EE101: Resonance in RLC circuits

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "EE101: Resonance in RLC circuits"

Transcript

1 EE11: Resonance in RLC circuits M. B. Patil Deartment of Electrical Engineering Indian Institute of Technology Bombay

2 I V R V L V C I = I m = R + jωl + 1/jωC = Im θ, where R + j(ωl 1/ωC) R 2 + (ωl 1/ωC) 2, θ = tan 1» ωl 1/ωC R.

3 I V R V L V C I = I m = R + jωl + 1/jωC = Im θ, where R + j(ωl 1/ωC) R 2 + (ωl 1/ωC) 2, * As ω is varied, both I m and θ change. θ = tan 1» ωl 1/ωC R.

4 I V R V L V C I = I m = R + jωl + 1/jωC = Im θ, where R + j(ωl 1/ωC) R 2 + (ωl 1/ωC) 2, θ = tan 1» ωl 1/ωC R. * As ω is varied, both I m and θ change. * When ωl = 1/ωC, I m reaches its maximum value, m = /R, and θ becomes, i.e., the current I is in hase with the alied voltage.

5 I V R V L V C I = I m = R + jωl + 1/jωC = Im θ, where R + j(ωl 1/ωC) R 2 + (ωl 1/ωC) 2, θ = tan 1» ωl 1/ωC R. * As ω is varied, both I m and θ change. * When ωl = 1/ωC, I m reaches its maximum value, m = /R, and θ becomes, i.e., the current I is in hase with the alied voltage. * The above condition is called resonance, and the corresonding frequency is called the resonance frequency (ω ). ω = 1/ LC

6 VR VL I Vm VC I m = R 2 + (ωl 1/ωC) 2,» ωl 1/ωC θ = tan 1. R

7 f VR VL I Vm VC Im (A).1 R = 1 Ω L = 1 mh C = 1 µf Frequency (Hz) 1 5 I m = R 2 + (ωl 1/ωC) 2,» ωl 1/ωC θ = tan 1. R * As ω deviates from ω, I m decreases.

8 f VR VL I Vm VC Im (A).1 R = 1 Ω L = 1 mh C = 1 µf Frequency (Hz) 1 5 I m = R 2 + (ωl 1/ωC) 2,» ωl 1/ωC θ = tan 1. R * As ω deviates from ω, I m decreases. * As ω, the term 1/ωC dominates, and θ π/2.

9 f f I VR Vm VL VC Im (A).1 R = 1 Ω L = 1 mh C = 1 µf θ (degrees) Frequency (Hz) Frequency (Hz) 1 5 I m = R 2 + (ωl 1/ωC) 2,» ωl 1/ωC θ = tan 1. R * As ω deviates from ω, I m decreases. * As ω, the term 1/ωC dominates, and θ π/2. * As ω, the term ωl dominates, and θ π/2.

10 f f I VR Vm VL VC Im (A).1 R = 1 Ω L = 1 mh C = 1 µf θ (degrees) Frequency (Hz) Frequency (Hz) 1 5 I m = R 2 + (ωl 1/ωC) 2,» ωl 1/ωC θ = tan 1. R * As ω deviates from ω, I m decreases. * As ω, the term 1/ωC dominates, and θ π/2. * As ω, the term ωl dominates, and θ π/2. (SEQUEL file: ee11 reso rlc 1.sqroj)

11 I V R V L V C m m / 2 ω 1 ω ω 2 ω

12 I V R V L V C m m / 2 ω 1 ω ω 2 ω * The maximum ower that can be absorbed by the resistor is P max = 1 2 max (Im )2 R = /R.

13 I V R V L V C m m / 2 ω 1 ω ω 2 ω * The maximum ower that can be absorbed by the resistor is P max = 1 2 max (Im )2 R = /R. * Define ω 1 and ω 2 (see figure) as frequencies at which I m = Im max / 2, i.e., the ower absorbed by R is P max/2.

