1. 5 ΟΜΟΙΟΤΗΤΑ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΠΑΝΤΗΣΗ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. 5 ΟΜΟΙΟΤΗΤΑ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΠΑΝΤΗΣΗ"

Transcript

1 ΜΕΡΟΣ Β 1.5 ΟΜΟΙΟΤΗΤΑ ΟΜΟΙΟΤΗΤΑ Όμοια πολύγωνα Αν έχουμε δύο ομοιόθετα πολύγωνα, τότε το ένα είναι μεγέθυνση ή σμίκρυνση του άλλου. Δύο πολύγωνα Π και Π που το ένα είναι μεγέθυνση ή σμίκρυνση του άλλου τα λέμε όμοια και συμβολίζουμε Π Π. Από τον προηγούμενο ορισμό προκύπτει ότι Τα ομοιόθετα πολύγωνα είναι όμοια. Αν δύο πολύγωνα έχουν τις πλευρές τους ανάλογες και τις αντίστοιχες γωνίες τους ίσες, τότε είναι όμοια. Δύο οποιεσδήποτε αντίστοιχες πλευρές ομοίων πολυγώνων έχουν τον ίδιο λόγο γι αυτό λέγονται ομόλογες και ο λόγος τους λέγεται λόγος ομοιότητας. Αν δύο πολύγωνα είναι όμοια, τότε έχουν τις ομόλογες πλευρές τους ανάλογες και τις αντίστοιχες γωνίες τους ίσες. Ο λόγος των περιμέτρων δύο ομοίων πολυγώνων είναι ίσος με το λόγο ομοιότητας τους. Δύο κανονικά πολύγωνα που έχουν το ίδιο πλήθος πλευρών είναι όμοια. Λόγος ομοιότητας-κλίμακα Η κλίμακα είναι ο λόγος της απόστασης στο χάρτη προς την αντίστοιχη πραγματική απόσταση, δηλαδή είναι ο λόγος ομοιότητας των δυο ομοίων σχημάτων. απόστασηστο χάρτη λ πραγματική απόσταση ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ 1. Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ), αν είναι σωστές ή με (Λ), αν είναι λανθασμένες. α) Δύο τετράγωνα είναι όμοια.. β) Δύο ορθογώνια παραλληλόγραμμα είναι όμοια.. γ) Αν δύο πολύγωνα έχουν τις πλευρές τους ανάλογες, τότε είναι όμοια.. δ) Δύο ρόμβοι είναι σχήματα όμοια.. ε) Αν δύο πολύγωνα είναι ίσα, τότε είναι όμοια.. στ) Δύο κανονικά πολύγωνα είναι όμοια..

2 446 ΜΕΡΟΣ Β 1.5 ΟΜΟΙΟΤΗΤΑ α) Η α είναι Σωστή (Σ), γιατί έχουν ίσες γωνίες (όλες 90 0 ) και τις πλευρές τους ανάλογες. β) Η β είναι Λάθος (Λ), γιατί δεν έχουν τις πλευρές τους ανάλογες γ) Η γ είναι Λάθος (Λ), γιατί δεν έχουν τις γωνίες τους ίσες. δ) Η δ είναι Λάθος (Λ), γιατί ε) Η ε είναι Σωστή (Σ), το αντίστροφο δεν ισχύει. στ) Η στ είναι Λάθος (Λ), γιατί πρέπει να έχουν ίδιο αριθμό πλευρών.. Ποια από τα πολύγωνα αυτά είναι όμοια ; Παρατηρούμε ότι όμοια είναι τα πολύγωνα Π και Π 4, τα Π 1, Π 3 και Π 7 και τέλος τα Π 5 και Π Σε καθένα από τα παρακάτω σχήματα να συμπληρώσετε τον πίνακα με τις διαστάσεις των αντιστοίχων ορθογωνίων παραλληλογράμμων και να βρείτε ποια απ αυτά είναι όμοια. ΔΙΑΣΤΑΣΕΙΣ ΑΒΓΔ 3 ΑΕΖΗ 5 3 ΑΘΙΚ 6 4 ΔΙΑΣΤΑΣΕΙΣ ΑΒΓΔ 4 ΕΖΗΘ 6 4 ΙΚΛΜ 9 6 Όμοια είναι τα ΑΒΓΔ και ΑΘΙΚ στο πρώτο. Όμοια είναι τα ΕΖΗΘ και ΙΚΛΜ στο δεύτερο.

3 ΜΕΡΟΣ Β 1.5 ΟΜΟΙΟΤΗΤΑ Αν τα τετράπλευρα ΑΒΓΔ και Α Β Γ Δ είναι όμοια, να συμπληρώσετε τις προτάσεις : α) Ο λόγος ομοιότητας του ΑΒΓΔ προς το Α Β Γ Δ είναι... β) Ο λόγος ομοιότητας του Α Β Γ Δ προς το ΑΒΓΔ είναι γ) Αν η γωνία ˆB είναι 110 0, τότε και η γωνία... είναι 110. Α Β + Β Γ + Γ Δ + Δ Α δ) Ο λόγος είναι ίσος με λ ε) Η πλευρά ΒΓ είναι ίση με cm. α) Ο ζητούμενος λόγος ομοιότητας είναι β) Ο ζητούμενος λόγος ομοιότητας είναι γ) Η γωνία ˆB είναι ΑΒ + ΒΓ + ΓΔ + ΔΑ 8cm 1cm 1cm 8cm Α Β + Β Γ + Γ Δ + Δ Α 3 δ) Ο λόγος λ είναι ίσος με ΑΒ + ΒΓ + ΓΔ + ΔΑ ε) Η πλευρά ΒΓ είναι ίση με 15 cm 10cm. 3 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ-ΠΡΟΒΛΗΜΑΤΑ ΑΣΚΗΣΗ 1 Σε ποια από τις παρακάτω περιπτώσεις τα παραλληλόγραμμα ΑΒΓΔ και ΕΖΗΘ είναι όμοια ; Ναι αιτιολογήσετε την απάντησή σας. α) β) 3 3

