιες λεπτές ράβδοι OA και AB µήκους L και µάζας m, αρθρώνονται στο σηµείο Α το δε άκρο Ο της ΟΑ αρθρώνεται σε σταθερό υποστήριγµα, ενώ το άκρο Β της ΑΒ µπο ρεί να ολισθαίνει πάνω σε λείο

Διαβάστε περισσότερα

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F!

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F! Οµογενής κυκλικός δίσκος µάζας m και ακτίνας, βρίσκεται πάνω σε λείο οριζόντιο έδαφος µε τον άξονα συµµετρίας του κατα κόρυφο. Εάν σ ένα σηµείο της περιφέρειας του δίσκου εξασκείται συνεχώς µια σταθερή

Διαβάστε περισσότερα

Δίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10.

Δίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10. Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας της εφαρµόζεται

Διαβάστε περισσότερα

, της οποίας το µέτρο ικανοποιεί τη σχέση:

, της οποίας το µέτρο ικανοποιεί τη σχέση: Στην κορυφή της κεκλιµένης έδρας µιας ορθογώνιας σφήνας µάζας M, η οποία ισορροπεί πάνω σε λείο οριζόντιο έδαφος, αφήνεται µικ ρός κύβος µάζας m. Nα δείξετε ότι η σφήνα κινείται στο σύστη µα αναφοράς του

Διαβάστε περισσότερα

τα µοναδιαία διανύσµατα των αξόνων Οx, Oy, Oz αντιστοί χως. Η αντίστοιχη στροφορµή L!

τα µοναδιαία διανύσµατα των αξόνων Οx, Oy, Oz αντιστοί χως. Η αντίστοιχη στροφορµή L! Στο ένα άκρο ράβδου µήκους L και αµελητέας µά ζας, έχει στερεωθεί σφαιρίδιο µάζας m. Η ράβδος είναι ακίνητη πάνω σε λείο οριζόντιο επίπεδο Οxy, µε το σφαιρίδιο στο σηµείο, και το άλλο της άκρο στο σηµείο

Διαβάστε περισσότερα

i) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και

i) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και Ένα καροτσάκι που περιέχει άµµο, συνολικής µάζας M, εκτελεί οριζόντια αρµονική ταλάντωση σε λείο επίπεδο, µε τη βοήθεια ιδανικού οριζόντιου ελατηρίου σταθεράς k. Ένα σφαιρίδιο µάζας m

Διαβάστε περισσότερα

i) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες.

i) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες. Δύο πιθηκάκια της ίδιας µάζας αναρριχώνται εκ της ηρεµίας κατά µήκος των τµηµάτων του αβαρούς σχοινιού, που διέρχεται από τον λαιµό µιας σταθερής τροχαλίας (σχ. ). H τροχαλία έχει αµελητέα µάζα και µπορεί

Διαβάστε περισσότερα

ακτινικής διεύθυνσης και στην οριακή τριβή T!"

ακτινικής διεύθυνσης και στην οριακή τριβή T! Λεπτή κυκλική στεφάνη ακτίνας R και µάζας m, ισορρο πεί εφαπτόµενη σε δύο υποστηρίγµατα A και Γ, όπως φαίνεται στο σχήµα (1. Eάν ο συντελεστής οριακής τριβής µεταξύ της στεφάνης και των υποστη ριγµάτων

Διαβάστε περισσότερα

(τρίτος νόµος του Νεύτωνα) και την πλάγια αντίδραση του οριζόντιου εδάφους, η οποία αναλύεται στην τριβή ολίσθησης T!

(τρίτος νόµος του Νεύτωνα) και την πλάγια αντίδραση του οριζόντιου εδάφους, η οποία αναλύεται στην τριβή ολίσθησης T! Επί της κεκλιµένης έδρας µιας ορθογώνιας και ισοσκελούς σφήνας µάζας m, η οποία ισορροπεί πάνω σε οριζόντιο έδαφος, αφήνεται µικρός κύβος µάζας m. Μεταξύ του κύβου και της σφήνας δεν υπάρχει τριβή, ενώ

Διαβάστε περισσότερα

Q του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως!

Q του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως! Αβαρής ράβδος αποτελείται από δύο συνεχόµενα τµήµατα ΟΑ και ΑΒ που είναι ορθογώνια µεταξύ τους. Το άκρο Ο της ράβδου είναι αρθρωµένο σε οριζόντιο έδαφος το δε τµήµα της ΟΑ είναι κατακόρυφο και εφάπτεται

Διαβάστε περισσότερα

Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v!

Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v! Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v C. Σε σηµείο της περιφέρειας του τροχου έχει αρθρωθεί το ένα άκρο Β µιας λεπτής

Διαβάστε περισσότερα

i) Nα βρεθεί η επιτάχυνση του κέντρου Κ της τροχαλίας την στιγµή t=0 αµέσως µετά την θραύση του νήµατος.

i) Nα βρεθεί η επιτάχυνση του κέντρου Κ της τροχαλίας την στιγµή t=0 αµέσως µετά την θραύση του νήµατος. H τροχαλία του σχήµατος () µάζας m και ακτίνας R, ισορροπεί εξαρτηµένη από τα νήµατα ΑΒ και ΓΔ τα οποία είναι ισο κεκλιµένα ως προς την οριζόντια διεύθυνση κατα γωνία φ. Κάποια στιγµή κόβουµε το νήµα ΑΒ

Διαβάστε περισσότερα

την αρχή Ο του ΟΧY, που είναι ένα αδρανειακό σύστηµα αναφοράς. Εάν

την αρχή Ο του ΟΧY, που είναι ένα αδρανειακό σύστηµα αναφοράς. Εάν Ένα στερεό σώµα εκτελεί επίπεδη κίνηση, όταν οι αποστάσεις των υλικών του σηµείων από ένα ορισµένο επίπεδο αναφοράς (ε, παραµένουν αµετάβλητες µε τον χρόνο. Για την µελέτη της επίπεδης κίνησης στερεού

Διαβάστε περισσότερα

ii) Έαν αρχικά ο δίσκος κρατείται στην θέση, όπου η ΟΚ είναι οριζόν τια και αφεθεί ελευθερος να βρεθούν οι επιταχύνσεις a!

ii) Έαν αρχικά ο δίσκος κρατείται στην θέση, όπου η ΟΚ είναι οριζόν τια και αφεθεί ελευθερος να βρεθούν οι επιταχύνσεις a! Ένας κυκλικός δίσκος ακτίνας R φέρει κυκλική οπή ακτίνας R/, της οποίας το κέντρο Κ βρίσκεται σε απόσταση R/ από το κέντρο Ο του δίσκου, µπορεί δε να κυλίεται σε µη λείο οριζόντιο έδαφος. i) Εκτρέπουµε

Διαβάστε περισσότερα

ii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο.

ii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο. Το σύστηµα του σχήµατος αποτελείται από δύο όµοια ελατήρια στα θεράς και φυσικού µήκους α, των οποίων οι άξονες βρίσκονται πάνω στην ευθεία ΑΒ, όπου Α, Β είναι δύο ακλόνητα σηµεία του επιπέδου. Εκτρέπουµε

Διαβάστε περισσότερα

ΜΕΡΟΣ Γ! 2η οµάδα λυµένων παραδειγµάτων

ΜΕΡΟΣ Γ! 2η οµάδα λυµένων παραδειγµάτων ΜΕΡΟΣ Γ η οµάδα λυµένων παραδειγµάτων Στις άκρες αβαρούς και λεπτής ράβδου µηκούς L, έχουν στερεωθεί δύο όµοιες σφαίρες, µάζας m και ακτίνας R, το δε σύστηµα στρέφεται µε σταθερή γωνιακή ταχύτητα περί

Διαβάστε περισσότερα

από την άρθρωση και της δύναµης επαφής από τον τοίχο που αναλύεται στην στατική τριβη T!

από την άρθρωση και της δύναµης επαφής από τον τοίχο που αναλύεται στην στατική τριβη T! Tο ένα άκρο A οµογενούς ράβδου AB αρθρώνεται σε οριζόντιο επίπεδο, ενώ το άλλο της άκρο Β εφάπτεται κατακόρυ φου τοίχου, µε τον οποίο η ράβδος παρουσιάζει συντελεστή οριακής τριβής µ. H άρθρωση της ράβδου

Διαβάστε περισσότερα

Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή

Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή ταχύτητα µέτρου V 0 πάνω σε λείο οριζόντιο έδαφος κατευθυνόµενο προς κατακόρυφο τοίχο. Το σώµα κάποια στιγµή συγκρούεται ελα στικά και µετωπικά µε µια µπάλα

Διαβάστε περισσότερα

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L!

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L! Είναι γνωστό ότι, όταν ένα σώµα κινείται µέσα στο βαρυτικό πεδίο της Γης υπό την επίδραση µόνο της Νευτώνειας έλξεως, η τροχιά που διαγράφει το κέντρο µάζας του είναι επίπεδη και µάλιστα το επίπεδό της

Διαβάστε περισσότερα

i) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1.

i) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1. Στην διάταξη του σχήµατος 1) οι τροχαλίες τ 1 και τ έχουν την ίδια µάζα Μ που θεωρείται συγκεντρωµένη στην περι φέρειά τους και την ίδια ακτίνα R. Στο αυλάκι της σταθερής τροχα λίας τ έχει περιτυλιχθεί

Διαβάστε περισσότερα

της οποίας ο φορέας σχηµατί ζει γωνία φ=π/6 µε την κατακόρυφη διεύθυνση και ανακλάται µε αντίστοιχη γωνία φ=π/4.

της οποίας ο φορέας σχηµατί ζει γωνία φ=π/6 µε την κατακόρυφη διεύθυνση και ανακλάται µε αντίστοιχη γωνία φ=π/4. Οριζόντιος δίσκος µάζας Μ ισορροπεί στηριζόµε νος στο πάνω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k, του οποίου το άλλο άκρο στηρίζεται στο έδαφος (σχήµα 1). Ένα µικρό σφαιρίδιο µάζας m, προσκρούει

Διαβάστε περισσότερα

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w!

