Ε ΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 3 ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΟΥ Ε ΑΦΟΥΣ. β) Τάσεις λόγω εξωτερικών φορτίων. Αναπτυσσόμενες τάσεις στο έδαφος

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ε ΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 3 ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΟΥ Ε ΑΦΟΥΣ. β) Τάσεις λόγω εξωτερικών φορτίων. Αναπτυσσόμενες τάσεις στο έδαφος"

Transcript

1 Ε ΑΦΟΜΗΧΑΝΙΚΗ Κεφάλαιο 3 Αναπτυσσόμενες τάσεις στο έδαφος Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 3.1 ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΟΥ Ε ΑΦΟΥΣ ΤΑΣΕΙΣ ΠΟΥ ΡΟΥΝ ΣΤΟ Ε ΑΦΟΣ α) Τάσεις λόγω ιδίου βάρους του εδάφους β) Τάσεις λόγω εξωτερικών φορτίων Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 3.2

2 α) Τάσεις λόγω ιδίου βάρους του εδάφους Οι τάσεις οι οποίες ενεργούν σε μια κορεσμένη εδαφική μάζα χωρίζονται: α) Στις ενεργές τάσεις σ : : Είναι οι τάσεις που μεταδίδονται από κόκκο σε κόκκο. β) Στις πιέσεις των πόρων u: Είναι οι τάσεις που αναπτύσσονται στο νερό που υπάρχει στους πόρους. Η ολική τάση σ είναι το άθροισμα τους σ = σ + u Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 3.3 Κατανομή των τάσεων με το βάθος σ u σ σ = γ u= γ w σ = γ ολική τάση πίεση του νερού ενεργός ερ τάση των πόρων Το ειδικό βάρος του κορεσμένου εδάφους συμβολίζεται γ κορ > γ. Άρα κανονικά γ = γ κορ γ w Συχνά όμως λαμβάνεται γ κορ γ οπότε γ = γ γ w Το ειδικό βάρος του νερού είναι γ w 10.0 kpa Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 3.4

3 Υπολογισμός τάσεων στο έδαφος (λόγω Ι.Β.) Να υπολογιστούν οι ενεργές 1 ος τρόπος υπολογισμού: τάσεις στο σημείο Σ (θεωρείται γ κορ =γ) Ολικές τάσεις στο Σ: σ γ h γ h γ h vo,σ Έδαφος 1: γ 1 h 1 Έδαφος 2: γ 2 h w Πίεση νερού πόρων στο Σ: uσ γw w (υπολογίζεται λ από εκεί που ξεκινά ο υδροφόρος ορίζοντας) Ενεργές τάσεις στο Σ: σvo,σ Σ σvo,σ Σ uσ Έδαφος 3: γ 3 h 2 w h3 γ 1 Σ γ1 γw 2 ος τρόπος υπολογισμού: Ενεργές τάσεις στο Σ: σ γ h γ h h γ h γ h vo,σ 1 w 1 1 w ηλαδή στα κορεσμένα εδάφη λαμβάνεται: γ2 γ2 γw γ3 γ3 γw Όλες οι τάσεις προκύπτουν σε kn 2 kpa m Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ m -0.6m Εφαρμογή : Να υπολογιστούν και να σχεδιαστούν οι κατανομές με το βάθος των ολικών, των ενεργών τάσεων καθώς και των πιέσεων του νερού των πόρων (να θεωρηθεί για τα εδάφη γ κορ =γκαιγιατονερόγ w =10kPa) 0.6m Ο υπολογισμός των τάσεων θα πρέπει να γίνει σε κάθε σημείο που αλλάζει το έδαφος αμμοχάλικο 2.4m γ 1 =18 kn/m -3.0m 3 όπως και στη στάθμη που ξεκινά ο υδροφόρος ορίζοντας. άργιλος γ 2 =21 kn/m 3 γ 2 12 m Στάθμη 0.0m: σvo,0m γ1 0 0 kpa u 0m 0 kpa σvo,0m σvo,0m u0m 0 kpa -15.0m ρηγματωμένος ψαμμίτης διαπερατός Σάθ Στάθμη -0.6m: 06m σvo,0.6m γ kpa u 0.6m 0 kpa σvo,0.6m σvo,0.6m u0.6m 10.8 kpa Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 3.6

4 -0.0m -0.6m -3.0m Συνέχεια εφαρμογής : Να υπολογιστούν και να σχεδιαστούν οι κατανομές με το βάθος των ολικών, των ενεργών τάσεων καθώς και των πιέσεων του νερού των πόρων (να θεωρηθεί για τα εδάφη γ κορ =γκαιγιατονερόγ w =10kPa) αμμοχάλικο γ 1 =18 kn/m 3 0.6m 2.4m Στάθμη -3.0m: σ γ kpa vo,3m 1 u3m γw hw kpa σvo,3m σvo,3m u3m kpa άργιλος γ 2 =21 kn/m 3 γ 2 12 m Στάθμη -15.0m: σvo,15m γ1 3.0 γ kpa -15.0m ρηγματωμένος ψαμμίτης διαπερατός u15m γw hw kpa σvo,15m σvo,15m u15m kpa Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 3.7 Συνέχεια εφαρμογής : σ u σ 10,8 10, ολική τάση (kpa) πίεση του νερού των πόρων (kpa) ενεργός τάση (kpa) Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 3.8

5 Οριζόντιες γεωστατικές τάσεις σ h = σ v k o k o είναι ο συντελεστής ωθήσεων σε ηρεμία. Για την προσέγγιση της τιμής του k o μπορούμε να χρησιμοποιήσουμε μία από τις παρακάτω σχέσεις: k o = 1 sinφ φ (Jaky, 1944) k o = ν/(1-ν) (Teraghi, 1943) k o = log IP (Kenney, 1959) Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 3.9 β) Κατακόρυφες τάσεις λόγω εξωτερικών β) Τάσεις φορτίων λόγω (πρόσθετες εξωτερικών τάσεις) φορτίων Προσδιορίζονται με τη θεωρία του oussinesq Παραδοχές της θεωρίας του oussinesq Το έδαφος είναι ισότροπο και ομοιογενές Το έδαφος είναι γραμμικά ελαστικό Ο ημίχωρος είναι αβαρής Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 3.10

6 Κατανομή των τάσεων κάτω από μοναχικό φορτίο Η μείωση των τάσεων σ με το βάθος και την οριζόντια απόσταση από το σημείο εφαρμογής της δύναμης ακολουθεί τη σχέση του oussinesq: P 2 3P 1 σ 2 2 2π 1 r όπου: r=οριζόντια απόσταση από το φορτίο Ρ =βάθος σ 5 P σ Κατά την κατακόρυφη διεύθυνση r=0 =σταθ. Κατά την οριζόντια διεύθυνση Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ r Χονδρική προσέγγιση της κατανομής των τάσεων με το βάθος κάτω από θεμέλια Μία πρώτη, πρακτική προσέγγιση της κατανομής είναι η εξής: Γίνεται η θεώρηση ότι οι τάσεις περιορίζονται στην περιοχή που ορίζουν οι ευθείες με κλίση 45 ο (πράσινη περιοχή). p 1 Ρ 1 p1 = Ρ 1 1 p 1 Β Ισχύει το θεώρημα της ισορροπίας των δυνάμεων: 45 ο 45 ο Ρ 2 p 2 p 2 = Ρ 1 = Ρ p 1 Β = p 2 (Β+2) p 2 = p 1 Β (Β + 2) Ρ 2 Β+2 μείωση της τάσης με το βάθος Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 3.12

7 Θεωρητική προσέγγιση της κατανομής των τάσεων με το βάθος κάτω από θεμέλια Θεωρητικά το πρόβλημα προσεγγίζεται γγζ με τη λύση του Schleicher (1926) η οποία στηρίζεται στη θεωρία του oussinesq (1885). Για τον προσδιορισμό των κατακόρυφων τάσεων χρησιμοποιούνται έτοιμα Νομογραφήματα για διάφορα είδη φορτίσεων (ομοιόμορφη, τριγωνική, κ.λπ). Γενικώς τα γραφήματα αναφέρονται στο άκρο του θεμελίου. Για το κέντρο του θεμελίου εφαρμόζεται η μέθοδος της επαλληλίας λί (βλ. παράδειγμα). Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ Βάθος ανάπτυξης τάσεων επιφόρτισης - Οι αναπτυσσόμενες τάσεις με το βάθος φαίνονται στο διπλανό σχήμα - Το βάθος επιρροής σε θεμελιολωρίδα (L>>) είναι μεγαλύτερο από ότι σε τετραγωνικό πέδιλο - Εκτιμάται βάθος επιρροής φόρτισης: Θεμελιολωρίδα max 5~6 Τετραγωνικό max 2 (Σχήμα: Καββαδάς, 2005) Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 3.14

