Problemas y cuestiones de electromagnetismo

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Problemas y cuestiones de electromagnetismo"

Transcript

1 Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0) e en (0,10); b) traballo para transportar unha carga q de -1 µc desde (1,0) a (-1,0). (Dato K = Nm 2 /C 2 ). (XUÑO 2001) 2.- Por dos conductores largos rectos e paralelos circulan correntes I no mesmo sentido. Nun punto do plano situado entre os dous conductores o campo magnético resultante, comparado co creado por un solo dos conductores é : a) maior; b) menor; c) o mesmo. (SETEMBRO 2001) 3.- Unha carga puntual Q crea un campo electrostático. Ó trasladar outra carga, q, desde un punto A ó infinito realizase un traballo de 10J e si se traslada desde ó infinito a B o traballo é de -20J; a) qué traballo se realiza para trasladar q de A a B?; b) Si q =-2C cál é o signo de Q?, qué punto está mais próximo de Q, o A ou o B?. (SETEMBRO 2001) 4.- Se se acerca de súpeto o polo norte dun imán ó plano dunha espira sen corrente, nesta prodúcese: a) f.e.m. inducida en sentido horario; b) f.e.m. inducida en sentido antihorario; c) ningunha f.e.m. porque a espira inicialmente non posúe corrente. (XUÑO 2002) 5.- Dadas dúas cargas eléctricas q 1 = 100µC situada en A(-3,0) e q 2 = -50µC situada en B(3,0) (as coordenadas en metros), calcula: a) o campo e o potencial en (0,0); b) o traballo que hai que realizar para trasladar unha carga de -2C dende o infinito ata (0,0). (Datos 1C = 10 6 µc, K= Nm 2 /C 2 ). (XUÑO 2002) 6.- Un protón acelerado dende o repouso por unha diferencia de potencial de 2*10 6 V adquire unha velocidade no sentido positivo do eixe X, coa que penetra nunha rexión na que existe un campo magnético uniforme B= 0,2 T no sentido do eixe Y; calcula: a) o raio da órbita descrita (fai un debuxo do problema); b) o número de voltas que da en 1 segundo. (Datos: m P = 1, kg, q P = 1, C). SETEMBRO 2002) 7.- Un protón penetra nunha zona onde hai un campo magnético de 5 T, cunha velocidade de 1000 ms -1 e dirección perpendicular ó campo. Calcula: a) o radio da órbita descrita; b) a intensidade e sentido dun campo eléctrico que ó aplicalo anule o efecto do campo magnético. (Fai un debuxo do problema) (Datos: m p = l, kg, q p = l, C). (XUÑO 2003)

2 8.- Nunha esfera conductora cargada e en equilibrio electrostático cúmprese que: a) o potencial eléctrico no interior é constante; b) o campo interior é función da distancia ó centro; c) a carga eléctrica distribúese uniformemente por todo o volume. (XUÑO 2003) 9.- Un electrón e un protón describen órbitas circulares nun mesmo campo B uniforme e coa mesma enerxía cinética: a) a velocidade do protón é maior; b) o radio da órbita do protón é maior; c) os períodos de rotación son os mesmos. (Dato m p >>m e ) (XUÑO 2003) 10.- Un protón ten unha enerxía cinética de J. Segue unha traxectoria circular nun campo magnético B = 2 T. Calcula: a) o radio da traxectoria; b) o número de voltas que da nun minuto. (Datos: mprotón = l,67.lo -27 kg; qproton = 1, C). (SETEMBRO 2003) 11.- Disponse dun fío infinito recto e con corrente eléctrica I. Unha carga eléctrica +q próxima ó fío movéndose paralelamente a él e no mesmo sentido que a corrente: a) será atraída; b) será repelida; c) non experimentará ningunha forza. (XUÑO 2004) 12.- Dúas cargas puntuais negativas iguais, de 10-3 µc, atópanse sobre o eixe de abscisas, separadas unha distancia de 20 cm. A unha distancia de 50 cm sobre a vertical que pasa polo punto medio da liña que as une, disponse unha terceira partícula (puntual) de carga de µ C e 1 g de masa, inicialmente en repouso. Calcula: a) o campo e potencial eléctrico creado polas dúas primeiras na posición inicial da terceira; b) a velocidade da terceira carga ó chegar ó punto medio da liña de unión entre as dúas primeiras. (Datos 1 µc =10-6 C, K = N m 2 /C 2 ) (Solo se considera a interacción electrostática). (XUÑO 2004) 13.- Unha espira rectangular está situada nun campo magnético uniforme, representado polas frechas da figura. Razoa si o amperímetro indicará paso de corrente: a) si a espira xira arredor do eixe Y; b) si xira arredor do eixe X; c) si se despraza ó longo de calquera dos eixes X ou Y. (SETEMBRO 2004) 14.- No interior dun conductor esférico cargado e en equilibrio electrostático cúmprese: a) o potencial e o campo aumentan dende o centro ate a superficie da esfera, b) o potencial é nulo e o campo constante, c) o potencial é constante e o campo nulo. (Xuño 2005)