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w! Το κυκλικό σύρµα του σχήµατος έχει µάζα m/ και είναι κρεµασµένο από κατακόρυφο σπάγκο αµελητέας µάζας αλλά επαρκούς αντοχής. Δύο όµοιες σηµειακές χάντρες, καθε µιά µε µάζα m, αφήνονται ταυτόχρονα από την

Διαβάστε περισσότερα

ΛΥΣΗ: Έστω O η θέση ισορροπίας του σφαιριδίου. Στη θέση αυτή το σφαι ρίδιο δέχεται το βάρος του w!, τη δύναµη F

ΛΥΣΗ: Έστω O η θέση ισορροπίας του σφαιριδίου. Στη θέση αυτή το σφαι ρίδιο δέχεται το βάρος του w!, τη δύναµη F Ένα ιδανικό ελατήριο σταθεράς k κόβεται σε δύο τµήµατα µε µήκη L και L. Η µία άκρη κάθε τµήµατος συνδέεται στέρεα µε µικρό σφαιρίδιο µάζας m και οι ελέυθερες άκρες τους στερεώνονται σε ακλόνητα σηµεία

Διαβάστε περισσότερα

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν:

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν: Tο ένα άκρο κατακόρυφου ιδανικού ελατηρίου είναι στερεωµένο στο οριζόντιο έδαφος, ενώ το άλλο του άκρο είναι ελεύθερο. Mικρό σφαιρίδιο, µάζας m, αφήνεται σε ύψος h από το άκρο Β. Το σφαιρίδιο πέφτοντας

Διαβάστε περισσότερα

, σταθερής κατεύθυνσης, της οποίας το µέτρο µεταβάλλεται µε τον χρόνο t, σύµφωνα µε την σχέση:

, σταθερής κατεύθυνσης, της οποίας το µέτρο µεταβάλλεται µε τον χρόνο t, σύµφωνα µε την σχέση: Σώµα µάζας m σχήµατος ορθογώνιου κιβωτίου, ισορροπεί πάνω σε τραχύ οριζόντιο επίπεδο και στην άνω επιφάνειά του έχει τοποθετηθεί σώµα µάζας m/. Κάποια στιγµή που λαµβάνε ται ως αρχή µέτρησης του χρόνου

Διαβάστε περισσότερα

. Εάν η σφαίρα κυλίεται πάνω στο δοκάρι να βρείτε: i) την επιτάχυνση του δοκαριού και του κέντρου της σφαίρας, στο σύστηµα αναφοράς του δαπέδου και

. Εάν η σφαίρα κυλίεται πάνω στο δοκάρι να βρείτε: i) την επιτάχυνση του δοκαριού και του κέντρου της σφαίρας, στο σύστηµα αναφοράς του δαπέδου και Οµογενής σφαίρα µάζας m και ακτίνας R είναι ακίνητη πάνω σε οριζόντιο δοκάρι µάζας Μ και µήκους L, που µπορεί να ολισθαίνει χωρίς τριβή επί οριζοντίου δαπέδου. Η σφαίρα εφάπτεται στο δεξιό άκρο Β του δοκαριού

Διαβάστε περισσότερα

i) Να δείξετε ότι αν για µια τιµή της γωνίας θ η ράβδος ισορροπεί, η ισορροπία αυτή είναι αδιάφορη.

i) Να δείξετε ότι αν για µια τιµή της γωνίας θ η ράβδος ισορροπεί, η ισορροπία αυτή είναι αδιάφορη. Η ράβδος του σχήµατος έχει µήκος L, βάρος w και στηρίζεται διά του άκρου της Α επί λείου τοίχου, ενώ το άλλο άκρο της Β ακουµπά ει σε λεία κοίλη επιφάνεια. Η τοµή της επιφάνειας µε κατακόρυφο επίπεδο που

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ Α! του σώ µατος ισχύει η σχέση: η επιβατική ακτίνα ως προς το σηµείο P του τυχαίου υλικού σηµείου του στερεού µάζας m i και v!

ΘΕΩΡΗΜΑ Α! του σώ µατος ισχύει η σχέση: η επιβατική ακτίνα ως προς το σηµείο P του τυχαίου υλικού σηµείου του στερεού µάζας m i και v! ΘΕΩΡΗΜΑ Α Ο ρυθµός µεταβολής της στροφορµής στερεού σώµατος, θεωρούµενης περί ένα σηµείο του ή της επεκτάσεώς του και αναφερόµενης σε κάποιο αδρανειακό σύστηµα, είναι κάθε στιγµή ίσος µε την συνολική ροπή

Διαβάστε περισσότερα

. Εάν η κρούση της ράβ δου µε το οριζόντιο έδαφος είναι τελείως ελαστική, να βρείτε:

. Εάν η κρούση της ράβ δου µε το οριζόντιο έδαφος είναι τελείως ελαστική, να βρείτε: Μια λεπτή λαστιχένια ράβδος ΑΒ µήκους L και µάζας m, εκτελεί ελεύθερη πτώση χώρίς να περιστρέφεται και κάποια στιγµή το άκρο της Α συναντά λείο οριζόντιο έδαφος. Την στιγµή αυτή η ράβδος έχει κλίση φ ως

Διαβάστε περισσότερα

ως προς τον ατµολέβητα. Εάν η µάζα M του ατµού µεταβάλλεται µε τον χρόνο t σύµφωνα µε την σχέση:

ως προς τον ατµολέβητα. Εάν η µάζα M του ατµού µεταβάλλεται µε τον χρόνο t σύµφωνα µε την σχέση: Ένας κυλινδρικός ατµολέβητας αµελητέας µάζας χωρίς τον υδρατµό και ακτίνας R, θερµαίνεται και ο παραγόµενος υδρατµός διαφεύγει από δύο αντιδιαµετρικά ακροφύσια της εξωτε ρικής του επιφάνειας, ώστε η ταχύτητα

Διαβάστε περισσότερα

) ω ω. L λίγο πριν. . Nα βρεθούν:

) ω ω. L λίγο πριν. . Nα βρεθούν: Δύο σφαιρίδια A, B µάζας m το καθένα συνδέονται µεταξύ τους µε αβαρές και µη εκτατό νήµα µήκους L, ηρεµούν δε πάνω σε οριζόντιο τραπέζι ευρισκόµενα σε απόσταση α

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

διέρχεται από το σηµείο Ο της ράβδου, υπό την επίδραση των βαρών m 1 από τον άξονα περιστροφής, που αναλύεται στην οριζόντια συνιστώσα!

διέρχεται από το σηµείο Ο της ράβδου, υπό την επίδραση των βαρών m 1 από τον άξονα περιστροφής, που αναλύεται στην οριζόντια συνιστώσα! Θεωρήστε οριζόντια ράβδο αµελητέας µάζας, η οποία µπορεί να περιστρέφεται περί σταθερό οριζόντιο άξονα κάθετο στη ράβδο. Στα άκρα της υπάρχουν δυο διαφορετικές σηµειακές µάζες m, m, που οι αντίστοιχες

Διαβάστε περισσότερα

6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο:

6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο: 6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να γράψετε στο

Διαβάστε περισσότερα

Οµογενής σφαίρα µάζας m και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση!!

Οµογενής σφαίρα µάζας m και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση!! Οµογενής σφαίρα µάζας και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση βραχείας διάρκειας, της οποίας ο φορέας βρίσκε ται άνωθεν του κέντρου της

Διαβάστε περισσότερα

A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2

A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2 A Κινηµατική άποψη Θεωρούµε στερεό σώµα σε τυχαία κίνηση, η οποία εξέταζεται από ένα αδρα νειακό σύστηµα αναφοράς ΟXYZ. Εφοδιάζουµε το σώµα µε κινητό σύστηµα συντεταγµένων xyz ακλόνητα συνδεδεµένο µε αυτό,

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα

Διαβάστε περισσότερα

i) Nα βρεθεί η επιτάχυνση του κέντρου του δακτυλιδιού. Σχήµα 1 Σχήµα 2 L C

i) Nα βρεθεί η επιτάχυνση του κέντρου του δακτυλιδιού. Σχήµα 1 Σχήµα 2 L C Ένα στερεό σώµα αποτελείται από λεπτό δακτυ λίδι µάζας m και ακτίνας R και από δύο όµοιες λεπτές ράβδους µαζάς m η κάθε µια, των οποίων τα κέντρα έχουν ηλεκτροκολυθεί µε το δακτυλίδι, σε αντιδιαµετρικά

Διαβάστε περισσότερα

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N!

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N! Οµογενής συµπαγής κύβος ακµής α και µάζας m, ισορροπεί ακουµπώντας µε µια ακµή του σε κατακόρυφο τοίχο και µε µια του έδρα σε κεκλιµένο επίπεδο γωνίας κλίσεως φ ως προς τον ορίζοντα, όπως φαίνεται στο

Διαβάστε περισσότερα

Eφαρµόζοντας στο τρίγωνο OAΣ το θεώρηµα του συνηµιτόνου παίρνουµε:

Eφαρµόζοντας στο τρίγωνο OAΣ το θεώρηµα του συνηµιτόνου παίρνουµε: ΘΕΜΑ 6o Η κυκλική τροχαλία του σχήµατος (1) έχει µάζα Μ και ακτίνα R, είναι σε επαφή µε οριζόντιο δάπεδο (ε), ενώ στον άξονά της έχει πακτωθεί αβαρής ράβδος µήκους L, στο ελεύθερο ακρο της οποίας έχει

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α Α.1. Ενας δίσκος στρέφεται γύρω από άξονα που διέρχεται από το κέντρο του και είναι κάθετος στο επίπεδό του. Η τιµή

Διαβάστε περισσότερα

ii) Nα υπολογιστεί η κινητική ενέργεια του συστήµατος σε συνάρτηση µε τον χρόνο. Δίνεται η επιτάχυνση! g της βαρύτητας.

ii) Nα υπολογιστεί η κινητική ενέργεια του συστήµατος σε συνάρτηση µε τον χρόνο. Δίνεται η επιτάχυνση! g της βαρύτητας. Στην διάταξη του σχήµατος () η ράβδος ΑΒ είναι οµογενής, έχει µήκος L και µπορεί να στρέφεται περί οριζόντιο άξο να, που διέρχεται από σηµείο Ο ευρισκόµενο σε απόσταση 3L/4 από το άκρο της Α. Η τροχαλία

Διαβάστε περισσότερα

! =A'B=C!! C! = R" (1)

! =A'B=C!! C! = R (1) Οµογενής κύβος ακµής α ισορροπεί επί ακλό νητης σφαιρικής επιφάνειας ακτίνας R, µε το κέντρο µάζας του ακριβώς πάνω από την κορυφή Α της επιφάνειας. Εάν µεταξύ του κύβου και της σφαιρικής επιφάνειας υπάρχει

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α Α.1. Ενα στερεό σώµα περιστρέφεται γύρω από ακλόνητο άξονα. Εάν διπλασιαστεί η στροφορµή

Διαβάστε περισσότερα

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου.

