#11 Έγχρωµο και Ασπρόµαυρο Φως

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "#11 Έγχρωµο και Ασπρόµαυρο Φως"

Transcript

1 # Έγχρωµο και Ασπρόµαυρο Φως Χρώµα: κλάδος φυσικής, φυσιολογίας, ψυχολογίας, τέχνης. Αφορά άµεσα τον προγραµµατιστή των γραφικών. Αν αφαιρέσουµε χρωµατικά χαρακτηριστικά, λαµβάνουµε ασπρόµαυρο φως. Μόνο χαρακτηριστικό η φωτεινότητα ή ένταση. Φωτεινότητα: 0 (µαύρο) (άσπρο) αποχρώσεις του γκρι.

2 Εστω οθόνη µε t/pel. Ασπρόµαυρο Φως n διαφορετικές τιµές φωτεινότητας παριστάνονται. Ποιες επιλέγουµε; Φυσιολογία: µάτι αντιλαµβάνεται λόγους φωτεινότητας (όχι απόλυτες τιµές). Π.χ. (0., 0.) και (0.3, 0.6) φαίνονται σα να έχουν ίδια διαφορά. Αρα επιλέγουµε φωτεινότητες µε λογαριθµική κατανοµή. Λογαριθµική επιλογή φωτεινοτήτων. Εστω Φ 0 η µικρότερη τιµή φωτεινότητας (/00 ως /40 της m τιµής ). Απόλυτο µαύρο δεν επιτυγχάνεται (αντανάκλαση φωσφόρου). Εστω λ ο λόγος µεταξύ διαδοχικών φωτεινοτήτων: Φ λ Φ Φ M n Φn λ Φ0 Από την τελευταία µπορεί να υπολογισθεί το λ. 0 λ Φ λ ( ) / ( n ) Φ λ / Φ0 Αν λ.0 το µάτι δεν διακρίνει διαδοχικές τιµές φωτεινότητας. 0

3 Ασπρόµαυρο Φως Υπολογισµός mn αριθµού τιµών φωτεινότητας. n.0 Φ ή ( ) n log.0 / Φ0 Για τυπικά Φ 0, n

4 Ασπρόµαυρο Φως Αύξηση διαθέσιµων τιµών φωτεινότητας (θυσιάζοντας ανάλυση). Αντίθετο αντιταύτισης. Hlftonng: µαύρες κουκίδες διαφόρων µεγεθών παριστάνουν διάφορες τιµές φωτεινότητας (εφηµερίδες). Αρχική Εικόνα Hlftonng 4

5 Ασπρόµαυρο Φως - Τεχνική Hlftonng Hlftonng σε ψηφιακή εικόνα: µεγέθη κουκίδας αντικαθίστανται από αριθµό αναµµένων pel σε πλέγµατα n n. Πλέγµα n n µπορεί να παραστήσει n τιµές φωτεινότητας Τα παραπάνω µπορούν να παρασταθούν συνοπτικά από τον πίνακα: ( ) Για τιµή φωτεινότητας k 0 k 4 ανάβουµε τα pel του πίνακα µε τιµή µικρότερη του k. Αύξηση τιµών φωτεινότητας από σε 5 µε µείωση οριζόντιας και κάθετης ανάλυσης κατά /. Ορια τίθενται από µάτι, ανάλυση οθόνης, απόσταση παρατήρησης. Προσοχή στην επιλογή πίνακα hlftonng. Π.χ. κακής επιλογής (κάθετες γραµµές). 3 0 Αυξητική σειρά επιθυµητή. 5

6 Ασπρόµαυρο Φως - Τεχνική Hlftonng Καλή αυξητική σειρά για πίνακες: Μεγαλύτεροι πίνακες κατασκευάζονται αναδροµικά: 4Dn / 4Dn / U n / k Dn n 4 n 4Dn 3U n 4Dn U µε και / / / n / Τεχνική hlftonng επεκτείνεται και σε συσκευές µε δυνατότητα εµφάνισης πολλαπλών τιµών φωτεινότητας ανά pel. Χρησιµοποιώντας n n περιοχές µε k τιµές φωτεινότητας ανά pel λαµβάνουµε k n τιµές φωτεινότητας. Π.χ. 3 τιµές φωτεινότητας από 4, µε περιοχές. ( ) D

7 Ασπρόµαυρο Φως Hlftonng υποθέτει ύπαρξη ανάλυσης συσκευής >> ανάλυση εικόνας. Τι γίνεται αν αναλύσεις είναι ίσες και εικόνα έχει περισσότερες τιµές φωτεινότητας από pel συσκευής; Απλή στρογγύλευση όχι καλή (σχήµα Α). Flo - Steneg: έλεγχος απώλειας πληροφορίας µε µεταφορά σφάλµατος σε γειτονικά pel. Αν E, και O, η τιµή της εικόνας και η πλησιέστερη τιµή της οθόνης αντίστοιχα στο pel,. ε E, O, 3 E, E, 3 ε/ 8 ε ε 8 E, E, 3 ε/ 8 3 E, E, ε/ 4 ε ε 8 4 Καλά αποτελέσµατα (σχήµα Β). Σχήµα Α 7 Σχήµα Β

8 Χρώµα Εγχρωµο φως: µικρή περιοχή ηλεκτροµαγνητικού φάσµατος. FM TV µικροκύµατα εµφανές φως υπεριώδες υπέρυθρο ακτίνες Χ Συχνότητα (H) Εκφράζεται µε συχνότητα ν (H) ή µήκος κύµατος λ (nm), Μάτι διακρίνει ~ διαφορετικά χρώµατα από 780 nm (κόκκινο) ως 380 nm (βιολετί). Οθόνη πραγµατικού χρώµατος αφιερώνει 3 te για το χρώµα του κάθε pel. Χρώµα: απόκριση µατιού - εγκεφάλου στη συγκεκριµένη συχνότητα. Οπτικό νεύρο: διαφορετική εστίαση για κάθε χρώµα. λ ν c Αποφυγή ταυτόχρονης εµφάνισης χρωµάτων µε µεγάλες διαφορές εστίασης π.χ. κόκκινο -µπλέ. 8

9 Μοντέλο GB Χρωµατικό µοντέλο: προδιαγραφή ενός συνόλου χρωµάτων µε συνδυασµούς λίγων βασικών. Συνήθως 3 βασικά, τέτοια ώστε ο συνδυασµός οποιωνδήποτε δεν δηµιουργεί το τρίτο. GB: χρησιµοποιεί ως βασικά το κόκκινο (e), πράσινο (Geen), µπλε (Blue). Καµπύλες µείξης,g,b για τη σύνθεση των άλλων χρωµάτων. Χρωµατικός χώρος GB: µοναδιαίος κύβος. G Θαλασσί (0,, ) B Πράσινο (0,, 0) Ασπρο (,, ) Μαύρο (0, 0, 0) Μπλε Μωβ (0, 0, ) (, 0, ) Γραµµική σύνθεση χρωµάτων από βασικά F g G B (, g, ) είναι οι συντεταγµένες του F στον χρωµατικό χώρο. 9 Κίτρινο (,, 0) Κόκκινο (, 0, 0)

10 Μοντέλο GB Κύρια διαγώνιος κύβου GB αποχρώσεις του γκρι. Τοµή κύβου GB µε επίπεδο που περνά από σηµεία (,0,0), G(0,,0) και B(0,0,) χρωµατικό τρίγωνο. Επαρκής περιγραφή χρωµατικού χώρου επειδή χρώµατα συνήθως ορίζονται από τύπο χρώµατος και όχι από τη φωτεινότητα τους. g G Αποχρώσεις του γκρι W B 0

11 Μοντέλο GB Χρωµατικό τρίγωνο: περιέχει χαρακτηριστικά χρωµάτων (εκτός από φωτεινότητα). Απόχρωση (hue): βαρύνουσα συχνότητα. Καθαρότητα (tuton): ποσοστό συµµετοχής άσπρου χρώµατος. Χρώµατα ίδιας απόχρωσης βρίσκονται πάνω σε κάποιο ευθύγραµµο τµήµα που συνδέει κέντρο χρωµατικού τριγώνου (γκρί) µε σηµείο της περιµέτρου του. Καθαρότητα είναι µεγαλύτερη όσο πιο κοντά βρισκόµαστε στην περίµετρο. Κέντρο τριγώνου έχει καθαρότητα 0%. Χρώµατα που προστιθέµενα δίνουν γκρί ονοµάζονται συµµετρικά.

