PAAU (LOXSE) Setembro 2009

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PAAU (LOXSE) Setembro 2009"

Transcript

1 PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada cuestión, teórica ou práctica) Non se valorará a simple anotación dun ítem como solución ás cuestións teóricas; han de ser razoadas. Pode usarse calculadora sempre que non sexa programable nin memorice texto. BLOQUE : GRAVITACIÓN (Elixe un problema) (puntuación 3 p).- Tres masas de 00 kg están situadas nos puntos A(0, 0), B(2, 0), C(, 3) (en metros). Calcula: a) O campo gravitatorio creado por estas masas no punto D(, 0). b) A enerxía potencial que tería unha masa de 5 kg situada en D. c) Quen tería que realizar traballo para trasladar esa masa desde D ó infinito, o campo ou forzas externas? Dato: G = 6, N m2 kg 2.- Deséxase poñer en órbita un satélite de 800 kg que xire a razón de 2,5 voltas por día. Calcula: a) O período do satélite. b) A distancia do satélite á superficie terrestre. c) A enerxía cinética do satélite nesa órbita. Datos: G = 6, N m 2 kg-2 ; R T = km; M T = 5, kg BLOQUE 2: ELECTROMAGNETISMO (Elixe unha cuestión) (razoa a resposta) (puntuación p).- Dadas dúas esferas condutoras cargadas e de diferente raio, con cargas Q A e Q B, se se poñen en contacto: A) Iguálanse as cargas nas dúas esferas. B) Iguálanse os potenciais das esferas. C) Non ocorre nada. 2.- Unha partícula cargada e con velocidade u, introdúcese nunha rexión do espazo onde hai un campo eléctrico e un campo magnético constantes. Se a partícula se move con movemento rectilíneo uniforme débese a que os dous campos: A) Son da mesma dirección e sentido. B) Son da mesma dirección e sentido contrario. C) Son perpendiculares entre si. BLOQUE 3: VIBRACIÓNS E ONDAS (Elixe unha cuestión) (razoa a resposta) (puntuación p).- Se unha onda atravesa unha abertura de tamaño comparable á súa lonxitude de onda: A) Refráctase. B) Polarízase. C) Difráctase. (Debuxa a marcha dos raios). 2.- Cando unha onda harmónica plana se propaga no espazo, a súa enerxía é proporcional: A) A /f (f é a frecuencia). B) Ao cadrado da amplitude A 2. C) A /r (r é a distancia ao foco emisor) BLOQUE 4: LUZ (Elixe un problema) (puntuación 3 p).- Un obxecto de,5 cm de altura está situado a 5 cm dun espello esférico convexo de raio 20 cm, determina a posición, tamaño e natureza da imaxe: A) Graficamente. B) Analiticamente. C) Pódense obter imaxes reais cun espello convexo? 2.- Un obxecto de,5 cm de altura sitúase a 5 cm dunha lente diverxente que ten unha focal de 0 cm; determina a posición, tamaño e natureza da imaxe: A) Graficamente. B) Analiticamente. C) Pódense obter imaxes reais cunha lente diverxente? BLOQUE 5: FÍSICA MODERNA (Elixe unha cuestión) (razoa a resposta) (puntuación p).- Para producir efecto fotoeléctrico non se usa luz visible, senón ultravioleta, e isto é porque a luz UV: A) Quenta máis a superficie metálica. B) Ten maior frecuencia. C) Ten maior lonxitude de onda. 2.- Unha masa de átomos radioactivos tarda tres anos en reducir a súa masa ó 90% da masa orixinal. Cantos anos tardará en reducirse ó 8 % da masa orixinal?: A) Seis. B) Máis de nove. C) Tres. BLOQUE 6. PRÁCTICA (puntuación p) Explica brevemente como mides no laboratorio a constante elástica dun resorte polo método dinámico.

2 Solucións BLOQUE : GRAVITACIÓN.- Tres masas de 00 kg están situadas nos puntos A(0, 0), B(2, 0), C(, 3) (en metros). Calcula: a) O campo gravitatorio creado por estas masas no punto D(, 0). b) A enerxía potencial que tería unha masa de 5 kg situada en D. c) Quen tería que realizar traballo para trasladar esa masa desde D ao infinito, o campo ou forzas externas? Dato: G = 6, N m2 kg Rta.: a) g D = 2, j m/s 2 ; b) E P = -8, J; c) externas Datos Cifras significativas: 3 Masa de cada un dos corpos M A = M B = M C = M = 00 kg Vector de posición da masa en A r A = (0,00, 0,00) m Vector de posición da masa en B r B = (2,00, 0,00) m Vector de posición da masa en C r C = (,00,,73) m Vector de posición do punto D r D = (,00, 0,00) m Masa no punto D m D = 5,00 kg Constante da gravitación universal G = 6, N m2 kg Incógnitas Vector campo gravitatorio no punto D g D Enerxía potencial gravitatoria no punto D E p D Ecuacións Lei de Newton da gravitación universal F = G M m u (aplicada á forza que exerce cada masa puntual sobre cada unha das outras) r 2 r Intensidade do campo gravitatorio creado por unha masa M nun punto que dista dela unha distancia r F g= m = G M r u 2 r Principio de superposición g = g i Potencial gravitatorio nun punto debido a unha masa M que dista r do punto V = G M r Enerxía potencial gravitatoria (referida ao infinito) E p =m V = G M m r C a) As distancias desde os puntos A, B e C a D son: r AD = r BD =,00 m r CD =,73 m A intensidade de campo gravitatorio g A no punto D creado pola masa situada en A é: g A = 6,67 0 [N m 2 kg 2 ] 00 [ kg] (,00 [ m]) 2 i = 6, i m/s 2 Por simetría, a intensidade de campo gravitatorio g B no punto D creado pola masa situada en B é: g B = 6, i m/s 2 A intensidade de campo gravitatorio g C no punto D creado pola masa situada en C é: g C = 6,67 0 [ N m 2 kg 2 ] 00 [ kg] (,73 [ m]) 2 ( j)=2, j m/ s 2 O valor da intensidade do campo gravitatorio g no punto D(, 0) será a suma vectorial das intensidades de campo gravitatorio creadas por cada unha das masas situadas nos outros vértices (Principio de superposición). g D = g A + g B + g C = 2, j m/s 2 A g A g C D g B B