8 Τάσεις επιφόρτισης στη γωνία εύκαμπτου θεμελίου Τάσεις για ομοιόμορφη επιφόρτιση: - Οι πρόσθετες τάσεις ( σ) στο έδαφος (σε εύκαμπτο πέδιλο) λόγω της επιφόρτισης μπορούν να υπολογιστούν με το βάθος με τη σχέση: όπου: σ J q s J τασικός συντελεστής στη γωνία του s θεμελίου (σχήμα) συνάρτηση των λόγων / και a/ (ή L/) το απότηστάθμη θεμελίωσης και προς τα κάτω q q σ η τιμή της πρόσθετης τάσης o θ v,df (με επίχωση q ο =q θ ) o στη στάθμη θεμελίωσης Για την εύρεση της σ στο κέντρο του θεμελίου, αυτό χωρίζεται νοητά σε 4 ίσα ορθογώνια και προστίθενται οι επιμέρους σ J s a/= a 10 Γωνία θεμελίου Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ (Σχήμα: Γραμματικόπουλος κ.α., 1994) Τάσεις επιφόρτισης στο χαρακτ. σημείο εύκαμπτου θεμελίου Τάσεις για ομοιόμορφη επιφόρτιση: - Οι πρόσθετες τάσεις ( σ) στο έδαφος (σε δύσκαμπτο πέδιλο) ) λόγω της επιφόρτισης ισούνται με αυτές στο χαρακτηριστικό σημείο C εύκαμπτου πεδίλου : όπου: Js,C σ J q s,c o τασικός συντελεστής στο χαρακτηριστικό σημείο C θεμελίου (σχήμα) συνάρτηση των λόγων / και a/ (ή L/) το από τη στάθμη θεμελίωσης και προς τα κάτω q q σ η τιμή της πρόσθετης τάσης o θ v,df (με επίχωση q ο =q θ ) στη στάθμη θεμελίωσης Η τιμή αυτή της σ στο χαρακτηριστικό σημείο C χρησιμοποιείται συχνά για τον υπολογισμό της καθίζησης δύσκαμπτου πεδίλου (Τσότσος 1991) J sc s,c a/= Χαρακτηριστικό σημείο θεμελίου (Σχήμα: Γραμματικόπουλος κ.α., 1994) Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ a

9 Εφαρμογή : Τάσεις επιφόρτισης εύκαμπτου θεμελίου Πέδιλο διαστάσεων 2.0x2.4m με κατακόρυφο φορτίο 500kN θα θεμελιωθεί σε βάθος 1.0m (δίχως επίχωση) σε αμμώδες έδαφος με c=0 kn/m², φ=30,, γ=18 kn/m³. Να βρεθεί η πρόσθετη ενεργός κατακόρυφη τάση σε βάθος 3.0m από την επιφάνεια: (α) κάτω από το κέντρο του θεμελίου (β) κάτω από το χαρακτηριστικό σημείο του θεμελίου Επίλυση : 500 kn Ομοιόμορφο κατανεμημένο φορτίο στη βάση του πεδίλου: q θ m 2 (α) για το κέντρο του θεμελίου θα πρέπει το πέδιλο να χωριστεί νοητά σε 4 όμοια ορθογώνια όπως φαίνεται στο σχήμα. 2.0m 2.0m J 0.09 S α m 1 α 1.2m q q σ kn o θ v,df 2 m 1.0m σ 4 J q kpa s o Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ m 3.0m Τάσεις επιφόρτισης εύκαμπτου θεμελίου Συνέχεια εφαρμογής : (β) για το χαρακτηριστικό σημείο του θεμελίου λαμβάνεται το σχήμα του πεδίλου ως έχει. 2.0m α 2.4m 2.0m J 0.24 S α kn q q σ o θ v,df m 2 σ J q kpa s,c o 10m 1.0m 3.0m Τι θα άλλαζε στην επίλυση αν είχε γίνει επίχωση πάνω από το πέδιλο? Στην περίπτωση αυτή η πρόσθετη τάση (το επιπλέον φορτίο) στη στάθμη θεμελίωσης θαήτανίσημετοσύνολοτουφορτίουτουπεδίλουq ο =q θ = kpa, καθώς το βάρος του εδάφους που αφαιρέθηκε για την κατασκευή της θεμελίωσης ξαναπροστέθηκε στη συνέχεια εφόσον έγινε επίχωση. Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 3.18

10 Τάσεις επιφόρτισης εύκαμπτου θεμελίου Συνέχεια εφαρμογής : 0.09 J s 0.24 J s,c Χαρακτηριστικό σημείο θεμελίου Γωνία θεμελίου Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ Παράδειγμα: Να υπολογιστούν με τα διαγράμματα oussinesq οι πρόσθετες (εισαγόμενες λόγω των φορτίων της οικοδομής) κατακόρυφες τάσεις α) κάτω από το άκρο του θεμελίου, β) κάτω από το κέντρο του και γ) κάτω από το χαρακτηριστικό σημείο στα βάθη των 4 και 10 m. ίνονται =5m, L=10m. q ο =100 kpa h 4 άργιλος γ=20 kn/m 3 Βάθος h=4m α) Κάτω από το άκρο α/=l/=10/5=2 Για =0, /=0 J s =0,25 σ = J s q ο = 0,25 100= 25 kpa β) Κάτω από το κέντρο α/=(l/2)/(/2)=5/2,5=2 Για =0, /=0 J s =0,25 σ =4 J s q ο =4 0,25 100=100 kpa α/=l/=10/5=2 Για =0, /=0 J s =1 σ = J s q ο = 1 100= 100 kpa α=l L γ) Κάτω από το χαρα- κτηριστικό σημείο α=l/2 L Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ L α=l = =/2 =

11 q ο =100 kpa h 4 άργιλος γ=20 kn/m 3 Βάθος h=10m α) Κάτω από το άκρο α/=l/=10/5=2 Για =6, /=1,2 J s =0,18 σ = J s q ο = 0,18 100= 18 kpa β) Κάτω από το κέντρο α/=(l/2)/(/2)=5/2,5=2 Για =6, /=2,4 J s =0,09 σ = = 4 J s q ο =4 0,09 100=36kPa =36kPa γ) Κάτω από το χαρακτηριστικό σημείο α/=l/=10/5=2 Για =6, /=1,2 J s =0,25 σ = J s q ο = 0,25 100= 25 kpa = α=l L =/2 α=l/2 L = α=l Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ L Εφαρμογή σε πρόβλημα άνωσης: Υπολογίστε το απαιτούμενο κατακόρυφο φορτίο που πρέπει να εφαρμοστεί στην πλάκα θεμελίωσης του Σχήματος ώστε η πλάκα να μην υποστεί ανύψωση (αστοχία) όταν λόγω παύσης των αντλήσεων, το υπόγειο νερό ανέλθει στην αρχική του στάθμη (=1,5 m). Ο απαιτούμενος συντελεστής ασφαλείας να ληφθεί ίσος με 1.5 4,5 3 m άμμος πλάκα m? = 12 m περιμετρική αντιστήριξη με πασσαλοσανίδες Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 3.22

12 Όταν διακοπούν οι αντλήσεις, στην πλάκα θα ενεργεί από κάτω η πίεση: u=hw γw=3.0 10=30 kpa Η ανωτική δύναμη στην περίπτωση αυτή θα είναι: U = u L= =6120 kn η οποία σε περίπτωση που είναι μεγαλύτερη από το ίδιο βάρος της πλάκας θα προκαλέσει την ανύψωση της και την καταστροφή της θεμελίωσης. Η άντληση του νερού θα πρέπει συνεπώς να συνεχίζεται μέχρις ότου το άθροισμα των φορτίων του ιδίου βάρους της πλάκας και των φορτίων που θα ασκούνται πρόσθετα πάνω της (με τη σταδιακή αύξηση των ορόφων) γίνει ίσο με 6120 kn. Εισάγοντας και ένα συντελεστή ασφάλειας ίσο με F.S.=1,5, προκύπτει ως απαιτούμενοσυνολικόφορτίοτοφορτίοτων: ,5= 9180 kn. Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 3.23

Παροράµατα. Σηµειώσεις Θεωρίας: Ε ΑΦΟΜΗΧΑΝΙΚΗ. (για την έκδοση Σεπτέµβριος 2010)

Παροράµατα. Σηµειώσεις Θεωρίας: Ε ΑΦΟΜΗΧΑΝΙΚΗ. (για την έκδοση Σεπτέµβριος 2010) ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ - ΤΜΗΜΑ ΟΜΙΚΩΝ ΕΡΓΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Παροράµατα Σηµειώσεις Θεωρίας: Ε ΑΦΟΜΗΧΑΝΙΚΗ (για την έκδοση Σεπτέµβριος 010) Επιµέλεια-Συγγραφή:

Διαβάστε περισσότερα

Διδάσκων: Κίρτας Εμμανουήλ Χειμερινό Εξάμηνο Εξεταστική περίοδος Ιανουαρίου Διάρκεια εξέτασης: 2 ώρες Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...

