Η έννοια της απόστασης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η έννοια της απόστασης"

Transcript

1 Η έννοια της απόστασης 1 Η απόσταση είναι µια θεµελιώδης έννοια στην πολυµεταβλητή ανάλυση και όχι µόνο για την ανάλυση δεδοµένων. Σκοπός της απόστασης είναι να µετρήσει πόσο απέχουν δύο παρατηρήσεις, να ποσοτικοποιήσει δηλαδή αν µοιάζουν ή όχι οι παρατηρήσεις. 2

2 Ευκλείδια απόσταση Ας υποθέσουµε πως ενδιαφερόµαστε για δύο µεταβλητές το βάρος και το ύψος, δηλαδή για κάθε παρατήρηση έχουµε µετρήσεις για αυτές τις δύο µεταβλητές. Αν συµβολίσουµε τις δύο παρατηρήσεις ως y = (y1, y2) και x = (x1, x2) τότε µια πρώτη προσέγγιση για την επιλογή µιας απόστασης ανάµεσα στις δύο παρατηρήσεις θα ήταν η ευκλείδεια απόσταση 3 Ευκλείδια απόσταση Mπορούµε να γενικεύσουµε γιατην περίπτωση που έχουµε παρατηρήσεις σε p µεταβλητές, δηλαδή y = (y1, y2,,yp) και x = (x1, x2,,xp). Τότεηαπόστασηορίζεταιως 4

3 Παράδειγµα 5 Επίδραση της κλίµακας µέτρησης Ηαπόστασηανάµεσα στον Α και τον C φοιτητή είναι Η ηλικία παίρνει τιµές στο διάστηµα ενώ το βάρος στο διάστηµα και συνεπώς λόγω της διαφοράς κλίµακας η απόσταση καθορίζεται σε ένα πολύ µεγάλο βαθµό από το βάρος. Για παράδειγµα αν το βάρος µετριόταν σε γραµµάρια τότε η διαφορά θα ήταν ακόµα πιοµεγάλη. 6

4 Ιδιότητες Mιλάµε για απόσταση όταν έχουµε µια συνάρτηση που µετρά το πόσο απέχουν (διαφέρουν) µεταξύ τους δύο παρατηρήσεις. Στην πραγµατικότητα µια συνάρτηση f(x, y) είναι απόσταση αν ισχύουν οι παρακάτω ιδιότητες 7 Προβλήµατα µε τις αποστάσεις Στατιστικήήτυπικήαπόσταση Η ευκλείδεια απόσταση ικανοποιεί αυτές τις ιδιότητες αλλά από στατιστική άποψη δεν είναι επαρκής. Για να φέρουµε κάθε µεταβλητή σε συγκρίσιµη κλίµακα διαιρούµε κάθε µεταβλητή µε την τυπική της απόκλιση κι εποµένως αφού όλες οι µεταβλητές πια θα αναφέρονται σε µονάδες τυπικής απόκλισης έχουµε εξαλείψειτο πρόβληµα. 8

5 Στατιστική απόσταση Από στατιστικής άποψης η απόσταση αυτή είναι πιο ενδιαφέρουσα και επιτρέπει πιο καλές συγκρίσεις ανάµεσα στις µεταβλητές. Το µόνο µειονέκτηµα όµως που έχει είναι πως δεν λαµβάνει υπόψη της τις συνδιακυµάνσεις ανάµεσα στις µεταβλητές. Αν δύο µεταβλητές είναι πολύ συσχετισµένες τότε η απόσταση των παρατηρήσεων ουσιαστικά οφείλονται µόνο σε µια από αυτές αφού η άλλη µεταβλητή απλά ακολουθεί την πρώτη εξαιτίας της συσχέτισης. Εποµένως θα ήταν χρήσιµη µια απόσταση που να λάµβανε υπόψη της τις συνδιακυµάνσεις. 9 Απόσταση Mahalanobis Για δύο µεταβλητές: Για p µεταβλητές: Παρατηρείστε ότι αν ο S(συνδιασπ) είναι διαγώνιος τότε η απόσταση Mahalanobis είναι η στατιστική απόσταση! 10

6 Μέτρα απόστασης συνεχών δεδοµένων Ευκλείδεια απόσταση Η ευκλείδεια απόσταση εξαρτάται πολύ από την κλίµακα µέτρησης κι εποµένως αλλάζοντας την κλίµακα µπορούµε να πάρουµε ολότελα διαφορετικές αποστάσεις. Επίσης µεταβλητές µε µεγάλες απόλυτες τιµές έχουν πολύ µεγαλύτερο βάρος και σχεδόν καθορίζουν την απόσταση ανάµεσα σε παρατηρήσεις. 11 Μέτρα απόστασης City-block (Manhattan) distance Η απόσταση Manhattan µοιάζει πολύ µε την ευκλείδεια απόσταση µε τη διαφορά ότι αντί για τετραγωνικές αποκλίσεις χρησιµοποιούµε απόλυτες αποκλίσεις. Συνήθως λόγω της οµοιότητας της µε την ευκλείδεια απόσταση δίνει περίπου ίδια αποτελέσµατα εκτός από την περίπτωση που υπάρχουν outliers όπου επειδή τους δίνει µικρότερο βάρος (εξαιτίας της απόλυτης τιµής) µπορεί να οδηγήσει σε πιο ανθεκτικά αποτελέσµατα. 12

7 Μέτρα απόστασης Απόσταση Minkowski (ή Lq norm) Η απόσταση Minkowski γενικεύει την Ευκλείδεια απόσταση και την απόσταση Manhattan. Η τιµή της παραµέτρου q µπορεί να χρησιµοποιηθεί για να δώσει ιδιαίτερο βάρος σε κάποιες αποκλίσεις. Προφανώς αν q=1 προκύπτει η απόσταση Manhattan ενώ αν q=2 η ευκλείδεια απόσταση. 13 υαδικά δεδοµένα Έστω ότι τα δεδοµένα µας αφορούν µια σειρά από µεταβλητές για κάθε παρατήρηση για τις οποίες έχουµε δυαδική κατάσταση, δηλαδή η τιµή 1 δηλώνει την παρουσία του χαρακτηριστικού και 0 την απουσία. Για παράδειγµα σε ιατρικά δεδοµένα οι µεταβλητές µπορεί να είναι διάφορα συµπτώµατα (η ύπαρξηήόχιαυτών), 14

8 υαδικά δεδοµένα Στην πράξη κατασκευάζουµε έναν πίνακα οµοιότητας s(x, y) ή ανοµοιότητας d(x, y) µε βάση τον οποίο υπολογίζουµε τηναπόσταση. όπου a, b, c, d δηλώνουν το πλήθος των συνδυασµών (1,1) (1,0) (0,1) (0,0) αντίστοιχα. 15 Αποστάσεις χρήσιµες για συµµετρικές δυαδικές µεταβλητές 0 και 1 έχουν την ίδια αξία 16