12 Μοντέλο ΧΥΖ Συνδυασµός, G, B δεν µπορεί να δώσει όλα τα χρώµατα της φύσης. Ορισµός κανονικών χρωµάτων Χ, Υ, Ζ που µπορούν να συνθέσουν οποιοδήποτε εµφανές χρώµα. Χ, Υ, Ζ είναι υπολογιστικά µεγέθη, δεν αντιστοιχούν σε εµφανή χρώµατα. Ορισµός από CE 93. Aπεικόνιση GB σε XYZ. X,7690,758g,300 Y,0000 4,5907g 0,060 Z 0,0565g 5,5943 Απεικόνιση XYZ σε GB. 0,475X 0,578Y 0,088Z g 0,09X 0,54Y 0,057Z 0,0009X 0,006Y 0,786Z Mετασχηµατίζοντας τις καµπύλες µείξης GB στο XYZ παίρνουµε τις καµπύλες µείξης XYZ.

13 Μοντέλο ΧΥΖ To κανονικό χρωµατικό τρίγωνο ΧΥΖ βρίσκεται στο επίπεδο. Ενα διάνυσµα (Χ,Υ,Ζ) του XYZ -χώρου αντιστοιχεί στο σηµείο (,,) του κανονικού χρωµατικού τριγώνου: X / X Y Z Y / X Y Z Z / X Y Z ( ) ( ) ( ) (,) συντεταγµένες αρκούν αφού. Εµφανή και φυσικά χρώµατα στο κανονικό χρωµατικό τρίγωνο. 3

14 Μοντέλο CMY GB και ΧΥΖ είναι προσθετικά µοντέλα. Χρώµατα συντίθενται µε πρόσθεση ποσοστών των 3 βασικών. Κατάλληλα για αντίστοιχες συσκευές (π.χ. οθόνες). Εκτυπωτές: αφαιρετική διαδικασία. Π.χ. θαλασσί µπογιά αφαιρεί το κόκκινο από το ανακλώµενο φως Αποτέλεσµα Ασπρο - Κόκκινο (Κόκκινο Πράσινο Μπλε) - Κόκκινο Πράσινο Μπλε Θαλασσί. Αφαιρετικό Μοντέλο είναι το CMY. Στηρίζεται στα βασικά χρώµατα Cn (Θαλασσί), Mgent (Μωβ) και Yellow (Κίτρινο). Αυτά είναι συµπληρωµατικά των,g και Β. M Kόκκινο (0,, ) Y Μωβ (0,, 0) Μαύρο (,, ) Άσπρο (0, 0, 0) Κίτρινο Πράσινο (0, 0, ) (, 0, ) Μπλε (,, 0) Θαλασσί (, 0, 0) Μετασχηµατισµοί µεταξύ GB και CMY. C 4 c m g c g m

15 5 Μετασχηµατισµός Χρωµάτων από Οθόνη σε Οθόνη Η ίδια τριάδα (, g, ) µπορεί να δίνει λίγο διαφορετικό χρώµα σε διαφορετικές οθόνες Εξαρτάται από είδος φωσφόρου κλπ. ιαφορά µπορεί να ξεπεραστεί µέσω του tn µοντέλου XYZ. Απαιτείται πίνακας µετασχηµατισµού M για κάθε οθόνη: Για µετάβαση από Οθόνη σε Οθόνη : g g g Y Z Z Y Y Y X X X M g M Z Y X g M M g

16 # Μοντέλα & Αλγόριθµοι Φωτισµού Μοντέλο φωτισµού: συγκεκριµένη και απλοποιηµένη παράσταση φυσικών νόµων που διέπουν τον φωτισµό. Τοπικό: λαµβάνει υπ όψη µόνο άµεση πρόσπτωση φωτός (π.χ. Phong). Γενικό: λαµβάνει υπ όψη και έµµεση πρόσπτωση φωτός (π.χ. -tcng, ot). Αλγόριθµος φωτισµού: αποδοτική υλοποίηση µοντέλου φωτισµού. Θέσεις αντικειµένων και φωτεινών πηγών Θέση παρατηρητή 3 Μαθηµατικά Μοντέλα ΣΣΑ 3 Μετασχ/σµοί Μοντέλου ΠΣΣ (W CS ) 3 Μετασχ/σµός Παρατήρησης ΣΣ Π (E CS) ιαγραφή Πίσω Επιφανειών 3 Αποκοπή Είσοδοι (για κάθε καρέ) Παράσταση Στην Οθόνη: Σάρωση Αντιταύτιση Φωτισµός Υφή Απόκρυψη Ακµών/ Επιφανειών D ΣΣΟ (SCS) Προβολή 6

17 Φυσική του Φωτισµού Γωνία που αντιστοιχεί σε κυκλικό τόξο µήκους l και ακτίνας είναι ίση µε l / n. Στερεά γωνία που αντιστοιχεί σε σφαιρική περιοχή επιφάνειας είναι ίση µε / ten (). Σφαίρα: 4π / 4π Φωτεινή ισχύς (flu) Φ : ταχύτητα εκποµπής φωτεινής ενέργειας από φωτεινή πηγή (µονάδα wtt (w)). nt ntent (ένταση φωτεινής πηγής): φωτεινή ισχύς ανά µονάδα στερεάς γωνίας Ω σε κάποια διεύθυνση. Φ/Ω (µονάδα w/). Φωτεινή ροή (nce) ή ένταση : ένταση που εκπέµπεται από φωτεινή πηγή σε κάποια κατεύθυνση ανά µονάδα επιφανείας κάθετη στην κατεύθυνση αυτή. / ( A coθ ) / ( A L) Ω θ L A 7

18 Φυσική του Φωτισµού Ροή προσπίπτουσας ακτινοβολίας (nce) E : σηµείου επιφάνειας είναι η προσπίπτουσα φωτεινή ισχύς ανά µονάδα επιφάνειας (όχι προβολής) στην περιοχή του σηµείου. Ε Φ/A (µονάδα w/m ). Ενταση (προσπίπτουσα) σηµείου επιφάνειας Ι : φωτεινή ροή (προβολής) ανά µονάδα στερεάς γωνίας. Ισχύει: E coθ Ω L Ω ( ) Ω L θ θ Στα γραφικά µας ενδιαφέρει η σχέση προσπίπτοντος και ανακλώµενου φωτός Ι. Ι πρέπει να υπολογισθεί από E και όχι από Ι (π.χ. πηγές µε διαφορετικό µέγεθος (Ω ) και ίδια ένταση Ι ). Συνάρτηση ανάκλησης εξαρτάται από θ και θ BDF E 8

19 Φυσική του Φωτισµού Για την προσπίπτουσα σε κάποια επιφάνεια φωτεινή ενέργεια ισχύει: προσπίπτον φως ανακλώµενο φως διαχεόµενο φως αποροφούµενο φως µεταδιδόµενο φως φωτεινή πηγή προσπίπτον φως διάχυτη ανάκλαση απορρόφηση κατευθυνόµενη εσωτερική ανάκλαση µεταδιδόµενο φως ανάκλαση Στα γραφικά αρκεί να θεωρήσουµε 3 συνιστώσες για την BDF (He 99): Κατευθυνόµενη ανάκλαση (pecul eflecton), σχήµα Α. ιάχυτη ανάκλαση (ectonl ffue eflecton), σχήµα Β. Ιδανική διάχυτη ανάκλαση (el ffue eflecton), σχήµα Γ. L θ θ θ θ L L Σχήµα Α Σχήµα Β Σχήµα Γ 9

20 Mοντέλο Φωτισµού Phong Τοπικό, εµπειρικό µοντέλο µε καλά αποτελέσµατα. Γραµµικός συνδυασµός 3 συνιστωσών. ιάχυτη ανάκλαση (ffue). Κατευθυνόµενη ανάκλαση (pecul). Εµµεσος φωτισµός (ment lght). ιάχυτη ανάκλαση ( ιδανική διάχυτη ανάκλαση) βασίζεται στο νόµο συνηµιτόνου Lmet: k k coθ ( L ) L, π 0 θ k 0 µοναδιαία όπου Ι η ένταση σηµειακής φωτεινής πηγής, θ η γωνία πρόσπτωσης, k o συντελεστής διάχυτης ανάκλασης. ιάχυτη συνιστώσα είναι σταθερή για επίπεδη επιφάνεια και φωτεινή πηγή στο άπειρο. Για πολλαπλές φωτεινές πηγές j: k L j, j ( ) j 0

21 Mοντέλο Φωτισµού Phong Κατευθυνόµενη ανάκλαση βασίζεται στο νόµο του καθρέπτη: n k co 0 k n k ( V ), V µοναδιαία όπου α η γωνία µεταξύ V και n αντιστοιχεί στην αδρότητα της επιφάνειας, k o συντελεστής κατευθυνόµενης ανάκλασης (κανονικά f(θ,λ)).

