ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ ΚΑΙ ΠΛΟΗΓΗΣΗ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ ΚΑΙ ΠΛΟΗΓΗΣΗ"

Transcript

1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ ΚΑΙ ΠΛΟΗΓΗΣΗ ΕΝΟΤΗΤΑ: ΧΑΡΤΟΓΡΑΦΙΑ ΜΕΡΟΣ Α ΜΑΘΗΜΑΤΙΚΗ ΧΑΡΤΟΓΡΑΦΙΑ ΒΥΡΩΝΑΣ ΝΑΚΟΣ ΚΑΘΗΓΗΤΗΣ Ε.Μ.Π. ΑΘΗΝΑ 009

2 ΠΕΡΙΕΧΟΜΕΝΑ Περιεχόμενα ΠΕΡΙΕΧΟΜΕΝΑ i Κεφάλαιο 1-ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΧΑΡΤΟΓΡΑΦΙΚΩΝ ΠΡΟΒΟΛΩΝ Εισαγωγή στις χαρτογραφικές προβολές 1 1. Χαρτογραφικό σύστημα αναφοράς Παραμορφώσεις Στοιχειώσεις γραμμές και επιφάνειες στο ελλειψοειδές εκ περιστροφής Στοιχειώδεις γραμμές και επιφάνειες στο επίπεδο απεικόνισης Στοιχειώδεις παραμορφώσεις Κλίμακα γραμμικής παραμόρφωσης Κύριες διευθύνσεις - κύριες κλίμακες Κλίμακα γραμμικής παραμόρφωσης σε τυχαία διεύθυνση Παραμορφώσεις γωνιών Κλίμακα επιφανειακής παραμόρφωσης Νόμος των παραμορφώσεων - θεώρημα Tissot Έλλειψη παραμόρφωσης - Δείκτρια Tissot Παραμορφώσεις πεπερασμένων μεγεθών Παραμόρφωση μήκους πεπερασμένης γραμμής Παραμόρφωση γωνίας Σχέση μεταξύ αζιμουθίου και γωνίας διεύθυνσης - σύγκλιση των μεσημβρινών Παραμόρφωση εμβαδού χωρίου Βιβλιογραφία 4 Κεφάλαιο -ΑΡΧΕΣ ΤΩΝ ΑΠΕΙΚΟΝΙΣΕΩΝ - ΠΡΟΒΟΛΩΝ 7.1 Εισαγωγή στις αρχές των απεικονίσεων 7. Βασικές αρχές απεικονίσεων-προβολών 7.3 Βιβλιογραφία 31 Κεφάλαιο 3-ΣΥΣΤΗΜΑΤΑ ΑΠΕΙΚΟΝΙΣΕΩΝ Εισαγωγή στα συστήματα απεικονίσεων 33 i

3 ΠΕΡΙΕΧΟΜΕΝΑ 3. Ορθές κυλινδρικές απεικονίσεις Ορθή κυλινδρική ισαπέχουσα προβολή Μερκατορική προβολή Ορθή κυλινδρική ισοδύναμη προβολή Ορθές κωνικές απεικονίσεις Ορθή κωνική ισαπέχουσα προβολή Σύμμορφη κωνική προβολή - Lambert Ισοδύναμη κωνική προβολή - Albers Ορθές επίπεδες απεικονίσεις Ορθή επίπεδη ισαπέχουσα προβολή - Postel Πολική στερεογραφική προβολή Πολική επίπεδη ισοδύναμη προβολή - Lambert Πολική γνωμονική προβολή Πολική ορθογραφική προβολή Βιβλιογραφία 61 Κεφάλαιο 4-ΣΥΣΤΗΜΑΤΑ ΑΠΕΙΚΟΝΙΣΕΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙΟΥΝΤΑΙ ΣΤΗΝ ΕΛΛΑΔΑ Εισαγωγή στα Ελληνικά χαρτογραφικά συστήματα Σύστημα Hatt Σύστημα UTM Σύστημα ΕΜΠ Ελληνικό Γεωδαιτικό Σύστημα Αναφοράς - ΕΓΣΑ Μετατροπές μεταξύ διαφορετικών προβολικών συστημάτων Βιβλιογραφία 70 ΠΑΡΑΡΤΗΜΑ (ΕΛΛΗΝΙΚΕΣ ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΣΕΙΡΕΣ) 73 Π.1 Εισαγωγή 73 Π. Σειρές χαρτών Γεωγραφικής Υπηρεσίας Στρατού 73 Π..1 Χάρτες μικρής κλίμακας 74 Π.. Χάρτες μεσαίας κλίμακας 74 Π..3 Χάρτες μεγάλης κλίμακας 74 Π.3 Σειρές χαρτών Υδρογραφικής Υπηρεσίας Πολεμικού Ναυτικού 75 Π.4 Σειρές χαρτών Υπηρεσίας Πολιτικής Αεροπορίας 75 Π.5 Χάρτες Εθνικής Στατιστικής Υπηρεσίας της Ελλάδας 75 Π.5 Χάρτες Υπουργείου Περιβάλλοντος Χωροταξίας και Δημοσίων Έργων 76 Π.7 Βιβλιογραφία 76 ii