3 b) A enerxía potencial gravitatoria dunha masa m situada nun punto, debida á influencia de varias masas M i, cada unha delas a unha distancia r i do punto, é a suma das enerxías potenciais de cada unha das interaccións da masa m con cada unha das masas M i. Pero tamén se pode calcular o potencial gravitatorio do punto onde se atopa a masa m e calcular a enerxía potencial dela da relación: E p = m V O potencial gravitatorio nun punto, debido á influencia de varias masas M i, cada unha delas a unha distancia r i do punto, é a suma dos potenciais individuais. V = G M i r i Se todas as masas Mi son iguais, (M = Mi) entón resulta = G M i r i e a expresión da enerxía potencial sería V = G M r i E p = G M m r i E p = 6,67 0 [ N m 2 kg 2 2 ] 00 [kg] 5,00 [kg]( [ m] +,73 [ m]) = 8, J c) O traballo da resultante das forzas gravitatorias cando se leva a masa en D ata o infinito, sen variación de enerxía cinética (suponse), é igual á diferencia (cambiada de signo) de enerxía potencial que posúe a masa de 5,00 kg neses dous puntos. Por definición o potencial (e a enerxía potencial) no infinito é nula, polo que W D = -ΔE P = -(E p - E p D ) = E p D E p = E p D = -8, J Xa que logo o traballo das forzas gravitatorias é negativo, (a forza do campo oponse ao desprazamento cara ao infinito) e o traballo deberá facelo algunha forza externa. 2.- Deséxase poñer en órbita un satélite de 800 kg que xire a razón de 2,5 voltas por día. Calcula: a) O período do satélite b) A distancia do satélite á superficie terrestre. c) A enerxía cinética do satélite nesa órbita. Datos: G = 6, N m 2 kg -2 ; R T = km; M T = 5, kg Rta.: a) T =,92 h; b) h = 470 km; c) E C = 4, J Datos Cifras significativas: 3 Radio da Terra R T = km = 6, m Frecuencia de xiro do satélite na órbita arredor da Terra. f = 2,5 voltas/día =, Hz Constante da gravitación universal G = 6, N m2 kg Masa da Terra M T = 5, kg Masa do satélite m = 800 kg Incógnitas Período do satélite T Distancia do satélite á superficie terrestre (altura de órbita) h Enerxía cinética do satélite na órbita E C Outros símbolos Radio da órbita Ecuacións Lei de Newton da gravitación universal F (aplicada á forza que exerce a Terra esférica sobre o satélite puntual) G =G M Tm 2 Aceleración normal (nun movemento circular de radio r) a N = v 2 r 2ª lei de Newton da Dinámica F = m a

4 Datos Cifras significativas: 3 Radio da Terra R T = km = 6, m Velocidade nun movemento circular uniforme de radio r (M.C.U.) v= 2π r T Enerxía cinética E C = ½ m v 2 a) O período é a inversa da frecuencia: T = f =, [ Hz] =6,9 03 s=,92 h b) Como a única forza sobre do satélite a ter en conta é a forza gravitatoria que exerce a Terra, F = F G m a = F G O satélite describe unha traxectoria aproximadamente circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal a N, m v2 =G M m T 2 v 2 =G M T =G M T T 2 2 = 3 G M T T = 3 6,67 0 [ N m 2 kg 2 ] 5, [kg] (6,9 0 3 [s]) 2 =7, m 4 π 2 4 π 2 A altura será: h = R T = 7, [m] 6, [m] =, m = 470 km c) A velocidade do satélite na súa órbita é: A enerxía cinética é: 2π r v= T = 2π 7,86 06 [ m] =7,3 0 3 m/s 6,9 0 3 [s] E c = ½ m v 2 = [, [kg] (7,3 0 3 [m/s]) 2 ] / 2= 4, J BLOQUE 2: ELECTROMAGNETISMO.- Se se poñen en contacto dúas esferas condutoras de diferente raio, con cargas Q A e Q B: a) Iguálanse as cargas nas dúas esferas. b) Iguálanse os potenciais das esferas. c) Non ocorre nada. B Cando dúas esferas condutoras cargadas póñense en contacto eléctrico as cargas desprázanse desde a esfera que ten maior potencial cara á do menor potencial ata que os seus potenciais fanse iguais. As cargas eléctricas positivas desprázanse sempre no sentido dos potenciais decrecentes. Supondo que o sistema de dúas esferas está illado do exterior, a carga eléctrica deberá conservarse. Polo tanto poderíase calcular a carga final q' de cada esfera resolvendo o sistema de ecuacións:

5 q' + q' 2 = q + q 2 V ' =K q' R =K q' 2 R 2 =V ' Unha partícula cargada e con velocidade u, introdúcese nunha rexión do espazo onde hai un campo eléctrico e un campo magnético constantes. Se a partícula se move con movemento rectilíneo uniforme débese a que os dous campos: a) Son da mesma dirección e sentido. b) Son da mesma dirección e sentido contrario. c) Son perpendiculares entre si. C A forza F sobre unha carga eléctrica q en movemento segue a lei de Lorentz F = q (u B) + q E na que u é a velocidade da carga, B a indución magnética (intensidade do campo magnético) e E a intensidade do campo electrostático. Mentres que a dirección da forza do campo electrostático é paralela a el, a do campo magnético é perpendicular, sempre que a dirección do campo non sexa paralela á da velocidade. Se a partícula cargada non se desvía pode ser porque: - hai un campo magnético e un campo electrostático paralelos á dirección de movemento das partículas. - hai un campo magnético e un campo electrostático perpendiculares á dirección de movemento das partículas e perpendiculares entre si, de xeito que q (u B) + q E = 0, ou sexa u B = E Se a dirección da velocidade é a do sentido positivo do eixo X, u = u i, a do campo magnético é a do sentido positivo do eixo Y, B = B j e a do campo electrostático é a do sentido negativo do eixo Z, E = E k, e se cumpre que u B = E, entón F = q (u B) + q E = q (u i B j) + q ( E k) = q (u B k E k) = q (E k E k) = 0 Este principio aplícase no selector de velocidades do espectrógrafo de masas. BLOQUE 3: VIBRACIÓNS E ONDAS.- Se unha onda atravesa unha abertura de tamaño comparable á súa lonxitude de onda: a) Refráctase. b) Polarízase c) Difráctase. (Debuxa a marcha dos raios). Prodúcese difracción cando unha onda «ábrese» ao atravesar unha abertura de tamaño comparable á súa lonxitude de onda. É un fenómeno característico das ondas. Pode representarse como na figura para unha onda plana. λ 2.- Cando unha onda harmónica plana se propaga no espazo, a súa enerxía é proporcional: a) A /f (f é a frecuencia) b) Ao cadrado da amplitude A 2. c) A /r (r é a distancia ao foco emisor) C

6 A enerxía que transporta unha onda material harmónica unidimensional é a suma da cinética e de potencial: E = E c + E p = ½ m v 2 + ½ k x 2 = ½ k A 2 = ½ m v 2 máx A ecuación da onda harmónica unidimensional é y = A cos(ω t k x) Derivando con respecto ao tempo: v = d y / d t = A ω sen (ω t k x) que é máxima cando sen(ω t k x) =, v máx = A ω Substituíndo na ecuación da enerxía: E = ½ m v 2 máx = ½ m A 2 ω 2 Tendo en conta que a pulsación ω ou frecuencia angular e proporcional á frecuencia f: ω = 2 π f E = ½ m A 2 ω 2 = ½ m A 2 (2 π f) 2 = 2 π 2 m A 2 f 2 A enerxía que transporta unha onda é proporcional aos cadrados da frecuencia e da amplitude. BLOQUE 4: LUZ.- Un obxecto de,5 cm de altura está situado a 5 cm dun espello esférico convexo de raio 20 cm, determina a posición, tamaño e natureza da imaxe: a) Graficamente. b) Analiticamente. c) Pódense obter imaxes reais cun espello convexo? Rta.: b) s' = +6,0 cm; y' = 6,0 mm Datos (convenio de signos DIN) Cifras significativas: 2 Radio de curvatura do espello convexo R = +0,20 m Tamaño do obxecto y =,5 cm = 0,05 m Posición do obxecto s = -0,5 m Incógnitas Posición da imaxe s' Tamaño da imaxe y' Outros símbolos Distancia focal do espello f Ecuacións Relación entre a posición da imaxe e a do obxecto nos espellos s' s = f Aumento lateral nos espellos A L = y' y = s' s Relación entre a distancia focal e o radio de curvatura f = R / 2 a) b) s ' + 0,5 [m] = 0,0 [m] A imaxe atópase a 6,0 cm á dereita do espello. A imaxe é virtual, dereita e menor. s' = 0,060 m A L = -s' / s = -0,060 [m] / -0,5 [m] = 0,40 y' = A L y = 0,40,5 cm = 0,60 cm = 6,0 mm Análise: O resultado do cálculo coincide co do debuxo. c) As imaxes producidas por espellos convexos son sempre virtuais. Da ecuación dos espellos: s' s = f O V I F' C s s' f R

7 s ' = f s s' = f s Polos criterio de signos s < 0, e nos espellos convexos f > 0, polo que f s 0 Polo tanto, s' > 0 sempre. A imaxe vaise formar á dereita do espello e vai ser virtual (os raios de luz non atravesan os espellos) 2.- Un obxecto de,5 cm de altura sitúase a 5 cm dunha lente diverxente que ten unha focal de 0 cm; determina a posición, tamaño e natureza da imaxe: a) Graficamente. b) Analiticamente. c) Pódense obter imaxes reais cunha lente diverxente? Rta.: b) s' = +6,0 cm; y' = 6,0 mm Datos (convenio de signos DIN) Cifras significativas: 2 Tamaño do obxecto y =,5 cm = 0,05 m Posición do obxecto s = -5 cm = -0,5 m Distancia focal da lente f = -0 cm = -0,0 m Incógnitas Posición da imaxe s' Tamaño da imaxe y' Outros símbolos Aumento lateral A L Ecuacións Relación entre a posición da imaxe e a do obxecto nas lentes s' s = f ' Aumento lateral nas lentes A L = y' y = s' s a) b) Para unha lente diverxente, f = 0,0 m: s ' 0,5 [ m] = 0,0 [ m] s = 0,060 m y ' [ m] = 0,060 0,005 [ m] 0,5 [m] y = 0,0060 m = 6,0 mm Análise: A imaxe é virtual xa que s' é negativa, é dicir á esquerda de lente que é a zona onde se forman as imaxes virtuais nas lentes. O signo positivo do tamaño indica que a imaxe é dereita. Os resultados numéricos están en consonancia co debuxo. c) As imaxes producidas polas lentes diverxentes son sempre virtuais. Da ecuación das lentes: s ' s = f F s s' F'