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου. Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας εφαρµόζεται στο

Διαβάστε περισσότερα

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί.

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί. 1. Ο ομογενής και ισοπαχής δίσκος του σχήματος έχει ακτίνα και μάζα, είναι οριζόντιος και μπορεί να περιστρέφεται, χωρίς τριβές, γύρω από κατακόρυφο ακλόνητο άξονα που διέρχεται από το κέντρο του. Ο δίσκος

Διαβάστε περισσότερα

i) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο,

i) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο, Tο σφαιρίδιο του σχήµατος ισορροπεί πάνω στο λείο οριζόντιο δαπεδο, ενώ τα οριζόντια ελατήρια είναι τεντωµένα. H απόσταση των σηµείων στήριξης των δύο ελατηρίων είναι 3α, ενώ τα ελατήρια έχουν το ίδιο

Διαβάστε περισσότερα

Yλικό σηµείο κινείται στο επίπεδο Οxy διαγράφον τας καµπύλη τροχιά, η οποία περιγράφεται από την σχέση:

Yλικό σηµείο κινείται στο επίπεδο Οxy διαγράφον τας καµπύλη τροχιά, η οποία περιγράφεται από την σχέση: Yλικό σηµείο κινείται στο επίπεδο Οxy διαγράφον τας καµπύλη τροχιά, η οποία περιγράφεται από την σχέση: y = Αηµωx όπου Α, ω σταθερές και θετικές ποσότητες. Εάν το υλικό σηµείο κατά τον άξονα x κινείται

Διαβάστε περισσότερα

i) Να δείξετε ότι: F max = (m 1 + m 2 όπου! g η επιτάχυνση της βαρύτητας.

i) Να δείξετε ότι: F max = (m 1 + m 2 όπου! g η επιτάχυνση της βαρύτητας. Δύο σώµατα Σ και Σ µε αντίστοιχες µάζες m και m, είναι στερεωµένα στις άκρες ενός κατακόρυφου αβαρούς ελατηρίου, όπως φαίνεται στο σχήµα. Εξασκούµε στο σώµα Σ κατακόρυφη δύναµη µε φορά προς τα κάτω, της

Διαβάστε περισσότερα

(σχ. 1). Εφαρ µόζοντας για την µεταφορική συνιστώσα της κύλισης του δίσκου τον

(σχ. 1). Εφαρ µόζοντας για την µεταφορική συνιστώσα της κύλισης του δίσκου τον Oµογενής λεπτός δίσκος ακτίνας R και µάζας m, ακινητεί επί οριζόντιου εδάφους µε το οποίο παρουσιάζει συντελεστή οριακής τριβής µ το δε επιπεδό του είναι κατακόρυφο,. Κάποια στιγµή εφαρµόζεται στο κέντρο

Διαβάστε περισσότερα

( ) ( ) 2 1 K = K = m 2. ! = v 2 + v 1 R + r (3) H (1) λόγω της (3) γράφεται: R - v 2. + v 1. v 2. r > 0 (4) ! v K. + v 1 )R - v 2. = v 2. - v.

( ) ( ) 2 1 K = K = m 2. ! = v 2 + v 1 R + r (3) H (1) λόγω της (3) γράφεται: R - v 2. + v 1. v 2. r > 0 (4) ! v K. + v 1 )R - v 2. = v 2. - v. Το καρούλι του σχήµατος κυλίεται χωρίς ολίσ θηση πάνω σε οριζόντιο δοκάρι, που ολισθαίνει επί οριζοντίου έδα φους µε ταχύτητα v η οποία έχει την κατεύθυνση του δοκαριού. Η κύλιση του καρουλιού επιτυγχάνεται

Διαβάστε περισσότερα

6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α

6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α 6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι Ηµεροµηνία : 10 Μάρτη 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστη απάντηση [4 5 = 20 µονάδες] Α.1. Στερεό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Ένα σύστημα ελατηρίου σταθεράς = 0 π N/ και μάζας = 0, g τίθεται σε εξαναγκασμένη ταλάντωση. Αν είναι Α 1 και Α τα πλάτη της ταλάντωσης

Διαβάστε περισσότερα

η αντίστοιχη ταχύτητα του οχήµατος, θα ισχύει η σχέση:! 0 = m! v + M! V! md! v /dt = -Md!