4 Κεφάλαιο 1 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΧΑΡΤΟΓΡΑΦΙΚΩΝ ΠΡΟΒΟΛΩΝ 1.1 Εισαγωγή στις χαρτογραφικές προβολές Το αντικείμενο της μελέτης των χαρτογραφικών προβολών ονομάζεται παραδοσιακά μαθηματική χαρτογραφία και ασχολείται με τη μελέτη της απεικόνισης της επιφάνειας της γης πάνω σε ένα επίπεδο, το επίπεδο του χάρτη. Η μελέτη αυτή, της απεικόνισης της γήινης επιφάνειας, έχει θεωρητικό αλλά και πρακτικό χαρακτήρα. Θεωρητικό χαρακτήρα, γιατί ερευνώνται και τεκμηριώνονται όλοι οι δυνατοί τρόποι της απεικόνισης, δηλαδή οι προβολές και οι ιδιότητες που τις χαρακτηρίζουν. Πρακτικό χαρακτήρα γιατί, με τη βοήθεια του περιεχομένου των χαρτογραφικών προβολών κατασκευάζεται το μαθηματικό υπόβαθρο του χάρτη, που είναι απαραίτητο για τη σύνθεση οποιουδήποτε χάρτη. Η έκφραση, όμως, επιφάνεια της γης από μόνη της δεν έχει καμιά μαθηματική σημασία. Οι επιστήμονες από πολύ παλιά ασχολήθηκαν με το να προσεγγίσουν τη μορφή και το μέγεθός της, αξιοποιώντας τις γνώσεις που αναπτύχθηκαν κυρίως από τη γεωμετρία. Η προσέγγιση αυτή πολλές φορές σχηματοποιήθηκε με βάση μια φιλοσοφική θεώρηση όσο αφορά τη μορφή και το μέγεθος της γης. Αφήνοντας την ανάπτυξη της διαχρονικής εξέλιξης των μαθηματικών μοντέλων που χρησιμοποίησε ο άνθρωπος για να προσεγγίσει την επιφάνεια της γης στην ενότητα της ιστορίας της χαρτογραφίας, ας δούμε πως το ζήτημα αυτό αντιμετωπίζεται σήμερα. Στις γεωεπιστήμες η μορφή της γήινης επιφάνειας προσομοιώνεται από μια επιφάνεια, που ονομάζεται γεωειδές. Το γεωειδές (Σχήμα 1.1) με έναν απλό τρόπο μπορεί να οριστεί ως η επιφάνεια που διαμορφώνεται από τη μέση στάθμη της θάλασσας και την προέκτασή της στο χώρο που καταλαμβάνουν οι ήπειροι. Μια εικόνα του γεωειδούς μπορεί να έχει κάποιος, αν θεωρήσει ότι «κόβει» όλα τα βουνά των ηπείρων που εξέχουν από τη γήινη επιφάνεια και τα «ρίξει» στις θάλασσες με τρόπο ώστε να σχηματιστεί μια σχετικά ομαλή μορφή. Το γεωειδές στην πραγματικότητα είναι μια πολύπλοκη επιφάνεια και δεν είναι δυνατό να προσδιοριστεί με ένα απλό μαθηματικό (γεωμετρικό) μοντέλο. Ο προσδιορισμός 1