9 Αποστάσεις χρήσιµες για ασύµµετρες δυαδικές µεταβλητές αν το κελί (0,0) (κοινή απουσία των χαρακτηριστικών) δεν είναι πραγµατικά ενδιαφέρον (πχ σπάνια χαρακτηριστικά) τότε 17 Παράδειγµα Έστω 4 χρήστες του Ιντερνετ. Για κάθε χρήστη έχουµε µια σειρά από ιστοσελίδες και δίνουµε την τιµή 1 αν ο χρήστη επισκέφτηκε την ιστοσελίδα και 0 αν όχι. 18

10 AΝΑΛΥΣΗ ΣΕ ΚΥΡΙΕΣ ΣΥΝΙΣΤΩΣΕΣ 19 20

11 AΝΑΛΥΣΗ ΣΕ ΚΥΡΙΕΣ ΣΥΝΙΣΤΩΣΕΣ Η µέθοδος της Ανάλυσης Κυρίων Συνιστωσών (Principal Components Analysis) είναι µια µέθοδος η οποία έχει σκοπό να δηµιουργήσει γραµµικούς συνδυασµούς των αρχικών µεταβλητών έτσι ώστε: οι γραµµικοί αυτοί συνδυασµοί να είναι ασυσχέτιστοι µεταξύ τους αλλά να περιέχουν όσο γίνεται µεγαλύτερο µέρος της διακύµανσης των αρχικών µεταβλητών. 21 Το κέρδος από µια τέτοια διαδικασία είναι πως: Από ένα σύνολο συσχετισµένων µεταβλητών καταλήγουµε σε ένα σύνολο ασυσχέτιστων µεταβλητών, κάτι το οποίο για ορισµένες στατιστικές µεθόδους είναι περισσότερο χρήσιµο. Αν οι κύριες συνιστώσες που θα προκύψουν µπορούν να ερµηνεύσουν ένα µεγάλο ποσοστό της διακύµανσης τότε αυτό σηµαίνει πως αντί να έχουµε p µεταβλητές όπως είχαµε αρχικά, έχουµε λιγότερες, µε κόστος βέβαια ότι χάνουµε κάποιο (ελπίζουµε µικρό) ποσοστό της συνολικής µεταβλητότητας. 22

12 (συνέχεια) Σε µερικές εφαρµογές αυτό είναι ζωτικής σηµασίας. Π.χ. σε µια τεράστια βάση δεδοµένων αντί να αποθηκεύουµε όλεςτιςµεταβλητές µπορούµε να αποθηκεύουµε µόνο κάποιον αριθµό κυρίων συνιστωσών. Σίγουρα χάνουµε κάποιο µέρος της πληροφορίας αλλά το κέρδος σε χώρο αλλά και ταχύτητα επεξεργασίας µπορεί να είναι τεράστιο. 23 Από την άλλη πλευρά πολλές φορές συµβαίνει να έχουµε λίγες παρατηρήσεις αλλά πολλές µεταβλητές. Τέτοια προβλήµατα π.χ. εµφανίζονται στην αρχαιοµετρία ένα πεδίο εφαρµογής στατιστικών µεθόδων στην αρχαιολογία, όπου τα αντικείµενα που θέλει κάποιος να µελετήσει είναι συνήθως λίγα (π.χ. Αµφορείς της κλασικής περιόδου) αλλά τα στοιχεία και οι µεταβλητές που έχει είναι πάρα πολλά. Η µείωση των διαστάσεων του προβλήµατος φαντάζει η µόνηλύσηγιανα προχωρήσει κανείς σε στατιστική επεξεργασία. 24

13 Ένα άλλο µεγάλο πλεονέκτηµα (το οποίο από την άλλη ίσως είναι και µειονέκτηµα για πολλούς) είναι πως µε τηµέθοδο των κυριών συνιστωσών µπορούµε να εξετάσουµε τις συσχετίσεις ανάµεσα στις µεταβλητές και να διαπιστώσουµε πόσο οι µεταβλητές µοιάζουν ή όχι. Επίσης η µέθοδος µας επιτρέπει να αναγνωρίσουµε δίνοντας ονόµατα στις καινούριες µεταβλητές (τις συνιστώσες) παρατηρώντας ποιες από τις αρχικές µεταβλητές έχουν µεγάλη επίδραση σε αυτές. 25 Αυτό είναι πολύ χρήσιµο σε κάποιες επιστήµες καθώς µας επιτρέπουν να ποσοτικοποιήσουµε µη µετρήσιµες ποσότητες, όπως η περιβαλλοντικές αξίες, πλούτο, ποιότητα κλπ αφηρηµένες έννοιες. Το γεγονός βέβαια πως τέτοιες ερµηνείες εµπεριέχουν σε µεγάλο βαθµό υποκειµενικά κριτήρια έχει οδηγήσει πολλούς στο να κατηγορούν τη µέθοδο και να µην την εµπιστεύονται. 26

14 Έστω ότι έχουµε ένα σύνολο από k µεταβλητές (Χ 1,Χ 2,...,Χ k ) και θέλουµε ναδηµιουργήσουµε τις κύριες συνιστώσες (Υ 1,Υ 2,...,Υ k ) οι οποίες να είναι γραµµικός συνδυασµός των αρχικών µεταβλητών, δηλαδή 27 Σύνοψη Για να κατασκευάσουµε τις κύριες συνιστώσες χρειάζεται να βρούµε τις ιδιοτιµές και τα ιδιοδιανύσµατα του πίνακα S που χρησιµοποιούµε. Η µεγαλύτερη ιδιοτιµή και το ιδιοδιάνυσµα της αντιστοιχούν στην πρώτη κύρια συνιστώσα, η δεύτερη µεγαλύτερη ιδιοτιµή στη δεύτερη κύρια συνιστώσα κλπ. Ηδιακύµανση της κάθε κύριας συνιστώσας είναι ίση µε την ιδιοτιµή που της αντιστοιχεί. Έτσι αν συµβολίσουµε µε λj την j µεγαλύτερη ιδιοτιµή τότε έχουµε πωςvar(yj) = λj. 28