η αντίστοιχη ταχύτητα του οχήµατος, θα ισχύει η σχέση:! 0 = m! v + M! V! md! v /dt = -Md! Tο νήµα µαθηµατικού εκκρεµούς µήκους L, είναι στερεωµένο στην οροφή µικρού οχήµατος µάζας M, το οποίο µπορεί να ολισθαίνει χωρίς τριβή πάνω σε οριζόντιο επίπεδο (σχήµα 1). i) Eάν το σφαιρίδιο του εκκρεµούς

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής) ΕΚΦΩΝΗΣΕΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 (Κινητική ενέργεια λόγω περιστροφής Έργο και ισχύς σταθερής ροπής) Ένας κύβος και ένας δίσκος έχουν ίδια μάζα και αφήνονται από το ίδιο ύψος να κινηθούν κατά μήκος δύο κεκλιμένων

Διαβάστε περισσότερα

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και Δύο αβαρή και µη εκτατά νήµατα του ίδιου µή κους είναι στερεωµένα στο ίδιο σηµείο Ο, ενώ στις ελεύθερες άκρες των νηµάτων είναι δεµένα δύο σφαιρίδια, µε µάζες 1 και. Eκτρέ πουµε τα σφαιρίδια από την θέση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου A A N A B P Y A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου Στερεό σώμα με κυλινδρική συμμετρία (κύλινδρος, σφαίρα, σφαιρικό κέλυφος, κυκλική στεφάνη κλπ) μπορεί να

Διαβάστε περισσότερα

. H µεταβολή της ορµής της µάζας αυτής κατά την οριζόντια διεύθυνση είναι -dm v!

. H µεταβολή της ορµής της µάζας αυτής κατά την οριζόντια διεύθυνση είναι -dm v! Tο άκρο A της οµογενούς ράβδου AO του σχήµα τος () έχει διαµορφωθεί κατάλληλα, ώστε, όταν σ αυτό προσκρούσει λεπτή οριζόντια φλέβα νερού διατοµής σ, να ανακλάται και να γίνε ται κατακόρυφη χωρίς απώλεια

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Σάββατο 24 Φλεβάρη 2018 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4

Διαβάστε περισσότερα

ΛΥΣΗ: Κατά τον πολύ µικρό χρόνο Δt (Δt 0) που ενεργεί επί του σφαιριδίου Γ η ώθηση Ω. =mv. το σφαιρίδιο Β δέχεται τις κρουστικές δυνάµεις F

ΛΥΣΗ: Κατά τον πολύ µικρό χρόνο Δt (Δt 0) που ενεργεί επί του σφαιριδίου Γ η ώθηση Ω. =mv. το σφαιρίδιο Β δέχεται τις κρουστικές δυνάµεις F Τρία µικρά σφαιρίδια της ίδιας µάζας είναι αρθρωµένα στις άκρες δύο συνεχόµεων ράβδων ΑΒ και ΒΓ αµελητέας µάζας, όπως φαίνεται στο σχήµα (1), το δε σύστηµα ισορροπεί εκτός πεδίου βαρύτητας. Στο σφαιρίδιο

Διαβάστε περισσότερα

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 4: ΣΤΡΟΦΟΡΜΗ 26. Δύο σημειακές σφαίρες που η καθεμιά έχει μάζα συνδέονται μεταξύ τους με οριζόντια αβαρή ράβδο. Το σύστημα περιστρέφεται γύρω από κατακόρυφο

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΜΕΡΟΣ Γ! 1η οµάδα λυµένων παραδειγµάτων

ΜΕΡΟΣ Γ! 1η οµάδα λυµένων παραδειγµάτων ΜΕΡΟΣ Γ 1η οµάδα λυµένων παραδειγµάτων Ένας τροχός, µάζας m η οποία θεωρείται συγ κεντωµενη στην περιφέρειά του, περιστρέφεται περί οριζόντιο άξονα ασήµαντης µάζας, ο οποίος διέρχεται από το κέντρο του

Διαβάστε περισσότερα

i) Να βρεθεί ο χρόνος αιώρησης του διαστηµοπλοίου, µέχρις ότου εξαντληθούν τα καύσιµά του.

i) Να βρεθεί ο χρόνος αιώρησης του διαστηµοπλοίου, µέχρις ότου εξαντληθούν τα καύσιµά του. Ένα διαστηµόπλοιο αιωρείται στον αέρα σε στα θερό ύψος από την επιφάνεια της Γης, εκτοξεύοντας καυσαέρια µε σταθερή ταχύτητα v. Η αρχική µάζα του διαστηµόπλοιου µαζί µε τα καύσιµά του είναι m, η δε µάζα

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 28 Φλεβάρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1

Διαβάστε περισσότερα

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και Δύο αβαρή και µη εκτατά νήµατα του ίδιου µή κους είναι στερεωµένα στο ίδιο σηµείο Ο, ενώ στις ελεύθερες άκρες των νηµάτων είναι δεµένα δύο σφαιρίδια, µε µάζες 1 και. Eκτρέ πουµε τα σφαιρίδια από την θέση

Διαβάστε περισσότερα

ii) ii) Nα καθορίσετε το είδος της ισορροπίας της ράβδου.

ii) ii) Nα καθορίσετε το είδος της ισορροπίας της ράβδου. Oµογενής ράβδος Γ, βάρους w και µήκους L, είναι αρθρωµένη στο ένα άκρο της όπως φαίνεται στο σχήµα (), ενώ το άλλο άκρο της είναι δεµένο σε νήµα που διέρχεται από µικρή ακίνητη τροχαλία O, η οποία βρίσκεται