4 448 ΜΕΡΟΣ Β 1.5 ΟΜΟΙΟΤΗΤΑ α) Παρατηρούμε ότι όλες οι γωνίες είναι ίσες ως ορθές.ο λόγος των ΕΖ ΗΘ 5cm 5 αντιστοίχων πλευρών είναι : και ΑΒ ΓΔ 6cm 6 ΕΘ ΗΖ cm 4 5. Επειδή ΑΔ ΒΓ 3cm Επομένως τα ΑΒΓΔ και ΕΖΗΘ δεν είναι όμοια. 0 β) Παρατηρούμε ότι : Α Γ Ε Η 10 αφού οι απέναντι γωνίες του παραλληλογράμμου είναι ίσες και οι διαδοχικές παραπληρωματι- 0 κές. Παρόμοια είναι Β Γ Ζ Θ 60. Τέλος για τον λόγο των πλευρών έχουμε : ΕΖ ΗΘ 6cm ΕΘ ΗΖ 4cm και οπότε και οι πλευρές ΑΔ ΒΓ 9cm 3 ΑΒ ΓΔ 6cm 3 τους είναι ανάλογες επομένως τα παραλληλόγραμμα είναι όμοια. ΑΣΚΗΣΗ Αν τα τετράπλευρα ΑΒΓΔ και ΕΖΗΘ είναι όμοια, να βρείτε το x σε καθεμιά από τις περιπτώσεις α) β) ΑΔ ΔΓ 6,3cm 9cm 6,3cm 3 α) Είναι ή ή ή 3x 1,6cm ή ΘΗ ΗΖ x 6cm x x 4,cm β) Επειδή το άθροισμα των γωνιών ενός τετραπλεύρου είναι έ- χουμε : x ( )

5 ΜΕΡΟΣ Β 1.5 ΟΜΟΙΟΤΗΤΑ 449 ΑΣΚΗΣΗ 3 Ένα παραλληλόγραμμο έχει πλευρές 4 cm και 18 cm.ένας μαθητής θέλοντας να κατασκευάσει ένα παραλληλόγραμμο όμοιο μ αυτό αλλά που να έχει τη μεγαλύτερη πλευρά 0 cm, σκέφτηκε να μειώσει και την άλλη πλευρά κατά 4 cm. Ήταν σωστή η σκέψη του; Να αιτιολογήσετε την απάντησή σας. Η σκέψη του μαθητή δεν είναι σωστή γιατί οι πλευρές δεν μειώνονται ή αυξάνονται κατά το ίδιο μήκος αλλά ανάλογα.έρεπε να υπολογίσει το μήκος της μικρότερης πλευράς x έχοντας υπόψη του ότι : 4cm 18cm 4 18cm ή ή 4x 360cm, ή x 15cm. Επομένως 0cm x 0 x έπρεπε να μειώσει την μικρότερη πλευρά κατά 3cm. ΑΣΚΗΣΗ 4 Οι διαγώνιοι ενός παραλληλογράμμου ΑΒΓΔ τέμνονται στο σημείο Κ. Να αποδείξετε ότι το τετράπλευρο που προκύπτει αν ενώσουμε τα μέσα των ΚΑ, ΚΒ, ΚΓ, ΚΔ είναι παραλληλόγραμμο όμοιο με το ΑΒΓΔ. Στο τρίγωνο ΑΚΒ είναι ΜΛ // ΑΒ Στο τρίγωνο ΔΓΚ είναι ΟΝ // ΔΓ. Επομένως ΜΛ//ΟΝ άρα το ΛΜΝΟ είναι παραλληλόγραμμο. ΜΛ ΝΜ ΟΝ ΟΛ 1 Είναι ΑΒ ΒΓ ΓΔ ΑΔ Επίσης λόγω των παραλλήλων οι γωνίες των δύο παραλληλογράμμων ΑΒΓΔ και ΛΜΝΟ είναι ίσες άρα αυτά είναι όμοια. Δ Α Ο Λ Κ Ν Μ Γ Β

6 450 ΜΕΡΟΣ Β 1.5 ΟΜΟΙΟΤΗΤΑ ΑΣΚΗΣΗ 5 Στο παραλληλόγραμμο ΑΒΓΔ είναι ΑΚ 1 ΑΓ, ΕΖ // ΑΔ και ΗΘ // 4 ΑΒ. Να αποδείξετε ότι α) Το παραλληλόγραμμο ΑΕΚΗ είναι όμοιο με το ΑΒΓΔ. β) Το παραλληλόγραμμο ΑΕΚΗ είναι όμοιο με το ΚΘΓΖ. α) Παρατηρούμε ότι τα παραλληλόγραμμα ΑΒΓΔ και ΑΕΚΗ έχουν τις γωνίες ίσες προς μία αφού :η γωνία Α είναι κοινή, είναι ΕΚΗ Γ γιατί κάθε μία από αυτές ισούται με την Α ως απέναντι γωνίες παραλλη- λογράμμου και ΑΕΚ Β καθώς και ΑΗΚ Δ ως εντός εκτός και επί τα αυτά. Από την παραλληλία των ΑΔ, ΕΖ και ΒΓ προκύπτει ότι : ΑΕ ΑΚ 1. Επειδή ΗΚ ΑΕ και ΓΔ ΑΒ ως απέναντι πλευρές ΑΒ ΑΓ 4 ΑΕ ΗΚ 1 παραλληλογράμμου τελικά έχουμε :. ΑΒ ΓΔ 4 Παρόμοια από την παραλληλία των ΑΔ, ΕΖ και ΒΓ καθώς και την ισότητα των ΑΗ ΕΚ και ΑΔ ΒΓ ως απέναντι πλευρών παραλληλογράμμου προκύπτει :. Επομένως έχουν και τις ΕΚ ΑΗ ΑΚ 1 ΒΓ ΑΔ ΑΓ 4 αντίστοιχες πλευρές τους ανάλογες, άρα είναι όμοια. β) Από την απόδειξη της ισότητας των γωνιών των παραλληλογράμμων ΑΒΓΔ και ΑΕΚΗ προκύπτει η ισότητα των γωνιών και των παραλληλογράμμων ΑΒΓΔ και ΚΘΓΖ. Επειδή δε ΑΚ 1 4 ΑΓ, είναι ΚΓ 3 ΑΓ. Τότε όμως θα έχουμε : 4 ΚΘ ΑΒ ΓΘ ΓΒ ΓΖ ΓΔ ΖΚ ΑΔ ΚΓ 3 ΑΓ 4, Επομένως είναι και αυτά όμοια.

7 ΜΕΡΟΣ Β 1.5 ΟΜΟΙΟΤΗΤΑ 451 ΑΣΚΗΣΗ 6 Ένας μαθητής ξεκίνησε το πρωί από το σπίτι του Μ και αφού ακολούθησε τη διαδρομή που φαίνεται στο σχέδιο, έφτασε στο σχολείο του Σ. Το μεσημέρι επέστρεψε σπίτι του από άλλο δρόμο προκειμένου να περάσει και από το σπίτι ενός φίλου του που βρισκόταν στο σημείο Φ. Αν η συνολική διαδρομή που έκανε ο μαθητής ήταν 640 m, να βρείτε πόσο απέχουν τα σπίτια των δυο φίλων. Ποια είναι η κλίμακα του σχεδίου ; Επειδή η συνολική διαδρομή που έκανε ο μαθητής είναι 640 m και είναι 16 ίσα ευθύγραμμα τμήματα το κάθε τμήμα είναι 40 m, Άρα τα σπίτια των δύο φίλων που είναι 3 ίσα τμήματα θα απέχουν m. Επειδή το μήκος της πλευράς των τετραγώνων του σχεδίου είναι 1 cm παρατηρούμε ότι η διαδρομή του μαθητή είναι 16 cm.επομένως :. 16 cm 16 cm 16 1 Η κλίμακα του σχεδίου είναι κ. 640 m cm