Διδάσκων: Κίρτας Εμμανουήλ Χειμερινό Εξάμηνο Εξεταστική περίοδος Ιανουαρίου Διάρκεια εξέτασης: 2 ώρες Ονοματεπώνυμο φοιτητή:... ΑΕΜ:... Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Εξέταση Θεωρίας: Σχολή Τεχνολογικών Εφαρμογών ΕΔΑΦΟΜΗΧΑΝΙΚΗ Τμήμα Πολιτικών Δομικών Έργων Διδάσκων: Κίρτας Εμμανουήλ Χειμερινό Εξάμηνο 010-011 Εξεταστική περίοδος

Διαβάστε περισσότερα

Ε ΑΦΟΜΗΧΑΝΙΚΗ ΚΕΦΑΛΑΙΟ 7

Ε ΑΦΟΜΗΧΑΝΙΚΗ ΚΕΦΑΛΑΙΟ 7 Τεχνολογικό Εκπαιδευτικό Ίδρυµα Σερρών Σχολή Τεχνολογικών Εφαρµογών Τµήµα Πολιτικών οµικών Έργων Ε ΑΦΟΜΗΧΑΝΙΚΗ ΚΕΦΑΛΑΙΟ 7 Τοίχοι Αντιστήριξης ιδάσκων: Κίρτας Εµµανουήλ Σέρρες, Σεπτέµβριος 010 Μάθηµα: Εδαφοµηχανική

Διαβάστε περισσότερα

ΘΕΜΕΛΙΩΣΕΙΣ & ΑΝΤΙΣΤΗΡΙΞΕΙΣ. ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ (επίλυση βάσει EC2 και EC7)

ΘΕΜΕΛΙΩΣΕΙΣ & ΑΝΤΙΣΤΗΡΙΞΕΙΣ. ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ (επίλυση βάσει EC2 και EC7) Θεμελιώσεις & Αντιστηρίξεις - Εργαστηριακών Ασκήσεων 1 ΘΕΜΕΛΙΩΣΕΙΣ & ΑΝΤΙΣΤΗΡΙΞΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ (επίλυση βάσει EC και EC7) Παρακάτω δίνονται τα τελικά αποτελέσματα στις ασκήσεις του

Διαβάστε περισσότερα

Θεµελιώσεις - Απαντήσεις Εργαστηριακών Ασκήσεων 1 ΘΕΜΕΛΙΩΣΕΙΣ. = 180 kpa, σ = 206 kpa

Θεµελιώσεις - Απαντήσεις Εργαστηριακών Ασκήσεων 1 ΘΕΜΕΛΙΩΣΕΙΣ. = 180 kpa, σ = 206 kpa Θεµελιώσεις - Εργαστηριακών Ασκήσεων 1 ΘΕΜΕΛΙΩΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ 1Ο Άσκηση 1.1 Βάθος z=0.0: σ = 0, u = 0, σ = 0 w Βάθος z=-2.0: σ Βάθος z=-7.0: σ Βάθος z=-20.0: σ = 6 kpa,

Διαβάστε περισσότερα

ΘΕΜΕΛΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟ 3 3.1

ΘΕΜΕΛΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟ 3 3.1 ΘΕΜΕΛΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟ 3 3.1 ΕΡΓΑΣΤΗΡΙΟ 3 ΕΡΓΑΣΤΗΡΙΟ 3Ο 3.1 Άσκηση Άκαμπτο πέδιλο πλάτους Β=2m και μεγάλου μήκους φέρει κατακόρυφο φορτίο 1000kN ανά μέτρο μήκους του θεμελίου και θεμελιώνεται σε βάθος

Διαβάστε περισσότερα

Ε Α Φ Ο Μ Η Χ Α Ν Ι Κ Η ΚΕΦΑΛΑΙΟ 6

Ε Α Φ Ο Μ Η Χ Α Ν Ι Κ Η ΚΕΦΑΛΑΙΟ 6 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών ομικών Έργων Ε Α Φ Ο Μ Η Χ Α Ν Ι Κ Η ΚΕΦΑΛΑΙΟ 6 Επιφανειακών Θεμελιώσεων ιδάσκων: Κίρτας Εμμανουήλ Σέρρες, Σεπτέμβριος

Διαβάστε περισσότερα

Ε Α Φ Ο Μ Η Χ Α Ν Ι Κ Η ΚΕΦΑΛΑΙΟ 5

Ε Α Φ Ο Μ Η Χ Α Ν Ι Κ Η ΚΕΦΑΛΑΙΟ 5 Τεχνολογικό Εκπαιδευτικό Ίδρυµα Σερρών Σχολή Τεχνολογικών Εφαρµογών Τµήµα Πολιτικών οµικών Έργων Ε Α Φ Ο Μ Η Χ Α Ν Ι Κ Η ΚΕΦΑΛΑΙΟ 5 Επιφανειακών Θεµελιώσεων ιδάσκων: Κίρτας Εµµανουήλ Σέρρες, Σεπτέµβριος

Διαβάστε περισσότερα

Τελική γραπτή εξέταση διάρκειας 2,5 ωρών

Τελική γραπτή εξέταση διάρκειας 2,5 ωρών τηλ: 410-74178, fax: 410-74169, www.uth.gr Τελική γραπτή εξέταση διάρκειας,5 ωρών Ονοματεπώνυμο: Αριθμός Μητρώου Φοιτητή: Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης-Ορέστης Σ. Γεωργόπουλος,

Διαβάστε περισσότερα

ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΕΔΑΦΟΥΣ

ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΕΔΑΦΟΥΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,

Διαβάστε περισσότερα

Μεθοδολογία επίλυσης εργασίας Εδαφομηχανικής (εαρινό εξάμηνο 2010-2011)

Μεθοδολογία επίλυσης εργασίας Εδαφομηχανικής (εαρινό εξάμηνο 2010-2011) Μεθοδολογία ίλυσης εργασίας Εδαφομηχανικής (εαρινό εξάμηνο 2010-2011) Στη συνέχεια δίνονται ενδεικτικά τα βήματα που πρέπει να γίνουν, όπως και κάποια σημεία που χρίζουν ιδιαίτερης προσοχής, κατά τη διαδικασία

Διαβάστε περισσότερα

Μεθοδολογία επίλυσης εργασίας Εδαφομηχανικής

Μεθοδολογία επίλυσης εργασίας Εδαφομηχανικής Μεθοδολογία ίλυσης εργασίας Εδαφομηχανικής Στη συνέχεια δίνονται ενδεικτικά τα βήματα που πρέπει να γίνουν κατά την ίλυση των ασκήσεων της εργασίας Εδαφομηχανικής, ενώ τονίζονται κάποια σημεία που χρίζουν