5 του γεωειδούς αποτελεί ένα από τα βασικότερα αντικείμενα για την επιστήμη της γεωδαισίας. ΕΠΙΠΕΔΟ ΑΠΕΙΚΟΝΙΣΗΣ p P G P ΦΥΣΙΚΗ ΓΗΙΝΗ ΕΠΙΦΑΝΕΙΑ ΕΠΙΦΑΝΕΙΑ ΓΕΩΕΙΔΟΥΣ ΕΠΙΦΑΝΕΙΑ ΕΛΛΕΙΨΟΕΙΔΟΥΣ P E Σχήμα 1.1 Φυσική γήινη επιφάνεια, γεωειδές και επιφάνεια αναφοράς (ελλειψοειδές εκ περιστροφής ή σφαίρα) Αντί για το γεωειδές, μπορεί να θεωρήσουμε ότι η μορφή της επιφάνειας της γης είναι μια ομαλότερη επιφάνεια, μια μαθηματική επιφάνεια που το προσεγγίζει όσο το δυνατόν καλύτερα. Μια κατάλληλη επιφάνεια για το σκοπό αυτό είναι η επιφάνεια ενός ελλειψοειδούς εκ περιστροφής. Για να φανταστούμε, με ένα σχηματοποιημένο τρόπο, τη μορφή που έχει η επιφάνεια του ελλειψοειδούς εκ περιστροφής (Σχήμα 1.1), μπορούμε να θεωρήσουμε μια σφαίρα από ένα ελαστικό μέσο (π.χ. μία μπάλα) την οποίαν πιέζουμε κατά τη διεύθυνση ενός άξονα (τον άξονα περιστροφής της γης). Οι τομές της επιφάνειας του ελλειψοειδούς εκ περιστροφής με επίπεδα που περιέχουν τον άξονα περιστροφής της γης (κατακόρυφα επίπεδα) είναι ελλείψεις, ενώ οι τομές με επίπεδα κάθετα στον άξονα περιστροφής της είναι κύκλοι. Η μελέτη της γεωμετρίας του ελλειψοειδούς εκ περιστροφής είναι αρκετά πολύπλοκη γιατί πρόκειται για επιφάνεια με μεταβαλλόμενη διπλή καμπυλότητα και αντιμετωπίζεται από τον τομέα των μαθηματικών της διαφορικής γεωμετρίας και της θεωρίας επιφανειών. Στις περιπτώσεις εκείνες, για τις οποίες ένας χάρτης δεν προϋποθέτει υψηλά επίπεδα ακριβειών, είναι δυνατόν η επιφάνεια του ελλειψοειδούς εκ περιστροφής να αντικατασταθεί από την επιφάνεια μιας σφαίρας. Η μελέτη της

6 γεωμετρίας της επιφάνειας μιας σφαίρας είναι λιγότερο πολύπλοκη, γιατί πρόκειται για επιφάνεια με σταθερή καμπυλότητα. 1. Χαρτογραφικό σύστημα αναφοράς Το σύστημα αναφοράς που χρησιμοποιείται στη χαρτογραφία είναι το σύστημα των γεωγραφικών συντεταγμένων (Σχήμα 1.), που αναφέρεται σε κάποιο από τα ελλειψοειδή που χρησιμοποιούνται στην πράξη ή σε μία σφαίρα. Οι μεσημβρινοί κάθε σημείου είναι οι τομές της επιφάνειας του ελλειψοειδούς ή της σφαίρας με επίπεδα που περιλαμβάνουν την κάθετο στο σημείο προς την επιφάνεια αναφοράς και τον άξονα περιστροφής, ενώ αντίστοιχα, οι παράλληλοι είναι οι τομές της επιφάνειας του ελλειψοειδούς ή της σφαίρας με επίπεδα που περιλαμβάνουν το σημείο και είναι κάθετα στον άξονα περιστροφής. Στην περίπτωση του ελλειψοειδούς εκ περιστροφής οι μεσημβρινοί αποτελούν ελλείψεις ίσες μεταξύ τους ενώ για τη σφαίρα κύκλους. Οι παράλληλοι και στο ελλειψοειδές και στη σφαίρα αποτελούν κύκλοι των οποίων η ακτίνα μειώνεται όσο πλησιάζουμε στους πόλους. Ο παράλληλος που διέρχεται από το κέντρο της γης και είναι σε μέγεθος μεγαλύτερος από όλους τους άλλους, ονομάζεται ισημερινός. Σχήμα 1. Σύστημα γεωγραφικών και επιφανειακών συντεταγμένων Κάθε σημείο του οποίου θέλουμε να προσδιορίσουμε τη θέση προβάλλεται από τη φυσική γήινη επιφάνεια πάνω στην επιφάνεια του ελλειψοειδούς ή της σφαίρας κατά τη διεύθυνση της καθέτου στην επιφάνεια αυτή. Το μήκος της καθέτου, δηλαδή η απόσταση του σημείου από το ελλειψοειδές ή τη σφαίρα, ονομάζεται γεωμετρικό υψόμετρο ή απλά υψόμετρο (h). 3