3 15.- Un protón acelerado por una diferencia de potencial de 5000 V penetra perpendicularmente nun campo magnético uniforme de 0,32 T; calcula: a) a velocidade do protón, b) o radio da órbita que describe e o número de voltas que da en 1 segundo. (Datos 1p = 1, C, m p = 1, kg ). (Fai un debuxo do problema). (Xuño 2005) 16.- Si o fluxo do campo eléctrico a través dunha superficie gaussiana que rodea a unha esfera conductora cargada i en equilibrio electrostático é Q/ε 0, o campo eléctrico no exterior da esfera é : a) cero; b) Q/4πε 0 r 2 ; c) Q/ε 0. (SETEMBRO 2005) 17.- As liñas do campo magnético B creado por unha bobina ideal: a) nacen na cara norte e morren na cara sur da bobina; b) son liñas pechadas sobre si mesmas que atravesan a sección da bobina; c) son liñas pechadas arredor da bobina e que nunca a atravesan. (XUÑO 2006) 18.- Dous condutores rectos paralelos e moi longos con correntes I no mesmo sentido: a) atráense; b) repélense; c) non interaccionan. (XUÑO 2006) 19.- Dúas cargas puntuais iguais q = 1µ C están situadas nos puntos A (5, 0) e B (-5, 0). Calcula: a) o campo eléctrico nos puntos C (8, 0) e D (0, 4); b) a enerxía para trasladar unha carga de -1µC desde C a D. (Datos 1 µc = 10-6 C, K = N m 2 /C 2 ). (As coordenadas en metros). (SETEMBRO 2006) 20.- Se se achega o polo norte dun imán rectilíneo ó plano dunha espira plana e circular: a) prodúcese na espira unha corrente inducida que circula en sentido antihorario, b) xérase un par de forzas que fai rotar a espira, c) a espira é atraída polo imán. (SETEMBRO 2006) 21.- Dous fíos condutores rectos moi longos e paralelos (A e B) con correntes I A = 5 A e I B = 3 A no mesmo sentido están separados 0,2 m; calcula: a) o campo magnético no punto medio entre os dous condutores (D), b) a forza exercida sobre un terceiro condutor C paralelo ós anteriores, de 0,5 m e con IC = 2 A e que pasa por D. (Dato, µ 0 = 4π 10-7 S.I.) (SETEMBRO 2006) 22.- Unha bobina cadrada e plana (S = 25 cm2) construída con 5 espiras está no plano XY; a) enuncia a lei de Faraday-Lenz, b) calcula a f.e.m. inducida se se aplica un campo magnético en dirección do eixe Z, que varía de 0,5 T a 0,2 T en 0,1 s; c) calcula a f.e.m. media inducida se o campo

4 permanece constante (0,5 T) e a bobina xira ata colocarse no plano XZ en 0,1 s. (XUÑO 2007) 23.- Tres cargas puntuais de 2 µc sitúanse respectivamente en A (0,0), B (1,0) e C (1/2, 3/2). Calcula: a) o campo eléctrico nos puntos D (1/2, 0) e F (1/2,1(2 3)); b) o traballo para trasladar unha carga q = 1 µc de D a F, c) con este traballo, aumenta ou diminúe a enerxía electrostática do sistema? (As coordenadas en metros, K = N m 2 C -2 ; 1µC = 10-6 C). (XUÑO 2007) Dadas tres cargas puntuais q 1 = 10-3 µc en (-8,0) m, q 2 = µc en (8,0) m e q 3 = µc en (0,8) m. Calcula: a) o campo e o potencial eléctricos en (0,0), b) a enerxía electrostática, c) xustifica que o campo electrostático é conservativo. (Datos: 1 µc = 10-6 C; K = N m 2 C -2 ) (SETEMBRO 2007) 25.- Unha partícula con carga C móvese con v = j m/s e entra nunha zona onde existe un campo magnético B = 0,5 i T: a) qué campo eléctrico E hai que aplicar para que a carga non sufra ningunha desviación?; b) en ausencia de campo eléctrico calcula a masa se o raio da órbita é 10-7 m; c) razoa se a forza magnética realiza algún traballo sobre a carga cando esta describe unha órbita circular. (SETEMBRO 2007) 26.- En dous dos vértices dun triángulo equilátero de 2 cm. de lado sitúanse dúas cargas puntuais de +10 µc cada unha. Calcula: a) o campo eléctrico no terceiro vértice; b) o traballo para levar unha carga de 5 µc dende o terceiro vértice ata o punto medio do lado oposto; c) xustifica por qué non necesitas coñecer a traxectoria no apartado anterior. (Datos K= N m 2 C -2 ; 1 µc = 10-6 C). (XUÑO 2008) 27.- Un electrón é acelerado por unha diferenza de potencial de 1000 V, entra nun campo magnético B perpendicular á súa traxectoria, e describe unha órbita circular en T = s. Calcula: a) a velocidade do electrón; b) o campo magnético; c) que dirección debe ter un campo eléctrico E que aplicado xunto con B permita que a traxectoria sexa rectilínea? (Datos q e = -1, C; me = 9, kg) (XUÑO 2008) 28.- Se unha carga de 1 µc se move entre dous puntos da superficie dun condutor separados 1 m (cargado e en equilibrio electrostático), cal é a variación de enerxía potencial que experimenta esta carga?: a) 9 k J; b)

5 depende do potencial do condutor; c) cero. (K= N m 2 C -2 ; 1µC =10-6 C). (SETEMBRO 2008) 29.- Un fío recto e condutor de lonxitude l e corrente I, situado nun campo magnético B, sofre unha forza de módulo IlB; a) se I e B son paralelos e do mesmo sentido; b) se I e B son paralelos e de sentido contrario; c) se I e B son perpendiculares. (SETEMBRO 2008) 30.- Dúas cargas eléctricas de 3 µc están situadas en A(4,0) e B(-4,0) (en metros). Calcula: a) o campo eléctrico en C(0,5) e en D(0,0); b) o potencial eléctrico nos mesmos puntos C e D; c) o traballo para trasladar q = -1µC desde C a D. (Datos, K= Nm2C-2; 1µC=10-6C) (XUÑO -2009) 31.- Dous condutores rectos, paralelos e longos están situados no plano XY e paralelos ó eixe Y. Un pasa polo punto (10,0) cm. e o outro polo (20,0) cm. Ambos conducen correntes eléctricas de 5 A no sentido positivo do eixe Y; a) Explica a expresión utilizada para o cálculo do vector magnético creado por un longo condutor rectilíneo con corrente I; b) Calcula o campo magnético no punto (30,0) cm.; c) Calcula o campo magnético no punto (15,0) cm. (Datos µ 0 =4π.10-7 (S.I.) (Xuño -2009) 32.- Dadas dúas esferas condutoras cargadas e de diferente raio, con cargas Q A e Q B, se se poñen en contacto: a) Iguálanse as cargas nas dúas esferas. b) Iguálanse os potenciais das esferas. c) Non ocorre nada. (SETEMBRO 2009) 33.- Unha partícula cargada e con velocidade u, introdúcese nunha rexión do espazo onde hai un campo eléctrico e un campo magnético constantes. Se a partícula se move con movemento rectilíneo uniforme débese a que os dous campos: a) Son da mesma dirección e sentido. b) Son da mesma dirección e sentido contrario. c) Son perpendiculares entre si. (SETEMBRO 2009) 34.- No modelo de Bohr do átomo de hidróxeno. O electrón, de carga q = 1, C, describe una órbita circular en torno a un protón, de carga q = -q, cun raio de 5, m. A atracción do protón sobre o electrón achega a forza centrípeta necesaria para manter o electrón na órbita. Calcula: a) A forza de atracción eléctrica entre as partículas. b) A masa do electrón Calcula a diferenza de potencial necesaria: a) Para acelerar un protón desde o repouso a unha velocidade de m/s; b) Para frear un electrón que leva unha velocidade de m/s.