8 45 ΜΕΡΟΣ Β 1.5 ΟΜΟΙΟΤΗΤΑ Β Όμοια τρίγωνα Δύο τρίγωνα ΑΒΓ και Α Β Γ είναι όμοια, αν έχουν τις πλευρές τους ανάλογες και τις αντίστοιχες γωνίες ίσες. Δηλαδή είναι: Α αν Α Α, Β Β, Γ Γ ΑΒ ΑΓ ΒΓ και τοτε Α Β Α Γ Β Γ Δ Δ ΑΒΓ Α Β Γ Β Α Γ Γ Β Δύο τρίγωνα όταν έχουν τις πλευρές τους ανάλογες τότε είναι όμοια (δηλαδή έχουν και τις γωνίες τους ίσες). ΑΒ ΑΓ ΒΓ αν Α Β Α Γ Β Γ Δ Δ τότε ΑΒΓ Α Β Γ οπότε Α Α, Β Β, Γ Γ Για να είναι δύο τρίγωνα όμοια αρκεί να έχουν δύο γωνίες ίσες μία προς μία (οπότε θα έχουν και την Τρίτη γωνία του ίση και τις ομόλογες πλευρές τους ανάλογες). ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ 1. Ποια από τα παρακάτω ζεύγη τριγώνων είναι όμοια ; α) β) γ) Όμοια είναι τα ζεύγη των τριγώνων των περιπτώσεων (α) και (γ), γιατί δύο από τις γωνίες του ενός εκ των τριγώνων ισούται με τις αντίστοιχες γωνίες του άλλου.

9 ΜΕΡΟΣ Β 1.5 ΟΜΟΙΟΤΗΤΑ 453. Να εξηγήσετε γιατί τα τρίγωνα του διπλανού σχήματος είναι όμοια. Κάθε μία από τις γωνίες της βάσης του ισοσκελούς τριγώνου ΑΒΓ είναι 75. Έτσι συμπεραίνουμε ότι τα δύο ισοσκελή τρίγωνα έχουν τις γωνίες τους ίσες μία προς μία επομένως αυτά είναι όμοια. 3. Να γράψετε τους ίσους λόγους στα παρακάτω ζεύγη των ομοίων τρίγωνων. α) β) γ) α) ΑΒ ΒΓ ΑΓ ΑΒ ΔΕ ΒΓ ΕΖ ΑΓ ΖΔ α) Πρώτα γράφουμε τις 3 κλασματικές γραμμές με ενδιάμεσα. Κατόπιν στους αριθμητές τοποθετούμε τις πλευρές του ενός τριγώνου με οποιανδήποτε σειρά εδώ του ΑΒΓ τις ΑΒ, ΒΓ, ΑΓ. Στους παρονομαστές τοποθετούμε τις πλευρές του άλλου τριγώνου ως εξής: Η ΑΒ στο τρίγωνο ΑΒΓ είναι απέναντι από την γωνία Γ αλλά Z Γ Z και η γωνία στο ΖΕΔ είναι απέναντι από την πλευρά ΔΕ. Η ΒΓ στο ΑΒΓ είναι απέναντι από την γωνία Α αλλά Α Δ και η γωνία Δ στο ΖΕΔ είναι απέναντι από την πλευρά ΕΖ. Η ΑΓ στο ΑΒΓ είναι απέναντι από την γωνία Β αλλά και η γωνία στο ΖΕΔ είναι απέναντι Β Ε Ε

10 454 ΜΕΡΟΣ Β 1.5 ΟΜΟΙΟΤΗΤΑ β) ΑΒ ΒΓ ΑΓ ΑΒ ΔΖ ΒΓ ΖΕ γ) ΓΑ ΕΔ ΑΒ ΒΓ ΑΓ ΑΒ ΔΖ ΒΓ ΔΕ ΓΑ ΕΖ από την πλευρά ΖΔ. β) Όμοια όπως στο προηγούμενο ερώτημα συμπληρώνουμε και εδώ τους ίσους λόγους έχοντας υπόψη μας ότι απέναντι από ίσες γωνίες σε όμοια τρίγωνα βρίσκονται ομόλογες πλευρές. γ) Όμοια όπως στο προηγούμενο ερώτημα συμπληρώνουμε και εδώ τους ίσους λόγους έχοντας υπόψη μας ότι απέναντι από ίσες γωνίες σε όμοια τρίγωνα βρίσκονται ομόλογες πλευρές. 4. Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ), αν είναι σωστές ή με (Λ), αν είναι λανθασμένες α) Δύο ισόπλευρα τρίγωνα είναι όμοια. β) Αν δύο ορθογώνια τρίγωνα έχουν μία οξεία γωνία ίση, είναι όμοια. γ) Δύο όμοια τρίγωνα έχουν τις ομόλογες πλευρές τους ανάλογες. δ) Δύο ορθογώνια και ισοσκελή τρίγωνα είναι όμοια. ε) Αν δύο ισοσκελή τρίγωνα έχουν μια γωνία 40, είναι όμοια. στ) Ο λόγος των περιμέτρων δυο ομοίων τριγώνων, είναι ίσος με το λόγο ομοιότητάς τους. α) Η α είναι Σωστή (Σ), γιατί έχουν ίσες γωνίες (όλες 60 0 ) β) Η β είναι Σωστή (Σ), γιατί θα έχουν και τις άλλες οξείες γωνίες ίσες. γ) Η γ είναι Σωστή (Σ) δ) Η δ είναι Σωστή (Σ), γιατί θα έχουν ίσες και τις οξείες γωνίες του (45 0 ) ε) Η ε είναι Λάθος (Λ), γιατί σε περίπτωση που η γωνία των 40 0 είναι η γωνία της κορυφής τα τρίγωνα είναι όμοια αν όμως στο ένα είναι η γωνία της κορυφής και στο άλλο γωνία βάσης τότε τα τρίγωνα δεν είναι όμοια. στ) Η στ είναι Σωστή (Σ) 5. α) Να εξηγήσετε γιατί τα τρίγωνα ΑΒΔ και ΕΖΗ είναι όμοια. β) Αν δύο πολύγωνα αποτελούνται από τον ίδιο αριθμό ομοίων τριγώνων, είναι πάντοτε όμοια ;