14 I V R V L V C m m / 2 ω 1 ω ω 2 ω * The maximum ower that can be absorbed by the resistor is P max = 1 2 max (Im )2 R = /R. * Define ω 1 and ω 2 (see figure) as frequencies at which I m = Im max / 2, i.e., the ower absorbed by R is P max/2. * The bandwidth of a resonant circuit is defined as B = ω 2 ω 1, and the quality factor as Q = ω /B. Quality is a measure of the sharness of the I m versus frequency relationshi.

15 I m = R 2 + (ωl 1/ωC) 2. m m / 2 For ω = ω, I m = m = /R. For ω = ω 1 or ω = ω 2, I m = m / 2. ω 1 ω ω 2 ω

16 I m = R 2 + (ωl 1/ωC) 2. m m / 2 For ω = ω, I m = m = /R. For ω = ω 1 or ω = ω 2, I m = m / 2. 1 «Vm = for ω = ω 1,2. 2 R R 2 + (ωl 1/ωC) 2 ω 1 ω ω 2 ω

17 I m = R 2 + (ωl 1/ωC) 2. m m / 2 For ω = ω, I m = m = /R. For ω = ω 1 or ω = ω 2, I m = m / 2. 1 «Vm = for ω = ω 1,2. 2 R R 2 + (ωl 1/ωC) 2 ω 1 ω ω 2 ω 2 R 2 = R 2 + (ωl 1/ωC) 2 R = ±(ωl 1/ωC).

18 I m = R 2 + (ωl 1/ωC) 2. For ω = ω, I m = m = /R. For ω = ω 1 or ω = ω 2, I m = m / 2. m m / 2 1 «Vm = for ω = ω 1,2. 2 R R 2 + (ωl 1/ωC) 2 ω 1 ω ω 2 ω 2 R 2 = R 2 + (ωl 1/ωC) 2 R = ±(ωl 1/ωC). Solving for ω (and discarding negative solutions), we get ω 1,2 = R 2L + s R 2L «2 + 1 LC.

19 I m = R 2 + (ωl 1/ωC) 2. For ω = ω, I m = m = /R. For ω = ω 1 or ω = ω 2, I m = m / 2. m m / 2 1 «Vm = for ω = ω 1,2. 2 R R 2 + (ωl 1/ωC) 2 ω 1 ω ω 2 ω 2 R 2 = R 2 + (ωl 1/ωC) 2 R = ±(ωl 1/ωC). Solving for ω (and discarding negative solutions), we get ω 1,2 = R 2L + s R 2L «2 + 1 LC. * Bandwidth B = ω 2 ω 1 = R/L.

20 I m = R 2 + (ωl 1/ωC) 2. For ω = ω, I m = m = /R. For ω = ω 1 or ω = ω 2, I m = m / 2. m m / 2 1 «Vm = for ω = ω 1,2. 2 R R 2 + (ωl 1/ωC) 2 ω 1 ω ω 2 ω 2 R 2 = R 2 + (ωl 1/ωC) 2 R = ±(ωl 1/ωC). Solving for ω (and discarding negative solutions), we get ω 1,2 = R 2L + s R 2L «2 + 1 LC. * Bandwidth B = ω 2 ω 1 = R/L. * Quality Q = ω /B = ω L/R.

21 I m = R 2 + (ωl 1/ωC) 2. For ω = ω, I m = m = /R. For ω = ω 1 or ω = ω 2, I m = m / 2. m m / 2 1 «Vm = for ω = ω 1,2. 2 R R 2 + (ωl 1/ωC) 2 ω 1 ω ω 2 ω 2 R 2 = R 2 + (ωl 1/ωC) 2 R = ±(ωl 1/ωC). Solving for ω (and discarding negative solutions), we get ω 1,2 = R 2L + s R 2L «2 + 1 LC. * Bandwidth B = ω 2 ω 1 = R/L. * Quality Q = ω /B = ω L/R. * Show that, at resonance (i.e., ω = ω ), V L = V C = Q.