7 Η θέση της προβολής του σημείου πάνω στην επιφάνεια του ελλειψοειδούς ή της σφαίρας προσδιορίζεται με τη βοήθεια δύο γωνιών. Η γωνία που σχηματίζει η κάθετος από το σημείο στην επιφάνεια του ελλειψοειδούς ή της σφαίρας με το επίπεδο του ισημερινού ονομάζεται γεωγραφικό πλάτος (φ). Η δίεδρη γωνία που σχηματίζεται από το επίπεδο του μεσημβρινού που διέρχεται από το σημείο και από έναν αυθαίρετα επιλεγμένο μεσημβρινό ονομάζεται γεωγραφικό μήκος (λ). Ο αυθαίρετα επιλεγμένος μεσημβρινός συνήθως είναι ο μεσημβρινός που διέρχεται από το Greenwich. Οι γεωγραφικές συντεταγμένες μετρώνται σε μοίρες. Το γεωγραφικό πλάτος κυμαίνεται από 0 ως 90 στο βόρειο ημισφαίριο και από 0 ως -90 στο νότιο ημισφαίριο της γης ενώ το γεωγραφικό μήκος κυμαίνεται από 0 ως 360. Το σύστημα των γεωγραφικών συντεταγμένων είναι ουσιαστικά ένα σύστημα επιφανειακών συντεταγμένων για την επιφάνεια αναφοράς (ελλειψοειδές ή σφαίρα). Το δίκτυο των συντεταγμένων αυτών (σχήμα 1.) πάνω στο ελλειψοειδές ή τη σφαίρα είναι ένα δίκτυο μεσημβρινών και παραλλήλων. Οι μεσημβρινοί είναι γραμμές με σταθερό γεωγραφικό μήκος (λ=c) και οι παράλληλοι γραμμές με σταθερό γεωγραφικό πλάτος (φ=c). Η θέση ενός σημείου πάνω στην επιφάνεια αναφοράς (ελλειψοειδές ή σφαίρα) ή ακόμα και ενός σημείου που βρίσκεται μεν πάνω στη φυσική γήινη επιφάνεια αλλά έχει προβληθεί πάνω στην επιφάνεια αναφοράς, μπορεί να προσδιοριστεί με τη βοήθεια του δικτύου των μεσημβρινών και παραλλήλων, δηλαδή με γραμμικά μεγέθη και όχι γωνιακά. Το αντίστοιχο του γεωγραφικού μήκους θα μετρηθεί ως απόσταση πάνω στον ισημερινό και το αντίστοιχο του γεωγραφικού πλάτους ως απόσταση πάνω στο μεσημβρινό που διέρχεται από το σημείο. Όλες αυτές οι αποστάσεις μετρώνται πάνω στην επιφάνεια αναφοράς (ελλειψοειδές ή σφαίρα). 1.3 Παραμορφώσεις Επειδή η επιφάνεια του ελλειψοειδούς ή της σφαίρας δεν είναι αναπτυκτή επιφάνεια, η απεικόνιση πάντα συνοδεύεται από παραμορφώσεις. Πράγματι, αν προσπαθήσουμε να φέρουμε σε επαφή μια ελαστική σφαίρα (μπάλα) με ένα επίπεδο, δεν θα κατορθώσουμε να εφάπτονται όλα τα σημεία της σφαίρας στο επίπεδο παρά μόνον αν την τεντώσουμε ή σχίσουμε, δηλαδή αν την παραμορφώσουμε. Η μελέτη των παραμορφώσεων γίνεται με τη βοήθεια του τομέα των μαθηματικών της θεωρίας επιφανειών. Η επιφάνεια της γης στη μαθηματική χαρτογραφία προσομοιώνεται από την επιφάνεια ενός ελλειψοειδούς εκ περιστροφής που την προσεγγίζει όσο το δυνατόν καλύτερα. Η γεωμετρία του ελλειψοειδούς εκ περιστροφής είναι αρκετά πολύπλοκη και κατά συνέπεια το ίδιο πολύπλοκη γίνεται και η μελέτη των παραμορφώσεων στην επιφάνεια αυτή. Αν 4