Διαβάστε περισσότερα

a = M + 2m(1 - #$%") όπου! g η επιτάχυνση της βαρύτητας.

a = M + 2m(1 - #$%) όπου! g η επιτάχυνση της βαρύτητας. Στην διάταξη του σχήµατος 1 η ορθογώνια σφήνα µάζας Μ, εφάπτεται µε την υποτείνουσα έδρα της λείου οριζόντιου εδάφους και φέρει στην κορυφή της µικρή και ευκίνητη τροχαλία το αυλάκι της οποίας περιβάλλεται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2012

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ 0 ΕΚΦΩΝΗΕΙ ΘΕΜΑ Α τις ηµιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα το γράµµα που αντιστοιχεί στη φράση η οποία τη συµπληρώνει σωστά. Α. Κατά τη

Διαβάστε περισσότερα

και όταν φθάσει στο σηµείο Γ αρχίζει να κινείται στο κυκλικό του τµήµα που έχει την µορφή λείου τεταρτο κυκλίου ακτίνας R.

και όταν φθάσει στο σηµείο Γ αρχίζει να κινείται στο κυκλικό του τµήµα που έχει την µορφή λείου τεταρτο κυκλίου ακτίνας R. Το σώµα Σ του σχήµατος (α) έχει µάζα και µπορεί να ολισθαίνει πάνω σε λείο οριζόντιο έδαφος. Ένα µικρό σφαιρίδιο µάζας m κινείται αρχικά πάνω στο οριζόντιο τµήµα του σώµατος µε ταχύτητα v 0 και όταν φθάσει

Διαβάστε περισσότερα

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο Διαγώνισμα Μηχανική Στερεού Σώματος Σάββατο 24 Φεβρουαρίου 2018 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Ένας δίσκος στρέφεται γύρω από άξονα που

Διαβάστε περισσότερα

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου, που εξασκεί στην µάζα m δύναµη η οποία απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής:

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου, που εξασκεί στην µάζα m δύναµη η οποία απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής: Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου, που εξασκεί στην µάζα m δύναµη η οποία απορρέει από συνάρτηση δυναµικής ενέργειας της µορφής: U = k 2 x2 + y ) 2 α) όπου k θετική και σταθερή ποσότητα

Διαβάστε περισσότερα

Ασκήσεις στροφικής κίνησης στερεού σώµατος

Ασκήσεις στροφικής κίνησης στερεού σώµατος Ασκήσεις στροφικής κίνησης στερεού σώµατος. Ένας κύλινδρος, βάρους w=0 και διαµέτρου 80 c, περιστρέφεται γύρω από τον γεωµετρικό του άξονα. Ποια σταθερή ροπή (τ) πρέπει να ασκείται, στον κύλινδρο ώστε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η

Διαβάστε περισσότερα

του σφαιριδίου κατευθύνεται προς τα κάτω και σχηµατίζει µε την κατακόρυφη διεύθυνση γωνία φ.

του σφαιριδίου κατευθύνεται προς τα κάτω και σχηµατίζει µε την κατακόρυφη διεύθυνση γωνία φ. Μικρό σφαιρίδιο µάζας m, προσπίπτει σε σηµεί ο Α της περιφέρειας ενός δακτυλιδιού ακτίνας R, το οποίο µπορεί να περιστρέφεται περί οριζόντιο άξονα που διέρχεται από ένα σηµείο του Ο. Η ταχύτητα πρόσπτωσης

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί.

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί. 1. Ο ομογενής και ισοπαχής δίσκος του σχήματος έχει ακτίνα και μάζα, είναι οριζόντιος και μπορεί να περιστρέφεται, χωρίς τριβές, γύρω από κατακόρυφο ακλόνητο άξονα που διέρχεται από το κέντρο του. Ο δίσκος

Διαβάστε περισσότερα

7ο ιαγώνισµα - Μηχανική Στερεού Σώµατος ΙΙ

7ο ιαγώνισµα - Μηχανική Στερεού Σώµατος ΙΙ Σχολική Χρονιά 01-013 7ο ιαγώνισµα - Μηχανική Στερεού Σώµατος ΙΙ Ηµεροµηνία : 4 Μάρτη 013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστή απάντηση [4 5 = 0

Διαβάστε περισσότερα

διέρχεται από το σηµείο τοµής Ο των φορέων του βάρους w! της ράβδου και της οριζόντιας αντίδρασης A!