22 I m = R 2 + (ωl 1/ωC) 2. For ω = ω, I m = m = /R. For ω = ω 1 or ω = ω 2, I m = m / 2. m m / 2 1 «Vm = for ω = ω 1,2. 2 R R 2 + (ωl 1/ωC) 2 ω 1 ω ω 2 ω 2 R 2 = R 2 + (ωl 1/ωC) 2 R = ±(ωl 1/ωC). Solving for ω (and discarding negative solutions), we get ω 1,2 = R 2L + s R 2L «2 + 1 LC. * Bandwidth B = ω 2 ω 1 = R/L. * Quality Q = ω /B = ω L/R. * Show that, at resonance (i.e., ω = ω ), V L = V C = Q. * Show that ω = ω 1 ω 2.

23 9 VR VL.1 I = Im θ L = 1 mh C = 1 µf R = 1 Ω VC Vm R = 2 Ω Im (A) θ (degrees) R = 1 Ω R = 2 Ω Frequency (Hz) Frequency (Hz) 1 5 As R is increased,

24 9 VR VL.1 I = Im θ L = 1 mh C = 1 µf R = 1 Ω VC Vm R = 2 Ω Im (A) θ (degrees) R = 1 Ω R = 2 Ω Frequency (Hz) Frequency (Hz) 1 5 As R is increased, * The quality factor Q = ω L/R decreases, i.e., I m versus ω curve becomes broader.

25 9 VR VL.1 I = Im θ L = 1 mh C = 1 µf R = 1 Ω VC Vm R = 2 Ω Im (A) θ (degrees) R = 1 Ω R = 2 Ω Frequency (Hz) Frequency (Hz) 1 5 As R is increased, * The quality factor Q = ω L/R decreases, i.e., I m versus ω curve becomes broader. * The maximum current (at ω = ω ) decreases (since m = /R).

26 9 VR VL.1 I = Im θ L = 1 mh C = 1 µf R = 1 Ω VC Vm R = 2 Ω Im (A) θ (degrees) R = 1 Ω R = 2 Ω Frequency (Hz) Frequency (Hz) 1 5 As R is increased, * The quality factor Q = ω L/R decreases, i.e., I m versus ω curve becomes broader. * The maximum current (at ω = ω ) decreases (since m = /R). * The resonance frequency (ω = 1/ LC) is not affected.

27 I V R V L V C I = I m = R + jωl + 1/jωC = Im θ, where R + j(ωl 1/ωC) R 2 + (ωl 1/ωC) 2, θ = tan 1» ωl 1/ωC R.

28 I V R V L V C I = I m = R + jωl + 1/jωC = Im θ, where R + j(ωl 1/ωC) R 2 + (ωl 1/ωC) 2, θ = tan 1» ωl 1/ωC R * For ω < ω, ωl < 1/ωC, the net imedance is caacitive, and the current leads the alied voltage..

29 I V R V L V C I = I m = R + jωl + 1/jωC = Im θ, where R + j(ωl 1/ωC) R 2 + (ωl 1/ωC) 2, θ = tan 1» ωl 1/ωC R * For ω < ω, ωl < 1/ωC, the net imedance is caacitive, and the current leads the alied voltage. * For ω = ω, ωl = 1/ωC, the net imedance is urely resistive, and the current is in hase with the alied voltage..

30 I V R V L V C I = I m = R + jωl + 1/jωC = Im θ, where R + j(ωl 1/ωC) R 2 + (ωl 1/ωC) 2, θ = tan 1» ωl 1/ωC R * For ω < ω, ωl < 1/ωC, the net imedance is caacitive, and the current leads the alied voltage. * For ω = ω, ωl = 1/ωC, the net imedance is urely resistive, and the current is in hase with the alied voltage. * For ω > ω, ωl > 1/ωC, the net imedance is inductive, and the current lags the alied voltage..