15 Όπως είπαµε και πριν οι κύριες συνιστώσες είναι ασυσχέτιστες µεταξύ τους και άρα ο πίνακας διακύµανσης τους είναι ο διαγώνιος µε διαγώνια στοιχεία τις ιδιοτιµές λj. Ησυνολικήδιακύµανσητωνκύριωνσυνιστωσώνθαείναιη ίδια µε τη συνολική διακύµανση των αρχικών µεταβλητών εξαιτίας των ιδιοτήτων του ίχνους συµµετρικού και τετραγωνικού πίνακα. θα ισχύει tr(s) = tr(λ) και άρα η συνολική διακύµανση διατηρείται. Επίσης η γενικευµένη διακύµανση των κυριών συνιστωσών είναι η ίδια µε τη γενικευµένη διακύµανση των αρχικών µεταβλητών. H ορίζουσα ενός τετραγωνικού πίνακα είναι το γινόµενο των ιδιοτιµών της και άρα ισχύει 29 Συνέχεια σύνοψης (2) Η ποσότητα µας δείχνει το ποσοστό της συνολικής διακύµανσης που εξηγεί η j συνιστώσα. Αν κάποιος πάρει όλες τις συνιστώσες τότε θα διατηρήσει όλη τη διακύµανση, ενώ αν τελικά παραλείψει κάποιες συνιστώσες κάποιο ποσοστό της διακύµανσης θα χαθεί. Προφανώς συµφέρει να διατηρούµε τις πρώτες συνιστώσες που εξηγούν µεγαλύτερο κοµµάτι της διακύµανσης. 30

16 Πίνακας συνδιασπορών ή συσχετίσεων; Ένας τρόπος να ξεπεράσουµε τις κακές ιδιότητες της ανάλυσης σε κύριες συνιστώσες στον πίνακα διακύµανσης (µεγάλες διαφορές διασποράς) είναι να χρησιµοποιήσουµε τον πίνακα συσχετίσεων. Οι συσχετίσεις δεν αλλάζουν όταν αλλάξουν οι µονάδες µέτρησης ή η κλίµακα. Επίσης στην ουσία δίνουν ίδιο βάρος σε όλες τις µεταβλητές καθώς όλα τα στοιχεία της διαγωνίου είναι 1, και άρα τα προβλήµατα που δηµιουργούσε ο πίνακας διακύµανσης µπορούν να ξεπεραστούν. Από την άλλη πλευρά, η γενικευµένη χρήση του πίνακα συσχετίσεων δεν ενδείκνυται καθώς η διαφορά στις διακυµάνσεις ενδέχεται να περιέχει πληροφορία πολύτιµη για το θέµα που εξετάζουµε. Ίσως κάποιες µεταβλητές να πρέπει να θεωρηθούν πως έχουν µεγαλύτερο βάρος εξαιτίας της και εποµένως θέτοντας όλες τις µεταβλητές να έχουν το ίδιο βάρος χάνουµε χρήσιµη πληροφορία. 31 Πίνακας συνδιασπορών ή συσχετίσεων; (2) Στην πράξη δεν είναι ξεκάθαρο ποιόν από τους δύο πίνακες πρέπει να χρησιµοποιούµε. Μια καλή στρατηγική είναι να αποφεύγουµε τονπίνακα διακύµανσηςότανυπάρχουνκάποιεςµεταβλητές µε πολύµεγαλύτερη διακύµανση από ότι οι υπόλοιπες. Αν οι διακυµάνσεις διαφέρουν µεν αλλά είναι συγκρίσιµες (π.χ. αναφέρονται σε ίδιες µονάδες) τότε καλό είναι να χρησιµοποιούµε αυτήτην πληροφορία. Εναλλακτικά θα µπορούσε κανείς να µετασχηµατίσει τα δεδοµένα του ώστε να κάνει τις διακυµάνσεις συγκρίσιµες. 32

17 Βήµατα της Ανάλυσης Σε Κύριες Συνιστώσες Έλεγχος συσχετίσεων Άσχετα µε το αν θα χρησιµοποιήσουµε τον πίνακα διακύµανσης ή τον πίνακα συσχετίσεων είναι σκόπιµο να ρίξουµε µια µατιά στον πίνακα συσχετίσεων και να δούµε ανοι αρχικές µας µεταβλητές έχουν συσχετίσεις ή όχι (αυτό γίνεται κυρίως γιατί από τον πίνακα διακύµανσης δεν είναι εύκολο να δούµε την ύπαρξη συσχετίσεων). Αν δεν υπάρχουν συσχετίσεις είναι άσκοπο να συνεχίσουµε. Μεταβλητές που εµφανίζονται ασυσχέτιστες µε τις υπόλοιπες πρέπει να τις διώξουµε απότηνανάλυση. Γιαναείναιόµως οι συσχετίσεις ικανοποιητικές για να προχωρήσουµε σε ανάλυση σε κύριες συνιστώσες, θέλουµε να είναι της τάξης του 0.4 ή και µεγαλύτερες σε απόλυτη τιµή. 33 Επιλογή πίνακα που θα δουλέψουµε Μπορούµε ναχρησιµοποιήσουµε τονπίνακα διακύµανσης ή τον πίνακα συσχετίσεων. Είδαµε προηγουµένως πως επιλέγουµε καιµε ποια κριτήρια. Τα αποτελέσµατα θα διαφέρουν ανάλογα µε τον πίνακα που θα επιλέξουµε για αυτό η επιλογή είναι βασική για την αξιοποίηση των αποτελεσµάτων που θα προκύψουν. 34

18 Υπολογισµός ιδιοτιµών και ιδιοδιανυσµάτων Ανάλογα µε τον πίνακα που διαλέξαµε να στηρίξουµε την ανάλυση, υπολογίζουµε τις ιδιοτιµές και τα ιδιοδιανύσµατα. Τα ιδιοδιανύσµατα που δίνουν τα στατιστικά πακέτα είναι κανονικοποιηµένα, δηλαδή το άθροισµα τετραγώνων τους είναι 1 και δεν είναι µοναδικά από την άποψη πως µπορούµε να τους αλλάξουµε πρόσηµο σε όλα τα στοιχεία τους. Συνεπώς η λύση από στατιστικό πακέτο σε στατιστικό πακέτο µπορεί να διαφέρει ως προς τα πρόσηµα. 35 Απόφαση για τον αριθµό των συνιστωσών που θα κρατήσουµε Ίσως το πιο σηµαντικό κοµµάτι της ανάλυσης το οποίο δυστυχώς δεν έχει εύκολη και κοινώς αποδεκτή απάντηση. Κατ' αρχάς να διευκρινίσουµε πως επιλέγοντας λιγότερες κύριες συνιστώσες από όσες µεταβλητές είχαµε αρχικά, χάνουµε αναγκαστικά πληροφορία. Αυτό είναι το κόστος για το κέρδος µας να µειώσουµε τις διαστάσεις του προβλήµατος. Συνήθως λοιπόν ενδιαφερόµαστε για κάποιον µικρότερο αριθµό συνιστωσών. Πόσες όµως; Στη βιβλιογραφία υπάρχουν πολλά κριτήρια τα οποία θα προσπαθήσουµε να περιγράψουµε. 36