8 προσομοιώσουμε κατά τη μελέτη των παραμορφώσεων την επιφάνεια της γης με την επιφάνεια μιας σφαίρας, τότε μπορούμε να έχουμε μια συστηματική εικόνα των παραμορφώσεων αξιοποιώντας απλές γεωμετρικές αρχές. Η βασική μελέτη αναφέρεται σε παραμορφώσεις στοιχειωδών μεγεθών αλλά στη χαρτογραφία μας ενδιαφέρουν κυρίως οι παραμορφώσεις που αναφέρονται σε πεπερασμένα μεγέθη. Οι παραμορφώσεις των πεπερασμένων μεγεθών μας χρειάζονται για τη μελέτη της απεικόνισης μεγεθών που βρίσκονται (έχουν μετρηθεί) στην επιφάνεια ενός ελλειψοειδούς εκ περιστροφής ή στην απλούστερη μορφή μιας σφαίρας στο επίπεδο του χάρτη. Μεταφέροντας τα μεγέθη στο επίπεδο της προβολής (απεικόνισης) μπορούμε να κάνουμε τους απαραίτητους υπολογισμούς εύκολα και απλά, χρησιμοποιώντας ως εργαλείο την Ευκλείδια και την επίπεδη αναλυτική γεωμετρία. Επίσης, αν αντιστρέψουμε το συλλογισμό, μπορούμε από αποτελέσματα που έχουν προκύψει με υπολογισμούς στο επίπεδο της προβολής (απεικόνισης) να αναχθούμε στα πραγματικά μεγέθη επάνω στο ελλειψοειδές εκ περιστροφής ή στη σφαίρα. Οι απαραίτητες αναγωγές για τη μετάβαση μεγεθών από τη φυσική επιφάνεια της γης στην επιφάνεια του ελλειψοειδούς εκ περιστροφής ή της σφαίρας και αντίστροφα, είναι αντικείμενο της γεωδαισίας. 1.4 Στοιχειώδεις γραμμές και επιφάνειες στο ελλειψοειδές εκ περιστροφής Θεωρούμε ένα σημείο P πάνω στην επιφάνεια ενός ελλειψοειδούς εκ περιστροφής (Σχήμα 1.3), που η θέση του ορίζεται από τις γεωγραφικές του συντεταγμένες (φ,λ). Κοντά στο σημείο P θεωρούμε και ένα δεύτερο σημείο P' με γεωγραφικές συντεταγμένες (φ+dφ, λ+dλ). Ας θεωρήσουμε επίσης, ότι η απόσταση μεταξύ των δύο αυτών σημείων πάνω στην επιφάνεια αναφοράς είναι ds και ότι το αζιμούθιο της στοιχειώδους γραμμής PP' είναι Α. Από τη γεωδαισία γνωρίζουμε ότι το αζιμούθιο μιας στοιχειώδους γραμμής στην επιφάνεια ενός ελλειψοειδούς είναι η γωνία που σχηματίζεται από το μεσημβρινό που διέρχεται από το σημείο και τη γραμμή και μετράται πάντα από το μεσημβρινό και δεξιόστροφα. Θα προσπαθήσουμε, χρησιμοποιώντας απλές γεωμετρικές αρχές, να εκφράσουμε τις σχέσεις που προσδιορίζουν το μέγεθος της στοιχειώδους αυτής γραμμής, δηλαδή, την απόσταση ds καθώς και το αζιμούθιό της Α. Πρώτα, φέρνουμε τους μεσημβρινούς και τους παράλληλους που διέρχονται από τα δύο αυτά σημεία P και P'. Γνωρίζουμε επίσης, ότι η ακτίνα καμπυλότητας ενός μεσημβρινού είναι: ρ και η ακτίνα καμπυλότητας ενός παράλληλου είναι: r, όπου: r=νcosφ, με Ν: την ακτίνα της κυρίας καθέτου τομής σε ένα σημείο και φ: το γεωγραφικό του πλάτος. Η ακτίνα καμπυλότητας του 5

9 μεσημβρινού (ρ) και η ακτίνα της κυρίας καθέτου (N) είναι γνωστό από τη γεωμετρία του ελλειψοειδούς ότι δίνονται από τις σχέσεις: ρ = a (1 e ) και 3 (1 e sin φ) N = a. 1 e sin φ όπου: a ο μεγάλος ημιάξονας του ελλειψοειδούς και e η πρώτη εκκεντρότητα του ελλειψοειδούς που συνδέεται με την επιπλάτυνση του ελλειψοειδούς (f) με τη σχέση: e = f f. Σχήμα 1.3 Στοιχειώδης γραμμή στο ελλειψοειδές εκ περιστροφής Η ακτίνα του παράλληλου (r) ενός ελλειψοειδούς μεταβάλλεται ανάλογα με το γεωγραφικό πλάτος του σημείου (φ), δηλαδή στον ισημερινό (φ=0 ) είναι ίση με το μεγάλο ημιάξονα του ελλειψοειδούς και όσο αυξάνει το γεωγραφικό πλάτος μειώνεται και στους πόλους τείνει στο μηδέν. Οι στοιχειώδεις συνιστώσες της γραμμής κατά μήκος των μεσημβρινών (dm) και των παράλληλων (dp) μεταξύ των δύο σημείων P και P' (Σχήμα 1.3) εκφράζονται από τις σχέσεις: dm = ρ dφ και dp = r dλ dp = N cos φ dλ. 6