31 I V R V L V C I = I m = R + jωl + 1/jωC = Im θ, where R + j(ωl 1/ωC) R 2 + (ωl 1/ωC) 2, θ = tan 1» ωl 1/ωC R * For ω < ω, ωl < 1/ωC, the net imedance is caacitive, and the current leads the alied voltage. * For ω = ω, ωl = 1/ωC, the net imedance is urely resistive, and the current is in hase with the alied voltage. * For ω > ω, ωl > 1/ωC, the net imedance is inductive, and the current lags the alied voltage. * Let us look at an examle (next slide)..

32 1.1 f =4.3 khz 1.1 i 1.1 f =5 khz f V s R = 1 Ω L = 1 mh C = 1 µf f =5.9 khz Time (µsec) V s (V) (left axis) i (A) (right axis)

33 : hasor diagrams VR VL I Vs VC R = 1 Ω L = 1 mh C = 1 µf 4 3 VL 2 1 VL VL Im(V) VR Vs Vs, VR VR Vs 1 VL VC VL 2 VC VR VR 3 4 f = 4.3 khz VC f = f 5 khz Re(V) Re(V) Re(V) f = 5.9 khz

34 Resonance in arallel RLC circuits I R I L I C I m V I m = Y V, where Y = G + jωc + 1/jωL (G = 1/R). I m V = G + jωc + 1/jωL = I m Vm θ, where G + j(ωc 1/ωL) = I m G 2 + (ωc 1/ωL) 2, θ = tan 1» ωc 1/ωL G.

35 Resonance in arallel RLC circuits I R I L I C I m V I m = Y V, where Y = G + jωc + 1/jωL (G = 1/R). I m V = G + jωc + 1/jωL = I m Vm θ, where G + j(ωc 1/ωL) = I m G 2 + (ωc 1/ωL) 2, * As ω is varied, both and θ change. θ = tan 1» ωc 1/ωL G.

36 Resonance in arallel RLC circuits I R I L I C I m V I m = Y V, where Y = G + jωc + 1/jωL (G = 1/R). I m V = G + jωc + 1/jωL = I m Vm θ, where G + j(ωc 1/ωL) = I m G 2 + (ωc 1/ωL) 2, θ = tan 1» ωc 1/ωL G * As ω is varied, both and θ change. * When ωc = 1/ωL, reaches its maximum value, ax m = I m/g = I mr, and θ becomes, i.e., the voltage V is in hase with the source current..

37 Resonance in arallel RLC circuits I R I L I C I m V I m = Y V, where Y = G + jωc + 1/jωL (G = 1/R). I m V = G + jωc + 1/jωL = I m Vm θ, where G + j(ωc 1/ωL) = I m G 2 + (ωc 1/ωL) 2, θ = tan 1» ωc 1/ωL G * As ω is varied, both and θ change. * When ωc = 1/ωL, reaches its maximum value, ax m = I m/g = I mr, and θ becomes, i.e., the voltage V is in hase with the source current. * The above condition is called resonance, and the corresonding frequency is called the resonance frequency (ω ). ω = 1/ LC.

38 Resonance in arallel RLC circuits Series RLC circuit: I m = Parallel RLC circuit: = R 2 + (ωl 1/ωC) 2, I m G 2 + (ωc 1/ωL) 2,» ωl 1/ωC θ = tan 1. R θ = tan 1» ωc 1/ωL G.

39 Resonance in arallel RLC circuits Series RLC circuit: I m = Parallel RLC circuit: = R 2 + (ωl 1/ωC) 2, I m G 2 + (ωc 1/ωL) 2,» ωl 1/ωC θ = tan 1. R θ = tan 1» ωc 1/ωL G * The two situations are identical if we make the following substitutions: I V, R 1/R, L C..

40 Resonance in arallel RLC circuits Series RLC circuit: I m = Parallel RLC circuit: = R 2 + (ωl 1/ωC) 2, I m G 2 + (ωc 1/ωL) 2,» ωl 1/ωC θ = tan 1. R θ = tan 1» ωc 1/ωL G * The two situations are identical if we make the following substitutions: I V, R 1/R, L C. * Thus, our results for series RLC circuits can be easily extended to arallel RLC circuits..