Διαβάστε περισσότερα

ΘΕΜΕΛΙΩΣΕΙΣ & ΑΝΤΙΣΤΗΡΙΞΕΙΣ

ΘΕΜΕΛΙΩΣΕΙΣ & ΑΝΤΙΣΤΗΡΙΞΕΙΣ ΤΕΙ Κεντρικής Μακεδονίας Σχολή Τεχνολογικών Εφαρμογών Τμήμα ΠΜ & ΜΤΓ ΤΕ Κατεύθυνση Πολιτικών Μηχανικών ΤΕ ΘΕΜΕΛΙΩΣΕΙΣ & ΑΝΤΙΣΤΗΡΙΞΕΙΣ Εργαστήριο 1 Αναπτυσσόμενες τάσεις στο έδαφος Βοηθητικά Σχήματα Επιμέλεια

Διαβάστε περισσότερα

ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ

ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ - ΠΑΡΑΛΛΑΓΗ "Α"

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ - ΠΑΡΑΛΛΑΓΗ Α Ε. Μ. ΠΟΛΥΤΕΧΝΕΙΟ - ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΕΝΔΙΑΜΕΣΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ: ΕΔΑΦΟΜΗΧΑΝΙΚΗ Ι (Τμήμα Μ-Ω) Ακαδ. έτος 007-08 5 Ιανουαρίου 008 Διάρκεια: :30 ώρες ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

Διαβάστε περισσότερα

Υπόδειξη: Στην ισότροπη γραμμική ελαστικότητα, οι τάσεις με τις αντίστοιχες παραμορφώσεις συνδέονται μέσω των κάτωθι σχέσεων:

Υπόδειξη: Στην ισότροπη γραμμική ελαστικότητα, οι τάσεις με τις αντίστοιχες παραμορφώσεις συνδέονται μέσω των κάτωθι σχέσεων: Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Π.Δ.407/80, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Σχέσεις τάσεων παραμορφώσεων στο έδαφος. Ημερομηνία: Δευτέρα

Διαβάστε περισσότερα

Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...

Ονοματεπώνυμο φοιτητή:... ΑΕΜ:... Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Δομικών Έργων Χειμερινό Εξάμηνο 00-0 Διάρκεια εξέτασης: ώρες Εξέταση Θεωρίας: ΘΕΜΕΛΙΩΣΕΙΣ Διδάσκων: Κίρτας Εμμανουήλ

Διαβάστε περισσότερα

.. - : (5.. ) 2. (i) D, ( ).. (ii) ( )

.. - : (5.. ) 2. (i) D, ( ).. (ii) ( ) .. - : (5.. ) 64 ( ). v, v u : ) q. ) q. ) q. ( ) 2. (i) D, ( ) ( ).. (ii) e ( ). 3. e 1 e 2. ( ) 1 0. +1.00 1. (+5.00) 4. q = 50 kn/m 2, (...) 1.0m... = 1.9 Mg/m 3 (...) 5. p = 120 5m. 2 P = 80. ( 40m

Διαβάστε περισσότερα

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών ομικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ Παραδόσεις Θεωρίας ιδάσκων: Κίρτας Εμμανουήλ Σέρρες, Σεπτέμβριος 2010 Τεχνολογικό

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 5 Καθιζήσεις Επιφανειακών Θεμελιώσεων : Υπολογισμός καθιζήσεων σε αργιλικά εδάφη 02.11.2005 Υπολογισμός καθιζήσεων

Διαβάστε περισσότερα

) θα πρέπει να είναι μεγαλύτερη ή ίση από την αντίστοιχη τάση μετά από την κατασκευή της ανωδομής ( σ. ). Δηλαδή, θα πρέπει να ισχύει : σ ΚΤΙΡΙΟ A

) θα πρέπει να είναι μεγαλύτερη ή ίση από την αντίστοιχη τάση μετά από την κατασκευή της ανωδομής ( σ. ). Δηλαδή, θα πρέπει να ισχύει : σ ΚΤΙΡΙΟ A ΜΑΘΗΜΑ : ΕΔΑΦΟΜΗΧΑΝΙΚΗ Ι - 5 ο Εξ. Πολιτικών Μηχανικών - Ακαδημαϊκό Έτος : 001 00 1η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια : Γιάννης Κουκούλης, Υποψήφιος Διδάκτορας ΕΜΠ Για την επίλυση των ασκήσεων

Διαβάστε περισσότερα

ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ

ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκοντες: Βασίλειος Παπαδόπουλος,

Διαβάστε περισσότερα

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 5

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 5 Τεχνολογικό Εκπαιδευτικό Ίδρυµα Σερρών Σχολή Τεχνολογικών Εφαρµογών Τµήµα Πολιτικών οµικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 5 ιδάσκων: Κίρτας Εµµανουήλ Σέρρες, Σεπτέµβριος 010 1 Μάθηµα: Θεµελιώσεις

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους Συνοχή (c) Γωνία τριβής (φ ο ) 2. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας

Διαβάστε περισσότερα

AΡΧΙΚΕΣ ή ΓΕΩΣΤΑΤΙΚΕΣ ΤΑΣΕΙΣ

AΡΧΙΚΕΣ ή ΓΕΩΣΤΑΤΙΚΕΣ ΤΑΣΕΙΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,

Διαβάστε περισσότερα

Ε. Μ. ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ

Ε. Μ. ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ Ε. Μ. ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΜΑΘΗΜΑ : ΕΔΑΦΟΜΗΧΑΝΙΚΗ Ι (5 ο Εξαμ. ΠΟΛ. ΜΗΧ) 2 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ (Φυσικά Χαρακτηριστικά Εδαφών) 1. (α) Να εκφρασθεί το πορώδες (n) συναρτήσει

Διαβάστε περισσότερα

ΘΕΜΑ 1 : [ Αναλογία στο βαθµό = 5 x 20% = 100 % ]

ΘΕΜΑ 1 : [ Αναλογία στο βαθµό = 5 x 20% = 100 % ] Α Ε. Μ. ΠΟΛΥΤΕΧΝΕΙΟ - ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ Ακαδ. έτος 203-4 5 Φεβρουαρίου 204 ιάρκεια: 60 λεπτά ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ : [ Αναλογία στο βαθµό = 5 x 20% = 00 % ] Πριν κατασκευασθεί

Διαβάστε περισσότερα

Επαναληπτικές Ερωτήσεις στην Ύλη του Μαθήματος. Ιανουάριος 2011

Επαναληπτικές Ερωτήσεις στην Ύλη του Μαθήματος. Ιανουάριος 2011 ΕΔΑΦΟΜΗΧΑΝΙΚΗΔ Α Φ Ο Μ Α Ν Ι Κ Η Επαναληπτικές Ερωτήσεις στην Ύλη του Μαθήματος Ι Ελέγξτε τις γνώσεις σας με τις παρακάτω ερωτήσεις οι οποίες συνοψίζουν τα βασικά σημεία του κάθε κεφαλαίου. Γ. Μπουκοβάλας

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1: Υπολογίστε τη συνισταμένη κατακόρυφη δύναμη σε οριζόντιο επίπεδο με για συγκεντρωμένο σημειακό φορτίο, σύμφωνα με το σχήμα.

ΑΣΚΗΣΗ 1: Υπολογίστε τη συνισταμένη κατακόρυφη δύναμη σε οριζόντιο επίπεδο με για συγκεντρωμένο σημειακό φορτίο, σύμφωνα με το σχήμα. Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Π.Δ.407/80, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Μετάδοση τάσεων στο έδαφος (8 η σειρά ασκήσεων). Ημερομηνία:

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. A. Γεωστατικές τάσεις. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. A. Γεωστατικές τάσεις. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων A. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας και Υδρογεωλογίας

Διαβάστε περισσότερα

Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb

Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb Ν u Τ 81 Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb 82 Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb 83 Η αστοχία στα εδαφικά υλικά Νόμος Τριβής

Διαβάστε περισσότερα

Πεδιλοδοκοί και Κοιτοστρώσεις

Πεδιλοδοκοί και Κοιτοστρώσεις /7/0 ΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 0 - ΙΑΛΕΞΗ 7 Πεδιλοδοκοί και Κοιτοστρώσεις 8.0.0 Πεδιλοδοκοί και Κοιτοστρώσεις Η θεµελίωση µπορεί να γίνει µε πεδιλοδοκούς ή κοιτόστρωση

Διαβάστε περισσότερα

Καθηγητής Ε.Μ.Π. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. 6.2 Δά Διάφορες Περιπτώσεις Προφόρτισης. 6.3 Συνδυασμός Προφόρτισης με Στραγγιστήρια. 6.4 Σταδιακή Προφόρτιση