10 Eπομένως, από το ορθογώνιο τρίγωνο που σχηματίζεται (Σχήμα 1.3) το μέγεθος της στοιχειώδους γραμμής PP', δηλαδή, η απόσταση ds θα δίνεται από τη σχέση: ds = ή ds = dm + dp, ρ dφ + r dλ, ή ds = ρ dφ + Ν cos φ dλ. Από το ίδιο τρίγωνο προκύπτει και η σχέση που εκφράζει το αζιμούθιο Α της στοιχειώδους γραμμής PP', δηλαδή: dp dp dm tana = A = arc sin = arc cos, dm ds ds r dλ r dλ ρ dφ ή Α = arc tan = arc sin = arc cos. ρdφ ds ds Τέλος, μεταξύ των μεσημβρινών και των παραλλήλων που διέρχονται από τα σημεία P και P' σχηματίζεται ένα στοιχειώδες χωρίο, το εμβαδόν (dψ) του οποίου θα εκφράζεται από τη σχέση: dψ = dm dp dψ = ρ r dφ dλ. Στις περιπτώσεις εκείνες που οι απαιτήσεις σε ακρίβειες είναι περιορισμένες, τότε οι σχέσεις απλουστεύονται αν θεωρήσουμε ως επιφάνεια αναφοράς την επιφάνεια της σφαίρας (ακτίνας R). Εύκολα προκύπτει ότι τα αντίστοιχα μεγέθη της στοιχειώδους γραμμής στην επιφάνεια της σφαίρας εκφράζονται από τις σχέσεις: dm = R dφ και dp = R cosφ dλ. Οπότε θα έχουμε για το μέγεθος της στοιχειώδους γραμμής (ds) και το αζιμούθιό (A) της: ds = R dφ + cos φ dλ cos φ dλ Α = arc tan. dφ, 7

11 Επιπλέον για το εμβαδόν του στοιχειώδους χωρίου (dψ): dψ = R cosφ dφ dλ. Στη συνέχεια, θα δούμε πώς απεικονίζεται η στοιχειώδης γραμμή και επιφάνεια στο επίπεδο απεικόνισης, δηλαδή στο επίπεδο του χάρτη. 1.5 Στοιχειώδεις γραμμές και επιφάνειες στο επίπεδο απεικόνισης Ο νόμος της απεικόνισης της επιφάνειας του ελλειψοειδούς ή της σφαίρας στο επίπεδο, στη γενική του μορφή θα εκφράζεται από τις σχέσεις: x = x(φ,λ), y = y(φ,λ). Έτσι λοιπόν, κάθε σημείο πάνω στην επιφάνεια του ελλειψοειδούς που η θέση του ορίζεται από τις γεωγραφικές συντεταγμένες (φ,λ) θα απεικονίζεται στο επίπεδο του χάρτη σε θέση που θα ορίζεται από τις ορθογώνιες συντεταγμένες (x,y) με τον τρόπο που θα καθορίζει ο νόμος της απεικόνισης. Οι στοιχειώδεις συνιστώσες κατά τη διεύθυνση του άξονα x (dx) και του άξονα y (dy) στο επίπεδο της απεικόνισης στην πραγματικότητα αποτελούν τα διαφορικά των συναρτήσεων: x(φ,λ) και y(φ,λ) που προσδιορίζουν το νόμο της απεικόνισης. Οι στοιχειώδεις αυτές συνιστώσες χρειάζεται να εκφραστούν για να διευκολύνουν τον προσδιορισμό των σχέσεων που θα συνοδεύουν την απεικόνιση μιας στοιχειώδους γραμμής από την επιφάνεια του ελλειψοειδούς ή της σφαίρας στο επίπεδο. Επομένως ισχύει ότι: x x dx = dφ + φ λ dλ, y y dy = dφ + dλ. φ λ Σύμφωνα λοιπόν, με τον νόμο της απεικόνισης το σημείο P που θεωρήσαμε πάνω στην επιφάνεια του ελλειψοειδούς θα απεικονιστεί στο επίπεδο στο σημείο p και αντίστοιχα το P' στο p' (Σχήμα 1.4). Η στοιχειώδης γραμμή PP' θα απεικονιστεί στο επίπεδο στη γραμμή pp'. Στη συνέχεια, θα εκφράσουμε το μέγεθος της στοιχειώδους γραμμής pp' στο επίπεδο (ds), δηλαδή, την απόσταση μεταξύ των p και p' καθώς και τη γωνία διεύθυνσης α της γραμμής pp'. Η γωνία διεύθυνσης μιας γραμμής στο επίπεδο είναι η γωνία που σχηματίζεται από τον 8