41 Resonance in arallel RLC circuits Series RLC circuit: I m = Parallel RLC circuit: = R 2 + (ωl 1/ωC) 2, I m G 2 + (ωc 1/ωL) 2,» ωl 1/ωC θ = tan 1. R θ = tan 1» ωc 1/ωL G * The two situations are identical if we make the following substitutions: I V, R 1/R, L C. * Thus, our results for series RLC circuits can be easily extended to arallel RLC circuits. s * Show that ω 1,2 = 1 «1 2 2RC RC LC Bandwidth B = 1/RC..

42 Resonance in arallel RLC circuits Series RLC circuit: I m = Parallel RLC circuit: = R 2 + (ωl 1/ωC) 2, I m G 2 + (ωc 1/ωL) 2,» ωl 1/ωC θ = tan 1. R θ = tan 1» ωc 1/ωL G * The two situations are identical if we make the following substitutions: I V, R 1/R, L C. * Thus, our results for series RLC circuits can be easily extended to arallel RLC circuits. s * Show that ω 1,2 = 1 «1 2 2RC RC LC Bandwidth B = 1/RC. * Show that, at resonance (i.e., ω = ω ), I L = I C = Q I m..

43 Resonance in arallel RLC circuits Series RLC circuit: I m = Parallel RLC circuit: = R 2 + (ωl 1/ωC) 2, I m G 2 + (ωc 1/ωL) 2,» ωl 1/ωC θ = tan 1. R θ = tan 1» ωc 1/ωL G * The two situations are identical if we make the following substitutions: I V, R 1/R, L C. * Thus, our results for series RLC circuits can be easily extended to arallel RLC circuits. s * Show that ω 1,2 = 1 «1 2 2RC RC LC Bandwidth B = 1/RC. * Show that, at resonance (i.e., ω = ω ), I L = I C = Q I m. * Show that ω = ω 1 ω 2..

44 Resonance in arallel RLC circuits: home work I R I L I m V R = 2 kω L = 4 mh I C I m = 5 ma C =.25 µf * Calculate ω, f, B, Q. * Calculate I R, I L, I C at ω = ω, ω 1, ω 2. * Verify grahically that I R + I L + I C = I s in each case. * Plot the ower absorbed by R as a function of frequency for f /1 < f < 1 f.

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία ΕΝΕΡΓΟ ΦΙΛΤΡΟ ΔΙΑΚΟΠΤΙΚΟΥ ΠΗΝΙΟΥ ( Switched Inductor Variable Filter ) Ευτυχία Ιωσήφ Λεμεσός, Μάιος 2016 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Εργαστήριο 8 Κυκλώµατα RLC και Σταθερή Ηµιτονοειδής Κατάσταση Λευκωσία, 2015 Εργαστήριο 8

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 8 Κυκλώματα RLC και Σταθερή Ημιτονοειδής Κατάσταση Λευκωσία, 2010 Εργαστήριο 8

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS. Characteristics. Leakage Current(MAX) I=Leakage Current(µA) C=Nominal Capacitance(µF) V=Rated Voltage(V)

MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS. Characteristics. Leakage Current(MAX) I=Leakage Current(µA) C=Nominal Capacitance(µF) V=Rated Voltage(V) SERIES 5 C Long Life. Low impedance. (Rated Voltage 6.3~V.DC) FEATURES Load Life : 5 C 4~hours. Low impedance at khz with selected materials. SPECIFICATIONS Items Operating Temperature Range Rated Voltage

Διαβάστε περισσότερα

Long 3000 hour life at 105 C with high ripple current capability 2 and 3 pin versions available Can vent construction

Long 3000 hour life at 105 C with high ripple current capability 2 and 3 pin versions available Can vent construction TS-HA/HB Series 105 C, 3000 hours Long 3000 hour life at 105 C with high ripple current capability 2 and 3 pin versions available Can vent construction RoHS Compliant Rated Working Voltage: Operating Temperature:

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα IPHO_42_2011_EXP1.DO Experimental ompetition: 14 July 2011 Problem 1 Page 1 of 5 1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα Για ένα πυκνωτή χωρητικότητας ο οποίος είναι μέρος

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Εργαστήριο 9 Κυκλώµατα RLC, Σταθερή Ηµιτονοειδής Κατάσταση και ιόρθωση Συντελεστή Ισχύος (Power

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Άσκηση αυτοαξιολόγησης 4 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών CS-593 Game Theory 1. For the game depicted below, find the mixed strategy

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

Surface Mount Aluminum Electrolytic Capacitors

Surface Mount Aluminum Electrolytic Capacitors FEATURES CYLINDRICAL V-CHIP CONSTRUCTION LOW COST, GENERAL PURPOSE, 2000 HOURS AT 85 O C NEW EXPANDED CV RANGE (up to 6800µF) ANTI-SOLVENT (2 MINUTES) DESIGNED FOR AUTOMATIC MOUNTING AND REFLOW SOLDERING

Διαβάστε περισσότερα

Bulletin 1489 UL489 Circuit Breakers

Bulletin 1489 UL489 Circuit Breakers Bulletin 489 UL489 Circuit Breakers Tech Data 489-A Standard AC Circuit Breaker 489-D DC Circuit Breaker 489-A, AC Circuit Breakers 489-D, DC Circuit Breakers Bulletin 489-A Industrial Circuit Breaker

Διαβάστε περισσότερα

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater. Low Impedance, For Switching Power Supplies Low impedance and high reliability withstanding 5000 hours load life at +05 C (3000 / 2000 hours for smaller case sizes as specified below). Capacitance ranges

Διαβάστε περισσότερα

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ Νικόλας Χριστοδούλου Λευκωσία, 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example: UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΝΟΜΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΙΣΤΟΡΙΑΣ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΤΟΥ ΔΙΚΑΙΟΥ Διπλωματική εργασία στο μάθημα «ΚΟΙΝΩΝΙΟΛΟΓΙΑ ΤΟΥ ΔΙΚΑΙΟΥ»

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Εργαστήριο 8 Κυκλώµατα RLC, Σταθερή Ηµιτονοειδής Κατάσταση και ιόρθωση Συντελεστή Ισχύος (Power

Διαβάστε περισσότερα

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ. Surface Mount Monolithic Amplifiers High Directivity, 50Ω, 0.5 to 5.9 GHz Features 3V & 5V operation micro-miniature size.1"x.1" no external biasing circuit required internal DC blocking at RF input &

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Lecture 23. Impedance, Resonance in R-C-L Circuits. Preparation for the Final Exam

Lecture 23. Impedance, Resonance in R-C-L Circuits. Preparation for the Final Exam Lecture 3. Impedance, Resonance in R-C-L Circuits (a) Start earlier! Preparation for the Final Exam (b) Review the concepts (lectures + textbook) and prepare your equation sheet. Think how you can use

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Special edition of the Technical Chamber of Greece on Video Conference Services on the Internet, 2000 NUTWBCAM

Special edition of the Technical Chamber of Greece on Video Conference Services on the Internet, 2000 NUTWBCAM NUTWBCAM A.S. DRIGAS Applied Technologies Department NCSR DEMOKRITOS Ag. Paraskevi GREECE dr@imm.demokritos.gr http://imm.demokritos.gr Το NutWBCam είναι ένα RealVideo πρόγραµµα που σας δίνει τη δυνατότητα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Firm Behavior GOAL: Firms choose the maximum possible output (technological

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Γιπλυμαηική Δπγαζία. «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ. Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο

Γιπλυμαηική Δπγαζία. «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ. Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΥΟΛΗ ΝΑΤΠΗΓΩΝ ΜΗΥΑΝΟΛΟΓΩΝ ΜΗΥΑΝΙΚΩΝ Γιπλυμαηική Δπγαζία «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο Σπιμελήρ Δξεηαζηική