Καθηγητής Ε.Μ.Π. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. 6.2 Δά Διάφορες Περιπτώσεις Προφόρτισης. 6.3 Συνδυασμός Προφόρτισης με Στραγγιστήρια. 6.4 Σταδιακή Προφόρτιση 6. ΠΡΟΦΟΡΤΙΣΗ (αργιλικών εδαφών) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 016 ΠΕΡΙΕΧΟΜΕΝΑ Ε 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ 6. Δά Διάφορες Περιπτώσεις Προφόρτισης 6.3 Συνδυασμός

Διαβάστε περισσότερα

s,min ΕΚΩΣ : Ελάχιστος οπλισμός τουλάχιστο Ø12 ανά max 15cm (Ø12/15cm=7.54cm²) ποιότητας ισοδύναμης με S400/S500 (υγρά εδάφη Ø14/15cm)

s,min ΕΚΩΣ : Ελάχιστος οπλισμός τουλάχιστο Ø12 ανά max 15cm (Ø12/15cm=7.54cm²) ποιότητας ισοδύναμης με S400/S500 (υγρά εδάφη Ø14/15cm) Τυπόγιο: ιαστασιόγηση μεμονωμένων πεδίλων 1 Γενικοί Κανόνες ιαμόρφωσης Μεμονωμένων Πεδίλων Βιβλιογραφία: Αναγνωστόπουλος κ.α. (01) και Πενέλης κ.α. (1995) C C α 0.05m D α D ' σκυρόδεμα καθαριότητας (~10cm)

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 006-07 ΔΙΑΛΕΞΗ 6 Καθιζήσεις Επιφανειακών Θεμελιώσεων : Υπολογισμός καθιζήσεων σε αμμώδη εδάφη 0.1.006 Υπολογισμός καθιζήσεων σε

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων (3 Α ) A. Γεωστατικές τάσεις. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων (3 Α ) A. Γεωστατικές τάσεις. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων (3 Α ) A. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας και

Διαβάστε περισσότερα

Βιβλιογραφία: Αναγνωστόπουλος (Πιτιλάκης κ.α. 1999) και Πενέλης κ.α. 1995

Βιβλιογραφία: Αναγνωστόπουλος (Πιτιλάκης κ.α. 1999) και Πενέλης κ.α. 1995 Τυπόγιο: ιαστασιόγηση μεμονωμένων πεδίλων 1 Γενικοί Κανόνες ιαμόρφωσης Μεμονωμένων Πεδίλων Βιβλιογραφία: Αναγνωστόπουλος (Πιτιλάκης κ.α. 1999) και Πενέλης κ.α. 1995 C C α 0.05m D D ' σκυρόδεμα καθαριότητας

Διαβάστε περισσότερα

ΣΤΕΡΕΟΠΟΙΗΣΗ - ΚΑΘΙΖΗΣΕΙΣ

ΣΤΕΡΕΟΠΟΙΗΣΗ - ΚΑΘΙΖΗΣΕΙΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,

Διαβάστε περισσότερα

2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ ΧΩΡΙΚΟΥ ΚΤΙΡΙΑΚΟΥ ΦΟΡΕΑ ΜΕ ΤΟ ΠΡΟΓΡΑΜΜΑ SAP-2000

2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ ΧΩΡΙΚΟΥ ΚΤΙΡΙΑΚΟΥ ΦΟΡΕΑ ΜΕ ΤΟ ΠΡΟΓΡΑΜΜΑ SAP-2000 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ ΚΑΙ ΥΝΑΜΙΚΗΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ 2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή Διδάσκων: Γιάννης Χουλιάρας Επίλυση υπερστατικών φορέων Για την επίλυση των ισοστατικών φορέων (εύρεση αντιδράσεων και μεγεθών έντασης) αρκούν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θεμελιώσεις

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θεμελιώσεις ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θεμελιώσεις Ενότητα 4 η : Φέρουσα Ικανότητα Αβαθών Θεμελιώσεων Δρ. Εμμανουήλ Βαϊρακτάρης Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τμήμα

Διαβάστε περισσότερα

α) Προτού επιβληθεί το φορτίο q οι τάσεις στο σημείο Μ είναι οι γεωστατικές. Κατά συνέπεια θα είναι:

α) Προτού επιβληθεί το φορτίο q οι τάσεις στο σημείο Μ είναι οι γεωστατικές. Κατά συνέπεια θα είναι: 6 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Μιχάλης Μπαρδάνης, Υποψήφιος Διδάκτορας ΕΜΠ Για την επίλυση των ασκήσεων σειράς αυτής αρκούν οι σχέσεις και οι πίνακες που παρατίθενται στα οικεία κεφάλαια

Διαβάστε περισσότερα

ΜΕ ΚΛΕΙΣΤΑ ΒΙΒΛΙΑ - ΣΗΜΕΙΩΣΕΙΣ - ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ A

ΜΕ ΚΛΕΙΣΤΑ ΒΙΒΛΙΑ - ΣΗΜΕΙΩΣΕΙΣ - ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ A Σχολή Πολιτικών Μηχανικών ΕΜΠ Τομέας Γεωτεχνικής Εδαφομηχανική Ι Διαγώνισμα 26-10-2007 1 ΜΕ ΚΛΕΙΣΤΑ ΒΙΒΛΙΑ - ΣΗΜΕΙΩΣΕΙΣ - ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ A ΘΕΜΑ 1 ο : [Αναλογία στο βαθμό = 10%+15%+10%+10% = 45%] Βράχος

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 005-06 ΔΙΑΛΕΞΗ 13 Θεμελιώσεις με πασσάλους : Εγκάρσια φόρτιση πασσάλων 1.05.005 1. Κατηγορίες πασσάλων. Αξονική φέρουσα ικανότητα

Διαβάστε περισσότερα

W H W H. 3=1.5εW. F =εw 2. F =0.5 εw. Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων

W H W H. 3=1.5εW. F =εw 2. F =0.5 εw. Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων 1 Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων F 3=1.5εW W H F =εw W F =0.5 εw 1 Υ4 Δ1 Υ Δ1 W H Υ3 Υ1 H Π L L To τριώροφο επίπεδο πλαίσιο του σχήματος έχει (θεωρητικό) ύψος ορόφου

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 006-07 ΔΙΑΛΕΞΗ 6 Καθιζήσεις Επιφανειακών Θεμελιώσεων : Υπολογισμός καθιζήσεων σε αμμώδη εδάφη 5.10.007 Υπολογισμός καθιζήσεων

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 5-6 ΔΙΑΛΕΞΗ 7 Πεδιλοδοκοί και Κοιτοστρώσεις..6 Πεδιλοδοκοί και Κοιτοστρώσεις Η θεμελίωση μπορεί να γίνει με πεδιλοδοκούς ή κοιτόστρωση

Διαβάστε περισσότερα

. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως.

. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως. Μάθημα: Εδαφομηχανική Ι, 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επιστημονικός Συνεργάτης Τμήματος Πολιτικών Έργων Υποδομής, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Υδατική ροή

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισµός Διατµητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισµός Διατµητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων 1. Υπολογισµός Διατµητικής Αντοχής Εδάφους Συνοχή (c) Γωνία τριβής (φ ο ) 2. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας

Διαβάστε περισσότερα

(αργιλικών εδαφών) 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. 6.2 Διάφορες Περιπτώσεις Προφόρτισης

(αργιλικών εδαφών) 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. 6.2 Διάφορες Περιπτώσεις Προφόρτισης 6. ΠΡΟΦΟΡΤΙΣΗ (αργιλικών εδαφών) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 2013 ΠΕΡΙΕΧΟΜΕΝΑ 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ 6.2 Διάφορες Περιπτώσεις Προφόρτισης 6.3 Συνδυασμός

Διαβάστε περισσότερα

ΜΕΡΟΣ Β Βελτίωση Ενίσχυση εδαφών

ΜΕΡΟΣ Β Βελτίωση Ενίσχυση εδαφών ΜΕΡΟΣ Β Βελτίωση Ενίσχυση εδαφών Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1 5. ΓΕΝΙΚΑ ΠΕΡΙ ΜΕΘΟ ΩΝ Βελτίωσης Ενίσχυσης εδαφών Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. MΑΡΤΙΟΣ 2009 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΟΚΟΥ ΣΕ ΚΑΜΨΗ