22 Mοντέλο Φωτισµού Phong Κατευθυνόµενη ανάκλαση παράγει την αντανάκλαση της φωτεινής πηγής µέσα στα αντικείµενα. n Ο όρος co προσεγγίζει τη διάχυση του ανακλούµενου φωτός» µεγάλο n λεία επιφάνεια (σχήµα Α)» µικρό n αδρή επιφάνεια (σχήµα Β) L L Σχήµα Α Σχήµα Β

23 Mοντέλο Φωτισµού Phong Εµµεσος φωτισµός έχει σταθερή τιµή στο µοντέλο Phong. Αντικείµενα που δεν φωτίζονται απ ευθείας από φωτεινή πηγή φαίνονται µαύρα χωρίς έµµεσο φωτισµό. k 0 k g όπου α η ένταση του έµµεσου φωτισµού k α ο συντελεστής έµµεσου φωτισµού Τελικό µοντέλο Phong: n ( ) ( ) k k L k V Aν παρατηρητής και φωτεινή πηγή είναι στο άπειρο, τότε L και V έχουν σταθερή τιµή για επίπεδες επιφάνειες. 3

24 4 Mοντέλο Φωτισµού Phong - Βελτιώσεις Μείωση έντασης φωτεινής πηγής ανάλογα µε απόσταση. Κανονικά αλλά δίνει καλά αποτελέσµατα Πολλαπλές φωτεινές πηγές: Εγχρωµη φωτεινή πηγή: ( ) f ( ) 0 f ( ) ( ) j n j j j V k L k k 0, ( ) ( ) n V k L k k 0 ( ) ( ) ( ) ( ) ( ) ( ) n n g g g n V k L k k V k L k k V k L k k

25 5 Υπολογισµός Κανονικού ιανύσµατος Αν η εξίσωση του επιπέδου της επιφάνειας αc0 είναι γνωστή: Συνήθως χρησιµοποιούµε 3 ή περισσότερες κορυφές πολυγώνου, 3 τρόποι: Mtn-ewell. Εξωτερικό γινόµενο. Επίλυση εξίσωσης επιπέδου. Mtn-ewell, κατάλληλη και για µη επίπεδα πολύγωνα: ( )( ) ( )( ) ( )( ) n n n c k c j

26 Υπολογισµός Κανονικού ιανύσµατος Εξωτερικό γινόµενο, έστω V, V, V 3 διαδοχικές κορυφές: ( V V ) ( V V ) Προσοχή στη φορά: A B B A Επέκταση και για µη επίπεδα πολύγωνα (µέσος όρος). Επίλυση εξίσωσης επιπέδου από 3 γνωστά, µη συγγραµµικά σηµεία (,, ), (,, ), ( 3, 3, 3 ) ή ή c c c 3 3 c [ X ][ C] [ D] οπότε [ C] [ X ] [ D] 6

27 Υπολογισµός Κανονικού ιανύσµατος σε κορυφές Kανονικό διάνυσµα κορυφής µ.ο. κανονικών διανυσµάτων εγγιζόντων επιφανειών: Χρήσιµο για παρεµβολή. Αν είναι γνωστές οι εξισώσεις των εγγιζόντων επιφανειών (π.χ. για την V ) j c c c v ( ) ( ) ( ) k Αν δεν είναι γνωστές οι εξισώσεις, µπορούν να χρησιµοποιηθούν εξωτερικά γινόµενα (π.χ. για την V ) V V V V V V V V V V V V v ( ) ( ) ( ) ( ) ( ) ( ) V 8 V 5 P 3 V V4 3 P4 P 0 P V V P 7 V 7 V 6

28 Υπολογισµός ιανύσµατος Γενική περίπτωση. Παρατηρούµε ότι L, και συνεπίπεδα και γωνίες ( L, ) και (, ) ίσες: Εστω και L µοναδιαία. Εστω η προβολή του στον L coθ L ( L) L αφού L Αρα ( L ) Επίσης T και T L Οπότε L L ( ) L Απαιτεί 6 πολ/µούς και 5 προσθέσεις (εκτελείται σε κάθε σηµείο που εφαρµόζουµε το µοντέλο φωτισµού). T θ θ T L 8

29 Υπολογισµός ιανύσµατος Απλούστευση υπολογισµών αν φωτεινή πηγή πάνω στον Ζ και σηµείο επιφάνειας ταυτίζεται µε αρχή των αξόνων (Phong): Παραδεκτή υπόθεση για φωτεινή πηγή., L και µοναδιαία. Y Y X Προβολές και στο ΧΥ είναι συνευθειακές (0.5) Επίσης coθ θ θ coθ co L θ Z (0 θ 90 ) X 9

30 30 Το είναι µοναδιαίο οπότε: Υπολογισµός ιανύσµατος ( ) ( ) ( ) ( ) ( ) θ θ θ θ θ θ θ co co co co co co co 4 έχουµε : χρήση της (0.5) Οπότε µε Άρα : Αλλά µοναδιαίο) ( ή ή ή ή ή Απαιτεί 3 πολ/µούς και πρόσθεση.

31 Υπολογισµός ιανύσµατος Για πολλαπλές φωτεινές πηγές συµφέρει να ταυτίσουµε το µε τον Z και το O µε το σηµείο της επιφάνειας (µετασχηµατισµοί): Τότε, αν L είναι το διάνυσµα µιας φωτεινής πηγής, έχουµε: Υπολογισµός L L L µπορεί να αντικατασταθεί από H ( L V )/ (Blnn). L H φ φ θ θ O V OH φ α, OV θ α, θ φ α OV OH Νέο µοντέλο φωτισµού (µε προσαρµογή τιµής n): k 0 k n ( L ) k ( H ) 3

32 Μοντέλα & Αλγόριθµοι Φωτισµού Εµπειρικά Μοντέλα (Phong), προσθετικοί αλγόριθµοι: Φθίνουσα φωτεινότητα (Wnock 969). Παρεµβολή φωτεινότητας (Gouu 97). Ψευδοδιαφάνεια (ewell 97). Παρεµβολή κανονικού διανύσµατος (Phong 975). Μεταβατικά Μοντέλα, αλγόριθµοι -tcng. Χρήση αποτελεσµάτων οπτικής & φυσικής. Παραµορφώσεις & διαθλάσεις µε διαφανή αντικείµενα (K 979). Αναδροµικός αλγόριθµος -tcng (Whtte 980). Αναλυτικά Μοντέλα, αλγόριθµοι τύπου ot: Cook & Tonce 98. ot. 3

33 Αλγόριθµος Σταθερού Φωτισµού Βάση µοντέλου Phong: Σταθερός φωτισµός για κάθε επιφάνεια. Οχι κατευθυνόµενη ανάκλαση. Σηµειακή φωτεινή πηγή και παρατηρητής σε άπειρη απόσταση στον Z: V L ( 0,0, ) L σταθερό για κάθε επιφάνεια. Συνάρτηση φωτισµού γίνεται: k k Εντονες ασυνέχειες φωτισµού (Mch-Bn). 33

34 34 Αλγόριθµος Gouu Βάση µοντέλου Phong: Παρεµβολή φωτεινότητας κορυφών πολυγώνου. Υπολογισµός φωτεινότητας στις κορυφές µε µοντέλο Phong: Χρήση κανονικών διανυσµάτων κορυφών. Scnlne αλγόριθµος. Αυξητικός υπολογισµός Οπτικό αποτέλεσµα αλγορίθµου Gouu σαφώς καλύτερο σταθερού φωτισµού: Mch-Bn ου βαθµού παραµένουν. Κάποιες αντανακλάσεις χάνονται. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) για γειτονικά pel ( ή ( ) 3 3 3, ( ), ( ), ( ), ( ), ( ), γραµµή σάρωσης (cnlne)

35 Αλγόριθµος Phong Υπολογισµός τιµής µοντέλου Phong σε κάθε σηµείο: Παρεµβολή κανονικών διανυσµάτων. Αυξητικός υπολογισµός., n, n, n ( ( ) ( )) ( ) ( ) ( ( ) ( )), n, n, n,, 3 ( )

36 Βελτίωση Αλγορίθµου Phong Γραµµική παρεµβολή κανονικών διανυσµάτων όχι πάντα σωστή. Τετραγωνική παρεµβολή έχει καλύτερα αποτελέσµατα (Ovevel & Wvll, 997): Εστω παρεµβολή µεταξύ 0και και το διάνυσµα διαφοράς θέσεων των 0 και () 0 A B 0 όπου A 0 B B 0 3 Ισχύει: 0 και ( ) 0 ( ) 36