19 Ποσοστό συνολικής διακύµανσης που εξηγούν οι συνιστώσες. Σύµφωνα µε αυτότοκριτήριοβάζουµε κάποιοόριο (π.χ. 80%) και διαλέγουµε τόσες συνιστώσες ώστε αθροιστικά να εξηγούν µεγαλύτερο ποσοστό από το στόχο που βάλαµε. Είναι πολύ απλό και εύκολο να το χρησιµοποιήσουµε αλλά δυστυχώς στην πράξη δεν δίνει τα καλύτερα αποτελέσµατα, ιδίως αν ο στόχος είναι αρκετά υψηλός. Επίσης δεν είναι ξεκάθαρο ποιο ποσοστό της διακύµανσης πρέπει να βάλουµε σανστόχο. 37 Κριτήριο του Kaiser Έστω λj οι ιδιοτιµές µας. Το κριτήριο αυτό λεει να πάρουµε τόσες ιδιοτιµές όσες είναι µεγαλύτερες από δηλαδή µεγαλύτερες από τη µέση τιµή των ιδιοτιµών. Στην περίπτωση που δουλεύουµε µε πίνακα συσχετίσεων ισχύει ότι η µέση τιµή τωνλj= 1.και άρα διαλέγουµε τόσες συνιστώσες όσεςκαιοιιδιοτιµές µεγαλύτερες της µονάδας. Το κριτήριο στηρίζεται στην εξής απλή υπόθεση. Αν οι µεταβλητές είναι ασυσχέτιστες και άρα δεν υπάρχει καµιά δοµή στα δεδοµένα, τότε ο πίνακας συσχετίσεων είναι ο µοναδιαίος και όλες οι ιδιοτιµές είναι ίσες µε 1 (δουλεύουµε µε πίνακασυσχέτισης). Εποµένως κάθε ιδιοτιµή µεγαλύτερη της µονάδας δείχνει την παρουσία κάποιας δοµής στα δεδοµένα µας. Το κριτήριο συνήθως υπερεκτιµά τοναριθµό των συνιστωσών που χρειάζονται. 38

20 Ποσοστό της διακύµανσης των αρχικών µεταβλητών που ερµηνεύεται. Όπως είδαµε πριν αν διατηρήσουµε k συνιστώσες χάνουµε κάποιο µέρος από την πληροφορία κάθε µεταβλητής και µπορούµε ναβρούµε καιτο ποσοστό της διακύµανσης που θα ερµηνεύσουµε τελικά. Το κριτήριο αυτό διαλέγει τόσες συνιστώσες ώστε να ερµηνεύεται για κάθε µεταβλητή ένα υψηλό ποσοστό τουλάχιστον. Και πάλι το ποιο είναι αυτό το ποσοστό είναι υποκειµενικό. Επίσης µπορεί κάποια µεταβλητή να µην ερµηνεύεται σωστά και αυτό να οδηγήσει σε µεγάλο αριθµό συνιστωσών 39 Scree plot Το scree plot είναι ένα γράφηµα που έχει στον οριζόντιο άξονα των x τη σειρά και στον κάθετο άξονα των y την τιµή της κάθε ιδιοτιµής. Το κριτήριο αυτό προτείνει να πάρουµε τόσες συνιστώσες µέχρι το γράφηµα να αρχίσει να γίνεται περίπου επίπεδο, στην ουσία µέχρι να διαπιστώσουµε ότι αρχίζει να αλλάζει η κλίση. 40

21 Προβλήµατα µε τοscree plot! 41 Εύρεση των συνιστωσών Αυτό αποτελεί το πιο εύκολο ίσως κοµµάτι, ιδιαίτερα στις µέρες µας που όλη τη δουλειά την κάνει ο υπολογιστής. Αρκεί να βρούµε τις ιδιοτιµές και τα ιδιοδιανύσµατα του πίνακα που επιλέξαµε για την ανάλυση, σύµφωνα µε τηφασµατική ανάλυση που είδαµε πριν. 42

22 Ερµηνεία των συνιστωσών Αυτό το κοµµάτι ίσως είναι από τα πιο δύσκολα της ανάλυσης και έχει κατηγορηθεί από πολλούς συγγραφείς. Αφού λοιπόν έχουµε κατασκευάσει τις συνιστώσες πρέπει να προσπαθήσουµε να τους δώσουµε κάποιαερµηνεία, ιδιαίτερα στις πρώτες. Αυτό εξυπηρετεί τους σκοπούς της ανάλυσης καθώς ερµηνεύει τις συσχετίσεις ανάµεσα στις µεταβλητές µας αλλά και αν όλα πάνε καλά µπορούµε να ποσοτικοποιήσουµε κάποιεςµη ποσοτικές µεταβλητές. Το τελευταίο είναι ιδιαίτερα χρήσιµο σεδιάφορες επιστήµες όπως το περιβάλλον, την ψυχολογία και το marketing. 43 ηµιουργία νέων µεταβλητών Όπως είπαµε οι κύριες συνιστώσες είναι καινούριες µεταβλητές µε κάποιες καλές ιδιότητες. Το ενδιαφέρον είναι πως µπορούµε γιακάθε παρατήρηση να δηµιουργήσουµε τόσεςνέες µεταβλητές όσες και οι κύριες συνιστώσες που αποφασίσαµε να διατηρήσουµε, µε σκοπό να χρησιµοποιήσουµε τις κύριες συνιστώσες για περαιτέρω στατιστική ανάλυση. Για να γίνει αυτό αρκεί να αντικαταστήσουµε στον τύπο της κάθε συνιστώσας τις τιµές που η παρατήρηση είχε για κάθε µεταβλητή. 44

23 Μερικά Χρήσιµα Αποτελέσµατα Αν µια µεταβλητή είναι ασυσχέτιστη µε τις υπόλοιπες καλό είναι να την αφαιρέσουµε απότηνανάλυση, αφού αν παραµείνεικάποιααπότιςκύριεςσυνιστώσεςθα ταυτιστεί µαζί της. Όταν δουλεύουµε µε δεδοµένα αυτό σηµαίνει πως δεν έχει στατιστικά σηµαντικές συσχετίσεις µε τις υπόλοιπες και συνεπώς δεν έχει νόηµα νατην συµπεριλάβουµε στηνανάλυση. Αν δύο ιδιοτιµές προκύψουν ίδιες τότε αυτές αντιστοιχούν σε δύο όµοιες κύριες συνιστώσες κάτι που οδηγεί σε πλεονασµό. Φυσικά στην πράξη κάτι τέτοιο είναι σπάνιο. Αν λοιπόν συµβεί πρέπει να δούµε τα δεδοµένα µας µήπως υπάρχει κάποιο πρόβληµα (π.χ. στήλες που επαναλαµβάνονται). 45 Μερικά Χρήσιµα Αποτελέσµατα (2) Αν έχουµε µηδενικές ιδιοτιµές αυτό σηµαίνει πως ο πίνακας που στηρίξαµε την ανάλυση δεν είναι πλήρους βαθµού και άρα κάποιες µεταβλητές είναι γραµµικά εξαρτηµένες και πρέπει να τις διώξουµε. Στην πράξη δεν θα συναντήσουµε µηδενικές ιδιοτιµές αλλά πολύ µικρές, κοντά στο µηδέν, ιδιοτιµές. Αυτό υπονοεί ότι κάποιες µεταβλητές είναι σχεδόν γραµµικά εξαρτηµένες. Αν αναλογιστεί κανείς πως τέτοιες ιδιοτιµές αντιστοιχούν σε συνιστώσες µε σχεδόν µηδενική διακύµανση µπορούµε να τις αγνοήσουµε. ηλαδή στην πράξη αφού δύο µεταβλητές θα παρέχουν την ίδια πληροφορία, όλη η πληροφορία θα πάει σε κάποια από τις πρώτες κύριες συνιστώσες και ότι µείνει θα πάει σε µια συνιστώσα µε αµελητέα διακύµανση. 46