ΕΛΕΓΧΟΣ ΟΚΟΥ ΣΕ ΚΑΜΨΗ Επίλυση γραμμικών φορέων ΟΣ σύμφωνα με τους EC & EC8 ΑΣΚΗΣΗ 4 (3/3/017) ΕΛΕΓΧΟΣ ΟΚΟΥ ΣΕ ΚΑΜΨΗ Να υπολογιστεί σε κάµψη η µονοπροέχουσα δοκός του σχήµατος για συνδυασµό φόρτισης 135G15Q Η δοκός ανήκει σε

Διαβάστε περισσότερα

SPC. Soil Pressures Calculation. Εγχειρίδιο Χρήσης. Υπολογισμός Τάσεων Εδάφους. v.1.1. Άγγελος Γάκης

SPC. Soil Pressures Calculation. Εγχειρίδιο Χρήσης. Υπολογισμός Τάσεων Εδάφους. v.1.1. Άγγελος Γάκης SPC Soil Pressures Calculation Υπολογισμός Τάσεων Εδάφους Εγχειρίδιο Χρήσης v.1.1 Άγγελος Γάκης 2009 Πίνακας Περιεχομένων ΕΙΣΑΓΩΓΗ... 3 ΔΥΝΑΤΟΤΗΤΕΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ... 4 ΧΡΗΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ... 5 ΕΙΣΑΓΩΓΗ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ ΙΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ ΙΙ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ ΙΙ ΕΠΙΠΛΕΟΝ ΣΗΜΕΙΩΣΕΙΣ για φέρουσα ικανότητα αβαθών θεµελίων (βασισµένες εν πολλοίς σε σηµειώσεις των Μ. Καββαδά, Καθηγητή

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6. Διαλέγουμε ως υπερστατικά μεγέθη τις κατακόρυφες αντιδράσεις στις τρεις αριστερές στηρίξεις.

ΑΣΚΗΣΗ 6. Διαλέγουμε ως υπερστατικά μεγέθη τις κατακόρυφες αντιδράσεις στις τρεις αριστερές στηρίξεις. Άσκηση 6 Μέθοδος των υνάμεων ΑΣΚΗΣΗ 6 ΕΟΜΕΝΑ: Για τη δοκό του σχήματος με ίσα ανοίγματα και ροπές αδρανείας σταθερές αλλά όχι ίδιες σε κάθε άνοιγμα, ζητείται να μορφωθεί το διάγραμμα ροπών κάμψεως. 6 mm

Διαβάστε περισσότερα

ΣΧΕ ΙΑΣΜΟΣ ΤΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΜΕ ΤΟΥΣ ΕΥΡΩΚΩ ΙΚΕΣ 7, 2 & 8

ΣΧΕ ΙΑΣΜΟΣ ΤΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΜΕ ΤΟΥΣ ΕΥΡΩΚΩ ΙΚΕΣ 7, 2 & 8 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΣΧΕ ΙΑΣΜΟΣ ΤΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΜΕ ΤΟΥΣ ΕΥΡΩΚΩ ΙΚΕΣ 7, 2 & 8 Μπελόκας Γεώργιος ιδάκτωρ Πολιτικός Μηχανικός

Διαβάστε περισσότερα

ΕΔΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 4. Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.2

ΕΔΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 4. Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.2 ΕΔΑΦΟΜΗΧΑΝΙΚΗ Κεφάλαιο 4 Προσδιορισμός συνθηκών υπεδάφους Επιτόπου δοκιμές Είδη θεμελίωσης Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.1 Προσδιορισμός των συνθηκών υπεδάφους Με δειγματοληπτικές γεωτρήσεις

Διαβάστε περισσότερα

Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7. Αιµίλιος Κωµοδρόµος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήµιο Θεσσαλίας Τµήµα Πολιτικών Μηχανικών

Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7. Αιµίλιος Κωµοδρόµος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήµιο Θεσσαλίας Τµήµα Πολιτικών Μηχανικών Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 Υπολογισµός Φέρουσας Ικανότητας Ευρωκώδικας 7 Αστράγγιστες Συνθήκες Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 [ c b s i q] R k

Διαβάστε περισσότερα

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος

Διαβάστε περισσότερα

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4 Τεχνολογικό Εκπαιδευτικό Ίδρυµα Σερρών Σχολή Τεχνολογικών Εφαρµογών Τµήµα Πολιτικών οµικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4 Βαθιές θεµελιώσεις ιδάσκων: Κίρτας Εµµανουήλ Σέρρες, Σεπτέµβριος 2010 1

Διαβάστε περισσότερα

Θεμελιώσεις τεχνικών έργων. Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας

Θεμελιώσεις τεχνικών έργων. Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Θεμελιώσεις τεχνικών έργων Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Ορισμός Θεμελίωση (foundation) είναι το κατώτερο τμήμα μιας κατασκευής και αποτελεί τον τρόπο διάταξης των δομικών

Διαβάστε περισσότερα

Ανάλυση κεκλιμένων επιφορτίσεων Εισαγωγή δεδομένων

Ανάλυση κεκλιμένων επιφορτίσεων Εισαγωγή δεδομένων Ανάλυση κεκλιμένων επιφορτίσεων Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 8.0.05 Ρυθμίσεις Πρότυπο - συντελεστές ασφάλειας Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Aνάλυση τοίχου

Διαβάστε περισσότερα

ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:

ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων: ΔΕΔΟΜΕΝΑ: ΘΕΜΑ Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα, Q (2.5 μονάδες) β) να υπολογιστεί το μέτρο και η φορά της κατακόρυφης μετατόπισης στο μέσο του τμήματος (23) ( μονάδα) Δίνονται:

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων» Μάθηµα: «Αντισεισµικός Σχεδιασµός Θεµελιώσεων,

Διαβάστε περισσότερα

Ανάλ κατακόρ φρεατίου Εισαγωγή δεδομένων

Ανάλ κατακόρ φρεατίου Εισαγωγή δεδομένων Ανάλ κατακόρ φρεατίου Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 22.0.204 Ρυθμίσεις Πρότυπο - οριακές καταστάσεις Ανάλυση πίεσης Μεθοδολογία επαλήθευσης : Οριακ καταστ (LSD) Μειωτικός συντ εσωτερικής τριβής

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 3 Ανάλυση της Φέρουσας Ικανότητας Επιφανειακών Θεμελιώσεων κατά τον Ευρωκώδικα 7 8.0.2005 Έλεχος επάρκειας επιφανειακών

Διαβάστε περισσότερα

Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης.

Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης. Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης. 1. Ανατροπής ολίσθησης. 2. Φέρουσας ικανότητας 3. Καθιζήσεων Να γίνουν οι απαραίτητοι έλεγχοι διατομών και να υπολογισθεί ο απαιτούμενος

Διαβάστε περισσότερα

Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ (Σ.Τ.ΕΦ.) ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. (ΤΡΙΚΑΛΑ) ΘΕΜΕΛΙΩΣΕΙΣ - ΑΝΤΙΣΤΗΡΙΞΕΙΣ

Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ (Σ.Τ.ΕΦ.) ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. (ΤΡΙΚΑΛΑ) ΘΕΜΕΛΙΩΣΕΙΣ - ΑΝΤΙΣΤΗΡΙΞΕΙΣ Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ (Σ.Τ.ΕΦ.) ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. (ΤΡΙΚΑΛΑ) ΘΕΜΕΛΙΩΣΕΙΣ - ΑΝΤΙΣΤΗΡΙΞΕΙΣ Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός Δ.Π.Θ., M.Sc. ΣΚΟΠΟΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ

Διαβάστε περισσότερα

EN EN Μερικοί συντ αντιστάσεων (R) g b = g s = Συντελεστές μείωσης Συντ μείωσης καμπύλης φορτίου καθίζησης : k = 1,00 [ ] Έλεγχοι Συντ.

EN EN Μερικοί συντ αντιστάσεων (R) g b = g s = Συντελεστές μείωσης Συντ μείωσης καμπύλης φορτίου καθίζησης : k = 1,00 [ ] Έλεγχοι Συντ. Ανάλυση πασσάλου CPT Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 09.10.2008 Ρυθμίσεις Πρότυπο - EN 1997 - DA1 CPT πάσσαλος Μεθοδολογία επαλήθευσης : Τύπος ανάλυσης : Μερικός συντ αντίστασης αιχμής : Μερικός

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΤΙΡΙΟΥ ΜΕ ΕΑΚ, ΚΑΝΟΝΙΣΜΟ 84 ΚΑΙ ΚΑΝΟΝΙΣΜΟ 59 ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΜΕ ΚΑΝ.ΕΠΕ.