8 s ' = f s s' = f s Polos criterio de signos s < 0, e nas lentes diverxentes f < 0, polo que f s 0 Polo tanto, s' < 0 sempre. A imaxe vaise formar á esquerda da lente e vai ser virtual (os raios de luz atravesan as lentes e forman as imaxes reais á dereita delas) BLOQUE 5: FÍSICA MODERNA.- Para producir efecto fotoeléctrico non se usa luz visible, senón ultravioleta, e isto é porque a luz UV. A) Quenta máis a superficie metálica. B) Ten maior frecuencia. C) Ten maior lonxitude de onda. B Unha das leis experimentais do efecto fotoeléctrico di que, empregando luz monocromática, só se produce efecto fotoeléctrico se a frecuencia da luz supera un valor mínimo, chamado frecuencia limiar. Como a luz ultravioleta ten maior frecuencia que a luz visible, é máis seguro que se produza efecto fotoeléctrico con luz ultravioleta que con luz visible, aínda que existen metais empregados como cátodos en células fotoeléctricas nos que luz visible, de alta frecuencia como azul ou violeta, pode facelas funcionar. 2.- Unha masa de átomos radioactivos tarda tres anos en reducir a súa masa ó 90% da masa orixinal. Cantos anos tardará en reducirse ó 8 % da masa orixinal?: A) Seis. B) Máis de nove. C) Tres. A O período de semidesintegración dunha sustancia radioactiva é o tempo que transcorre ata que só queda a metade da mostra orixinal. É un valor constante. A ecuación que da a cantidade N de substancia que queda ao cabo dun tempo t é: N =N 0 e λt na que λ é a constante de desintegración radioactiva. Escribindo esta ecuación con logaritmos e substituíndo os datos pódese calcular a constante λ: Co dato do 8 % despexamos t e resulta: t= ln N = ln N 0 - λ t ln 0,90 N 0 = ln N 0 - λ 3 ln 0,90 = - λ 3 ln 0,90 λ = =0,05 ano 3 ln 0,8 λ ln 0,8 = 0,05 ano =6 anos Tamén poderíase resolver decatándose de que o 8 % da mostra orixinal é o 90 % do que quedaba aos 3 anos. Polo tanto, terían que transcorrer 3 anos máis.

9 BLOQUE 6. PRÁCTICA Explica brevemente como mides no laboratorio a constante elástica dun resorte polo método dinámico. Na medida da constante elástica dun resorte polo método dinámico tírase cara abaixo dunha masa de valor coñecido que colga dun resorte e déixase oscilar, medindo o tempo de varias oscilacións (0, por exemplo). Calcúlase o período dividindo o tempo entre o número de oscilacións. Repítese o procedemento para outras masas coñecidas. Da ecuación do período do resorte, que pode escribirse como: T =2 m k T 2 = 4 π 2 m / k determínase o valor de constante. No método gráfico represéntanse os cadrados dos períodos no eixe de ordenadas fronte ás masas no de abscisas. A gráfica debería dar unha liña recta de pendente: pendente estudio dinámico = p d =ΔT 2 / Δm = 4 π 2 / k Determinando a pendente, pódese calcular o valor de constante: k = 4 π 2 / p d No método analítico calcúlase a constante do resorte k para cada masa e áchase o valor medio. Este método ten o problema de que se a masa do resorte non é desprezable fronte á masa pendurada, os resultados levan un erro sistemático. Cuestións e problemas das Probas de Acceso á Universidade (P.A.U.) en Galicia. Respostas e composición de Alfonso J. Barbadillo Marán, Algunhas ecuacións construíronse coas macros da extensión CLC09 de Charles Lalanne-Cassou. A tradución ao/desde o galego realizouse coa axuda de traducindote, de Óscar Hermida López. Algúns cálculos fixéronse cunha folla de cálculo OpenOffice (ou LibreOffice) feita por Alfonso J. Barbadillo Marán.

FÍSICA. = 4π 10-7 (S.I.)).

FÍSICA. = 4π 10-7 (S.I.)). 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU SETEMBRO 2013 FÍSICA

PAU SETEMBRO 2013 FÍSICA PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FÍSICA. = 9, kg) = -1, C; m e

FÍSICA. = 9, kg) = -1, C; m e 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B PAU Xuño 00 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU XUÑO 2012 FÍSICA

PAU XUÑO 2012 FÍSICA PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU XUÑO 2011 FÍSICA

PAU XUÑO 2011 FÍSICA PAU XUÑO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B ÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 9 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 16-17 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2016. A nave espacial Discovery,

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2004

PAAU (LOXSE) Setembro 2004 PAAU (LOXSE) Setembro 004 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou

Διαβάστε περισσότερα

PAU Setembro 2010 FÍSICA

PAU Setembro 2010 FÍSICA PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU SETEMBRO 2014 FÍSICA

PAU SETEMBRO 2014 FÍSICA PAU SETEMBRO 014 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que

Διαβάστε περισσότερα

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema) Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:

Διαβάστε περισσότερα

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ). 22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12

Διαβάστε περισσότερα

PAU XUÑO 2014 FÍSICA

PAU XUÑO 2014 FÍSICA PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

FISICA 2º BAC 27/01/2007

FISICA 2º BAC 27/01/2007 POBLEMAS 1.- Un corpo de 10 g de masa desprázase cun movemento harmónico simple de 80 Hz de frecuencia e de 1 m de amplitude. Acha: a) A enerxía potencial cando a elongación é igual a 70 cm. b) O módulo

Διαβάστε περισσότερα

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA INTEACCIÓNS GAVITATOIA E ELECTOSTÁTICA AS LEIS DE KEPLE O astrónomo e matemático Johannes Kepler (1571 1630) enunciou tres leis que describen o movemento planetario a partir do estudo dunha gran cantidade

Διαβάστε περισσότερα

Problemas y cuestiones de electromagnetismo

Problemas y cuestiones de electromagnetismo Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)

Διαβάστε περισσότερα

EJERCICIOS DE VIBRACIONES Y ONDAS

EJERCICIOS DE VIBRACIONES Y ONDAS EJERCICIOS DE VIBRACIONES Y ONDAS 1.- Cando un movemento ondulatorio se atopa na súa propagación cunha fenda de dimensións pequenas comparables as da súa lonxitude de onda prodúcese: a) polarización; b)

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

PAU XUÑO 2016 FÍSICA

PAU XUÑO 2016 FÍSICA PAU XUÑO 2016 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 2013 C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b)unha lente converxente; c) un espello cóncavo.