Έγχρωµο και Ασπρόµαυρο Φως

Έγχρωµο και Ασπρόµαυρο Φως Έγχρωµο και Ασπρόµαυρο Φως Χρώµα: κλάδος φυσικής, φυσιολογίας, ψυχολογίας, τέχνης. Αφορά άµεσα τον προγραµµατιστή των γραφικών. Αν αφαιρέσουµε χρωµατικά χαρακτηριστικά, λαµβάνουµε ασπρόµαυρο φως. Μόνο

Διαβάστε περισσότερα

Μοντέλα & Αλγόριθµοι Φωτισµού

Μοντέλα & Αλγόριθµοι Φωτισµού Μοντέλα & Αλγόριθµοι Φωτισµού Μοντέλο φωτισµού: συγκεκριµένη και απλοποιηµένη παράσταση φυσικών νόµων που διέπουν τον φωτισµό. Τοπικό: λαµβάνει υπ όψη µόνο άµεση πρόσπτωση φωτός (π.χ. Phog). Γενικό: λαµβάνει

Διαβάστε περισσότερα

ΚΑΙ ΓΡΑΦΙΚΩΝ. Μοντέλα και Αλγόριθμοι Φωτισμού

ΚΑΙ ΓΡΑΦΙΚΩΝ. Μοντέλα και Αλγόριθμοι Φωτισμού ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ Γ Ρ Α Φ Ι Κ Α Μοντέλα και Αλγόριθμοι Φωτισμού Φωτισμός Για την ρεαλιστική παράσταση γραφικών χρειάζονται τα εξής: Ένα μοντέλο φωτισμού απλοποιημένη αναπαράσταση των φυσικών

Διαβάστε περισσότερα

Εισαγωγή Ασπρόμαυρο Halftoning γάμμα Φως/Χρώμα Χρωματικά Μοντέλα Άλλα. 6ο Μάθημα Χρώμα. Γραφικα. Ευάγγελος Σπύρου

Εισαγωγή Ασπρόμαυρο Halftoning γάμμα Φως/Χρώμα Χρωματικά Μοντέλα Άλλα. 6ο Μάθημα Χρώμα. Γραφικα. Ευάγγελος Σπύρου Εισαγωγή Ασπρόμαυρο Halftoning γάμμα Φως/Χρώμα Χρωματικά Μοντέλα Άλλα Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Σύνοψη του σημερινού μαθήματος 1 Εισαγωγή 2 Ασπρόμαυρο Φως 3 Halftoning

Διαβάστε περισσότερα

Μοντέλο φωτισμού Phong

Μοντέλο φωτισμού Phong ΚΕΦΑΛΑΙΟ 9. Στο προηγούμενο κεφάλαιο παρουσιάσθηκαν οι αλγόριθμοι απαλοιφής των πίσω επιφανειών και ακμών. Απαλοίφοντας λοιπόν τις πίσω επιφάνειες και ακμές ενός τρισδιάστατου αντικειμένου, μπορούμε να

Διαβάστε περισσότερα

I λ de cos b (8.3) de = cos b, (8.4)

I λ de cos b (8.3) de = cos b, (8.4) Κεφάλαιο 8 Φωτισµός (Illumination) 8.1 Βασικοί ορισµοί και παραδοχές Με τον όρο Φωτισµός εννοούµε τι διαδικασία υπολογισµού της έντασης της ϕωτεινής ακτινοβολίας που προσλαµβάνει ο ϑεατής (π.χ. µία κάµερα)

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση 12 η. Θεωρία Χρώματος και Επεξεργασία Έγχρωμων Εικόνων

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση 12 η. Θεωρία Χρώματος και Επεξεργασία Έγχρωμων Εικόνων Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση 12 η Θεωρία Χρώματος και Επεξεργασία Έγχρωμων Εικόνων Εισαγωγή (1) Το χρώμα είναι ένας πολύ σημαντικός παράγοντας περιγραφής, που συχνά απλουστεύει κατά

Διαβάστε περισσότερα

Ηχρήση του χρώµατος στους χάρτες

Ηχρήση του χρώµατος στους χάρτες Ηχρήση του χρώµατος στους χάρτες Συµβατική χρήση χρωµάτων σε θεµατικούς χάρτες και «ασυµβατότητες» Γεωλογικοί χάρτες: Χάρτες γήινου ανάγλυφου: Χάρτες χρήσεων γης: Χάρτες πυκνότητας πληθυσµού: Χάρτες βροχόπτωσης:

Διαβάστε περισσότερα

9ο Μάθημα Μοντέλα και Αλγόριθμοι Φωτισμού

9ο Μάθημα Μοντέλα και Αλγόριθμοι Φωτισμού 9ο Μάθημα Μοντέλα και Αλγόριθμοι Φωτισμού Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Εισαγωγή Λίγη φυσική Μοντέλο Phong Αλγόριθμοι Φωτισμού Σύνοψη του σημερινού μαθήματος 1 Εισαγωγή

Διαβάστε περισσότερα

Η χρήση του χρώµατος στη χαρτογραφία και στα ΣΓΠ

Η χρήση του χρώµατος στη χαρτογραφία και στα ΣΓΠ Η χρήση του χρώµατος στη χαρτογραφία και στα ΣΓΠ Συµβατική χρήση χρωµάτων στους τοπογραφικούς χάρτες 1/31 Μαύρο: Γκρι: Κόκκινο, πορτοκαλί, κίτρινο: Μπλε: Σκούρο µπλε: Ανοιχτό µπλε: βασικές τοπογραφικές

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ Ανάκλαση Κάτοπτρα Διάθλαση Ολική ανάκλαση Φαινόμενη ανύψωση αντικειμένου Μετατόπιση ακτίνας Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ - Ανάκλαση Επιστροφή σε «γεωμετρική οπτική» Ανάκλαση φωτός ονομάζεται

Διαβάστε περισσότερα

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση Γεωµετρική θεώρηση του Φωτός Ανάκλαση ηµιουργίαειδώλουαπόκάτοπτρα. είκτης ιάθλασης Νόµος του Snell Ορατό Φάσµα και ιασπορά Εσωτερική ανάκλαση Οπτικές ίνες ιάθλαση σε

Διαβάστε περισσότερα

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Πουλιάσης Αντώνης Φυσικός M.Sc. 2 Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Γεωμετρική

Διαβάστε περισσότερα

Μετασχηµατισµοί 2 & 3

Μετασχηµατισµοί 2 & 3 Μετασχηµατισµοί & 3 Περιγράφονται σαν σύνεση βασικών: µετατόπιση αλλαγή κλίµακαςπεριστροφή στρέβλωση Χωρίζονται σε γεωµετρικούς (εδώ) και αξόνων (αντίστροφοι) Θέσεις αντικειµένων και φωτεινών πηγών Θέση

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 11 η : θεωρία Χρώματος & Επεξεργασία Έγχρωμων Εικόνων

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 11 η : θεωρία Χρώματος & Επεξεργασία Έγχρωμων Εικόνων Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 11 η : θεωρία Χρώματος & Επεξεργασία Έγχρωμων Εικόνων Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή

Διαβάστε περισσότερα

Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε 2Δ συσκευές. Θέση παρατηρητή. 3Δ Μετασχ/σμός Παρατήρησης

Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε 2Δ συσκευές. Θέση παρατηρητή. 3Δ Μετασχ/σμός Παρατήρησης Προβολές Προβολές Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε Δ συσκευές. Θέσεις αντικειμένων και φωτεινών πηγών Θέση παρατηρητή 3Δ Μαθηματικά Μοντέλα 3Δ Μετασχ/σμοί Μοντέλου 3Δ Μετασχ/σμός Παρατήρησης

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΦΥΣΙΚΗ Γ.Π. Γ Λυκείου / Το Φως 1. Η υπεριώδης ακτινοβολία : a) δεν προκαλεί αμαύρωση της φωτογραφικής πλάκας. b) είναι ορατή. c) χρησιμοποιείται για την αποστείρωση ιατρικών εργαλείων. d) έχει μήκος κύματος

Διαβάστε περισσότερα

Μετασχηματισμοί Μοντελοποίησης (modeling transformations)

Μετασχηματισμοί Μοντελοποίησης (modeling transformations) Μετασχηματισμοί Δ Μετασχηματισμοί Μοντελοποίησης (modeling trnformtion) Καθορισμός μετασχηματισμών των αντικειμένων Τα αντικείμενα περιγράφονται στο δικό τους σύστημα συντεταγμένων Επιτρέπει την χρήση

Διαβάστε περισσότερα

Υλικά, φωτισμός και χρωματισμός

Υλικά, φωτισμός και χρωματισμός Υλικά, φωτισμός και χρωματισμός Ζωγραφίζουμε, που; Είπαμε ότι ζωγραφίζουμε την σκηνή παίρνοντας κάθε σημείο και προβάλλοντας το στην οθόνη. Στην πραγματικότητα το αποθηκεύουμε σε μια περιοχή της μνήμης