24 Χρήση των Κυρίων Συνιστωσών Γενικά είναι δύσκολο κανείς να αναπαραστήσει γραφικά πολυδιάστατα δεδοµένα. Αν λοιπόν αντί για τα αρχικά δεδοµένα αναπαραστήσει γραφικά τις πρώτες κύριες συνιστώσες που ερµηνεύουν µεγάλο κοµµάτι της µεταβλητότητας των δεδοµένων επιτυγχάνει µια αξιόλογη οπτική παρουσίαση των δεδοµένων Κοιτάζοντας τα σκορ των παρατηρήσεων στις κύριες συνιστώσες είναι µερικές φορές εύκολο να αποκτήσει κανείς µια ιδέα πως οµαδοποιούνται οι παρατηρήσεις. Αυτό έχει σχέση και µε την ευκολότερη γραφική αναπαράσταση των δεδοµένων που αναφέρθηκε αµέσως πριν. 47 Χρήση των Κυρίων Συνιστωσών (2) Data mining. Ένας καινούριος επιστηµονικός τοµέας που συνδυάζει την πληροφορική µε τη στατιστική είναι το λεγόµενο data mining (εξόρυξη γνώσης). Η ιδέαείναιπωςθαµπορέσουµε να εξάγουµε γνώση από τεράστιες βάσεις δεδοµένων (όπως είναι πια οι βάσεις δεδοµένων µεγάλων εταιρειών και οργανισµών - EUROSTAT). Από στατιστικής πλευράς ενδιαφερόµαστε στον να συµπυκνώσουµε την πληροφορία σε όσο γίνεται λιγότερες διαστάσεις και αυτό ακριβώς προσφέρει η ανάλυση σε κύριες συνιστώσες. 48

25 Χρήση των Κυρίων Συνιστωσών (3) Έλεγχος ποιότητας. Αν κάποιος παρατηρεί µια πληθώρα χαρακτηριστικών ενός προϊόντος µε τη χρήση διαγραµµάτων ποιοτικού ελέγχου, είναι σχετικά δύσκολο να βρει πότε το προϊόν έχει βγει εκτός ελέγχου παρακολουθώντας τα πολλά επιµέρους χαρακτηριστικά. Αν όµως συµπυκνώσει την πληροφορία σε κάποιες κύριες συνιστώσες αυτόµαταηδουλειάαυτήγίνεται πιο εύκολη. 49

Παρίσης Νικόλαος (Αριθµός Μητρώου: 2029)

Παρίσης Νικόλαος (Αριθµός Μητρώου: 2029) Πανεπιστήµιο Ιωαννίνων Τµήµα Χηµείας Τοµέας Ανόργανης & Αναλυτικής Χηµείας ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Παρίσης Νικόλαος (Αριθµός Μητρώου: 09) ΙΑΚΡΙΣΗ ΜΕΛΑΝΙΩΝ ΑΠΟ ΣΤΥΛΟ ΙΑΡΚΕΙΑΣ ΜΕ ΦΑΣΜΑΤΟΦΩΤΟΜΕΤΡΙΚΗ ΜΕΘΟ Ο ΚΑΙ ΧΗΜΕΙΟΜΕΤΡΙΑ

Διαβάστε περισσότερα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει

Διαβάστε περισσότερα

Ανάλυση κατά Συστάδες. Cluster analysis

Ανάλυση κατά Συστάδες. Cluster analysis Ανάλυση κατά Συστάδες Cluster analysis 1 H ανάλυση κατά συστάδες είναι µια µέθοδος που σκοπό έχει να κατατάξει σε οµάδες τις υπάρχουσες παρατηρήσεις χρησιµοποιώντας την πληροφορία που υπάρχει σε κάποιες

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2004 Μάθηµα Βραχείας ιάρκειας: Η Στατιστική στον 2 ο αιώνα ιδάσκων: Ιωάννης Πανάρετος Καθηγητής Οικονοµικού Πανεπιστηµίου Αθηνών K- Nearest

Διαβάστε περισσότερα

) = a ο αριθµός των µηχανών n ο αριθµός των δειγµάτων που παίρνω από κάθε µηχανή

) = a ο αριθµός των µηχανών n ο αριθµός των δειγµάτων που παίρνω από κάθε µηχανή Ανάλυση Συνδιακύµανσης Alsis of Covrice Η ανάλυση συνδιακύµανσης είναι µία άλλη τεχνική για να βελτιώσουµε την ακρίβεια της προσέγγισης του µοντέλου µας στο πείραµα. Ας υποθέσουµε ότι σ ένα πείραµα εκτός

Διαβάστε περισσότερα

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn)

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn) MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ g( Έστω τυχαίες µεταβλητές οι οποίες έχουν κάποια από κοινού κατανοµή Ας υποθέσουµε ότι επιθυµούµε να προσδιορίσουµε την κατανοµή της τυχαίας µεταβλητής g( Η θεωρία των ένα-προς-ένα

Διαβάστε περισσότερα

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50 Αριθµητική Γραµµική Αλγεβρα Κεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ΕΚΠΑ 2 Απριλίου 205 Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205

Διαβάστε περισσότερα

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

Αριθµητική Ανάλυση 1 εκεµβρίου / 43 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 1 / 43 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι

Διαβάστε περισσότερα

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

Κίνηση στερεών σωμάτων - περιστροφική

Κίνηση στερεών σωμάτων - περιστροφική Κίνηση στερεών σωμάτων - περιστροφική ΦΥΣ 211 - Διαλ.29 1 q Ενδιαφέρουσα κίνηση: Ø Αρκετά περίπλοκη Ø Δεν καταλήγει σε κίνηση ενός βαθµού ελευθερίας q Τι είναι το στερεό σώµα: Ø Συλλογή υλικών σηµείων

Διαβάστε περισσότερα

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα).