12 παράλληλο προς τον άξονα y και τη γραμμή και μετράται πάντα δεξιόστροφα με αφετηρία την παράλληλο προς τον άξονα y. IIy dx p εικόνα μεσημβρινού ds p ds m dy -a m γ a a p p IIx Σχήμα 1.4 Στοιχειώδης γραμμή στο επίπεδο της απεικόνισης ds εικόνα παράλληλου Ακολουθώντας την ίδια πορεία με τα προηγούμενα το μέγεθος της στοιχειώδους γραμμής στο επίπεδο (ds) θα δίνεται από τη σχέση: ds = dx + dy. Αν χρησιμοποιηθεί ως βάση η απλή αυτή σχέση και αντικατασταθούν οι στοιχειώδεις συνιστώσες κατά τους άξονες x και y που προηγουμένως προσδιορίστηκαν και εκτελεστούν ορισμένες πράξεις θα προκύψει για το στοιχειώδες μέγεθος της γραμμής pp' στο επίπεδο η παρακάτω έκφραση: ds = E dφ + F dφ dλ + G dλ, όπου: x E = φ y + φ x x y y F = +, φ λ φ λ x G = λ y + λ., 9

13 Οι παραστάσεις E, G και F ονομάζονται θεμελιώδη μεγέθη πρώτης τάξεως και εξαρτώνται από το νόμο της εκάστοτε προβολής (απεικόνισης) και τη θέση στην οποία βρίσκεται η στοιχειώδης γραμμή. Αν κινηθούμε κατά μήκος ενός μεσημβρινού, δηλαδή το λ=c και επομένως: dλ=0, τότε η στοιχειώδης μετακίνηση κατά μεσημβρινό (ds m ) θα είναι: ds m = E dφ. Αντίστοιχα, αν κινηθούμε κατά μήκος ενός παραλλήλου, δηλαδή το φ=c και επομένως: dφ=0, τότε η στοιχειώδης μετακίνηση κατά παράλληλο (ds p ) θα είναι: ds p = G dλ. Με ανάλογο τρόπο μπορούν να υπολογιστούν και οι γωνίες διεύθυνσης στο επίπεδο της απεικόνισης των μεσημβρινών και των παραλλήλων καθώς επίσης και της στοιχειώδους γραμμής pp'. Η γωνία διεύθυνσης (α) της εικόνας μιας στοιχειώδους γραμμής είναι: dx dx dy α = arc tan = arc sin = arc cos. dy ds ds Αν η γραμμή αυτή είναι μεσημβρινός, τότε η γωνία διεύθυνσης της εικόνας του μεσημβρινού (α m ) θα είναι (με: λ=c, δηλαδή: dλ=0): α m x y 1 x 1 y = arc tan : = arc sin = arc cos. φ φ E φ E φ Αν η γραμμή είναι παράλληλος, τότε η γωνία διεύθυνσης της εικόνας του παράλληλου (α p ) θα είναι (με: φ=c, δηλαδή: dφ=0): α p x y 1 x 1 y = arc tan : = arc sin = arc cos. λ λ G λ G λ Η αντίθετη γωνία της διεύθυνσης του μεσημβρινού (γ=-α m ), δηλαδή αυτή που μετράται από τον μεσημβρινό προς τον άξονα y, έχει μεγάλη χρησιμότητα στη χαρτογραφία και ονομάζεται σύγκλιση των μεσημβρινών. Η σύγκλιση των μεσημβρινών είναι απαραίτητη για τον προσδιορισμό της αναγωγής των γωνιών σε αναλυτικά προβλήματα. Η γωνία αυτή υπολογίζεται από τη σχέση: 10