Διαβάστε περισσότερα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες

Διαβάστε περισσότερα

Εισαγωγή. Γραφικά. Μοντέλο (Πληροφορίες για Περιεχόµενο εικόνας. Επεξεργασία Εικόνων. Εικόνα. Τεχνητή Όραση 1.1. Εργα: : 2000+1 & ΣΚΕΠΣΙΣ (ΕΠΕΑΚ

Εισαγωγή. Γραφικά. Μοντέλο (Πληροφορίες για Περιεχόµενο εικόνας. Επεξεργασία Εικόνων. Εικόνα. Τεχνητή Όραση 1.1. Εργα: : 2000+1 & ΣΚΕΠΣΙΣ (ΕΠΕΑΚ Εισαγωγή Μιάεικόνααξίζει1000 λέξεις : Ανθρώπινοοπτικόκανάλι: 30-40 Μbits/s (=64-85 M λέξεις /min µε 4 γράµµατα/λέξη, 7bits/γράµµα). Γραπτό κείµενο: 600-1200 λέξεις/min. 100.000 αποδοτικότερη επικοινωνία

Διαβάστε περισσότερα

Γραφικά Ι Ενότητα 6: Το χρώμα στα γραφικά και την Οπτικοποίηση. Θεοχάρης Θεοχάρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Γραφικά Ι Ενότητα 6: Το χρώμα στα γραφικά και την Οπτικοποίηση. Θεοχάρης Θεοχάρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Γραφικά Ι Ενότητα 6: Το χρώμα στα γραφικά και την Οπτικοποίηση Θεοχάρης Θεοχάρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ενότητα 6 Γραφικά & Οπτικοποίηση Το Χρώμα στα Γραφικά & στην

Διαβάστε περισσότερα

ΠΟΥ ΔΙΑΔΙΔΕΤΑΙ ΤΟ ΦΩΣ

ΠΟΥ ΔΙΑΔΙΔΕΤΑΙ ΤΟ ΦΩΣ 1 ΦΩΣ Στο μικρόκοσμο θεωρούμε ότι το φως έχει δυο μορφές. Άλλοτε το αντιμετωπίζουμε με τη μορφή σωματιδίων που ονομάζουμε φωτόνια. Τα φωτόνια δεν έχουν μάζα αλλά μόνον ενέργεια. Άλλοτε πάλι αντιμετωπίζουμε

Διαβάστε περισσότερα

Συστήματα Πολυμέσων. Ενότητα 4: Θεωρία Χρώματος. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Συστήματα Πολυμέσων. Ενότητα 4: Θεωρία Χρώματος. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Θεωρία Χρώματος Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση d=0.20 mm είναι τοποθετημένο σε απόσταση =1,20 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές

Διαβάστε περισσότερα

Αλγόριθµοι Παράστασης Βασικών Σχηµάτων

Αλγόριθµοι Παράστασης Βασικών Σχηµάτων Αλγόριθµοι Παράστασης Βασικών Σχηµάτων Προσέγγιση µαθηµατικών σχηµάτων από διακριτά pls: Ευθύγραµµο τµήµα, κύκλος, κωνικές τοµές, πολύγωνο. S/W ή H/W. Θέσεις αντικειµένων και φωτεινών πηγών Θέση παρατηρητή

Διαβάστε περισσότερα

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ)

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ) ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ ΔΙΔΑΣΚΩΝ : ΝΤΙΝΤΑΚΗΣ ΙΩΑΝΝΗΣ (MSC) Καθηγητής Εφαρμογών ΚΑΡΔΙΤΣΑ 2013 ΤΙ ΕΙΝΑΙ ΦΩΤΟΑΠΟΔΟΣΗ: ΕΝΝΟΟΥΜΕ ΤΗ ΔΙΑΔΙΚΑΣΙΑ ΚΑΘΟΡΙΣΜΟΥ ΟΛΩΝ ΕΚΕΙΝΩΝ ΤΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΩΝ ΩΣΤΕ ΝΑ ΕΧΟΥΜΕ

Διαβάστε περισσότερα

Η διαδικασία Παραγωγής Συνθετικής Εικόνας (Rendering)

Η διαδικασία Παραγωγής Συνθετικής Εικόνας (Rendering) Υφή Η διαδικασία Παραγωγής Συνθετικής Εικόνας (Rendering) Θέσεις αντικειμένων και φωτεινών πηγών Θέση παρατηρητή 3D Μοντέλα 3Δ Μετασχ/σμοί Μοντέλου 3Δ Μετασχ/σμός Παρατήρησης Απομάκρυνση Πίσω Επιφανειών

Διαβάστε περισσότερα

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ - ΤΥΠΟΛΟΓΙΟ

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ - ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ - ΤΥΠΟΛΟΓΙΟ 1 2 Ισχύς που «καταναλώνει» μια ηλεκτρική_συσκευή Pηλ = V. I Ισχύς που Προσφέρεται σε αντιστάτη Χαρακτηριστικά κανονικής λειτουργίας ηλεκτρικής συσκευής Περιοδική

Διαβάστε περισσότερα

papost/

papost/ Δρ. Παντελής Σ. Αποστολόπουλος Επίκουρος Καθηγητής http://users.uoa.gr/ papost/ papost@phys.uoa.gr ΤΕΙ Ιονίων Νήσων, Τμήμα Τεχνολόγων Περιβάλλοντος ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2016-2017 Οπως είδαμε

Διαβάστε περισσότερα

Μετασχηματισμός Παρατήρησης

Μετασχηματισμός Παρατήρησης Μετασχηματισμός Παρατήρησης Παγκόσμιο Σύστημα Συντεταγμένων Σύστημα Συντεταγμένων Παρατηρητή. Σύνθεση βασικών μετασχηματισμών. Καθορίζει όρια αποκοπής & παραμέτρους προβολής Θα εξετάσουμε ΜΠ Ι και Θέσεις

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

Αποκοπή 4.1. Εργα: : & ΣΚΕΠΣΙΣ (ΕΠΕΑΚ - ΥΠΕΠΘ) Τµήµα Πληροφορικής 1 2 (SCS) Θέση παρατηρητή. Θέσεις αντικειµένων και φωτεινών πηγών

Αποκοπή 4.1. Εργα: : & ΣΚΕΠΣΙΣ (ΕΠΕΑΚ - ΥΠΕΠΘ) Τµήµα Πληροφορικής 1 2 (SCS) Θέση παρατηρητή. Θέσεις αντικειµένων και φωτεινών πηγών Αποκοπή Αποκοπή αντικειµένου (π.χ. πολυγώνου) ως προς αντικείµενο αποκοπής (π.χ. πολύγωνο, πυραµίδα, κύβος). Για αποφυγή αντεστραµµένης εµφάνισης αντικειµένων όπισθεν παρατηρητή. Για σηµαντική µείωση όγκου

Διαβάστε περισσότερα

6.10 Ηλεκτροµαγνητικά Κύµατα

6.10 Ηλεκτροµαγνητικά Κύµατα Πρόταση Μελέτης Λύσε απο τον Α τόµο των Γ. Μαθιουδάκη & Γ.Παναγιωτακόπουλου τις ακόλουθες ασκήσεις : 11.1-11.36, 11.46-11.50, 11.52-11.59, 11.61, 11.63, 11.64, 1.66-11.69, 11.71, 11.72, 11.75-11.79, 11.81

Διαβάστε περισσότερα

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ Ερωτήσεις Πολλαπλής επιλογής 1. To βάθος µιας πισίνας φαίνεται από παρατηρητή εκτός της πισίνας µικρότερο από το πραγµατικό, λόγω του φαινοµένου της: α. ανάκλασης β. διάθλασης γ. διάχυσης

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 0 ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα το γράµµα που αντιστοιχεί στη φράση η οποία τη συµπληρώνει σωστά. Α. Σε

Διαβάστε περισσότερα

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση Η/Μ ΚΥΜΑΤΑ. Ερωτήσεις Πολλαπλής επιλογής

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση Η/Μ ΚΥΜΑΤΑ. Ερωτήσεις Πολλαπλής επιλογής Η/Μ ΚΥΜΑΤΑ 1. Τα ηλεκτροµαγνητικά κύµατα: Ερωτήσεις Πολλαπλής επιλογής α. είναι διαµήκη. β. υπακούουν στην αρχή της επαλληλίας. γ. διαδίδονται σε όλα τα µέσα µε την ίδια ταχύτητα. δ. Δημιουργούνται από