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

Περιβαλλοντική Στατιστική

Περιβαλλοντική Στατιστική Περιβαλλοντική Στατιστική ηµήτρης Λέκκας Τµήµα Στατιστικής και Αναλογιστικών Χρηµατοοικονοµικών Μαθηµατικών Περιγραφή Παρουσιάζονται τα κύρια θέµατα του µαθήµατος και αναλύονται τα προβλήµατα κατά την

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

[ ] και το διάνυσµα των συντελεστών:

[ ] και το διάνυσµα των συντελεστών: Μηχανική ΙΙ Τµήµα Ιωάννου-Απόστολάτου 8 Μαϊου 2001 Εσωτερικά γινόµενα διανυσµάτων µέτρο διανύσµατος- ορθογώνια διανύσµατα Έστω ένας διανυσµατικός χώρος V, στο πεδίο των µιγαδικών αριθµών Τα στοιχεία του

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Άσκηση 1. Έστω ότι η συνάρτηση f: R R είναι γνησίως αύξουσα στο R και η γραφική της παράσταση τέµνει τον άξονα y y στο. Να λύσετε την ανίσωση: f(x 9)

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

T (K) m 2 /m

T (K) m 2 /m Ορθοί και λανθασµένοι τρόποι απεικονίσεως δεδοµένων σε διάγραµµα Από µετρήσεις σηµείου ζέσεως σειράς διαλυµάτων προκύπτουν τα εξής δεδοµένα: m /m.5..5..5.55.. Σύµφωνα µε την θεωρία τα δεδοµένα πρέπει να

Διαβάστε περισσότερα

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis)

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η μέθοδος PCA (Ανάλυση Κύριων Συνιστωσών), αποτελεί μία γραμμική μέθοδο συμπίεσης Δεδομένων η οποία συνίσταται από τον επαναπροσδιορισμό των συντεταγμένων ενός

Διαβάστε περισσότερα

( x) (( ) ( )) ( ) ( ) ψ = 0 (1)

( x) (( ) ( )) ( ) ( ) ψ = 0 (1) ΚΑΤΑΣΤΑΣΕΙΣ ΕΛΑΧΙΣΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΘΕΣΗΣ ΟΡΜΗΣ ΣΤΗΝ ΑΝΑΠΑΡΑΣΤΑΣΗ ΘΕΣΗΣ Στην προηγούµενη ανάρτηση, δείξαµε ότι η κατάσταση είναι κατάσταση ελάχιστης αβεβαιότητας των µη µετατιθέµενων ερµιτιανών τελεστών

Διαβάστε περισσότερα

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι: Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του

Διαβάστε περισσότερα

Kεφάλαιο 10. Πόσα υποπαίγνια υπάρχουν εδώ πέρα; 2 υποπαίγνια.

Kεφάλαιο 10. Πόσα υποπαίγνια υπάρχουν εδώ πέρα; 2 υποπαίγνια. Kεφάλαιο 10 Θα δούµε ένα δύο παραδείγµατα να ορίσουµε/ µετρήσουµε τα υποπαίγνια και µετά θα λύσουµε και να βρούµε αυτό που λέγεται τέλεια κατά Nash ισορροπία. Εδώ θα δούµε ένα παίγνιο όπου έχουµε µια επιχείρηση

Διαβάστε περισσότερα

ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί)

ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί) ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί) Α. Ερωτήσεις πολλαπλών επιλογών.(11 βαθµοί) (1:3 βαθµοί, 2-9:8 βαθµοί) 1. ίνεται ο πίνακας: Χ

Διαβάστε περισσότερα

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone Hµέθοδος Stepping Stoneείναι µία επαναληπτική διαδικασία για τον προσδιορισµό της βέλτιστης λύσης σε ένα πρόβληµα µεταφοράς.

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΔΕΥΤΕΡΟ - Διανύσματα - Πράξεις με πίνακες - Διαφορικός λογισμός (1D) ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ

Διαβάστε περισσότερα

3.9 Πίνακας συνδιακύμανσης των παραμέτρων

3.9 Πίνακας συνδιακύμανσης των παραμέτρων Στην περίπτωσή µας έχοµε p= 1περιορισµό της µορφής : που γράφεται ως : ' = m + m z ' (3.47) 1 m Fm 1 = [1 z '] = [ '] = h m. (3.48) Η εξίσωση 3.46 στην περίπτωση αυτή χρησιµοποιώντας τους πίνακες που είδαµε

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ 6.1 Εισαγωγή Σε πολλές στατιστικές εφαρµογές συναντάται το πρόβληµα της µελέτης της σχέσης δυο ή περισσότερων τυχαίων µεταβλητών. Η σχέση

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 6: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:

Διαβάστε περισσότερα

Γενικές Παρατηρήσεις για τις Εργαστηριακές Ασκήσεις Φυσικοχηµείας

Γενικές Παρατηρήσεις για τις Εργαστηριακές Ασκήσεις Φυσικοχηµείας Γενικές Παρατηρήσεις για τις Εργαστηριακές Ασκήσεις Φυσικοχηµείας Σκοπός των ασκήσεων είναι η κατανόηση φυσικών φαινοµένων και µεγεθών και η µέτρησή τους. Η κατανόηση αρχίζει µε την µελέτη των σηµειώσεων,

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Ανάλυση Κύριων Συνιστωσών και Εφαρμογές σε Πραγματικά Σεισμολογικά Δεδομένα Διπλωματική εργασία της Βασιλικής Τακτικού Επιβλέπων:

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii018/laii018html ευτέρα 3 Απριλίου 018 Αν C = x

Διαβάστε περισσότερα

4 k 2 = 2 ( 1+ 2 k 2. k 2 2 k= k 2. 1.ii) Αν σχηµατίσουµε τον πίνακα µε γραµµές τα δύο διανύσµατα έχουµε: Γ1 Γ1 ---> { }

4 k 2 = 2 ( 1+ 2 k 2. k 2 2 k= k 2. 1.ii) Αν σχηµατίσουµε τον πίνακα µε γραµµές τα δύο διανύσµατα έχουµε: Γ1 Γ1 ---> { } http://elearn.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 8-9: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ 4. Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα Εστω R είναι ο γνωστός -διάστατος πραγµατικός διανυσµατικός χώρος. Μία απεικόνιση L :

Διαβάστε περισσότερα

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους. Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει

Διαβάστε περισσότερα

11ο Πανελλήνιο Συνέδριο της ΕΕΦ, Λάρισα 30-31/03, 1-2/04/2006. Πρακτικά Συνεδρίου

11ο Πανελλήνιο Συνέδριο της ΕΕΦ, Λάρισα 30-31/03, 1-2/04/2006. Πρακτικά Συνεδρίου ο Πανελλήνιο Συνέδριο της ΕΕΦ, Λάρισα 30-3/03, -/04/006. Πρακτικά Συνεδρίου Έµµεσες µετρήσεις φυσικών µεγεθών. Παράδειγµα: Ο πειραµατικός υπολογισµός του g µέσω της µέτρησης του χρόνου των αιωρήσεων απλού