11 ΜΕΡΟΣ Β 1.5 ΟΜΟΙΟΤΗΤΑ 455 α) Τα τρίγωνα ΑΒΓ και ΕΖΗ είναι όμοια γιατί είναι ορθογώνια και ισοσκελή. β) Όχι δεν είναι πάντοτε όμοια, γιατί το πρώτο είναι τετράγωνο, ενώ το δεύτερο είναι παραλληλόγραμμο. ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ-ΠΡΟΒΛΗΜΑΤΑ ΑΣΚΗΣΗ 1 Να βρείτε τον αριθμό x σε καθεμιά από τις παρακάτω περιπτώσεις. α) β) γ) Παρατηρούμε ότι τα τρίγωνα ΑΒΓ και ΑΔΕ είναι όμοια γιατί έχουν δύο γωνίες αντίστοιχα ίσες, σε όλες τις περιπτώσεις που εξετάζουμε. α) Από την ομοιότητα των τριγώνων αυτών έχουμε : ΑΒ ΒΓ 6cm 9cm 3 9cm ή ή ή 3x 18cm ή x 6cm. ΑΔ ΔΕ 4cm x x β) Από την ομοιότητα των τριγώνων αυτών έχουμε : ΑΒ ΒΓ 16cm 8cm 4 8cm ή ή ή 4x 4cm ή x 6cm. ΑΔ ΔΕ 1cm x 3 x γ) ) Από την ομοιότητα των τριγώνων αυτών έχουμε : ΑΒ ΒΓ x + 6cm 1cm x + 6cm 3 ή ή ή x +1cm 18cm ή x ΑΔ ΔΕ 6cm 8cm 6cm 18cm 1cm 6cm ή x 3cm. ΑΣΚΗΣΗ Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α Λ 90 0 ) και ΑΔ το ύψος του. Να αποδείξετε ότι τα τρίγωνα ΑΔΒ και ΑΔΓ είναι όμοια. Αν ΔΒ 4cm και ΔΓ 9cm, να βρείτε το μήκος του τμήματος ΑΔ.

12 456 ΜΕΡΟΣ Β 1.5 ΟΜΟΙΟΤΗΤΑ Από το ορθογώνιο τρίγωνο ΑΓΔ 0 έχουμε ότι ΔΑΓ 90 Γ Β Επομένως τα ορθογώνια τρίγωνα ΑΔΒ και ΑΔΓ είναι όμοια α- φού δύο γωνίες του ενός είναι ίσες με τις αντίστοιχες γωνίες του άλλου. Από την ομοιότητα αυτή έχουμε ΑΔ ΔΓ ή (ΑΔ) (ΔΒ)(ΔΓ) ή ΔΒ ΑΔ (ΑΔ) (4cm)(9cm) ή (ΑΔ) 36cm ή ΑΔ 6cm. ΑΣΚΗΣΗ 3 Στις κάθετες πλευρές ΑΒ 8 cm και ΑΓ 1 cm ενός ορθογωνίου τριγώνου ΑΒΓ παίρνουμε αντιστοίχως τα σημεία Δ και Ε, ώστε ΑΔ cm και ΑΕ 3 cm. Να αποδείξετε ότι: α) ΔΕ // ΒΓ και β) τα τρίγωνα ΑΔΕ, ΑΒΓ είναι όμοια. α) Παρατηρούμε ότι είναι: ΑΒ 8cm 4 (1) και ΑΔ cm Β ΑΓ 1cm 4 ().Από τις σχέσεις ΑΕ 3cm (1) και () που έχουν τα δεύτερα μέλη τους ίσα θα έχουν και τα πρώτα Δ ΑΒ ΑΓ Α Ε Γ.Επομένως είναι : οπότε ΑΔ ΑΕ συμπεραίνουμε την παραλληλία των ΔΕ και ΒΓ β) Από την παραλληλία των ευθειών αυτών προκύπτει ότι τα τρίγωνα ΑΔΕ και ΑΒΓ έχουν τις γωνίες τους αντίστοιχα ίσες, επομένως αυτά είναι όμοια. Γ Α Δ Β

13 ΜΕΡΟΣ Β 1.5 ΟΜΟΙΟΤΗΤΑ 457 ΑΣΚΗΣΗ 4 Να βρείτε το πλάτος ΑΒ του ποταμού αν ΑΓ 1 m, ΓΔ 8,8 m, ΕΔ 60 m και ˆΑ ˆΔ 90. Παρατηρούμε ότι τα ορθογώνια τρίγωνα ΑΒΓ και ΔΓΕ ότι έχουν και τις γωνίες ΑΓΒ και ΔΓΕ ίσες ως κατακορυφήν.επομένως έχουμε : ΑΒ ΑΓ ΑΒ 1m ΑΒ 3 ή ή ή 7,(ΑΒ) 180m ή ΑΒ 5m ΔΕ ΔΓ 60m 8,8m 60m 7, ΑΣΚΗΣΗ 5 Να αποδείξετε ότι τα τρίγωνα ΑΕΓ, ΒΕΔ είναι όμοια και να υπολογίσετε τον αριθμό x. Τα τρίγωνα ΑΕΓ και ΒΕΔ είναι όμοια αφού ΑΕΓ ΒΕΔ ως κατακορυφήν και Β Γ ως εγγεγραμμένες που βλέπουν στο ίδιο τόξο.τότε ΑΕ ΕΓ 3 x 6 έχουμε : ή ή 3x 48 ή x 16 ή x 4. ΔΕ ΕΒ 8 x ΑΣΚΗΣΗ 6 Μπροστά στο μάτι μας και σε απόσταση 0,4 m κρατάμε κατακόρυφα ένα ραβδί ΑΒ 0,5 m. Αν μετακινηθούμε και σταθούμε σε ένα σημείο Ζ τέτοιο, ώστε οι ευθείες ΟΑ, ΟΒ να καταλήγουν στη βάση και στην κορυφή της κεραίας ενός ραδιοφωνικού σταθμού, διαπιστώνουμε ότι η απόστασή μας από τη κεραία είναι ΓΖ 16,8 m. Μπορείτε να βρείτε το ύψος της κεραί-