ΣΧΕΔΙΑΣΜΟΣ ΚΤΙΡΙΟΥ ΜΕ ΕΑΚ, ΚΑΝΟΝΙΣΜΟ 84 ΚΑΙ ΚΑΝΟΝΙΣΜΟ 59 ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΜΕ ΚΑΝ.ΕΠΕ. Σχεδιασμός κτιρίου με ΕΑΚ, Κανονισμό 84 και Κανονισμό 59 και αποτίμηση με ΚΑΝ.ΕΠΕ. ΣΧΕΔΙΑΣΜΟΣ ΚΤΙΡΙΟΥ ΜΕ ΕΑΚ, ΚΑΝΟΝΙΣΜΟ 84 ΚΑΙ ΚΑΝΟΝΙΣΜΟ 59 ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΜΕ ΚΑΝ.ΕΠΕ. ΡΑΥΤΟΠΟΥΛΟΥ ΜΑΡΙΝΑ Περίληψη Αντικείμενο

Διαβάστε περισσότερα

ΘΕΜΑ ΕΚΠΟΝΗΣΗΣ Παράδοση Παραδοτέα (α) (β) (γ) (δ) Βαθμός Φορτία

ΘΕΜΑ ΕΚΠΟΝΗΣΗΣ Παράδοση Παραδοτέα (α) (β) (γ) (δ) Βαθμός Φορτία Πάτρα 5-12-2016 ΘΕΜΑ ΕΚΠΟΝΗΣΗΣ Παράδοση: Ημέρα διεξαγωγής της εξέτασης περίοδος Ιανουαρίου 2017. Παραδοτέα: (α) Τεχνική έκθεση η οποία θα ξεκινά με συμπληρωμένο των πίνακα αριθμητικών δεδομένων (βλ. παρακάτω),

Διαβάστε περισσότερα

ΕΔΑΦΟΜΗΧΑΝΙΚΗ ΕΔΑΦΟΜΗΧΑΝΙΚΗ

ΕΔΑΦΟΜΗΧΑΝΙΚΗ ΕΔΑΦΟΜΗΧΑΝΙΚΗ ΕΔΑΦΟΜΗΧΑΝΙΚΗ Κεφάλαιο 1 Εισαγωγή Ταξινόμηση εδαφών Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 1.1 ΕΔΑΦΟΜΗΧΑΝΙΚΗ Η Εδαφομηχανική ασχολείται με τη μελέτη της συμπεριφοράς του εδάφους

Διαβάστε περισσότερα

Γιώργος Μπουκοβάλας. Φεβρουάριος 2015. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 3.1

Γιώργος Μπουκοβάλας. Φεβρουάριος 2015. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 3.1 3. Ανάλυση & Σχεδιασμός ΕΥΚΑΜΠΤΩΝ ΑΝΤΙΣΤΗΡΙΞΕΩΝ Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. Φεβρουάριος 2015 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 3.1 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΩΝ ΕΝΕΡΓΗΤΙΚΩΝ ΩΘΗΣΕΩΝ ΚΑΤΑ RANKINE 2 ) ΚΙ=0,49 2 ) ΚΙΙ=0,589 ΥΠΟΛΟΓΙΣΜΟΣ ΕΝΕΡΓΩΝ ΚΑΤΑΚΟΡΥΦΩΝ ΤΑΣΕΩΝ

ΥΠΟΛΟΓΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΩΝ ΕΝΕΡΓΗΤΙΚΩΝ ΩΘΗΣΕΩΝ ΚΑΤΑ RANKINE 2 ) ΚΙ=0,49 2 ) ΚΙΙ=0,589 ΥΠΟΛΟΓΙΣΜΟΣ ΕΝΕΡΓΩΝ ΚΑΤΑΚΟΡΥΦΩΝ ΤΑΣΕΩΝ 1 Τ.Ε.Ι. ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΔΑΦΟΜΗΧΑΝΙΚΗΣ - 1/03/011 ΘΕΜΑ 1 ο a) Να προσδιοριστεί και να σχεδιαστεί η κατανομή των ενεργητικών ωθήσεων καθ'ύψος του τοίχου (γ w=1t/m 3 ) b) Να υπολογιστεί

Διαβάστε περισσότερα

Ανάλυση κεκλιμένων επιφορτίσεων Εισαγωγή δεδομένων

Ανάλυση κεκλιμένων επιφορτίσεων Εισαγωγή δεδομένων Soil Boring co. σταυροδρόμι 14 Αθήνα Ανάλυση κεκλιμένων επιφορτίσεων Εισαγωγή δεδομένων Έργο Ημερομηνία : 21/10/2011 Γεωμετρία της φέρουσας κατασκευής Ύψος επιχωμάτωσης Μήκος επιχωμάτωσης Πάχος επικάλυψης

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 8β Θεμελιώσεις με πασσάλους : Αξονική φέρουσα ικανότητα εμπηγνυόμενων πασσάλων με στατικούς τύπους 25.12.2005

Διαβάστε περισσότερα

Βελτίωσης Ενίσχυσης εδαφών

Βελτίωσης Ενίσχυσης εδαφών 5. ΓΕΝΙΚΑ ΠΕΡΙ ΜΕΘΟΔΩΝ Βελτίωσης Ενίσχυσης εδαφών Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 2015 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 5.1 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής

Διαβάστε περισσότερα

3. Ανάλυση & Σχεδιασμός ΕΥΚΑΜΠΤΩΝ ΑΝΤΙΣΤΗΡΙΞΕΩΝ

3. Ανάλυση & Σχεδιασμός ΕΥΚΑΜΠΤΩΝ ΑΝΤΙΣΤΗΡΙΞΕΩΝ 3. Ανάλυση & Σχεδιασμός ΕΥΚΑΜΠΤΩΝ ΑΝΤΙΣΤΗΡΙΞΕΩΝ Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΜΑΡΤΙΟΣ 2009 ΠΕΡΙΕΧΟΜΕΝΑ 3.1 Τύποι αντιστηρίξεων 3.2 Αυτοφερόμενες αντιστηρίξεις (πρόβολοι) 3.3 Αντιστηρίξεις με απλή

Διαβάστε περισσότερα

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ: ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : 7--, 9:-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......

Διαβάστε περισσότερα

Θεμελιώσεις. Ενότητα 2 η : Καθιζήσεις. Δρ. Εμμανουήλ Βαϊρακτάρης Τμήμα Πολιτικών Μηχανικών Τ.Ε.

Θεμελιώσεις. Ενότητα 2 η : Καθιζήσεις. Δρ. Εμμανουήλ Βαϊρακτάρης Τμήμα Πολιτικών Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θεμελιώσεις Ενότητα 2 η : Καθιζήσεις Δρ. Εμμανουήλ Βαϊρακτάρης Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

2. Υπολογισμός Εδαφικών Ωθήσεων

2. Υπολογισμός Εδαφικών Ωθήσεων 2. Υπολογισμός Εδαφικών Ωθήσεων (επανάληψη από ΕΔΑΦΟ Ι & ΙΙ) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 2015 2.1 Ξηρό ή κορεσμένο έδαφος υπό στραγγιζόμενες συνθήκες φόρτισης 2.2 Κορεσμένο έδαφος

Διαβάστε περισσότερα

Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1

Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1 Βελτίωση Βλτίωη Ενίσχυση εδαφών Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1 5. ΓΕΝΙΚΑ ΠΕΡΙ ΜΕΘΟΔΩΝ Βελτίωσης Ενίσχυσης εδαφών Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 2013 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 005-06 ΔΙΑΛΕΞΗ Φέρουσα Ικανότητα Επιφανειακών Θεμελιώσεων 0.03.007 P Καμπύλες τάσεωνπαραμορφώσεων του εδάφους Γραμμική συμπεριφορά

Διαβάστε περισσότερα

Καθηγητής Ε.Μ.Π. ΕΧ 4.1 Περιγραφή-κατασκευή αγκυρώσεων. 4.2 Πιθανές μορφές αστοχίας αγκυρώσεων. 4.4 Σύνθετη αστοχία κατά Kranz. 4.