Διαβάστε περισσότερα

+105 C General Purpose Radial Lead Aluminum Electrolytic Capacitors. filtering

+105 C General Purpose Radial Lead Aluminum Electrolytic Capacitors. filtering CKH/CKE +105 C Radial Lead s Standard case sizes Bypass Multiple case sizes coupling Lead free leads filtering Operating Temperature Range -55 C to +105 C (6.3 to 100 WVDC) -40 C to +105 C (160 to 400

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC Metallized Polyester Film Capacitor Type: ECQE(F) Non-inductive construction using metallized Polyester film with flame retardant epoxy resin coating Features Self-healing property Excellent electrical

Διαβάστε περισσότερα

± 20% ± 5% ± 10% RENCO ELECTRONICS, INC.

± 20% ± 5% ± 10% RENCO ELECTRONICS, INC. RL15 RL16, RL17, RL18 MINIINDUCTORS CONFORMALLY COATED MARKING The nominal inductance is marked by a color code as listed in the table below. Color Black Brown Red Orange Yellow Green Blue Purple Grey

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

DC-DC Constant Current Step-Down LED driver LDD-300L LDD-350L LDD-500L LDD-600L LDD-700L CURRENT RANGE

DC-DC Constant Current Step-Down LED driver LDD-300L LDD-350L LDD-500L LDD-600L LDD-700L CURRENT RANGE SPECIFICATION ORDER NO. LDD-00L LDD-0L LDD-00L LDD-00L LDD-700L CURRENT RANGE 00mA 0mA 00mA VOLTAGE RANGE Note. ~ VDC for LDD-00~700L/LW ; ~ 8VDC for LDD-00~700LS CURRENT ACCURACY (Typ.) ±% at VDC input

Διαβάστε περισσότερα

Σήματα και Συστήματα στο Πεδίο της Συχνότητας

Σήματα και Συστήματα στο Πεδίο της Συχνότητας Σήματα και Συστήματα στο Πεδίο της Συχνότητας Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι (22Y411) ΕΝΟΤΗΤΑ 3 ΔΙΑΛΕΞΗ 1 ΔΙΑΦΑΝΕΙΑ 1 Ανάλυση & Σύνθεση Συχνοτήτων Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι (22Y411) ΕΝΟΤΗΤΑ

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

RJJ Miniature Aluminum Electrolytic Capacitors RJJ. Series RJJ High-Frequency, Low Impedance, Standard Type. Radial Type

RJJ Miniature Aluminum Electrolytic Capacitors RJJ. Series RJJ High-Frequency, Low Impedance, Standard Type. Radial Type 352 Elna Corrections 80-95 /6/98 :55 AM Page Miniature Aluminum Electrolytic Capacitors Series High-Frequency, Low Impedance, Standard Type For high reliability applications, Environmentally safe. High-frequency,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ-ΟΦΕΛΟΥΣ ΓΙΑ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΥΠΡΟ ΜΕΧΡΙ ΤΟ 2030

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

How to register an account with the Hellenic Community of Sheffield.

How to register an account with the Hellenic Community of Sheffield. How to register an account with the Hellenic Community of Sheffield. (1) EN: Go to address GR: Πηγαίνετε στη διεύθυνση: http://www.helleniccommunityofsheffield.com (2) EN: At the bottom of the page, click

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

SEN TRONIC AG 3-2 7 0 0 7 A 3 57 3 3 AB 93 :, C,! D 0 7 % 0 7 3 3 93 : 3 A 5 93 :

SEN TRONIC AG 3-2 7 0 0 7 A 3 57 3 3 AB 93 :, C,! D 0 7 % 0 7 3 3 93 : 3 A 5 93 : # 3-270 07A35733 AB93:,C,!D 07% 0733 93: 3A593:!"#$%% &%&''()*%'+,-. &%&''(/*%'+0. 1*23 '4# 54/%6%7%53 *323 %7 77# %%3#% 8908/"/*55 :1$;/ = 7?@ > 7= 7 %! "$!"#$%&#%'(%%)*#$%&#%'(%#++#,-."/-0-1222"/-0-1