6 36.- Un protón e un electrón que se moven coa mesma velocidade, v = i m/s, penetra nun campo magnético uniforme B = -0,01. k T. Calcular: a) A forza sobre cada partícula ao entrar no campo. b) O raio da traxectoria descrita por cada unha das partículas. c) O que tarda cada partícula en dar media volta Por dous conductores rectilíneos paralelos, separados 50 cm, circulan correntes eléctricas en sentido contrario de intensidades 20 A e 30 A, respectivamente. Calcular: a) O valor do campo magnético creado por cada unha onde está a outra. b) A forza por unidade de lonxitude que exerce unha sobre outra. c) Atráense ou repélense? 38.- Un protón que se move con velocidade constante no sentido positivo do eixe X penetra nunha rexión do espazo onde hai un campo eléctrico E = k N/C e outro magnético B = -2 j T, sendo k e j os vectores unitarios nas direccións dos eixes Z e Y, respectivamente. Determina a velocidade que debe levar un protón para que atravese a devandita rexión sen ser desviado. Dato: m p = 1, kg Indica se son certas as afirmacións seguintes: a) Cando partimos un imán pola metade, obtense dous polos magnéticos separados. b) En calquera superficie pechada situada nun campo magnético, entran o mesmo número de liñas de campo que saen. c) Unha carga eléctrica sempre produce un campo magnético. d) As liñas do campo magnético saen polo polo sur e entran polo polo norte Por dous conductores rectilíneos paralelos e separados 60 cm., circulan as correntes I 1 = 20 A e I 2 = 10 A, respectivamente, no mesmo sentido. Calcular: a) O campo magnético no punto medio entre eles. B) O punto onde se anula o campo Un campo magnético uniforme penetra perpendicularmente nunha espira circular. Indica, xustificándoo, o sentido da corrente inducida: a) Cando aumenta o valor do campo; b) Mentres a espira xira 90º arredor dun eixe diametral e perpendicular ao campo; c) Ao inverter o sentido do campo a) Cuál es la condición para que una partícula cargada, que se mueve en línea recta, siga en su trayectoria rectilínea cuando se somete

7 simultáneamente a un campo eléctrico y a otro magnético, perpendiculares entre sí y perpendiculares a la velocidad de carga? b) Dibuje las trayectorias de la partícula cargada del apartado a) si sólo existiera el campo eléctrico o campo magnético, y explique en cada caso, si varía la velocidad Dos partículas de 10 g se encuentran suspendidas por dos hilos de 30 cm desde un mismo punto. Si se les suministra a ambas partículas la misma carga, se separan de modo que los hilos forman entre sí un ángulo de 60º. a) Dibuja en un diagrama las fuerzas que actúan sobre las partículas y analiza la energía del sistema en esa situación. b) Calcula el valor de la carga que se suministra a cada partícula. Datos: K = N m 2 C -2 ; g = 10 m s -2. R: b) q = 7, C 44.- Sobre un electrón, que se mueve con velocidad v, actúa un campo magnético B en dirección normal a su velocidad. a) Razone por qué la trayectoria que sigue es circular y haga un esquema que muestre el sentido de giro del electrón. b) Deduzca las expresiones del radio de la órbita y del período del movimiento a) Explica el concepto de campo eléctrico creado por una o varias partículas cargadas. b) Dos partículas con carga q = 0,8 mc, cada una, están fijas en el vacío y separadas una distancia d = 5 m. Determina el vector campo eléctrico que producen estas cargas en el punto A, que forma un triángulo equilátero con ambas. c) Calcula el campo y el potencial eléctricos en el punto medio entre las cargas, B. Constante de Coulomb: K = 1/(4πε o ) = N m 2 C -2 R: b) E = 5, j N/C ; c) E = 0; V = 5, V 46.- En un campo magnético uniforme se consideran las tres situaciones siguientes: a) Una partícula cargada en reposo; b) partícula cargada que se mueve con velocidad paralela al campo y c) partícula cargada ahora con velocidad ortogonal a la dirección del campo magnético. Indica la acción del campo sobre la partícula en cada uno de los tres casos y cómo será su movimiento en él.