14 458 ΜΕΡΟΣ Β 1.5 ΟΜΟΙΟΤΗΤΑ ας ; Παρατηρούμε ότι τα τρίγωνα ΟΑΒ και ΟΓΔ είναι όμοια επειδή έχουν τις γωνίες τους ίσες μία προς μία, αφού η γωνία Ο είναι κοινή στα δύο τρίγωνα και οι άλλες είναι ανά δύο αντίστοιχα ίσες ως εντός ε- κτός και επί τα αυτά. ΟΑ ΑΒ Έχουμε τώρα (1). ΟΓ ΓΔ Χαράζουμε στη συνέχεια την ΟΕΖ κάθετη στην ΑΒ στο σημείο Ε και στην ΓΔ στο σημείο Ζ.Επειδή τα ορθογώνια τρίγωνα ΟΕΑ και ΟΖΓ είναι όμοια αφού εκτός από την ορθή γωνία έχουν ίσες και τις γωνίες Γ και Α. ΟΑ ΟΕ 0,4m 1 Επομένως είναι (). Από τις σχέσεις (1)και ΟΓ ΟΖ 16,8m 4 ΑΒ 1 0,5m 1 () προκύπτει ότι ή ή ΓΔ 4 0,5m 1m. ΓΔ 4 ΓΔ 4 ΑΣΚΗΣΗ 7 Στο τραπέζιο ΑΒΓΔ είναι ΕΖ // ΔΓ, ΒΗ // ΑΔ και ΕΘ // ΑΔ. Να αποδείξετε ότι τα τρίγωνα ΒΗΕ, ΕΘΓ είναι όμοια και να υπολογίσετε τον αριθμό x. Τα τρίγωνα ΒΗΕ και ΕΘΓ είναι όμοια είναι ΗΒΕ ΘΕΓ καθώς και ΗΕΒ ΘΓΕ ως εντός εναλλάξ. Είναι τώρα ΗΕ ΕΖ ΖΗ x 1cm και ΓΘ ΓΔ ΘΔ 8cm x. Από την ομοιότητα των τριγώνων έχουμε : ΗΕ ΒΕ x 1cm 9cm 3 ή ή 5 ( x 1cm ) 3 (8cm x) ή ΘΓ ΕΓ 8cm x 15cm 5 5x 60cm 84cm 3x ή 5x +3x 84cm + 60cm ή 8x 144cm ή 144 x cm 18cm 8

15 ΜΕΡΟΣ Β 1.5 ΟΜΟΙΟΤΗΤΑ 459 ΑΣΚΗΣΗ 8 Ο γιος έχει ύψος 1,35 m. Ποιο είναι το ύψος του πατέρα του ; Εάν συμβολίσουμε με x το ύψος του πατέρα, από τα όμοια τρίγωνα 1,35m 3 5,4 του σχήματος έχουμε : ή 3x 5,4m ή x m 1,8m x 4 3 Ένα θέμα από την ιστορία των Μαθηματικών. H θεωρία των ομοίων σχημάτων ήταν γνωστή από τα μέσα του 7 ου αιώνα π.χ. Με τη βοήθεια της θεωρίας αυτής ο Θαλής ο Μιλήσιος ( π.χ.), ένας από τους επτά σοφούς της αρχαιότητας, κατόρθωσε να υ- πολογίσει το ύψος της μεγάλης πυραμίδας του Χέοπος από το μήκος της σκιάς της αποσπώντας το θαυμασμό του βασιλιά της Αιγύπτου, του Άμασι. Δε γνωρίζουμε ακριβώς τις τεχνικές που χρησιμοποίησε ο Θαλής σ αυτό το επίτευγμά του. Ο Πλούταρχος, ωστόσο, μάς διηγείται τα εξής : «Αφού έστησε το ραβδί του ο Θαλής στο τέλος της σκιάς της πυραμίδας από τα δύο όμοια τρίγωνα που προκύπτουν από την επαφή της ακτίνας του ήλιου, απέδειξε ότι ο λόγος που είχε η σκιά της πυραμίδας προς τη σκιά της ράβδου ήταν ο ίδιος με το λόγο που είχε το ύψος της πυραμίδας προς το μήκος της ράβδου». Ο Διογένης ο Λαέρτιος, μάλιστα, ισχυρίζεται ότι ο Θαλής μέτρησε τη σκιά της πυραμίδας, όταν το μήκος της ράβδου έγινε ίσο με το μήκος της.

16 460 ΜΕΡΟΣ Β 1.5 ΟΜΟΙΟΤΗΤΑ Μπορείτε να εξηγήσετε πώς ο Θαλής υπολόγισε τελικά το ύψος της πυραμίδας, αφού μπορούσε να μετρήσει το μήκος της πλευράς της τετραγωνικής βάσης της πυραμίδας και της σκιάς ΔΑ ; Παρατηρούμε ότι το τμήμα ΑΔ το οποίο είναι εσωτερικό της πυραμίδας ισούται με το μισό της τετραγωνικής πλευράς της βάσης της πυραμίδας. Επομένως προσθέτοντας στο ΔΑ το οποίο μετράτε, το μισό της βάσης της πυραμίδας βρίσκουμε το ΑΑ και στη συνέχεια παίρνοντας τους λόγους από την ομοιότητα των τριγώνων έχουμε : Α Β Α Γ.Από την σχέση αυτή μπορούμε να υπολογίσουμε το μήκος ΑΒ αφού γνωρίζουμε τα μήκη των υπολοίπων τμημάτων ΑΒ ΑΓ. 1 0 ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗΝ

17 ΜΕΡΟΣ Β 1.5 ΟΜΟΙΟΤΗΤΑ 461 ΟΜΟΙΟΘΕΣΙΑ-ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 1 0 Αν τα ορθογώνια παραλληλόγραμμα A Β ΑΒΓΔ και Α Β Γ Δ είναι όμοια και ο Α 6 cm λόγος ομοιότητας του ΑΒΓΔ προς το 6 cm 3 Α Β Γ Δ είναι, τότε να Δ Γ Δ συμπληρώσετε τις παρακάτω προτάσεις: α) Ο λόγος ομοιότητας του Α Β Γ Δ προς το ΑΒΓΔ είναι:. β) Η πλευρά ΑΒ είναι ίση με..cm. γ) Η πλευρά Β Γ είναι ίση με..cm. Περίμετρος Α Β Γ Δ δ) Ο λόγος είναι ίσος με. Περίμετρος ΑΒΓΔ (6 Μονάδες) Β Γ ΘΕΜΑ 0 α) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια και να γράψετε τους ίσους λόγους. Ε (4 Μονάδες) β) Να βρείτε το λόγο ομοιότητας του ΔΕΖ προς το ΑΒΓ. ( Μονάδες) ΘΕΜΑ 3 0 Σε ορθογώνιο τρίγωνο ΑΒΓ είναι ΑΒ 8cm και ΑΓ 6 cm. Αν από το μέσο Δ της ΑΒ φέρουμε ΔΕ κάθετη στην υποτείνουσα ΒΓ, τότε : α) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΒΔΕ είναι όμοια και να γράψετε τους ίσους λόγους. (5 Μονάδες) β) Να υπολογίσετε τα μήκη των τμημάτων ΒΓ, ΒΕ, και ΔΕ. (3 Μονάδες) Γ Δ 5 Β Δ Α Ε 50 Ζ Α 30 Γ Β 0 ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗΝ ΟΜΟΙΟΘΕΣΙΑ-ΟΜΟΙΟΤΗΤΑ