Καθηγητής Ε.Μ.Π. ΕΧ 4.1 Περιγραφή-κατασκευή αγκυρώσεων. 4.2 Πιθανές μορφές αστοχίας αγκυρώσεων. 4.4 Σύνθετη αστοχία κατά Kranz. 4. 4. Ανάλυση & Σχεδιασμός ΑΓΚΥΡΩΣΕΩΝ Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. Φεβρουάριος 2016 ΠΕΡΙΕΧΟΜΕΝΑ ΕΧ 4.1 Περιγραφή-κατασκευή αγκυρώσεων 4.2 Πιθανές μορφές αστοχίας αγκυρώσεων 4.3 Αστοχία αγκυρίου 4.4

Διαβάστε περισσότερα

Εργαστήριο Εδαφομηχανικής

Εργαστήριο Εδαφομηχανικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εργαστήριο Εδαφομηχανικής Ενότητα 9η: Δοκιμή Συμπιεσομέτρου - Μέρος Α Πλαστήρα Βιολέττα Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ

ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,

Διαβάστε περισσότερα

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη 1. Δίσκος μάζας Μ=1 Kg είναι στερεωμένος στο πάνω άκρο κατακόρυφου ελατηρίου, σταθεράς k=200 N/m. Το άλλο άκρο του ελατηρίου είναι στερεωμένο σε οριζόντιο δάπεδο. Πάνω στο δίσκο κάθεται ένα πουλί με μάζα

Διαβάστε περισσότερα

Ν. Σαμπατακάκης Αν. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών

Ν. Σαμπατακάκης Αν. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών ΚΕΦΑΛΑΙΟ 4 ΒΕΛΤΙΩΣΗ ΕΝΙΣΧΥΣΗ Ε ΑΦΩΝ «βελτίωση & ενίσχυση» εδαφών η αύξηση της φέρουσας ικανότητας του εδάφους και η μείωση του εύρους των αναμενόμενων καθιζήσεων ποία εδάφη χρειάζονται βελτίωση??? ΕΠΙΦΑΝΕΙΑΚΕΣ

Διαβάστε περισσότερα

Δυναμική ανάλυση μονώροφου πλαισίου

Δυναμική ανάλυση μονώροφου πλαισίου Κεφάλαιο 1 Δυναμική ανάλυση μονώροφου πλαισίου 1.1 Γεωμετρία φορέα - Δεδομένα Χρησιμοποιείται ο φορέας του Παραδείγματος 3 από το βιβλίο Προσομοίωση κατασκευών σε προγράμματα Η/Υ (Κίρτας & Παναγόπουλος,

Διαβάστε περισσότερα

ΘΕΜΕΛΙΩΣΕΙΣ ΣΥΓΧΡΟΝΩΝ ΚΤΙΡΙΩΝ

ΘΕΜΕΛΙΩΣΕΙΣ ΣΥΓΧΡΟΝΩΝ ΚΤΙΡΙΩΝ ΘΕΜΕΛΙΩΣΕΙΣ ΣΥΓΧΡΟΝΩΝ ΚΤΙΡΙΩΝ Θεμελίωση είναι η βάση πάνω στην οποία κατασκευάζεται ένα κτίριο ή μία κατασκευή Είναιταβασικότεραμέρητουφέρονταοργανισμούενόςδομικούέργου γιατί μ αυτά επιτυγχάνεται η ασφαλής

Διαβάστε περισσότερα

Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1

Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1 Εύκαμπτες Αντιστηρίξεις & Αγκυρώσεις Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1 2. ΥΠΟΛΟΓΙΣΜΟΣ ΕΔΑΦΙΚΩΝ ΩΘΗΣΕΩΝ (& επανάληψη Εδαφομηχανικής) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 4-Φορείς και Φορτία. Φ. Καραντώνη, Δρ. Πολ. Μηχανικός Επίκουρος καθηγήτρια

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 4-Φορείς και Φορτία. Φ. Καραντώνη, Δρ. Πολ. Μηχανικός Επίκουρος καθηγήτρια ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 4-Φορείς και Φορτία Φ. Καραντώνη, Δρ. Πολ. Μηχανικός Επίκουρος καθηγήτρια Φ. Καραντώνη Τεχνική Μηχανική 1 φορείς Κάθε κατασκευή που μπορεί

Διαβάστε περισσότερα

6. ΠΡΟΦΟΡΤΙΣΗ. Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. MAΡΤΙΟΣ Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. ιάφορες Περιπτώσεις Προφόρτισης

6. ΠΡΟΦΟΡΤΙΣΗ. Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. MAΡΤΙΟΣ Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. ιάφορες Περιπτώσεις Προφόρτισης 6. ΠΡΟΦΟΡΤΙΣΗ (αργιλικών εδαφών) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. MAΡΤΙΟΣ 9 ΠΕΡΙΕΧΟΜΕΝΑ 6. Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ 6. ιάφορες Περιπτώσεις Προφόρτισης 6.3 Συνδυασμός Προφόρτισης

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θεμελιώσεις

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θεμελιώσεις ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θεμελιώσεις Ενότητα 3 η : Πιέσεις Επαφής Εδάφους Θεμελίου Δρ. Εμμανουήλ Βαϊρακτάρης Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τμήμα Άδειες

Διαβάστε περισσότερα

Διάλεξη ΣΤΗΡΙΞΗ ΑΣΤΑΘΟΥΣ ΜΕΤΩΠΟΥ ΣΗΡΑΓΓΑΣ

Διάλεξη ΣΤΗΡΙΞΗ ΑΣΤΑΘΟΥΣ ΜΕΤΩΠΟΥ ΣΗΡΑΓΓΑΣ Εργαστήριο Τεχνολογίας Διάνοιξης Σηράγγων, Ε.Μ.Π. Καθηγητής: ΑΙ ΣΟΦΙΑΝΟΣ. Διάλεξη ΣΤΗΡΙΞΗ ΑΣΤΑΘΟΥΣ ΜΕΤΩΠΟΥ ΣΗΡΑΓΓΑΣ Μέτρα Υποστήριξης Σηράγγων ΔΠΜΣ: Σχεδιασμός και Κατασκευή Υπογείων Έργων ΑΙ Σοφιανός

Διαβάστε περισσότερα

Ωθήσεις γαιών στην ανάλυση της κατασκευής Εισαγωγή δεδομένων

Ωθήσεις γαιών στην ανάλυση της κατασκευής Εισαγωγή δεδομένων Ωθήσεις γαιών στην ανάλυση της κατασκευής Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 04..005 Ρυθμίσεις Πρότυπο - συντελεστές ασφάλειας Ανάλυση πίεσης Υπολ ενεργητικών ωθήσεων γαιών : Υπολ παθητικών ωθήσεων

Διαβάστε περισσότερα

Γιώργος Μπουκοβάλας. 4.1 Περιγραφή Κατασκευή Αγκυρώσεων. 4.2 Αστοχία Αγκυρίου. KRANZ 4.4 Αστοχία Σφήνας Εδάφους

Γιώργος Μπουκοβάλας. 4.1 Περιγραφή Κατασκευή Αγκυρώσεων. 4.2 Αστοχία Αγκυρίου. KRANZ 4.4 Αστοχία Σφήνας Εδάφους Ανάλυση & Σχεδιασμός ΑΓΚΥΡΩΣΕΩΝ Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. Μάϊος 2013 ΠΕΡΙΕΧΟΜΕΝΑ 4.1 Περιγραφή Κατασκευή Αγκυρώσεων 4.2 Αστοχία Αγκυρίου 4.3 Σύνθετη Αστοχία Εδάφους κατά KRNZ 4.4 Αστοχία Σφήνας

Διαβάστε περισσότερα

6. Εσωτερικά Λιμενικά Έργα

6. Εσωτερικά Λιμενικά Έργα 6.1 Γενικά 6. Εσωτερικά Λιμενικά Έργα Ως εσωτερικά λιμενικά έργα εννοούμε κάθε είδους κρηπιδώματα παραβολής των σκαφών στην προστατευόμενη λιμενολεκάνη. Δεν δέχονται σημαντικές δράσεις από τους κυματισμούς

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ

ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ

Διαβάστε περισσότερα