8 47.- Un protón y una partícula alfa, previamente acelerados desde el reposo mediante diferencias de potencia distintas, penetran en una zona del espacio donde existen un campo magnético uniforme B perpendicular a sus velocidades. Ambas partículas describen trayectorias circulares con el mismo radio. Sabiendo que la velocidad del protón es vp = 107 m/s, se pide: a) Cociente entre las velocidades (va/vp) de las partículas. b) Diferencia de potencial (d.d.p.) con la que se ha acelerado cada tipo de partícula. Datos: q p = 1, C; m p = 1, kg; ma = 6, kg. R: a) v α / v p = 0,5 ; V p = 5, V ; Vα = 2, V 48.- Una bobina de 100 espiras circulares de 1 cm de radio se halla en el seno de un campo magnético uniforme B = 0 5T de modo que el plano de las espiras es perpendicular al campo. a) Determina el flujo magnético en la bobina b) Hallar el valor de la f.e.m. media inducida al girar la bobina 90º respecto a un eje perpendicular al campo en una milésima de segundo c) En cuanto tiempo debería girar la bobina 45º pararon seguir la misma f.e.m.? R: a) Φ = 0,016 Wb ; b) E = 16 V ; c) t = 3, s 49.- Sea un campo eléctrico uniforme dado por E = 500 i N/C. Se pide: a) Cómo serán las superficies equipotenciales de dicho campo? b) Calcular el trabajo necesario para trasladar una carga de 2 µc desde el punto P(2,3,0) m hasta el punto Q (6,5,0) m. c) Calcular la distancia entre las superficies equipotenciales V 1 = 10 V y V 2 = 20 V. R: b) W = J ; c) V = 0,02 m 50.- Cuatro cargas eléctricas de 10,0 nc, -12,0 nc, 20,0 nc y 25,0 nc están colocadas en los vértices de un cuadrado de lado l = 1,2 m. Encuentra el potencial eléctrico en el centro del cuadrado. Dato: constante de Coulomb: 8, N m 2 C -2. R: V T = 454,8 V 51.- Una corriente de 20 A circula por alambre largo y recto. Calcular el valor del campo magnético en un punto situado a 20 cm del alambre. R: B = T

9 52.- Tres cargas eléctricas de +1 mc, están nos puntos A(-1,0), B(0,2) y C(0, -2) (metros): calcula en D(0,0) e en F(2,0); a) o campo eléctrico; b) o potencial eléctrico c) si en D(0,0) se coloca unha terceira carga q de +1 mc e de 10 g de masas, sometida solo a acción electrostática das outras tres, calcula a velocidade coa que chega ao punto F(2,0). (K = Nm 2 C -2 ; 1 mc =10-6 C) R: a) ED= 9, i (N/C) EF= 2,610 3 i(n/c). b) VD= V. VF=9, V c) v= 1,31m/s (Xuño-2010) 53.- Segundo a lei de Faraday-Lenz, un campo magnético B induce forza electromotriz nunha espira plana: a) si un B constante atravesa o plano da espira en repouso; b) si un B variable e paralelo ao plano da espira; c) si un B variable atravesa o plano da espira en repouso. (Xuño-2010) 54.- Para construír un xerador elemental de corrente alterna cunha bobina e un imán (fai un esquema): a) a bobina rota con respecto o campo magnético B; b) a sección da bobina desprazase paralelamente a B; c) a bobina esta fixa e e atravesada por un campo B constante (Setembro_2010) 55.- Cando se compara a forza eléctrica entre dúas cargas, coa gravitatoria entre dúas masas (cargas e masas unitarias e a distancia unidade): a) ambas son sempre atractivas; b) son dunha orde de magnitude semellante; c) as dúas son conservativas. (Setembro-2010)

Exercicios de Física 02b. Magnetismo

Exercicios de Física 02b. Magnetismo Exercicios de Física 02b. Magnetismo Problemas 1. Determinar el radio de la órbita descrita por un protón que penetra perpendicularmente a un campo magnético uniforme de 10-2 T, después de haber sido acelerado

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12

Διαβάστε περισσότερα

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted Tema 4 Magnetismo 4-1 Magnetismo. Experiencia de Oersted 4-2 Lei de Lorentz. Definición de B. Movemento dunha carga nun campo magnético. 4-3 Forza exercida sobre unha corrente rectilínea 4-4 Lei de Biot

Διαβάστε περισσότερα

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA INTEACCIÓNS GAVITATOIA E ELECTOSTÁTICA AS LEIS DE KEPLE O astrónomo e matemático Johannes Kepler (1571 1630) enunciou tres leis que describen o movemento planetario a partir do estudo dunha gran cantidade

Διαβάστε περισσότερα

PAU XUÑO 2012 FÍSICA

PAU XUÑO 2012 FÍSICA PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema) Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 9 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 16-17 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2016. A nave espacial Discovery,

Διαβάστε περισσότερα

FISICA 2º BAC 27/01/2007

FISICA 2º BAC 27/01/2007 POBLEMAS 1.- Un corpo de 10 g de masa desprázase cun movemento harmónico simple de 80 Hz de frecuencia e de 1 m de amplitude. Acha: a) A enerxía potencial cando a elongación é igual a 70 cm. b) O módulo

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que

Διαβάστε περισσότερα

PAU XUÑO 2011 FÍSICA

PAU XUÑO 2011 FÍSICA PAU XUÑO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU XUÑO 2014 FÍSICA

PAU XUÑO 2014 FÍSICA PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2009

PAAU (LOXSE) Setembro 2009 PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada

Διαβάστε περισσότερα

PAU XUÑO 2015 FÍSICA

PAU XUÑO 2015 FÍSICA PAU XUÑO 2015 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU SETEMBRO 2014 FÍSICA

PAU SETEMBRO 2014 FÍSICA PAU SETEMBRO 014 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU SETEMBRO 2013 FÍSICA

PAU SETEMBRO 2013 FÍSICA PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor

Διαβάστε περισσότερα

FÍSICA. = 4π 10-7 (S.I.)).