18 46 ΜΕΡΟΣ Β 1.5 ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 1 0 Τετράγωνο ΑΒΓΔ έχει πλευρά α cm και τετράγωνο έχει πλευρά β cm. Π1 α) Ο λόγος των περιμέτρων είναι ίσος με το λόγο ομοιότητας τους Π β) Ο λόγος των εμβαδών τους ομοιότητάς τους. Ε Ε 1 είναι ίσος με το τετράγωνο του λόγου (6 Μονάδες) ΘΕΜΑ 0 Οι πλευρές ενός τετραπλεύρου είναι 8 cm, 7 cm, 6 cm, 4 cm. Η μικρότερη πλευρά ενός άλλου τετραπλευρου όμοιου προς το πρώτο είναι cm. Να βρείτε τις άλλες πλευρές του τετραπλεύρου. (6 Μονάδες) ΘΕΜΑ 3 0 Ο λόγος ομοιότητας δύο ομοίων πολυγώνων είναι 3 και η περίμετρος του μικρότερου είναι 40 cm. Να βρείτε την περίμετρο του άλλου πολυγώνου. (8 Μονάδες)

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ

Διαβάστε περισσότερα

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

Λόγος εμβαδών ομοίων σχημάτων

Λόγος εμβαδών ομοίων σχημάτων ΜΡΟΣ Β.6 ΛΟΓΟΣ ΜΒΑΔΩΝ ΟΜΟΙΩΝ ΣΧΗΜΑΤΩΝ 463. 6 ΛΟΓΟΣ ΜΒΑΔΩΝ ΟΜΟΙΩΝ ΣΧΗΜΑΤΩΝ Λόγος εμβαδών ομοίων σχημάτων Ο λόγος των εμβαδών δύο ομοίων σχημάτων είναι ίσος με το τετράγωνο του λόγου ομοιότητας τους. Δηλαδή

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία Μιχαήλογλου Στέλιος Παπαθανάση Κέλλυ Πατσιμάς Ανδρέας Πατσιμάς Δημήτρης Ραμαντάνης Βαγγέλης

Διαβάστε περισσότερα

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο; 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν

Διαβάστε περισσότερα

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr 9--0 Θεώρημα Θαλή.897. Θεωρούμε τρίγωνο ΑΒΓ με AB 9 και. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 2 ΚΕΦΑΛΑΙΟ 1ο ΓΕΩΜΕΤΡΙΑ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου - Είδη τριγώνων 1. Ποια είναι τα κύρια στοιχεία

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο

Διαβάστε περισσότερα

Γεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων

Γεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων Λύσεις Διαγωνισμάτων Λύσεις 1 ου Διαγωνίσματος Θέμα 1 ο α) Από μία κορυφή, π.χ. την Α, φέρουμε ευθεία xy ΒΓ. Τότε ω = Β και φ = Γ, ως εντός εναλλάξ των παραλλήλων xy και ΒΓ με τέμνουσες ΑΒ και ΑΓ αντίστοιχα.

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) 1 Στις πλευρες ΑΒ, ΒΓ, ΓΑ ισοπλευρου τριγωνου ΑΒΓ, παιρνουμε 3 Να δειχτει οτι α + 110 0α Ποτε ισχυει Συγκρινετε το ισον; τα τριγωνα με σημεια Δ, Ε, Ζ αντιστοιχα,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ Θεώρημα οξείας γωνίας Το τετράγωνο πλευράς τριγώνου, που βρίσκεται απέναντι από οξεία γωνία, είναι ίσο με το άθροισμα των τετραγώνων των δύο άλλων πλευρών του, ελαττωμένο

Διαβάστε περισσότερα

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 η Να αποδείξετε ότι στις ομόλογες πλευρές δύο ίσων τριγώνων αντιστοιχούν ίσες διάμεσοι. Α Α ΑΠΟΔΕΙΞΗ Β Γ Β Γ Θα δείξουμε ότι ΑΜ=Α

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν;

ΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν; ΜΕΡΟΣ Β. ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ-ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ 05. ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΗΣ ΕΠΙΦΑΝΕΙΑΣ Ορισμός Το εμβαδόν μιας επίπεδης επιφάνειας είναι ένας θετικός αριθμός, που εκφράζει την έκταση που καταλαμβάνει η επιφάνεια

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι:

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι: 7o Γενικό Λύκειο Αθηνών Σχολικό Έτος 04-5 Τάξη: A' Λυκείου Αθήνα -6-05 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Θέμα ο Α. Να αποδείξετε ότι: Το ευθύγραμμο τμήμα που ενώνει

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο 1 ο ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α1.1 Ισότητα τριγώνων Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ=ΑΓ. Προεκτείνουμε τη βάση ΒΓ κατά ίσα τμήματα

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = 50 2 2 2 ˆ ˆ 180 Γ 180 50 130

ΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = 50 2 2 2 ˆ ˆ 180 Γ 180 50 130 ΣΗΜΕΙΩΣΗ Οι λύσεις των θεμάτων είναι ενδεικτικές.πιθανόν να υπάρχουν και άλλες λύσεις και μάλιστα πιο απλές. ΘΕΜΑ 2 2814 α) Αφού ΑΒΓ ισοσκελές 180 ˆ ˆ ˆ Α 180 80 100 Β=Γ= = = = 50 2 2 2 Επειδή ΒΕ=ΒΔ θα

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

Επιμέλεια Μετάφρασης: Αποστολάκη Μαρία Α.Μ.3414. Βεϊζη Αρίων Α.Μ.3551. Μουτζιάνου Γεώργιος Α.Μ. 3405. Παντελάκη Άννα Α.Μ.3341

Επιμέλεια Μετάφρασης: Αποστολάκη Μαρία Α.Μ.3414. Βεϊζη Αρίων Α.Μ.3551. Μουτζιάνου Γεώργιος Α.Μ. 3405. Παντελάκη Άννα Α.Μ.3341 Επιμέλεια Μετάφρασης: Αποστολάκη Μαρία Α.Μ.3414 Βεϊζη Αρίων Α.Μ.3551 Μουτζιάνου Γεώργιος Α.Μ. 3405 Παντελάκη Άννα Α.Μ.3341 Παπουτσάκης Κώστας Α.Μ.3249 Χριστοφάκη Μαρία Α.Μ.3277 1 Ορισμοί 1. Σημείο είναι

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ 7ου ΚΕΦΑΛΑΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ 7ου ΚΕΦΑΛΑΙΟΥ ΣΗΜΕΙΩΣΕΙΣ 7ου ΚΕΦΑΛΑΙΟΥ Διατυπώστε το θεώρημα του Θαλή, κάνετε σχήμα και γράψτε την αναλογία που εκφράζει το θεώρημα του Θαλή στο συγκεκριμένο σχήμα. Απάντηση: «Αν τρείς τουλάχιστον παράλληλες ευθείες

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 3663-0367784 - Fax: 0 3640 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79

Διαβάστε περισσότερα

Θεώρημα Ι Η διάμεσος ορθογωνίου τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας είναι ίση με το μισό της υποτείνουσας.