Διαβάστε περισσότερα

5ο Μάθημα Αλγόριθμοι Σχεδίασης Βασικών Σχημάτων

5ο Μάθημα Αλγόριθμοι Σχεδίασης Βασικών Σχημάτων 5ο Μάθημα Αλγόριθμοι Σχεδίασης Βασικών Σχημάτων Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Εισαγωγή Ευθεία Κύκλος Έλλειψη Σύνοψη του σημερινού μαθήματος 1 Εισαγωγή 2 Ευθεία 3 Κύκλος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση =0.0 mm είναι τοποθετημένο σε απόσταση =1,0 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές φωτίζεται

Διαβάστε περισσότερα

3.2 Η ΠΑΡΑΒΟΛΗ. Ορισμός Παραβολής. Εξίσωση Παραβολής

3.2 Η ΠΑΡΑΒΟΛΗ. Ορισμός Παραβολής. Εξίσωση Παραβολής 9 3 Η ΠΑΡΑΒΟΛΗ Ορισμός Παραβολής Έστω μια ευθεία δ και ένα σημείο Ε εκτός της δ Ονομάζεται παραβολή με εστία το σημείο Ε και διευθετούσα την ευθεία δ ο γεωμετρικός τόπος C των σημείων του επιπέδου τα οποία

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ «Β ΘΕΜΑΤΑ ΦΩΣ» ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ Χ. Δ. ΦΑΝΙΔΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 04-05 ΠΟΡΕΙΑ ΑΚΤΙΝΑΣ. Β. Στο διπλανό

Διαβάστε περισσότερα

Προβολές. Απαραίτητες αφού 3 αντικείµενα απεικονίζονται σε 2 συσκευές.

Προβολές. Απαραίτητες αφού 3 αντικείµενα απεικονίζονται σε 2 συσκευές. ροβολές Απαραίτητες αφού 3 αντικείµενα απεικονίζονται σε συσκευές. Θέσεις αντικειµένων και φωτεινών πηγών Θέση παρατηρητή 3 Μαθηµατικά Μοντέλα ΣΣΑ 3 Μετασχ/σµοί Μοντέλου ΣΣ (WCS) 3 Μετασχ/σµός αρατήρησης

Διαβάστε περισσότερα

1ο Κριτήριο Αξιολόγησης ΦΥΣΗ ΤΟΥ ΦΩΤΟΣ-ΑΝΑΚΛΑΣΗ, ΙΑΘΛΑΣΗ- ΕΙΚΤΗΣ ΙΑΘΛΑΣΗΣ

1ο Κριτήριο Αξιολόγησης ΦΥΣΗ ΤΟΥ ΦΩΤΟΣ-ΑΝΑΚΛΑΣΗ, ΙΑΘΛΑΣΗ- ΕΙΚΤΗΣ ΙΑΘΛΑΣΗΣ 1 ο ΚΕΦΑΛΑΙΟ 1. Φύση του φωτός - Ανάκλαση, διάθλαση - είκτης διάθλασης 2. ιασκεδασµός - Ανάλυση του φωτός από πρίσµα 3. Επαναληπτικό στο 1ο κεφάλαιο 4. Επαναληπτικό στο 1ο κεφάλαιο 11. 12. 1ο Κριτήριο

Διαβάστε περισσότερα

Φωτοηλεκτρικό Φαινόµενο Εργαστηριακή άσκηση

Φωτοηλεκτρικό Φαινόµενο Εργαστηριακή άσκηση ttp ://k k.sr sr.sc sc.gr Μιχαήλ Μιχαήλ, Φυσικός 1 Φωτοηλεκτρικό Φαινόµενο Εργαστηριακή άσκηση ΣΤΟΧΟΙ Οι στόχοι αυτής της εργαστηριακής άσκησης είναι: - Η πειραµατική επιβεβαίωση ότι η µορφή της φωτοηλεκτρικής

Διαβάστε περισσότερα

Φίλιππος Φαρμάκης Επ. Καθηγητής. Δείκτης διάθλασης. Διάδοση του Η/Μ κύματος μέσα σε μέσο

Φίλιππος Φαρμάκης Επ. Καθηγητής. Δείκτης διάθλασης. Διάδοση του Η/Μ κύματος μέσα σε μέσο 9 η Διάλεξη Απόσβεση ακτινοβολίας, Σκέδαση φωτός, Πόλωση Φίλιππος Φαρμάκης Επ. Καθηγητής 1 Δείκτης διάθλασης Διάδοση του Η/Μ κύματος μέσα σε μέσο Η ταχύτητα διάδοσης μειώνεται κατά ένα παράγοντα n (v=c/n)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Φωτοτεχνία. Ενότητα 1: Εισαγωγή στη Φωτομετρία

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Φωτοτεχνία. Ενότητα 1: Εισαγωγή στη Φωτομετρία ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Φωτοτεχνία Ενότητα 1: Εισαγωγή στη Φωτομετρία Γεώργιος Χ. Ιωαννίδης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Χρώµατα! τεχνολογία Οι Card χρωµατικοί splitter v3 χώροι και η τηλεόραση. Οι χρωµατικοί χώροι και η τηλεόραση

Χρώµατα! τεχνολογία Οι Card χρωµατικοί splitter v3 χώροι και η τηλεόραση. Οι χρωµατικοί χώροι και η τηλεόραση Οι Card χρωµατικοί splitter v3 χώροι και η τηλεόραση Χρώµατα! Στη φύση το φως δηµιουργεί τα χρώµατα, στην εικόνα, τα χρώµατα δηµιουργούν το φως! Τ Γράφει ο Γιώργος Κακαβιάτος α χρώµατα είναι στην πραγµατικότητα

Διαβάστε περισσότερα

1 ο ΘΕΜΑ Α. Ερωτήσεις πολλαπλής επιλογής

1 ο ΘΕΜΑ Α. Ερωτήσεις πολλαπλής επιλογής Φυσική Γ' Θετικής και Τεχνολογικής Κατ/σης ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ Θέματα Εξετάσεων 1 ο ΘΕΜΑ Α. Ερωτήσεις πολλαπλής επιλογής 1. Μια ακτίνα φωτός προσπίπτει στην επίπεδη διαχωριστική επιφάνεια δύο µέσων.

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος Ο1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος 1. Εισαγωγή Όταν δέσµη λευκού φωτός προσπέσει σε ένα πρίσµα τότε κάθε µήκος κύµατος διαθλάται σύµφωνα µε τον αντίστοιχο

Διαβάστε περισσότερα

Εφαρμοσμένη Οπτική. Γεωμετρική Οπτική

Εφαρμοσμένη Οπτική. Γεωμετρική Οπτική Εφαρμοσμένη Οπτική Γεωμετρική Οπτική Κύρια σημεία του μαθήματος Η προσέγγιση της γεωμετρικής οπτικής Νόμοι της ανάκλασης και της διάθλασης Αρχή του Huygens Αρχή του Fermat Αρχή της αντιστρεψιμότητας (principle

Διαβάστε περισσότερα

Γενικές εξετάσεις Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης

Γενικές εξετάσεις Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης Γενικές εξετάσεις 0 Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

7α Γεωµετρική οπτική - οπτικά όργανα

7α Γεωµετρική οπτική - οπτικά όργανα 7α Γεωµετρική οπτική - οπτικά όργανα Εισαγωγή ορισµοί Φύση του φωτός Πηγές φωτός είκτης διάθλασης Ανάκλαση ηµιουργία ειδώλων από κάτοπτρα Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/~katsiki Η φύση του

Διαβάστε περισσότερα

Μεθοδολογίες παρεµβολής σε DTM.

Μεθοδολογίες παρεµβολής σε DTM. Μάθηµα : Αλγοριθµικές Βάσεις στη Γεωπληροφορική ιδάσκων : Συµεών Κατσουγιαννόπουλος Μεθοδολογίες παρεµβολής σε DTM.. Μέθοδοι παρεµβολής. Η παρεµβολή σε ψηφιακό µοντέλο εδάφους (DTM) είναι η διαδικασία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 - ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ

ΚΕΦΑΛΑΙΟ 1 - ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΕΦΑΛΑΙΟ 1 - ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Σύμφωνα με την ηλεκτρομαγνητική θεωρία του Maxwell, το φως είναι εγκάρσιο ηλεκτρομαγνητικό κύμα. Η θεωρία αυτή α. δέχεται ότι κάθε φωτεινή πηγή εκπέμπει φωτόνια.

Διαβάστε περισσότερα

Ασκήσεις Φασµατοσκοπίας

Ασκήσεις Φασµατοσκοπίας Ασκήσεις Φασµατοσκοπίας Η φασµατική περιοχή στην οποία βρίσκεται µια φωτεινή ακτινοβολία χαρακτηρίζεται από την συχνότητα ν (Hz) µε την οποία ταλαντώνεται το ηλεκτρικό και το µαγνητικό πεδίο του φωτός.