FÍSICA. = 4π 10-7 (S.I.)). 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos

Διαβάστε περισσότερα

PAU XUÑO 2010 FÍSICA

PAU XUÑO 2010 FÍSICA PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B PAU Xuño 00 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B ÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada

Διαβάστε περισσότερα

EJERCICIOS DE VIBRACIONES Y ONDAS

EJERCICIOS DE VIBRACIONES Y ONDAS EJERCICIOS DE VIBRACIONES Y ONDAS 1.- Cando un movemento ondulatorio se atopa na súa propagación cunha fenda de dimensións pequenas comparables as da súa lonxitude de onda prodúcese: a) polarización; b)

Διαβάστε περισσότερα

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes 1.- Distancia entre dous puntos Se A e B son dous puntos do espazo, defínese a distancia entre A e B como o módulo

Διαβάστε περισσότερα

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

TRIGONOMETRIA. hipotenusa L 2. hipotenusa

TRIGONOMETRIA. hipotenusa L 2. hipotenusa TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto

Διαβάστε περισσότερα

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ). 22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

FÍSICA. = 9, kg) = -1, C; m e

FÍSICA. = 9, kg) = -1, C; m e 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1

Διαβάστε περισσότερα

Exercicios de Física 01. Gravitación

Exercicios de Física 01. Gravitación Exercicios de Física 01. Gravitación Problemas 1. A lúa ten unha masa aproximada de 6,7 10 22 kg e o seu raio é de 1,6 10 6 m. Achar: a) A distancia que recorrerá en 5 s un corpo que cae libremente na

Διαβάστε περισσότερα

Indución electromagnética

Indución electromagnética Indución electromagnética 1 Indución electromagnética 1. EXPERIECIA DE FARADAY E HERY. A experiencia de Oersted (1820) demostrou que unha corrente eléctrica crea ao seu redor un campo magnético. Como consecuencia

Διαβάστε περισσότερα

PAU Setembro 2010 FÍSICA

PAU Setembro 2010 FÍSICA PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2004

PAAU (LOXSE) Setembro 2004 PAAU (LOXSE) Setembro 004 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou

Διαβάστε περισσότερα

LUGARES XEOMÉTRICOS. CÓNICAS

LUGARES XEOMÉTRICOS. CÓNICAS LUGARES XEOMÉTRICOS. CÓNICAS Páxina REFLEXIONA E RESOLVE Cónicas abertas: parábolas e hipérboles Completa a seguinte táboa, na que a é o ángulo que forman as xeratrices co eixe, e, da cónica e b o ángulo

Διαβάστε περισσότερα

PAU XUÑO 2016 FÍSICA

PAU XUÑO 2016 FÍSICA PAU XUÑO 2016 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Física e química 4º ESO. As forzas 01/12/09 Nome:

Física e química 4º ESO. As forzas 01/12/09 Nome: DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste

Διαβάστε περισσότερα

ELECTROTECNIA. BLOQUE 1: ANÁLISE DE CIRCUÍTOS (Elixir A ou B) A.- No circuíto da figura determinar o valor da intensidade na resistencia R 2

ELECTROTECNIA. BLOQUE 1: ANÁLISE DE CIRCUÍTOS (Elixir A ou B) A.- No circuíto da figura determinar o valor da intensidade na resistencia R 2 36 ELECTROTECNIA O exame consta de dez problemas, debendo o alumno elixir catro, un de cada bloque. Non é necesario elixir a mesma opción (A ou B ) de cada bloque. Todos os problemas puntúan igual, é dicir,

Διαβάστε περισσότερα

PAU XUÑO 2012 MATEMÁTICAS II

PAU XUÑO 2012 MATEMÁTICAS II PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio

Διαβάστε περισσότερα

Materiais e instrumentos que se poden empregar durante a proba

Materiais e instrumentos que se poden empregar durante a proba 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións. Problema 2: tres cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema

Διαβάστε περισσότερα

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016 Tema 1. Espazos topolóxicos Topoloxía Xeral, 2016 Topoloxía e Espazo topolóxico Índice Topoloxía e Espazo topolóxico Exemplos de topoloxías Conxuntos pechados Topoloxías definidas por conxuntos pechados:

Διαβάστε περισσότερα

ENERXÍA, TRABALLO E POTENCIA

ENERXÍA, TRABALLO E POTENCIA NRXÍA, TRABALLO POTNCIA NRXÍA Pódese definir enerxía coo a capacidade que ten un corpo para realizar transforacións nel eso ou noutros corpos. A unidade de enerxía no SI é o Joule (J) pero é frecuente

Διαβάστε περισσότερα

A circunferencia e o círculo

A circunferencia e o círculo 10 A circunferencia e o círculo Obxectivos Nesta quincena aprenderás a: Identificar os diferentes elementos presentes na circunferencia e o círculo. Coñecer as posicións relativas de puntos, rectas e circunferencias.

Διαβάστε περισσότερα

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

Exercicios de Física 03a. Vibracións

Exercicios de Física 03a. Vibracións Exercicios de Física 03a. Vibracións Problemas 1. No sistema da figura, un corpo de 2 kg móvese a 3 m/s sobre un plano horizontal. a) Determina a velocidade do corpo ó comprimirse 10 cm o resorte. b) Cal

Διαβάστε περισσότερα

Exercicios de Física 03b. Ondas

Exercicios de Física 03b. Ondas Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A

Διαβάστε περισσότερα

EXERCICIOS DE ÁLXEBRA. PAU GALICIA

EXERCICIOS DE ÁLXEBRA. PAU GALICIA Maemáicas II EXERCICIOS DE ÁLXEBRA PAU GALICIA a) (Xuño ) Propiedades do produo de marices (só enuncialas) b) (Xuño ) Sexan M e N M + I, onde I denoa a mariz idenidade de orde n, calcule N e M 3 Son M

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa.

Διαβάστε περισσότερα

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación As Mareas INDICE 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación Introducción A marea é a variación do nivel da superficie libre

Διαβάστε περισσότερα

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::... Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 2013 C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b)unha lente converxente; c) un espello cóncavo.