Θεώρημα Ι Η διάμεσος ορθογωνίου τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας είναι ίση με το μισό της υποτείνουσας. ΠΡΟΛΟΓΟΣ Τα πιο κάτω θεωρήματα καθώς και το Θεώρημα Ι σ. 104 είναι SOS όχι μόνο για θεωρία αλλά και για χρήση στις ασκήσεις, οπότε πρέπει να κατανοήσετε τι λένε, να ξέρετε την απόδειξη και να είστε έτοιμοι

Διαβάστε περισσότερα

1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ

1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ ΜΕΡΟΣ Α 1.4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ 59 1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ Πολλαπλασιασμός μονωνύμου με πολυώνυμο Ο πολλαπλασιασμός μονώνυμου με πολυώνυμο γίνεται ως εξής: Πολλαπλασιάζουμε το μονώνυμο με

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία 2014 2015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΘΕΩΡΙΑ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 2 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ιδακτέα εξεταστέα ύλη σχολικού

Διαβάστε περισσότερα

ΜΕΡΟΣ Β 1.4 ΟΜΟΙΟΘΕΣΙΑ ΟΜΟΙΟΘΕΣΙΑ

ΜΕΡΟΣ Β 1.4 ΟΜΟΙΟΘΕΣΙΑ ΟΜΟΙΟΘΕΣΙΑ ΜΕΡΟΣ.4 ΟΜΟΙΟΘΕΣΙ 45. 4 ΟΜΟΙΟΘΕΣΙ Το ομοιόθετο σημείου ν πάρουμε δύο σημεία Ο, και στην ημιευθεία Ο πάρουμε ένα σημείο ', τέτοιο ώστε Ο = 2 O, τότε λέμε ότι το σημείο είναι ο- μοιόθετο του με κέντρο Ο

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΤΣΙΡΕΙΟ ΓΥΜΝΑΣΙΟ ΛΕΜΕΣΟΥ Σχολική χρονιά : 01-013 Βαθμός:... Υπογραφή:... ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 013 Μάθημα : ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία : 10-06-013 Σελίδες : 1 Τάξη : Γ Διάρκεια : ώρες Ώρα: 08:00-10:00

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Να επιλέξετε μια απάντηση για κάθε ερώτηση και να δικαιολογήσετε σύντομα την απάντησή σας. i. Αν η εξωτερική γωνία ενός κανονικού ν-γώνου ισούται με 0 ο, τότε το ν ισούται

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj klzxcvλοπbnαmqwertyuiopasdfghjklz ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10 ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ. Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι

Διαβάστε περισσότερα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα

Διαβάστε περισσότερα

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0. Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( x 1) ( x) 5( x ). x ( x ) 6 x. x ( x) x 5( x 1) x 1 (1 x) x ( x) x x. 1 x 5. x 6 1 1 ( ) 1 1 6. x 1 x 7. 1 x

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ. Εισαγωγή : Λόγοι που επιβάλλουν τη διδασκαλία της ομοιοθεσίας

Γ ΓΥΜΝΑΣΙΟΥ. Εισαγωγή : Λόγοι που επιβάλλουν τη διδασκαλία της ομοιοθεσίας ΥΜΝΑΣΙΟΥ ΣΧΔΙΟ ΜΑΘΗΜΑΤΟΣ Κοντογιάννης Δημήτριος, Σύμβουλος του Π.Ι. & Αργυράκης Δ., Βουργάνας Π., Μεντής Κ., Τσικοπούλου Σ. & Χρυσοβέργης Μ. (Συγγραφική Ομάδα) ΔΙΔΑΚΤΙΚΗ ΝΟΤΗΤΑ: Ομοιοθεσία ισαγωγή : Λόγοι

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων.

Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων. Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων. Καρδαμίτσης Σπύρος «Τὰ ὅμοια πολύγωνα εἴς τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις, καὶ τὸ πολύγωνον

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

2 η δεκάδα θεµάτων επανάληψης

2 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο

Διαβάστε περισσότερα

πλευρές του κείνται στις ευθείες : 4χ-3ψ+7=0, 3χ+2ψ-16=0, χ-5ψ+6=0. (ΑΒ=5, ΒΓ= 13,

πλευρές του κείνται στις ευθείες : 4χ-3ψ+7=0, 3χ+2ψ-16=0, χ-5ψ+6=0. (ΑΒ=5, ΒΓ= 13, 1 Η Ευθεία στο Επίπεδο Η Ευθεία στο Επίπεδο 1 Να βρεθεί το είδος των γωνιών του τριγώνου που οι πλευρές του κείνται στις ευθείες : 4χ-3ψ+3=0, 3χ+4ψ+4=0, χ-7ψ+8=0. (90, 45, 45 ) 2 Να βρεθεί το μήκος των

Διαβάστε περισσότερα

και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10)

και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 04 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΝΑ ΕΝΟΤΗΤΑ ΘΕΩΡΗΜΑ ΘΑΛΗ ΘΕΜΑ ο ΘΕΜΑ -8975 Δίνεται τρίγωνο ABΓ με AB=9, AΓ=5. Από το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά BΓ που τέμνει

Διαβάστε περισσότερα

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο Παραλληλόγραµµο, λέγεται το τετράπλευρο ΕΙΗ ΤΕΤΡΠΛΕΥΡΩΝ ( Παραλληλόγραµµα Τραπέζια ) που έχει τις απέναντι πλευρές του παράλληλες δηλ. // και //. ΙΙΟΤΗΤΕΣ ΠΡΛΛΗΛΟΡΜΜΟΥ: 1. Οι απέναντι πλευρές του είναι.

Διαβάστε περισσότερα

6. Θεωρούµε ισοσκελές τραπέζιο ΑΒΓ (ΑΒ//Γ ). Φέρουµε τα ύψη του ΑΕ και ΒΖ. α) Ε=ΓΖ. β) ΑΖ=ΒΕ.

6. Θεωρούµε ισοσκελές τραπέζιο ΑΒΓ (ΑΒ//Γ ). Φέρουµε τα ύψη του ΑΕ και ΒΖ. α) Ε=ΓΖ. β) ΑΖ=ΒΕ. 1. Θεωρούµε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ). Στο µέσο της πλευράς ΑΒ φέρουµε κάθετη ευθεία που τέµνει την ΑΓ στο Ε. Από το Ε φέρουµε ευθεία παράλληλη στη βάση ΒΓ που τέµνει την ΑΒ στο Ζ. α) Να αποδείξετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Λύκεια

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Λύκεια ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΛΥΚΕΙΑ 6 η Δοκιμασία ο Θέμα Στις ερωτήσεις έως και 4 να επιλέξτε τη σωστή απάντηση αιτιολογώντας την απάντησή σας. Ερώτηση

Διαβάστε περισσότερα

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ.