Διαβάστε περισσότερα

Ασκήσεις Φασµατοσκοπίας

Ασκήσεις Φασµατοσκοπίας Ασκήσεις Φασµατοσκοπίας Η φασµατική περιοχή στην οποία βρίσκεται µια φωτεινή ακτινοβολία χαρακτηρίζεται από την συχνότητα ν (Hz) µε την οποία ταλαντώνεται το ηλεκτρικό και το µαγνητικό πεδίο του φωτός.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11Α «Γεωμετρική οπτική - οπτικά όργανα» Εισαγωγή - Ανάκλαση

ΚΕΦΑΛΑΙΟ 11Α «Γεωμετρική οπτική - οπτικά όργανα» Εισαγωγή - Ανάκλαση ΚΕΦΑΛΑΙΟ Α «Γεωμετρική οπτική - οπτικά όργανα» Εισαγωγή - Ανάκλαση Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/~katsiki Ηφύσητουφωτός 643-77 Netwon Huygens 69-695 Το φως είναι δέσμη σωματιδίων Το φως

Διαβάστε περισσότερα

Περιεχόµενα. ΕΠΛ 422: Συστήµατα Πολυµέσων. Βιβλιογραφία. Πόσες λέξεις αξίζει µια εικόνα; Εικόνα

Περιεχόµενα. ΕΠΛ 422: Συστήµατα Πολυµέσων. Βιβλιογραφία. Πόσες λέξεις αξίζει µια εικόνα; Εικόνα Περιεχόµενα ΕΠΛ 422: Συστήµατα Πολυµέσων Εικόνα ηµιουργία εικόνας Αναπαράσταση Εικόνας Στοιχεία θεωρίας χρωµάτων Χρωµατικά µοντέλα Σύνθεση χρωµάτων Αρχές λειτουργίας οθονών υπολογιστών Βιβλιογραφία Καγιάφας

Διαβάστε περισσότερα

1 x και y = - λx είναι κάθετες

1 x και y = - λx είναι κάθετες Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία (ε) με τον άξονα. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

Φυσική ΘΕΜΑ 1 ΘΕΜΑ 2 ΘΕΜΑ 3

Φυσική ΘΕΜΑ 1 ΘΕΜΑ 2 ΘΕΜΑ 3 Φυσική ΘΕΜΑ 1 1) Υπάρχουν δύο διαφορετικά είδη φορτίου που ονομάστηκαν θετικό και αρνητικό ηλεκτρικό φορτίο αντίστοιχα. Τα σώματα που έχουν θετικό φορτίο λέμε ότι είναι θετικά φορτισμένα (π.χ. μια γυάλινη

Διαβάστε περισσότερα

Σηµερινό Μάθηµα! Γραφικά. Επιφάνεια µεκάθεταδιανύσµατα. Προσέγγιση εφαπτόµενου επιπέδου. Μοντέλα φωτισµού (Illumination models)

Σηµερινό Μάθηµα! Γραφικά. Επιφάνεια µεκάθεταδιανύσµατα. Προσέγγιση εφαπτόµενου επιπέδου. Μοντέλα φωτισµού (Illumination models) Σηµερινό Μάθηµα! Γραφικά Μοντέλα φωτισµού (Illumination models) Έµµεσος φωτισµός (Ambient Light) Είδη ανακλάσεων Κατευθυνόµενη ανάκλαση (Specularity) ιάχυτη ανάκλαση Κανόνας του Lambert Πολλαπλέςφωτεινέςπηγές

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 2 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ

ΕΡΓΑΣΤΗΡΙΟ 2 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΕΡΓΑΣΤΗΡΙΟ 2 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ 1. Εισαγωγή. Η ενέργεια, όπως είναι γνωστό από τη φυσική, διαδίδεται με τρεις τρόπους: Α) δι' αγωγής Β) δια μεταφοράς Γ) δι'ακτινοβολίας Ο τελευταίος τρόπος διάδοσης

Διαβάστε περισσότερα

Πολλαπλασιασμός αριθμού με διάνυσμα

Πολλαπλασιασμός αριθμού με διάνυσμα Μαθηματικά Προσανατολισμού Β Λυκείου Επανάληψη Χριστουγέννων Αφού κάνετε μια επανάληψη στο πρώτο κεφάλαιο και θυμηθείτε όλους τους τύπους και τις μεθοδολογίες, να λύσετε τις παρακάτω ασκήσεις από την τράπεζα

Διαβάστε περισσότερα

Φυσική ΙΙ (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Διάθλαση μέσω οπτικού πρίσματος - Υπολογισμός δείκτη διάθλασης.

Φυσική ΙΙ (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Διάθλαση μέσω οπτικού πρίσματος - Υπολογισμός δείκτη διάθλασης. Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική ΙΙ (Ε) Ενότητα 6: Διάθλαση μέσω οπτικού πρίσματος - Υπολογισμός δείκτη διάθλασης Ιωάννης Βαμβακάς Τμήμα Ναυπηγών Μηχανικών Τ.Ε.

Διαβάστε περισσότερα

Γραφικό Σύστημα Επεξεργασίας & Εξόδου

Γραφικό Σύστημα Επεξεργασίας & Εξόδου Γραφικό Σύστημα Επεξεργασίας & Εξόδου Γραφικό σύστημα επεξεργασίας Συσκευές εξόδου γραφικών Οθόνες Βασίζονται στην παραδοσιακή τεχνολογία της κατευθυνόμενης δέσμης ηλεκτρονίων που ερχόμενη σε επαφή με

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

«Το χρώμα είναι το πλήκτρο. Το μάτι είναι το σφυρί. Η ψυχή είναι το πιάνο με τις πολλές χορδές»

«Το χρώμα είναι το πλήκτρο. Το μάτι είναι το σφυρί. Η ψυχή είναι το πιάνο με τις πολλές χορδές» ΑΝΑΛΥΣΗ ΤΟΥ ΧΡΩΜΑΤΟΣ «Το χρώμα είναι το πλήκτρο. Το μάτι είναι το σφυρί. Η ψυχή είναι το πιάνο με τις πολλές χορδές» W. kandinsky Το χρώμα είναι αναπόσπαστα δεμένο με ότι βλέπουμε γύρω μας. Από τον γύρω

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2012

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ 0 ΕΚΦΩΝΗΕΙ ΘΕΜΑ Α τις ηµιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα το γράµµα που αντιστοιχεί στη φράση η οποία τη συµπληρώνει σωστά. Α. Κατά τη

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ 4 ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Κάθε διάνυσμα του επιπέδου γράφεται κατά μοναδικό τρόπο στη μορφή : i j όπου i, j μοναδιαία διανύσματα με κοινή αρχή το

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Εισαγωγή σε οπτική και μικροσκοπία

Εισαγωγή σε οπτική και μικροσκοπία Εισαγωγή σε οπτική και μικροσκοπία Eukaryotic cells Microscope Cancer Μικροσκόπια Microscopes Ποια είδη υπάρχουν (και γιατί) Πώς λειτουργούν (βασικές αρχές) Πώς και ποια μικροσκόπια μπορούμε να χρησιμοποιήσουμε

Διαβάστε περισσότερα

Α.Τ.Ε.Ι. Ηρακλείου Ψηφιακή Επεξεργασία Εικόνας ιδάσκων: Βασίλειος Γαργανουράκης. Ανθρώπινη Όραση - Χρωµατικά Μοντέλα

Α.Τ.Ε.Ι. Ηρακλείου Ψηφιακή Επεξεργασία Εικόνας ιδάσκων: Βασίλειος Γαργανουράκης. Ανθρώπινη Όραση - Χρωµατικά Μοντέλα Ανθρώπινη Όραση - Χρωµατικά Μοντέλα 1 Τι απαιτείται για την όραση Φωτισµός: κάποια πηγή φωτός Αντικείµενα: που θα ανακλούν (ή διαθλούν) το φως Μάτι: σύλληψη του φωτός σαν εικόνα Τρόποι µετάδοσης φωτός

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 6: Γεωμετρικά σχήματα και μεγέθη δύο και τριών διαστάσεων Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

Επεξεργασία Χαρτογραφικής Εικόνας

Επεξεργασία Χαρτογραφικής Εικόνας Επεξεργασία Χαρτογραφικής Εικόνας Διδάσκων: Αναγνωστόπουλος Χρήστος Κώδικες μετρήσεων αντικειμένων σε εικόνα Χρωματικά μοντέλα: Munsell, HSB/HSV, CIE-LAB Κώδικες μετρήσεων αντικειμένων σε εικόνες Η βασική

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 7.1 Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 7.1 Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό ΚΕΦΑΛΑΙΟ 2 Ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικά κύματα 7. Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό κύμα; 7.2 Ποιες εξισώσεις περιγράφουν την ένταση του ηλεκτρικού

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University

Διαβάστε περισσότερα

ΑΝΑΜΟΡΦΩΣΕΙΣ ΜΕΣΩ ΑΝΑΚΛΑΣΕΩΝ ΣΕ ΚΑΜΠΥΛΕΣ ΕΠΙΦΑΝΕΙΕΣ.