Διαβάστε περισσότερα

PAU XUÑO 2010 FÍSICA

PAU XUÑO 2010 FÍSICA PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;

Διαβάστε περισσότερα

PAU XUÑO 2015 FÍSICA

PAU XUÑO 2015 FÍSICA PAU XUÑO 2015 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Exercicios de Física 02b. Magnetismo

Exercicios de Física 02b. Magnetismo Exercicios de Física 02b. Magnetismo Problemas 1. Determinar el radio de la órbita descrita por un protón que penetra perpendicularmente a un campo magnético uniforme de 10-2 T, después de haber sido acelerado

Διαβάστε περισσότερα

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación:

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación: VIBRACIÓNS E ONDAS PROBLEMAS 1. Un sistema cun resorte estirado 0,03 m sóltase en t=0 deixándoo oscilar libremente, co resultado dunha oscilación cada 0, s. Calcula: a) A velocidade do extremo libre ó

Διαβάστε περισσότερα

Exercicios de Física 01. Gravitación

Exercicios de Física 01. Gravitación Exercicios de Física 01. Gravitación Problemas 1. A lúa ten unha masa aproximada de 6,7 10 22 kg e o seu raio é de 1,6 10 6 m. Achar: a) A distancia que recorrerá en 5 s un corpo que cae libremente na

Διαβάστε περισσότερα

Exercicios de Física 03a. Vibracións

Exercicios de Física 03a. Vibracións Exercicios de Física 03a. Vibracións Problemas 1. No sistema da figura, un corpo de 2 kg móvese a 3 m/s sobre un plano horizontal. a) Determina a velocidade do corpo ó comprimirse 10 cm o resorte. b) Cal

Διαβάστε περισσότερα

Exercicios de Física 03b. Ondas

Exercicios de Física 03b. Ondas Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A

Διαβάστε περισσότερα

ENERXÍA, TRABALLO E POTENCIA

ENERXÍA, TRABALLO E POTENCIA NRXÍA, TRABALLO POTNCIA NRXÍA Pódese definir enerxía coo a capacidade que ten un corpo para realizar transforacións nel eso ou noutros corpos. A unidade de enerxía no SI é o Joule (J) pero é frecuente

Διαβάστε περισσότερα

Física e química 4º ESO. As forzas 01/12/09 Nome:

Física e química 4º ESO. As forzas 01/12/09 Nome: DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste

Διαβάστε περισσότερα

PAU XUÑO 2012 MATEMÁTICAS II

PAU XUÑO 2012 MATEMÁTICAS II PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio

Διαβάστε περισσότερα

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted Tema 4 Magnetismo 4-1 Magnetismo. Experiencia de Oersted 4-2 Lei de Lorentz. Definición de B. Movemento dunha carga nun campo magnético. 4-3 Forza exercida sobre unha corrente rectilínea 4-4 Lei de Biot

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa.

Διαβάστε περισσότερα

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio.

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio. Tema 6 Ondas 6-1 Movemento ondulatorio. Clases de ondas 6- Ondas harmónicas. Ecuación de ondas unidimensional 6-3 Enerxía e intensidade das ondas harmónicas 6-4 Principio de Huygens: reflexión e refracción

Διαβάστε περισσότερα

Materiais e instrumentos que se poden empregar durante a proba

Materiais e instrumentos que se poden empregar durante a proba 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións. Problema 2: tres cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema

Διαβάστε περισσότερα

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación As Mareas INDICE 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación Introducción A marea é a variación do nivel da superficie libre

Διαβάστε περισσότερα

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5

Διαβάστε περισσότερα

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes 1.- Distancia entre dous puntos Se A e B son dous puntos do espazo, defínese a distancia entre A e B como o módulo

Διαβάστε περισσότερα

EXERCICIOS DE ÁLXEBRA. PAU GALICIA

EXERCICIOS DE ÁLXEBRA. PAU GALICIA Maemáicas II EXERCICIOS DE ÁLXEBRA PAU GALICIA a) (Xuño ) Propiedades do produo de marices (só enuncialas) b) (Xuño ) Sexan M e N M + I, onde I denoa a mariz idenidade de orde n, calcule N e M 3 Son M

Διαβάστε περισσότερα

TRIGONOMETRIA. hipotenusa L 2. hipotenusa

TRIGONOMETRIA. hipotenusa L 2. hipotenusa TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto

Διαβάστε περισσότερα

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración.

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración. FÍSICA MODERNA FÍSICA NUCLEAR. PROBLEMAS 1. Un detector de radioactividade mide unha velocidade de desintegración de 15 núcleos min -1. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a)

Διαβάστε περισσότερα

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::... Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)

Διαβάστε περισσότερα

A circunferencia e o círculo

A circunferencia e o círculo 10 A circunferencia e o círculo Obxectivos Nesta quincena aprenderás a: Identificar os diferentes elementos presentes na circunferencia e o círculo. Coñecer as posicións relativas de puntos, rectas e circunferencias.