Διαβάστε περισσότερα

Πρακτική µε στοιχεία στατιστικής ανάλυσης

Πρακτική µε στοιχεία στατιστικής ανάλυσης Πρακτική µε στοιχεία στατιστικής ανάλυσης 1. Για να υπολογίσουµε µια ποσότητα q = x 2 y xy 2, µετρήσαµε τα µεγέθη x και y και βρήκαµε x = 3.0 ± 0.1και y = 2.0 ± 0.1. Να βρεθεί η ποσότητα q και η αβεβαιότητά

Διαβάστε περισσότερα

Μικροοικονοµική Θεωρία. Συνάρτηση και καµπύλη κόστους. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 22 Σεπτεµβρίου 2014

Μικροοικονοµική Θεωρία. Συνάρτηση και καµπύλη κόστους. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 22 Σεπτεµβρίου 2014 Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 22 Σεπτεµβρίου 2014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 22 Σεπτεµβρίου 2014 1 / 49 Συνάρτηση και καµπύλη κόστους Πολύ χρήσιµες

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος;

Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος; Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος; Για να εξετάσουµε το κύκλωµα LC µε διδακτική συνέπεια νοµίζω ότι θα πρέπει να τηρήσουµε τους ορισµούς που δώσαµε στα παιδιά στη Β Λυκείου. Ας ξεκινήσουµε

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Συσχέτιση (Correlation) - Copulas

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Συσχέτιση (Correlation) - Copulas ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ Συσχέτιση (Correlation) - Copulas Σημασία της μέτρησης της συσχέτισης Έστω μία εταιρεία που είναι εκτεθειμένη σε δύο μεταβλητές της αγοράς. Πιθανή αύξηση των 2 μεταβλητών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 7 Ιανουαρίου 2005 ιάρκεια εξέτασης: 5:00-8:00 Έστω ότι

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΜΕΛΕΤΗ ΑΠΟ ΟΣΗΣ ΚΑΙ ΕΠΙΤΥΧΙΑΣ ΗΜΕΡΗΣΙΩΝ ΗΜΟΣΙΩΝ ΚΑΙ Ι ΙΩΤΙΚΩΝ ΛΥΚΕΙΩΝ ΕΙΣΑΓΩΓΗ

ΚΕΦΑΛΑΙΟ 3 ΜΕΛΕΤΗ ΑΠΟ ΟΣΗΣ ΚΑΙ ΕΠΙΤΥΧΙΑΣ ΗΜΕΡΗΣΙΩΝ ΗΜΟΣΙΩΝ ΚΑΙ Ι ΙΩΤΙΚΩΝ ΛΥΚΕΙΩΝ ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 3 ΜΕΛΕΤΗ ΑΠΟ ΟΣΗΣ ΚΑΙ ΕΠΙΤΥΧΙΑΣ ΗΜΕΡΗΣΙΩΝ ΗΜΟΣΙΩΝ ΚΑΙ Ι ΙΩΤΙΚΩΝ ΛΥΚΕΙΩΝ ΕΙΣΑΓΩΓΗ Στο κεφάλαιο αυτό θα εξετάσουµε την απόδοση και την επιτυχία των υποψηφίων η µερησίων δηµοσίων και ιδιωτικών λυκείων

Διαβάστε περισσότερα

ΕΠΙΤΑΧΥΝΣΗ- ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ

ΕΠΙΤΑΧΥΝΣΗ- ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ ΕΠΙΤΑΧΥΝΣΗ- ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Η ταχύτητα συνήθως δεν παραµένει σταθερή Ας υποθέσουµε ότι ένα αυτοκίνητο κινείται σε ευθύγραµµο δρόµο µε ταχύτητα k 36. Ο δρόµος είναι ανοιχτός και ο οδηγός αποφασίζει

Διαβάστε περισσότερα

Ζητήματα ηήμ με τα δεδομένα

Ζητήματα ηήμ με τα δεδομένα Ζητήματα ηήμ με τα δεδομένα Ποιότητα Απαλοιφή θορύβου Εντοπισμός ανωμαλιών λώ Ελλιπείς τιμές Μετασχηματισμός Κβάντωση Μείωση μεγέθους Γραμμών: ειγματοληψία Στηλών: Ιδιοδιανύσματα, Επιλογή χαρακτηριστικών

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΕ ΚΥΡΙΕΣ ΣΥΝΙΣΤΩΣΕΣ Α.Κ.Σ.

ΑΝΑΛΥΣΗ ΣΕ ΚΥΡΙΕΣ ΣΥΝΙΣΤΩΣΕΣ Α.Κ.Σ. ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΑΝΑΛΥΣΗ ΣΕ ΚΥΡΙΕΣ ΣΥΝΙΣΤΩΣΕΣ Α.Κ.Σ. Μ-Ν ΝΤΥΚΕΝ Ορισμός Σκοπός της Α.Κ.Σ. Η Α.Κ.Σ. εντάσσεται στις μεθόδους διερευνητικής ανάλυσης (exploratory) συνθετικών φαινόμενων (Παραγοντικές μεθόδοι).

Διαβάστε περισσότερα

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1 Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo Για συνάρτηση μιας

Διαβάστε περισσότερα

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii9/laii9html Παρασκευή 9 Μαρτίου 9 Ασκηση Εστω (E,,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ Τα κάτωθι προβλήµατα προέρχονται από τα κεφάλαια, και του συγγράµµατος «Γραµµική Άλγεβρα». Η ηµεροµηνία παράδοσης

Διαβάστε περισσότερα

Κεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα

Κεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα Σελίδα από 5 Κεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα 9. Ορισµοί... 9. Ιδιότητες...7 9. Θεώρηµα Cayley-Hamilto...4 9.. Εφαρµογές του Θεωρήµατος Cayley-Hamilto...6 9.4 Ελάχιστο Πολυώνυµο...5 Ασκήσεις του

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 4 Ιουνίου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Οι πρώτες δύο ασκήσεις αναφέρονται στις έννοιες γραµµική ανεξαρτησία, γραµµικός

Διαβάστε περισσότερα

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1 Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Για συνάρτηση μιας

Διαβάστε περισσότερα

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

1.4 Λύσεις αντιστρόφων προβλημάτων.