Διαβάστε περισσότερα

Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2

Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2 Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2 1.1 Concepto de corrente eléctrica...2 1.1 Concepto de corrente eléctrica...2 1.2 Características dun circuíto de corrente

Διαβάστε περισσότερα

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación:

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación: VIBRACIÓNS E ONDAS PROBLEMAS 1. Un sistema cun resorte estirado 0,03 m sóltase en t=0 deixándoo oscilar libremente, co resultado dunha oscilación cada 0, s. Calcula: a) A velocidade do extremo libre ó

Διαβάστε περισσότερα

SOLUCIONES DE LAS ACTIVIDADES Págs. 101 a 119

SOLUCIONES DE LAS ACTIVIDADES Págs. 101 a 119 Página 0. a) b) π 4 π x 0 4 π π / 0 π / x 0º 0 x π π. 0 rad 0 π π rad 0 4 π 0 π rad 0 π 0 π / 4. rad 4º 4 π π 0 π / rad 0º π π 0 π / rad 0º π 4. De izquierda a derecha: 4 80 π rad π / rad 0 Página 0. tg

Διαβάστε περισσότερα

1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson

1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson 1 La teoría de Jeans El caso ás siple de evolución de fluctuaciones es el de un fluído no relativista. las ecuaciones básicas son: a conservación del núero de partículas n t + (n v = 0 (1 b Navier-Stokes

Διαβάστε περισσότερα

ELECTROTECNIA. BLOQUE 3: MEDIDAS NOS CIRCUÍTOS ELÉCTRICOS (Elixir A ou B)

ELECTROTECNIA. BLOQUE 3: MEDIDAS NOS CIRCUÍTOS ELÉCTRICOS (Elixir A ou B) 36 ELECTROTECNIA O exame consta de dez problemas, debendo o alumno elixir catro, un de cada bloque. Non é necesario elixir a mesma opción (A o B ) de cada bloque. Todos os problemas puntúan do mesmo xeito,

Διαβάστε περισσότερα

1.- Carga eléctrica. Cuantización Lei de Coulomb Traballo Campo Electrostático Potencial Electrostático 6

1.- Carga eléctrica. Cuantización Lei de Coulomb Traballo Campo Electrostático Potencial Electrostático 6 CMPO ELECTROSTÁTICO 1.- Carga eléctrica. Cuantización 1.1. Tipo de carga:.- Lei de Coulomb 3 3.- Traballo 4 3.1.-Enerxía Potencial Electrotática 5 4.- Campo Electrotático 5 5.- Potencial Electrotático

Διαβάστε περισσότερα

την..., επειδή... Se usa cuando se cree que el punto de vista del otro es válido, pero no se concuerda completamente

την..., επειδή... Se usa cuando se cree que el punto de vista del otro es válido, pero no se concuerda completamente - Concordar En términos generales, coincido con X por Se usa cuando se concuerda con el punto de vista de otro Uno tiende a concordar con X ya Se usa cuando se concuerda con el punto de vista de otro Comprendo

Διαβάστε περισσότερα

Ventiladores helicoidales murales o tubulares, versión PL equipados con hélice de plástico y versión AL equipados con hélice de aluminio.

Ventiladores helicoidales murales o tubulares, versión PL equipados con hélice de plástico y versión AL equipados con hélice de aluminio. HCH HCT HCH HCT Ventiladores helicoidales murales o tubulares, de gran robustez Ventiladores helicoidales murales o tubulares, versión PL equipados con hélice de plástico y versión AL equipados con hélice

Διαβάστε περισσότερα

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos VIII. ESPZO EULÍDEO TRIDIMENSIONL: Áglos perpediclaridade de rectas e plaos.- Áglo qe forma dúas rectas O áglo de dúas rectas qe se corta se defie como o meor dos áglos qe forma o plao qe determia. O áglo

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS LEIS DE KEPLER 1. O peíodo de otación da Tea aedo do Sol é un ano e o aio da óbita é 1,5 10¹¹ m. Se Xúpite ten un peíodo de apoximadamente 12 anos, e se

Διαβάστε περισσότερα

Áreas de corpos xeométricos

Áreas de corpos xeométricos 9 Áreas de corpos xeométricos Obxectivos Nesta quincena aprenderás a: Antes de empezar 1.Área dos prismas....... páx.164 Área dos prismas Calcular a área de prismas rectos de calquera número de caras.

Διαβάστε περισσότερα

TEORÍA DE XEOMETRÍA. 1º ESO

TEORÍA DE XEOMETRÍA. 1º ESO TEORÍA DE XEOMETRÍA. 1º ESO 1. CORPOS XEOMÉTRICOS No noso entorno observamos continuamente obxectos de diversas formas: pelotas, botes, caixas, pirámides, etc. Todos estes obxectos son corpos xeométricos.

Διαβάστε περισσότερα

ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ KΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 24 ΙΟΥΝΙΟΥ 2005 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΑ ΙΣΠΑΝΙΚΑ

ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ KΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 24 ΙΟΥΝΙΟΥ 2005 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΑ ΙΣΠΑΝΙΚΑ ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ KΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 24 ΙΟΥΝΙΟΥ 2005 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΑ ΙΣΠΑΝΙΚΑ Α. Να αποδώσετε στο τετράδιό σας στην ελληνική γλώσσα το παρακάτω κείμενο,

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Puntuación máima dos eercicios de cada opción: eercicio 1= 3 puntos, eercicio = 3 puntos, eercicio

Διαβάστε περισσότερα

Problemas resueltos del teorema de Bolzano

Problemas resueltos del teorema de Bolzano Problemas resueltos del teorema de Bolzano 1 S e a la fun ción: S e puede af irm a r que f (x) está acotada en el interva lo [1, 4 ]? P or no se r c ont i nua f (x ) e n x = 1, la f unció n no e s c ont

Διαβάστε περισσότερα

Obxectivos. Resumo. titor. corpos xeométricos. Calcular as. súas áreas volumes. Terra. deles.