Διαβάστε περισσότερα

Thin Film Chip Resistors

Thin Film Chip Resistors FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* PART NUMBER SYSTEM

Διαβάστε περισσότερα

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2 SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin

Διαβάστε περισσότερα

2013 REV 01 ELECTRONICS CAPACITORS. DC Applications Metallized Polypropylene Film Self Healing

2013 REV 01 ELECTRONICS CAPACITORS. DC Applications Metallized Polypropylene Film Self Healing 2013 REV 01 POWER EECTRONICS CAPACITORS C Applications Metallized Polypropylene Film Healing OUR MISSION: POWER EECTRONICS AN SPECIA CAPACITORS M.V. PFC CAPACITORS AN BANKS IGHTING CAPACITORS MOTOR RUN

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 7 Εκθετικά κύματα και Σύνθετη Αντίσταση Λευκωσία, 2010 Εργαστήριο 7 Εκθετικά κύματα

Διαβάστε περισσότερα

Precision Metal Film Fixed Resistor Axial Leaded

Precision Metal Film Fixed Resistor Axial Leaded Features EIA standard colour-coding Non-Flame type available Low noise and voltage coefficient Low temperature coefficient range Wide precision range in small package Too low or too high ohmic value can

Διαβάστε περισσότερα

IMES DISCUSSION PAPER SERIES

IMES DISCUSSION PAPER SERIES IMES DISCUSSION PAPER SERIES Will a Growth Miracle Reduce Debt in Japan? Selahattin mrohorolu and Nao Sudo Discussion Paper No. 2011-E-1 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 2-1-1

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

ΑΚΑΓΗΜΙΑ ΔΜΠΟΡΙΚΟΤ ΝΑΤΣΙΚΟΤ ΜΑΚΔΓΟΝΙΑ ΥΟΛΗ ΜΗΥΑΝΙΚΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ

ΑΚΑΓΗΜΙΑ ΔΜΠΟΡΙΚΟΤ ΝΑΤΣΙΚΟΤ ΜΑΚΔΓΟΝΙΑ ΥΟΛΗ ΜΗΥΑΝΙΚΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ ΑΚΑΓΗΜΙΑ ΔΜΠΟΡΙΚΟΤ ΝΑΤΣΙΚΟΤ ΜΑΚΔΓΟΝΙΑ ΥΟΛΗ ΜΗΥΑΝΙΚΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ ΘΔΜΑ: Μειέηε θαη θαηαζθεπή κεηαηξνπέα DC DC γηα ην εξγαζηήξην ειεθηξηθώλ κεραλώλ. ΠΟΤΓΑΣΔ :Βαιαβαλίδεο Υξήζηνο Δπζηαζίνπ Βαζίιεηνο ΔΠΙΒΛΔΠΩΝ

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Διπολικό Τρανζίστορ Bipolar Junction Transistor (BJT)

Διπολικό Τρανζίστορ Bipolar Junction Transistor (BJT) Διπολικό Τρανζίστορ Bipolar Junction Transistor (BJT) Θέματα που θα καλυφθούν Δομή και συμβολισμός των διπολικών τρανζίστορ Φυσική λειτουργία διπολικού τρανζίστορ Τα ρεύματα στο τρανζίστορ Μοντέλο μεγάλο

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕ ΙΑΣΜΟΥ, ΠΕΡΙΟΧΗ ΟΙΚΙΣΤΙΚΩΝ ΚΑΙ ΠΟΛΕΟ ΟΜΙΚΩΝ ΘΕΜΑΤΩΝ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: ΠΟΛΕΟ ΟΜΙΚΕΣ ΚΑΙ ΚΥΚΛΟΦΟΡΙΑΚΕΣ

Διαβάστε περισσότερα