Διαβάστε περισσότερα

LUGARES XEOMÉTRICOS. CÓNICAS

LUGARES XEOMÉTRICOS. CÓNICAS LUGARES XEOMÉTRICOS. CÓNICAS Páxina REFLEXIONA E RESOLVE Cónicas abertas: parábolas e hipérboles Completa a seguinte táboa, na que a é o ángulo que forman as xeratrices co eixe, e, da cónica e b o ángulo

Διαβάστε περισσότερα

A LUZ. ÓPTICA XEOMÉTRICA

A LUZ. ÓPTICA XEOMÉTRICA A LUZ. ÓPTICA XEOMÉTRICA PROBLEMAS. Un espello esférico ten 0,80 m de radio. a) Se o espello é cóncavo, calcular a qué distancia hai que colocar un obxecto para obter unha imaxe real dúas veces maior que

Διαβάστε περισσότερα

RADIACTIVIDADE. PROBLEMAS

RADIACTIVIDADE. PROBLEMAS RADIACTIVIDADE. PROBLEMAS 1. Un detector de radiactividade mide unha velocidade de desintegración de 15 núcleos/minuto. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a) A constante de

Διαβάστε περισσότερα

Física cuántica. Relatividade especial

Física cuántica. Relatividade especial Tema 8 Física cuántica. Relatividade especial Evolución das ideas acerca da natureza da luz Experimento de Young (da dobre fenda Dualidade onda-corpúsculo Principio de indeterminación de Heisemberg Efecto

Διαβάστε περισσότερα

PAU XUÑO 2016 FÍSICA OPCIÓN A

PAU XUÑO 2016 FÍSICA OPCIÓN A PAU Código: 25 XUÑO 2016 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución ás

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

Indución electromagnética

Indución electromagnética Indución electromagnética 1 Indución electromagnética 1. EXPERIECIA DE FARADAY E HERY. A experiencia de Oersted (1820) demostrou que unha corrente eléctrica crea ao seu redor un campo magnético. Como consecuencia

Διαβάστε περισσότερα

CALCULO DA CONSTANTE ELASTICA DUN RESORTE

CALCULO DA CONSTANTE ELASTICA DUN RESORTE 11 IES A CAÑIZA Traballo de Física CALCULO DA CONSTANTE ELASTICA DUN RESORTE Alumno: Carlos Fidalgo Giráldez Profesor: Enric Ripoll Mira Febrero 2015 1. Obxectivos O obxectivo da seguinte practica é comprobar,

Διαβάστε περισσότερα

Áreas de corpos xeométricos

Áreas de corpos xeométricos 9 Áreas de corpos xeométricos Obxectivos Nesta quincena aprenderás a: Antes de empezar 1.Área dos prismas....... páx.164 Área dos prismas Calcular a área de prismas rectos de calquera número de caras.

Διαβάστε περισσότερα

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016 Tema 1. Espazos topolóxicos Topoloxía Xeral, 2016 Topoloxía e Espazo topolóxico Índice Topoloxía e Espazo topolóxico Exemplos de topoloxías Conxuntos pechados Topoloxías definidas por conxuntos pechados:

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro 9 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 138 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 138 Definición Elementos dun poliedro 8 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS LEIS DE KEPLER 1. O peíodo de otación da Tea aedo do Sol é un ano e o aio da óbita é 1,5 10¹¹ m. Se Xúpite ten un peíodo de apoximadamente 12 anos, e se

Διαβάστε περισσότερα

TEORÍA DE XEOMETRÍA. 1º ESO

TEORÍA DE XEOMETRÍA. 1º ESO TEORÍA DE XEOMETRÍA. 1º ESO 1. CORPOS XEOMÉTRICOS No noso entorno observamos continuamente obxectos de diversas formas: pelotas, botes, caixas, pirámides, etc. Todos estes obxectos son corpos xeométricos.

Διαβάστε περισσότερα

ELECTROTECNIA. BLOQUE 1: ANÁLISE DE CIRCUÍTOS (Elixir A ou B) A.- No circuíto da figura determinar o valor da intensidade na resistencia R 2

ELECTROTECNIA. BLOQUE 1: ANÁLISE DE CIRCUÍTOS (Elixir A ou B) A.- No circuíto da figura determinar o valor da intensidade na resistencia R 2 36 ELECTROTECNIA O exame consta de dez problemas, debendo o alumno elixir catro, un de cada bloque. Non é necesario elixir a mesma opción (A ou B ) de cada bloque. Todos os problemas puntúan igual, é dicir,

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Puntuación máima dos eercicios de cada opción: eercicio 1= 3 puntos, eercicio = 3 puntos, eercicio

Διαβάστε περισσότερα

SATÉLITES TERRESTRES E AS SÚAS ÓRBITAS

SATÉLITES TERRESTRES E AS SÚAS ÓRBITAS INTRODUCIÓN O carácter da Física como ciencia experimental fai que as prácticas de laboratorio sexan un complemento imprescindible no ensino desta disciplina. As actividades prácticas poñen aos estudantes

Διαβάστε περισσότερα

ELECTROTECNIA. BLOQUE 3: MEDIDAS NOS CIRCUÍTOS ELÉCTRICOS (Elixir A ou B)

ELECTROTECNIA. BLOQUE 3: MEDIDAS NOS CIRCUÍTOS ELÉCTRICOS (Elixir A ou B) 36 ELECTROTECNIA O exame consta de dez problemas, debendo o alumno elixir catro, un de cada bloque. Non é necesario elixir a mesma opción (A o B ) de cada bloque. Todos os problemas puntúan do mesmo xeito,

Διαβάστε περισσότερα

SOLUCIONES DE LAS ACTIVIDADES Págs. 101 a 119

SOLUCIONES DE LAS ACTIVIDADES Págs. 101 a 119 Página 0. a) b) π 4 π x 0 4 π π / 0 π / x 0º 0 x π π. 0 rad 0 π π rad 0 4 π 0 π rad 0 π 0 π / 4. rad 4º 4 π π 0 π / rad 0º π π 0 π / rad 0º π 4. De izquierda a derecha: 4 80 π rad π / rad 0 Página 0. tg

Διαβάστε περισσότερα

Números reais. Obxectivos. Antes de empezar.

Números reais. Obxectivos. Antes de empezar. 1 Números reais Obxectivos Nesta quincena aprenderás a: Clasificar os números reais en racionais e irracionais. Aproximar números con decimais ata unha orde dada. Calcular a cota de erro dunha aproximación.

Διαβάστε περισσότερα

Trigonometría. Obxectivos. Antes de empezar.