διέρχεται από το σηµείο τοµής Ο των φορέων του βάρους w! της ράβδου και της οριζόντιας αντίδρασης A! Η οµογενής ράβδος ΑΒ του σχήµατος έχει βά ρος w και στηρίζεται διά του άκρου της Α σε τραχύ κεκλιµένο επί πεδο γωνίας κλίσεως φ ως προς τον ορίζοντα, ενώ το άλλο της άκρο Β ακουµπάει σε λείο κατακόρυφο

Διαβάστε περισσότερα

ΦΥΣ. 111 Τελική Εξέταση: 17-Δεκεµβρίου-2017

ΦΥΣ. 111 Τελική Εξέταση: 17-Δεκεµβρίου-2017 ΦΥΣ. 111 Τελική Εξέταση: 17-Δεκεµβρίου-2017 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά σας. Σας δίνονται

Διαβάστε περισσότερα

που περιγράφεται από την σχέση:! R = -mk! v

που περιγράφεται από την σχέση:! R = -mk! v Mικρό σώµα µάζας m βάλλεται από σηµείο Ο του οριζόντιου εδάφους κατακόρυφα προς τα άνω, µε ταχύτητα µέτρου v. Στην διάρκεια της κίνησής του το σώµα δέχεται από τον ατµοσφαιρι κό αέρα αντίσταση R, που περιγράφεται

Διαβάστε περισσότερα

Ασκήσεις Κεφ. 2, Δυναμική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 29 Μαΐου 2012 1. Στο υλικό σημείο A ασκούνται οι δυνάμεις F 1 και F2 των οποίων

Διαβάστε περισσότερα

(ΘΕΜΑ 17ο)

(ΘΕΜΑ 17ο) Εισαγωγικά: Με το πρόβληµα της αλληλεπίδρασης δύο µαζών, µέσω αβαρούς και µη εκτατού νήµατος παρουσία οµογενούς βαρυτικού πεδίου, είχα ασχοληθεί και στο παρελθόν παρουσιάζοντάς το στην ιστοσελίδα µου µε

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2

ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2 ΚΕΦΑΛΑΙΟ 4 Ροπή αδράνειας - Θεμελιώδης νόμος της στροφικής κίνησης 4.1 Η ροπή αδράνειας ενός σώματος εξαρτάται: α. μόνο από τη μάζα του σώματος β. μόνο τη θέση του άξονα γύρω από τον οποίο μπορεί να περιστρέφεται

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 12 ΣΕΠΤΕΜΒΡΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

της µορφής:! F = -mk! r

της µορφής:! F = -mk! r Ένα µικρό σώµα µάζας m, κινείται επί κυκλικής τροχιάς ακτίνας α µέσα σε δυναµικό πεδίο, ελκόµενο από σταθερό ση µείο Ο που αποτελεί το κέντρο της τροχιάς, µε δύναµη F της µορφής: F -mk όπου το διάνυσµα

Διαβάστε περισσότερα

Προτεινόμενα θέματα για τις εξετάσεις 2011

Προτεινόμενα θέματα για τις εξετάσεις 2011 Προτεινόμενα θέματα για τις εξετάσεις 011 Τάξη: Γ Γενικού Λυκείου Μάθημα: Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΘΕΜΑ Α Α1-A4 Να επιλέξετε τη σωστή από τις απαντήσεις Α1. Ένα σώμα μάζας είναι στερεωμένο

Διαβάστε περισσότερα

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s] ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ 34. Μία κατακόρυφη ράβδος μάζας μήκους, μπορεί να περιστρέφεται στο κατακόρυφο επίπεδο γύρω από

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25) ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ ΘΕΜΑ Α (μοναδες 25) Α1. Σε στερεό που περιστρέφεται γύρω από σταθερό κατακόρυφο άξονα ενεργεί σταθερή ροπή. Τότε αυξάνεται με σταθερό ρυθμό: α. η ροπή αδράνειας του β. η

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 12. Ένας οριζόντιος ομογενής δίσκος ακτίνας μπορεί να περιστρέφεται χωρίς τριβές, γύρω από κατακόρυφο

Διαβάστε περισσότερα

του νήµατος που συγκρατεί το Α, σύµφωνα δε µε τον δεύτερο νόµο του Νεύτωνα υπό την γενικευµένη µορφή του, θα ισχύει η σχέση:

του νήµατος που συγκρατεί το Α, σύµφωνα δε µε τον δεύτερο νόµο του Νεύτωνα υπό την γενικευµένη µορφή του, θα ισχύει η σχέση: Στην διάταξη του σχήµατος () οι δύο σταθερές τροχαλίες τ και τ έχουν αµελητέα µάζα και το νήµα που διέρχεται από τα αυλάκια τους είναι αβαρές και µη εκτατό. Στις άκρες του νήµατος είναι στερεωµένα τα σώµατα

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 17 Φλεβάρη 2019 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 015 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 6 Απριλίου 015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Οκτώβρη 2016 Φυσική Προσανατολισµού - Μηχανική - Ι. Ενδεικτικές Λύσεις. Θέµα Α

1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Οκτώβρη 2016 Φυσική Προσανατολισµού - Μηχανική - Ι. Ενδεικτικές Λύσεις. Θέµα Α 1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Οκτώβρη 2016 Φυσική Προσανατολισµού - Μηχανική - Ι Ενδεικτικές Λύσεις Θέµα Α Α.1 Η εκτόξευση ενός σώµατος µικρών διαστάσεων από ένα ύψος h µε ορι- Ϲόντια

Διαβάστε περισσότερα

Τίτλος Κεφαλαίου: Στερεό σώµα. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1

Τίτλος Κεφαλαίου: Στερεό σώµα. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1 Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 3ο: Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1 ιδακτική Ενότητα: Ροπή

Διαβάστε περισσότερα