1.4 Λύσεις αντιστρόφων προβλημάτων. .4 Λύσεις αντιστρόφων προβλημάτων. Ο τρόπος παρουσίασης της λύσης ενός αντίστροφου προβλήµατος µπορεί να διαφέρει ανάλογα µε τη «φιλοσοφία» επίλυσης που ακολουθείται και τη δυνατότητα παροχής πρόσθετης

Διαβάστε περισσότερα

x 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3

x 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 008-9 ΛΥΣΕΙΣ = 1 (Ι) Να ϐρεθεί ο αντίστροφος του πίνακα 6 40 1 0 A 4 1 1 1 (ΙΙ) Εστω b 1, b, b 3 στο R Να λύθεί το σύστηµα x = b 1 x 1 + 4x + x 3 = b x 1 + x + x

Διαβάστε περισσότερα

' ' ' ' ' ' ' e G G G G. G M ' ' ' ' G '

' ' ' ' ' ' ' e G G G G. G M ' ' ' ' G ' µετασχηµατισµό τέτοιο ώστε επιδρώντας στο λάθος πρόβλεψης e, ( e = e) να οδηγεί σε ελαχιστοποίηση του E = e e όταν ελαχιστοποιείται το Ε, να µετασχηµατίζει τον πίνακα G στον πίνακα G που να έχει άνω τριγωνική

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα

(1) (3) x a. Από την (3) βλέπουµε ότι η ( ) τυχαία συνοχική κατάσταση ενός αρµονικού ταλαντωτή µε κλίµακα µήκους a. â a, θα είναι,

(1) (3) x a. Από την (3) βλέπουµε ότι η ( ) τυχαία συνοχική κατάσταση ενός αρµονικού ταλαντωτή µε κλίµακα µήκους a. â a, θα είναι, Είναι i x 4 ( x ) ψ( x; ) e e () π Έστω () Τότε η () γράφεται ψ ( ; ) i x 4 ( x ) x e e (3) π είναι µια συνοχική κατάσταση µάλιστα µια Από την (3) βλέπουµε ότι η ( ) τυχαία συνοχική κατάσταση ενός αρµονικού

Διαβάστε περισσότερα

Η γραφική απεικόνιση µιας κατανοµής συχνότητας µπορεί να γίνει µε δύο τρόπους, µε ιστόγραµµα και µε πολυγωνική γραµµή.

Η γραφική απεικόνιση µιας κατανοµής συχνότητας µπορεί να γίνει µε δύο τρόπους, µε ιστόγραµµα και µε πολυγωνική γραµµή. ΠΕΜΠΤΟ ΠΑΚΕΤΟ ΣΗΜΕΙΩΣΕΩΝ ΣΤΑΤΙΣΤΙΚΑ ΙΑΓΡΑΜΜΑΤΑ Χρησιµότητα των διαγραµµάτων Η παρουσίαση των στατιστικών στοιχείων µπορεί να γίνει όχι µόνο µε πίνακες, αλλά και µε διαγράµµατα ή γραφικές απεικονίσεις.

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ Μετά από την εκτίµηση των παραµέτρων ενός προσοµοιώµατος, πρέπει να ελέγχουµε την αλήθεια της υποθέσεως που κάναµε. Είναι ορθή η υπόθεση που κάναµε? Βεβαίως συνήθως υπάρχουν

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β) Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε

Διαβάστε περισσότερα

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ Ιουλίου 0 Θέμα α) (Μον.6) Να βρεθεί η τιμή του πραγματικού

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΙΑ ΓΕΝΙΚΗΣ ΙΣΟΡΡΟΠΙΑΣ ΧΡΗΣΕΩΝ ΓΗΣ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΙΑ ΓΕΝΙΚΗΣ ΙΣΟΡΡΟΠΙΑΣ ΧΡΗΣΕΩΝ ΓΗΣ ΚΕΦΑΛΑΙΟ 8 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΙΑ ΓΕΝΙΚΗΣ ΙΣΟΡΡΟΠΙΑΣ ΧΡΗΣΕΩΝ ΓΗΣ Όταν εξετάζουµε µία συγκεκριµένη αγορά, πχ. την αστική αγορά εργασίας, η ανάλυση αυτή ονοµάζεται µερικής ισορροπίας. Όταν η ανάλυση µας περιλαµβάνει

Διαβάστε περισσότερα

Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς

Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη, 2014-2015 Εµπειρικές Στατιστικές

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚH Ι (ΠΛΗ ) ΕΡΓΑΣΙΑ 6 - ΛΥΣΕΙΣ Άσκηση. (6 µον.) Ελέγξτε ποια από τα επόµενα σύνολα είναι διανυσµατικοί χώροι

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 16/5/2000 Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Στη Χαµιλτονιανή θεώρηση η κατάσταση του συστήµατος προσδιορίζεται κάθε στιγµή από ένα και µόνο σηµείο

Διαβάστε περισσότερα

Εξαγωγή κανόνων από αριθµητικά δεδοµένα

Εξαγωγή κανόνων από αριθµητικά δεδοµένα Εξαγωγή κανόνων από αριθµητικά δεδοµένα Συχνά το σύστηµα που θέλουµε να µοντελοποιήσουµε η να ελέγξουµε αντιµετωπίζεται ως µαύρο κουτί και η πληροφορία για τη λειτουργία του διατίθεται υπό µορφή ζευγών

Διαβάστε περισσότερα

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα Συστήματα με Ν βαθμούς ελευθερίας ΦΥΣ 211 - Διαλ.25 1 Ø Συστήµατα µε Ν βαθµούς ελευθερίας που βρίσκονται κοντά σε µια θέση ισσορροπίας τους συµπεριφέρονται σαν Ν ανεξάρτητοι αρµονικοί ταλαντωτές Γιατί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.). Έστω z ο µιγαδικός αριθµός z i, µε, R. (α) ίνεται η εξίσωση: z

Διαβάστε περισσότερα

Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 4 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας)

Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 4 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 4 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) ΑΝΤΙΚΕΙΜΕΝΟ: Προσοµοίωση (Simulation) και Τυχαίες µεταβλητές

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://users.auth.gr/dkugiu/teach/civilengineer E mail: dkugiu@gen.auth.gr 1/11/2009 2 Περιεχόµενα 1 ΠΕΡΙΓΡΑΦΙΚΗ

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι

Διαβάστε περισσότερα

Μέτρηση κατανοµής ηλεκτρικού πεδίου

Μέτρηση κατανοµής ηλεκτρικού πεδίου ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 31 3. Άσκηση 3 Μέτρηση κατανοµής ηλεκτρικού πεδίου 3.1 Σκοπός της Εργαστηριακής Άσκησης Σκοπός της άσκησης είναι η µέτρηση της κατανοµής του ηλεκτρικού πεδίου Ε, µπροστά

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β )

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ /0/0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:ΕΝΝΕΑ (9) ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ

Διαβάστε περισσότερα

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε 1. Να αποδειχθεί ότι κάθε ϑετικός ακέραιος αριθµός n 6, µπορεί να γραφεί στη µορφή όπου οι a, b, c είναι ϑετικοί ακέραιοι. n = a + b c,. Να αποδειχθεί ότι για κάθε ακέραιο

Διαβάστε περισσότερα