Trigonometría. Obxectivos. Antes de empezar. 7 Trigonometría Obxectivos Nesta quincena aprenderás a: Calcular as razóns trigonométricas dun ángulo. Calcular todas as razóns trigonométricas dun ángulo a partir dunha delas. Resolver triángulos rectángulos

Διαβάστε περισσότερα

PAU XUÑO 2013 FÍSICA

PAU XUÑO 2013 FÍSICA PAU XUÑO 2013 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

ONDAS. segundo a dirección de vibración. lonxitudinais. transversais

ONDAS. segundo a dirección de vibración. lonxitudinais. transversais PROGRAMACIÓN DE AULA MAPA DE CONTIDOS propagan enerxía, pero non materia clasifícanse ONDAS exemplos PROGRAMACIÓN DE AULA E magnitudes características segundo o medio de propagación segundo a dirección

Διαβάστε περισσότερα

O SOL E A ENERXÍA SOLAR

O SOL E A ENERXÍA SOLAR O SOL E A ENERXÍA SOLAR Resumo: Cos exercicios que se propoñen nesta unidade preténdese que os alumnos coñezan o Sol un pouco mellor. Danse as ferramentas necesarias para calcular a enerxía solar que se

Διαβάστε περισσότερα

Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2

Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2 Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2 1.1 Concepto de corrente eléctrica...2 1.1 Concepto de corrente eléctrica...2 1.2 Características dun circuíto de corrente

Διαβάστε περισσότερα

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos VIII. ESPZO EULÍDEO TRIDIMENSIONL: Áglos perpediclaridade de rectas e plaos.- Áglo qe forma dúas rectas O áglo de dúas rectas qe se corta se defie como o meor dos áglos qe forma o plao qe determia. O áglo

Διαβάστε περισσότερα

Obxectivos. Resumo. titor. corpos xeométricos. Calcular as. súas áreas volumes. Terra. deles.

Obxectivos. Resumo. titor. corpos xeométricos. Calcular as. súas áreas volumes. Terra. deles. 8 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Distinguir as clases de corpos xeométricos. Construíloss a partir do seu desenvolvemento plano. Calcular as súas áreas e volumes. Localizar

Διαβάστε περισσότερα

RADIACIÓNS ÓPTICAS ARTIFICIAIS INCOHERENTES

RADIACIÓNS ÓPTICAS ARTIFICIAIS INCOHERENTES Nº 33 - www.issga.es FRANCISCO JAVIER COPA RODRÍGUEZ Técnico superior en Prevención de Riscos Laborais Instituto Galego de Seguridade e Saúde Laboral Edita: Instituto Galego de Seguridade e Saúde Laboral

Διαβάστε περισσότερα

Uso e transformación da enerxía

Uso e transformación da enerxía Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo 4 Unidade didáctica 5 Uso e transformación da enerxía Páxina 1 de 50 Índice 1. Introdución...3

Διαβάστε περισσότερα

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS 61 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS O alumno debe resolver só un exercicio de cada un dos tres bloques temáticos Puntuación máxima de cada un dos exercicios: Álxebra 3 puntos; Análise 3,5 puntos;

Διαβάστε περισσότερα

Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA

Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA PROBLEMAS TERMOQUÍMICA 1. Para o proceso Fe 2O 3 (s) + 2 Al (s) Al 2O 3 (s) + 2 Fe (s), calcule: a) A entalpía da reacción en condicións estándar e a calor desprendida

Διαβάστε περισσότερα

Ventiladores helicoidales murales o tubulares, versión PL equipados con hélice de plástico y versión AL equipados con hélice de aluminio.

Ventiladores helicoidales murales o tubulares, versión PL equipados con hélice de plástico y versión AL equipados con hélice de aluminio. HCH HCT HCH HCT Ventiladores helicoidales murales o tubulares, de gran robustez Ventiladores helicoidales murales o tubulares, versión PL equipados con hélice de plástico y versión AL equipados con hélice

Διαβάστε περισσότερα

1 Experimento aleatorio. Espazo de mostra. Sucesos

1 Experimento aleatorio. Espazo de mostra. Sucesos V. PROBABILIDADE E ESTATÍSTICA 1 Experimento aleatorio. Espazo de mostra. Sucesos 1 Experimento aleatorio. Concepto e exemplos Experimentos aleatorios son aqueles que ao repetilos nas mesmas condicións

Διαβάστε περισσότερα

1.- Carga eléctrica. Cuantización Lei de Coulomb Traballo Campo Electrostático Potencial Electrostático 6

1.- Carga eléctrica. Cuantización Lei de Coulomb Traballo Campo Electrostático Potencial Electrostático 6 CMPO ELECTROSTÁTICO 1.- Carga eléctrica. Cuantización 1.1. Tipo de carga:.- Lei de Coulomb 3 3.- Traballo 4 3.1.-Enerxía Potencial Electrotática 5 4.- Campo Electrotático 5 5.- Potencial Electrotático

Διαβάστε περισσότερα

CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA

CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA PAAU (LOXSE) XUÑO 2001 Código: 22 ÍSICA Elixir e desenrolar unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións

Διαβάστε περισσότερα

1.- Movemento Ondulatorio. Clases de onda! Ondas Harmónias. Función de onda unidimensional! Enerxía! 5

1.- Movemento Ondulatorio. Clases de onda! Ondas Harmónias. Función de onda unidimensional! Enerxía! 5 1.- Moeento Ondulatorio. Clases de onda!.- Ondas Harónias. Función de onda unidiensional! 3 3.- Enerxía! 5 3.1.- Absorción!... 6 4.- Principio de HUYGENS! 6 4.1.- Reflexión!... 6 4..- Refracción!... 7

Διαβάστε περισσότερα

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato O enlace químico 3 1

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato O enlace químico 3 1 UNIÓNS ENTRE ÁTOMOS, AS MOLÉCULAS E OS CRISTAIS Até agora estudamos os átomos como entidades illadas, pero isto rara vez ocorre na realidade xa que o máis frecuente é que os átomos estea influenciados