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ. ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΩΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Θεωρούμε το ισόπλευρο τρίγωνο ΑΒΓ και έστω ένα σημείο της πλευράς ΑΓ. Κατασκευάζουμε το παραλληλόγραμμο ΒΓΕ και έστω Ζ η τομή της Ε με την ΑB. Ονομάζουμε

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1

ΓΕΩΜΕΤΡΙΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ΛΥΚΙΟΥ - ΩΜΤΡΙ ΩΜΤΡΙ ΘΜ o ΙΩΝΙΣΜ. Να αποδείξετε ότι : Ι) διάμεσος που αντιστοιχεί στην υποτείνουσα ορθογωνίου τριγώνου είναι ίση με το μισό της υποτείνουσας. ΙΙ) ν μια διάμεσος τριγώνου είναι ίση με το

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 1 Από εξωτερικό σημείο Σ κύκλου (Κ, ρ) θεωρούμε τις τέμνουσες ΣΑΒ και ΣΓΔ του κύκλου για τις οποίες ισχύει ΣΒ=ΣΔ. Τα ΚΛ και ΚΜ είναι τα αποστήματα των χορδών ΑΒ και ΓΔ του

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία του νομού Σερρών Σέρρες

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ.

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ. 1 Δινεται τριγωνο ΑΒΓ και η διχοτομος ΒΕ της γωνιας B του τριγωνου Απο το Α φερνουμε παράλληλη της ΒΕ, που τεμνει τη ΒΓ 3 Να δειχτει οτι α + 11 α Ποτε ισχυει ΑΔ ΒΕ το ισον; οποτε οι γωνιες 3 3 Aν α, β

Διαβάστε περισσότερα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα Γεωμετρία Αˊ Λυκείου Κεφάλαιο 3 ο Τρίγωνα Κεφάλαιο 3 ο :Τρίγωνα 1. Τι λέγονται κύρια στοιχεία ενός τριγώνου; Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου. Για ευκολία οι

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ (version )

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ (version ) 4.6-4.8 ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ (version 5--06) Σ. Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και τυχαίο σημείο Δ της πλευράς ΑΒ. Στην προέκταση της ΓΑ προς το Α, παίρνουμε τμήμα ΑΕ = ΑΔ. Να αποδείξετε ότι ΔΕ ΒΓ. ος

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688 1 ο Αχαρνών 197 Αγ. Νικόλαος 10.865196 ο Αγγ. Σικελιανού 4 Περισσός 10.718688 AΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ (Α =90Ο ) και Α το ύψος του. Αν Ε και Ζ είναι οι προβολές του

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 193. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Με την βοήθεια των εξισώσεων δευτέρου βαθμού λύνουμε πολλά προβλήματα της καθημερινής ζωής και διαφόρων επιστημών.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΝΑΛΟΓΙΕΣ Α. ΘΕΩΡΗΜΑ ΘΑΛΗ ΘΕΜΑ Ο 1. Δίνεται τρίγωνο ABΓ με AB=9, AΓ=15. Από το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά BΓ που τέμνει τις AB,AΓ στα Δ,E αντίστοιχα. α) Να αποδείξετε ότι AΔ = AB

Διαβάστε περισσότερα

Α={1,11,111,1111,..., 11...1 }

Α={1,11,111,1111,..., 11...1 } Θαλής Γ' Γυμνασίου 1995-1996 1. Δύο μαθητές Α, Β χρησιμοποιούν ένα πίνακα 3x3, όπως στο σχήμα, για να παίξουν "τρίλιζα". Καθένας γράφει σ' ένα τετραγωνάκι της επιλογής του ένα σταυρό ή έναν κύκλο. (Και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΘΕΩΡΙΑ 1 (Μήκος κύκλου) Το μήκος του κύκλου (Ο, R) συμβολίζεται με L. Ο Ιπποκράτης ο Χίος απέδειξε ότι

Διαβάστε περισσότερα

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ 5029 Έστω κυρτό τετράπλευρο ΑΒΓΔ με και α) β) Το τρίγωνο ΑΔΓ είναι ισοσκελές μ 10 γ) Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ μ 7 5619 Δίνεται γωνία χαy και

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ :

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : ΤΑΞΗ : Β ΧΡΟΝΟΣ : 2 ΩΡΕΣ ΑΡΙΘΜΟΣ ΣΕΛΙΔΩΝ : 8 ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΤΜΗΜΑ

Διαβάστε περισσότερα

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες.

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες. 5.0 5. ΘΕΩΡΙ. Ορισµοί Τραπέζιο λέγεται το τετράπλευρο που έχει µόνο δύο πλευρές παράλληλες. άσεις τραπεζίου λέγονται οι παράλληλες πλευρές του. Ύψος τραπεζίου λέγεται η απόσταση των βάσεων. ιάµεσος τραπεζίου

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ)

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) ΩΜΤΡΙ ΛΥΚΙΟΥ (ΤΡΠΖ ΘΜΤΩΝ) GI_V_GEO_2_18975 ίνεται τρίγωνο AB με AB=9, A=15. πό το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά B που τέμνει τις AB,A στα,e αντίστοιχα. α) Να αποδείξετε ότι A = 2 AB

Διαβάστε περισσότερα

Γεωµετρία Α Γενικού Λυκείου

Γεωµετρία Α Γενικού Λυκείου Γεωµετρία Α Γενικού Λυκείου Απαντήσεις στα θέματα της Τράπεζας Θεμάτων Συγγραφή απαντήσεων: Αθανάσιος Τσιούµας Χρησιμοποιήστε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την πλοήγηση

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΘΕΩΡΙΑ 1 Έστω ΑΒΓ ένα τρίγωνο με πλευρές α, β και γ. Συμβολίζουμε με τα την ημιπερίμετρο α + β + γ του ΑΒΓ, δηλαδή: τ =. 2 Το εμβαδόν Ε του

Διαβάστε περισσότερα

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ ΜΕΡΟΣ Α. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ Α Οι πραγματικοί αριθμοί και οι πράξεις τους Όπως γνωρίζουμε, το σύνολο των φυσικών αριθμών Ν είναι

Διαβάστε περισσότερα

1.3 ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ. Ορισμοί Εμβαδόν τετραγώνου. Το εμβαδόν ενός τετραγώνου πλευράς α ισούται µε α 2.

1.3 ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ. Ορισμοί Εμβαδόν τετραγώνου. Το εμβαδόν ενός τετραγώνου πλευράς α ισούται µε α 2. ΜΡΟΣ Β 1.3 ΜΒΑΔΑ ΠΙΠΔΩΝ ΣΧΗΜΑΤΩΝ 1 Ορισμοί μβαδόν τετραγώνου 1.3 ΜΒΑΔΑ ΠΙΠΔΩΝ ΣΧΗΜΑΤΩΝ Το εμβαδόν ενός τετραγώνου πλευράς α ισούται µε α. E α α α μβαδόν ορθογωνίου Το εμβαδόν ενός ορθογωνίου µε πλευρές

Διαβάστε περισσότερα