Obxectivos. Resumo. titor. corpos xeométricos. Calcular as. súas áreas volumes. Terra. deles. 8 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Distinguir as clases de corpos xeométricos. Construíloss a partir do seu desenvolvemento plano. Calcular as súas áreas e volumes. Localizar

Διαβάστε περισσότερα

Física cuántica. Relatividade especial

Física cuántica. Relatividade especial Tema 8 Física cuántica. Relatividade especial Evolución das ideas acerca da natureza da luz Experimento de Young (da dobre fenda Dualidade onda-corpúsculo Principio de indeterminación de Heisemberg Efecto

Διαβάστε περισσότερα

Catálogodegrandespotencias

Catálogodegrandespotencias www.dimotor.com Catálogogranspotencias Índice Motores grans potencias 3 Motores asíncronos trifásicos Baja Tensión y Alta tensión.... 3 Serie Y2 Baja tensión 4 Motores asíncronos trifásicos Baja Tensión

Διαβάστε περισσότερα

Inmigración Estudiar. Estudiar - Universidad. Indicar que quieres matricularte. Indicar que quieres matricularte en una asignatura.

Inmigración Estudiar. Estudiar - Universidad. Indicar que quieres matricularte. Indicar que quieres matricularte en una asignatura. - Universidad Me gustaría matricularme en la universidad. Indicar que quieres matricularte Me quiero matricular. Indicar que quieres matricularte en una asignatura en un grado en un posgrado en un doctorado

Διαβάστε περισσότερα

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio.

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio. Tema 6 Ondas 6-1 Movemento ondulatorio. Clases de ondas 6- Ondas harmónicas. Ecuación de ondas unidimensional 6-3 Enerxía e intensidade das ondas harmónicas 6-4 Principio de Huygens: reflexión e refracción

Διαβάστε περισσότερα

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Solucionario Trigonometría ACTIVIDADES INICIALES.I. En una recta r hay tres puntos: A, B y C, que distan, sucesivamente, y cm. Por esos puntos se trazan rectas paralelas que cortan otra, s, en M, N y P.

Διαβάστε περισσότερα

Trigonometría. Obxectivos. Antes de empezar.

Trigonometría. Obxectivos. Antes de empezar. 7 Trigonometría Obxectivos Nesta quincena aprenderás a: Calcular as razóns trigonométricas dun ángulo. Calcular todas as razóns trigonométricas dun ángulo a partir dunha delas. Resolver triángulos rectángulos

Διαβάστε περισσότερα

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO 1. Punto e recta 2. Lugares xeométricos 3. Ángulos 4. Trazado de paralelas e perpendiculares con escuadro e cartabón 5. Operacións elementais 6. Trazado de ángulos

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro 9 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 138 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 138 Definición Elementos dun poliedro 8 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

Filipenses 2:5-11. Filipenses

Filipenses 2:5-11. Filipenses Filipenses 2:5-11 Filipenses La ciudad de Filipos fue nombrada en honor de Felipe II de Macedonia, padre de Alejandro. Con una pequeña colonia judía aparentemente no tenía una sinagoga. El apóstol fundó

Διαβάστε περισσότερα

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato Estrutura atómica 2 1

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato Estrutura atómica 2 1 As leis ponderais e volumétricas, estudadas no anterior tema, analizadas á luz da teoría atómica que hoxe manexamos resultan ser unha consecuencia lóxica da mesma, pero non debemos esquecer que historicamente

Διαβάστε περισσότερα

SATÉLITES TERRESTRES E AS SÚAS ÓRBITAS

SATÉLITES TERRESTRES E AS SÚAS ÓRBITAS INTRODUCIÓN O carácter da Física como ciencia experimental fai que as prácticas de laboratorio sexan un complemento imprescindible no ensino desta disciplina. As actividades prácticas poñen aos estudantes

Διαβάστε περισσότερα

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato O enlace químico 3 1

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato O enlace químico 3 1 UNIÓNS ENTRE ÁTOMOS, AS MOLÉCULAS E OS CRISTAIS Até agora estudamos os átomos como entidades illadas, pero isto rara vez ocorre na realidade xa que o máis frecuente é que os átomos estea influenciados

Διαβάστε περισσότερα

Números reais. Obxectivos. Antes de empezar.

Números reais. Obxectivos. Antes de empezar. 1 Números reais Obxectivos Nesta quincena aprenderás a: Clasificar os números reais en racionais e irracionais. Aproximar números con decimais ata unha orde dada. Calcular a cota de erro dunha aproximación.

Διαβάστε περισσότερα

Tema 3. Campo eléctrico. 3-1 Propiedades fundamentais da carga eléctrica: conservación e cuantización

Tema 3. Campo eléctrico. 3-1 Propiedades fundamentais da carga eléctrica: conservación e cuantización Tema 3 Campo eléctico 3-1 Popiedades fundamentais da caga eléctica: consevación e cuantización 3- Lei de inteacción ente cagas elécticas: Lei de Coulomb 3-3 Intensidade de campo eléctico. Teoema de Gauss

Διαβάστε περισσότερα

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS 5 FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Página PARA EMPEZAR, REFLEXIONA Y RESUELVE. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora:

Διαβάστε περισσότερα

Uso e transformación da enerxía

Uso e transformación da enerxía Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo 4 Unidade didáctica 5 Uso e transformación da enerxía Páxina 1 de 50 Índice 1. Introdución...3

Διαβάστε περισσότερα

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración.