Διαβάστε περισσότερα

PAU XUÑO 2013 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II

PAU XUÑO 2013 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II PAU XUÑO 2013 Código: 36 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II (O alumno/a debe responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1 = 3 puntos,

Διαβάστε περισσότερα

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato Estrutura atómica 2 1

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato Estrutura atómica 2 1 As leis ponderais e volumétricas, estudadas no anterior tema, analizadas á luz da teoría atómica que hoxe manexamos resultan ser unha consecuencia lóxica da mesma, pero non debemos esquecer que historicamente

Διαβάστε περισσότερα

a) Calcula m de modo que o produto escalar de a( 3, 2 ) e b( m, 5 ) sexa igual a 5. ( )

a) Calcula m de modo que o produto escalar de a( 3, 2 ) e b( m, 5 ) sexa igual a 5. ( ) .. MATEMÁTICAS I PENDENTES (º PARTE) a) Calcula m de modo que o produto escalar de a(, ) e b( m, 5 ) sea igual a 5. b) Calcula a proección de a sobre c, sendo c,. ( ) 5 Se (, ) e y,. Calcula: a) Un vector

Διαβάστε περισσότερα

Polinomios. Obxectivos. Antes de empezar. 1.Polinomios... páx. 4 Grao. Expresión en coeficientes Valor numérico dun polinomio

Polinomios. Obxectivos. Antes de empezar. 1.Polinomios... páx. 4 Grao. Expresión en coeficientes Valor numérico dun polinomio 3 Polinomios Obxectivos Nesta quincena aprenderás a: Achar a expresión en coeficientes dun polinomio e operar con eles. Calcular o valor numérico dun polinomio. Recoñecer algunhas identidades notables,

Διαβάστε περισσότερα

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS 61 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS O alumno debe resolver só un exercicio de cada un dos tres bloques temáticos. BLOQUE DE ÁLXEBRA (Puntuación máxima 3 puntos) 1 0 0 1-1 -1 Sexan as matrices

Διαβάστε περισσότερα

την..., επειδή... Se usa cuando se cree que el punto de vista del otro es válido, pero no se concuerda completamente

την..., επειδή... Se usa cuando se cree que el punto de vista del otro es válido, pero no se concuerda completamente - Concordar En términos generales, coincido con X por Se usa cuando se concuerda con el punto de vista de otro Uno tiende a concordar con X ya Se usa cuando se concuerda con el punto de vista de otro Comprendo

Διαβάστε περισσότερα

1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson

1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson 1 La teoría de Jeans El caso ás siple de evolución de fluctuaciones es el de un fluído no relativista. las ecuaciones básicas son: a conservación del núero de partículas n t + (n v = 0 (1 b Navier-Stokes

Διαβάστε περισσότερα

1. A INTEGRAL INDEFINIDA 1.1. DEFINICIÓN DE INTEGRAL INDEFINIDA 1.2. PROPRIEDADES

1. A INTEGRAL INDEFINIDA 1.1. DEFINICIÓN DE INTEGRAL INDEFINIDA 1.2. PROPRIEDADES TEMA / CÁLCULO INTEGRAL MATEMÁTICA II 07 Eames e Tetos de Matemática de Pepe Sacau ten unha licenza Creative Commons Atriución Compartir igual.0 Internacional. A INTEGRAL INDEFINIDA.. DEFINICIÓN DE INTEGRAL

Διαβάστε περισσότερα

PROBLEMAS E CUESTIÓNS DE SELECTIVIDADE

PROBLEMAS E CUESTIÓNS DE SELECTIVIDADE PROBLEMAS E CUESTIÓNS DE SELECTIVIDADE O KMnO en presenza de H SO transforma o FeSO en Fe (SO ), formándose tamén K SO, MnSO e auga: a) Axusta a reacción molecular. b) Cantos cm de disolución de KMnO 0,5

Διαβάστε περισσότερα

ENLACE QUÍMICO CUESTIÓNS ENLACE IÓNICO. 1. Considerando o elemento alcalinotérreo do terceiro perquíodo e o segundo elemento do grupo dos halóxenos.

ENLACE QUÍMICO CUESTIÓNS ENLACE IÓNICO. 1. Considerando o elemento alcalinotérreo do terceiro perquíodo e o segundo elemento do grupo dos halóxenos. QQuímica P.A.U. ELACE QUÍMICO 1 ELACE QUÍMICO CUESTIÓS ELACE IÓICO 1. Considerando o elemento alcalinotérreo do terceiro perquíodo e o segundo elemento do grupo dos halóxenos. a) Escribe as súas configuracións

Διαβάστε περισσότερα

CADERNO Nº 11 NOME: DATA: / / Estatística. Representar e interpretar gráficos estatísticos, e saber cando é conveniente utilizar cada tipo.

CADERNO Nº 11 NOME: DATA: / / Estatística. Representar e interpretar gráficos estatísticos, e saber cando é conveniente utilizar cada tipo. Estatística Contidos 1. Facer estatística Necesidade Poboación e mostra Variables 2. Reconto e gráficos Reconto de datos Gráficos Agrupación de datos en intervalos 3. Medidas de centralización e posición

Διαβάστε περισσότερα

a) Para determinar a velocidade orbital temos en conta os datos do problema: T= 12 h 2 min= s R= 1, m

a) Para determinar a velocidade orbital temos en conta os datos do problema: T= 12 h 2 min= s R= 1, m GAVIACIÓN. OBAS. O SSNG é unha misión espaial non tripulada da NASA, lanzada rumbo a erurio en Aosto de 004 e que entrou en órbita arredor dese planeta en arzo de 0. No seu perorrido enviou datos que permiten

Διαβάστε περισσότερα

PAU XUÑO 2014 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II

PAU XUÑO 2014 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II PAU XUÑO 2014 Código: 36 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II (O alumno/a debe responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1 = 3 puntos,

Διαβάστε περισσότερα