ΑΝΑΜΟΡΦΩΣΕΙΣ ΜΕΣΩ ΑΝΑΚΛΑΣΕΩΝ ΣΕ ΚΑΜΠΥΛΕΣ ΕΠΙΦΑΝΕΙΕΣ. ΑΝΑΜΟΡΦΩΣΕΙΣ ΜΕΣΩ ΑΝΑΚΛΑΣΕΩΝ ΣΕ ΚΑΜΠΥΛΕΣ ΕΠΙΦΑΝΕΙΕΣ. Πρόκειται για εικόνες τις οποίες μπορούμε να παρατηρήσουμε χρησιμοποιώντας κατάλληλες ανακλαστικές επιφάνειες, οι οποίες συνήθως είναι κωνικές ή κυλινδρικές

Διαβάστε περισσότερα

Βασικές διαδικασίες παραγωγής πολωμένου φωτός

Βασικές διαδικασίες παραγωγής πολωμένου φωτός Πόλωση του φωτός Βασικές διαδικασίες παραγωγής πολωμένου φωτός πόλωση λόγω επιλεκτικής απορρόφησης - διχρωισμός πόλωση λόγω ανάκλασης από μια διηλεκτρική επιφάνεια πόλωση λόγω ύπαρξης δύο δεικτών διάθλασης

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΑΠΟ ΤΗΝ ΘΕΩΡΙΑ ΔΙΑΝΥΣΜΑΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΙΑΝΥΣΜΑΤΟΣ Αρχή και Πέρας Φορέας Διεύθυνση (Συγγραμμικά διανύσματα) Μέτρο Κατεύθυνση (Ομόρροπα Αντίρροπα διανύσματα)

Διαβάστε περισσότερα

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας. Πολυτεχνική Σχολή ΘΕΜΑΤΙΚΗ : ΤΗΛΕΠΙΣΚΟΠΗΣΗ

Πανεπιστήμιο Θεσσαλίας. Πολυτεχνική Σχολή ΘΕΜΑΤΙΚΗ : ΤΗΛΕΠΙΣΚΟΠΗΣΗ Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης ΘΕΜΑΤΙΚΗ : ΤΗΛΕΠΙΣΚΟΠΗΣΗ Ιωάννης Φαρασλής Τηλ : 24210-74466, Πεδίον Άρεως, Βόλος http://www.prd.uth.gr/el/staff/i_faraslis

Διαβάστε περισσότερα

α) Κύκλος από δύο δοσµένα σηµεία Α, Β. Το ένα από τα δύο σηµεία ορίζεται ως κέντρο αν το επιλέξουµε πρώτο. β) Κύκλος από δοσµένο σηµείο και δοσµένο ευ

α) Κύκλος από δύο δοσµένα σηµεία Α, Β. Το ένα από τα δύο σηµεία ορίζεται ως κέντρο αν το επιλέξουµε πρώτο. β) Κύκλος από δοσµένο σηµείο και δοσµένο ευ ΕΙΣΑΓΩΓΗ ΣΤΟ ΛΟΓΙΣΜΙΚΟ SKETCHPAD ΜΕΡΟΣ Α Μιλώντας για ένα λογισµικό δυναµικής γεωµετρίας καλό θα ήταν να διακρίνουµε αρχικά 3 οµάδες εργαλείων µε τα οποία µπορούµε να εργαστούµε µέσα στο συγκεκριµένο περιβάλλον.

Διαβάστε περισσότερα

Κυματική οπτική. Συμβολή Περίθλαση Πόλωση

Κυματική οπτική. Συμβολή Περίθλαση Πόλωση Κυματική οπτική Η κυματική οπτική ασχολείται με τη μελέτη φαινομένων τα οποία δεν μπορούμε να εξηγήσουμε επαρκώς με τις αρχές της γεωμετρικής οπτικής. Στα φαινόμενα αυτά περιλαμβάνονται τα εξής: Συμβολή

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

Γραφικά µε Η/Υ. Τεχνολογίες Γραφικών & Στοιχεία µαθηµατικών

Γραφικά µε Η/Υ. Τεχνολογίες Γραφικών & Στοιχεία µαθηµατικών Γραφικά µε Η/Υ Τεχνολογίες Γραφικών & Στοιχεία µαθηµατικών Τεχνολογίες Γραφικών 2/ 4 Τεχνολογία παραγωγής συνθετικής εικόνας (Πλεγµατική οθόνη) Πλεγµατική οθόνη (Raster): δισδιάστατο πλέγµα απόpixels Ανάλυση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΤΟ ΦΩΣ

ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΤΟ ΦΩΣ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΤΟ ΦΩΣ Α] Τα ηλεκτρομαγνητικά κύματα Τι είναι τα ηλεκτρομαγνητικά κύματα Πρόκειται για μια σύνθεση που μπορεί να περιγραφεί με όρους ηλεκτρικού και μαγνητικού πεδίου. Πράγματι τα διανύσματα

Διαβάστε περισσότερα

4ο Μάθημα Προβολές και Μετασχηματισμοί Παρατήρησης

4ο Μάθημα Προβολές και Μετασχηματισμοί Παρατήρησης 4ο Μάθημα Προβολές και Μετασχηματισμοί Παρατήρησης Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Εισαγωγή Προοπτική Προβολή Παράλληλη Προβολή Ορθογραφικές Προβολές Πλάγιες Παράλληλες

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 2011

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 2011 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 0 ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που

Διαβάστε περισσότερα

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

πάχος 0 πλάτος 2a μήκος

πάχος 0 πλάτος 2a μήκος B1) Δεδομένου του τύπου E = 2kλ/ρ που έχει αποδειχθεί στο μάθημα και περιγράφει το ηλεκτρικό πεδίο Ε μιας άπειρης γραμμής φορτίου με γραμμική πυκνότητα φορτίου λ σε σημείο Α που βρίσκεται σε απόσταση ρ

Διαβάστε περισσότερα

Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση ΠεριεχόµεναΚεφαλαίου 35 Περίθλαση απλής σχισµής ή δίσκου Intensity in Single-Slit Diffraction Pattern Περίθλαση διπλής σχισµής ιακριτική ικανότητα; Κυκλικές ίριδες ιακριτική

Διαβάστε περισσότερα

Τι είναι Αποκοπή (clip)?

Τι είναι Αποκοπή (clip)? Αποκοπή Τι είναι Αποκοπή (clip)? Η διαδικασία απεικόνισης μόνο των τμημάτων των αντικειμένων που βρίσκονται μέσα σε μια περιοχή Από μεγαλύτερη 2Δ σκηνή στην οποία έχουμε ήδη τιμές για τα piels Κατά την

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 29 ΜΑΪOY 2015 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 29 ΜΑΪOY 2015 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 9 ΜΑΪOY 01 ΕΚΦΩΝΗΣΕΙΣ Θέµα Α Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ

ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ Μαθηματικά Κατεύθυνσης Β Λυκείου-Απ Παπανικολάου ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ Ονομάζουμε εσωτερικό γινόμενο δύο μη μηδενικών διανυσμάτων και και το συμβολίζουμε με α β τον πραγματικό αριθμό αβ

Διαβάστε περισσότερα

7α Γεωμετρική οπτική - οπτικά όργανα

7α Γεωμετρική οπτική - οπτικά όργανα 7α Γεωμετρική οπτική - οπτικά όργανα Εισαγωγή ορισμοί Φύση του φωτός Πηγές φωτός Δείκτης διάθλασης Ανάκλαση Δημιουργία ειδώλων από κάτοπτρα Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/katsiki Ηφύσητουφωτός

Διαβάστε περισσότερα

Η Φύση του Φωτός. Τα Β Θεματα της τράπεζας θεμάτων

Η Φύση του Φωτός. Τα Β Θεματα της τράπεζας θεμάτων Η Φύση του Φωτός Τα Β Θεματα της τράπεζας θεμάτων Η ΦΥΣΗ ΤΟΥ ΦΩΤΟΣ Θέμα Β _70 Β. Μονοχρωματική ακτίνα πράσινου φωτός διαδίδεται αρχικά στον αέρα. Στη πορεία της δέσμης έχουμε τοποθετήσει στη σειρά τρία

Διαβάστε περισσότερα