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración. FÍSICA MODERNA FÍSICA NUCLEAR. PROBLEMAS 1. Un detector de radioactividade mide unha velocidade de desintegración de 15 núcleos min -1. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a)

Διαβάστε περισσότερα

RADIACTIVIDADE. PROBLEMAS

RADIACTIVIDADE. PROBLEMAS RADIACTIVIDADE. PROBLEMAS 1. Un detector de radiactividade mide unha velocidade de desintegración de 15 núcleos/minuto. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a) A constante de

Διαβάστε περισσότερα

a) Para determinar a velocidade orbital temos en conta os datos do problema: T= 12 h 2 min= s R= 1, m

a) Para determinar a velocidade orbital temos en conta os datos do problema: T= 12 h 2 min= s R= 1, m GAVIACIÓN. OBAS. O SSNG é unha misión espaial non tripulada da NASA, lanzada rumbo a erurio en Aosto de 004 e que entrou en órbita arredor dese planeta en arzo de 0. No seu perorrido enviou datos que permiten

Διαβάστε περισσότερα

La experiencia de la Mesa contra el Racismo

La experiencia de la Mesa contra el Racismo La experiencia de la Mesa contra el Racismo Informe Di icultad para identi icarse como discriminado Subsistencia de mecanismos individuales para enfrentar el racismo Las propuestas de las organizaciones

Διαβάστε περισσότερα

Ámbito científico tecnolóxico. Xeometría. Unidade didáctica 2. Módulo 3. Educación a distancia semipresencial

Ámbito científico tecnolóxico. Xeometría. Unidade didáctica 2. Módulo 3. Educación a distancia semipresencial Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo 3 Unidade didáctica 2 Xeometría Índice 1. Introdución... 3 1.1 Descrición da unidade

Διαβάστε περισσότερα

1 Experimento aleatorio. Espazo de mostra. Sucesos

1 Experimento aleatorio. Espazo de mostra. Sucesos V. PROBABILIDADE E ESTATÍSTICA 1 Experimento aleatorio. Espazo de mostra. Sucesos 1 Experimento aleatorio. Concepto e exemplos Experimentos aleatorios son aqueles que ao repetilos nas mesmas condicións

Διαβάστε περισσότερα

ENLACE QUÍMICO CUESTIÓNS ENLACE IÓNICO. 1. Considerando o elemento alcalinotérreo do terceiro perquíodo e o segundo elemento do grupo dos halóxenos.

ENLACE QUÍMICO CUESTIÓNS ENLACE IÓNICO. 1. Considerando o elemento alcalinotérreo do terceiro perquíodo e o segundo elemento do grupo dos halóxenos. QQuímica P.A.U. ELACE QUÍMICO 1 ELACE QUÍMICO CUESTIÓS ELACE IÓICO 1. Considerando o elemento alcalinotérreo do terceiro perquíodo e o segundo elemento do grupo dos halóxenos. a) Escribe as súas configuracións

Διαβάστε περισσότερα

Nro. 01 Septiembre de 2011

Nro. 01 Septiembre de 2011 SOL Cultura La Tolita, de 400 ac. a 600 dc. En su representación se sintetiza toda la mitología ancestral del Ecuador. Trabajado en oro laminado y repujado. Museo Nacional Banco Central del Ecuador Dirección

Διαβάστε περισσότερα

PROBLEMAS E CUESTIÓNS DE SELECTIVIDADE

PROBLEMAS E CUESTIÓNS DE SELECTIVIDADE PROBLEMAS E CUESTIÓNS DE SELECTIVIDADE O KMnO en presenza de H SO transforma o FeSO en Fe (SO ), formándose tamén K SO, MnSO e auga: a) Axusta a reacción molecular. b) Cantos cm de disolución de KMnO 0,5

Διαβάστε περισσότερα

Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA

Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA PROBLEMAS TERMOQUÍMICA 1. Para o proceso Fe 2O 3 (s) + 2 Al (s) Al 2O 3 (s) + 2 Fe (s), calcule: a) A entalpía da reacción en condicións estándar e a calor desprendida

Διαβάστε περισσότερα

Una visión alberiana del tema. Abstract *** El marco teórico. democracia, república y emprendedores; alberdiano

Una visión alberiana del tema. Abstract *** El marco teórico. democracia, república y emprendedores; alberdiano Abstract Una visión alberiana del tema - democracia, república y emprendedores; - - alberdiano El marco teórico *** - 26 LIBERTAS SEGUNDA ÉPOCA - - - - - - - - revolución industrial EMPRENDEDORES, REPÚBLICA

Διαβάστε περισσότερα

a) Calcula m de modo que o produto escalar de a( 3, 2 ) e b( m, 5 ) sexa igual a 5. ( )

a) Calcula m de modo que o produto escalar de a( 3, 2 ) e b( m, 5 ) sexa igual a 5. ( ) .. MATEMÁTICAS I PENDENTES (º PARTE) a) Calcula m de modo que o produto escalar de a(, ) e b( m, 5 ) sea igual a 5. b) Calcula a proección de a sobre c, sendo c,. ( ) 5 Se (, ) e y,. Calcula: a) Un vector

Διαβάστε περισσότερα

S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA EXTRACCIÓN DO ADN EXTRACCIÓN DO ADN CUANTIFICACIÓN. 260 280 260/280 ng/µl

S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA EXTRACCIÓN DO ADN EXTRACCIÓN DO ADN CUANTIFICACIÓN. 260 280 260/280 ng/µl CUANTIFICACIÖN 26/VI/2013 S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA - ESPECTROFOTÓMETRO: Cuantificación da concentración do ADN extraido. Medimos a absorbancia a dúas lonxitudes

Διαβάστε περισσότερα

Académico Introducción

Académico Introducción - Σε αυτήν την εργασία/διατριβή θα αναλύσω/εξετάσω/διερευνήσω/αξιολογήσω... general para un ensayo/tesis Για να απαντήσουμε αυτή την ερώτηση, θα επικεντρωθούμε πρώτα... Para introducir un área específica

Διαβάστε περισσότερα

CADERNO Nº 11 NOME: DATA: / / Estatística. Representar e interpretar gráficos estatísticos, e saber cando é conveniente utilizar cada tipo.

CADERNO Nº 11 NOME: DATA: / / Estatística. Representar e interpretar gráficos estatísticos, e saber cando é conveniente utilizar cada tipo. Estatística Contidos 1. Facer estatística Necesidade Poboación e mostra Variables 2. Reconto e gráficos Reconto de datos Gráficos Agrupación de datos en intervalos 3. Medidas de centralización e posición

Διαβάστε περισσότερα