14 x φ γ = arc tan. y φ Για την εικόνα ενός στοιχειώδους χωρίου (dψ) στο επίπεδο της απεικόνισης λαμβάνοντας υπόψη τις πλευρές του που αποτελούν στοιχειώδεις μετακινήσεις κατά μεσημβρινό (ds m ) και παράλληλο (ds p ), έχουμε: dψ = ds m ds p sin( α p - αm). Αναλύοντας όμως, το ημίτονο της διαφοράς δύο γωνιών σε διαφορά γινομένων των ημιτόνων και συνημιτόνων των γωνιών και αντικαθιστώντας τις σχέσεις που προσδιορίστηκαν πιο πάνω για τις διευθύνσεις των εικόνων του μεσημβρινού και του παράλληλου, προκύπτει: J sin ( αp - αm ) =. EG Η παράσταση J ονομάζεται ιακωβιανή και δίνεται από τη σχέση: x y y x J =. λ φ λ φ Αντικαθιστώντας λοιπόν τις γνωστές ποσότητες στη σχέση της εικόνας ενός χωρίου στο επίπεδο προκύπτει η παρακάτω: dψ = J dφ dλ. 1.6 Στοιχειώδεις παραμορφώσεις Κλίμακα γραμμικής παραμόρφωσης Η παραμόρφωση του μήκους στοιχειώδους γραμμής μελετάται με τη βοήθεια της κλίμακας γραμμικής παραμόρφωσης (m) ή απλώς κλίμακας. Η κλίμακα γραμμικής παραμόρφωσης ορίζεται από τη σχέση: 11

15 Δs ds m = lim ΔS 0 =. ΔS ds όπου: ds είναι το μήκος μιας στοιχειώδους γραμμής στην επιφάνεια του ελλειψοειδούς (Σχήμα 1.3) και ds το μήκος της εικόνας της στο επίπεδο (Σχήμα 1.4). Η κλίμακα γραμμικής παραμόρφωσης αναφέρεται αποκλειστικά και μόνο στην απεικόνιση και δεν έχει καμία σχέση με τη σμίκρυνση την κλίμακα δηλαδή με την οποία σχεδιάζονται οι χάρτες. Η κλίμακα γραμμικής παραμόρφωσης είναι αδιάστατο μέγεθος και όταν έχει ως τιμή τη μονάδα, τότε το μήκος της στοιχειώδους γραμμής απεικονίζεται στο επίπεδο χωρίς παραμόρφωση. Όπως θα αποδειχθεί παρακάτω η κλίμακα γραμμικής παραμόρφωσης εν γένει μεταβάλλεται από σημείο σε σημείο και σε κάθε σημείο έχει διαφορετική τιμή σε κάθε διεύθυνση Κύριες διευθύνσεις- κύριες κλίμακες Αν θεωρήσουμε μια ορθή γωνία επάνω στην επιφάνεια του ελλειψοειδούς εκ περιστροφής και περιστρέψουμε τη γωνία αυτή γύρω από την κορυφή της, τότε εξετάζοντας την εικόνα της γωνίας στο επίπεδο της απεικόνισης θα δούμε ότι υπάρχει ένας συγκεκριμένος προσανατολισμός των πλευρών της που και η εικόνα της είναι ορθή γωνία. Οι κάθετες διευθύνσεις που διατηρούν κάθετες και τις εικόνες τους στο επίπεδο της απεικόνισης ονομάζονται κύριες διευθύνσεις. Η κλίμακα γραμμικής παραμόρφωσης σε κάποια θέση, όπως αναφέρθηκε και στα προηγούμενα, έχει διαφορετική τιμή σε κάθε διεύθυνση. Οι κλίμακες γραμμικής παραμόρφωσης στις κύριες διευθύνσεις ονομάζονται κύριες κλίμακες και συμβολίζονται με m 1 και m. Οι τιμές των κυρίων κλιμάκων σε κάθε σημείο αποδεικνύεται ότι είναι η μέγιστη (m 1 =max) και ελάχιστη (m =min) τιμή της κλίμακας παραμόρφωσης στη θέση αυτή. Στις ορθές απεικονίσεις οι κύριες διευθύνσεις είναι πάντα κατά μεσημβρινό και παράλληλο Κλίμακα γραμμικής παραμόρφωσης σε τυχαία διεύθυνση Γνωρίζοντας τις τιμές των κυρίων κλιμάκων σε ένα σημείο μιας απεικόνισης μπορούμε να υπολογίσουμε την κλίμακα γραμμικής παραμόρφωσης σε τυχαία διεύθυνση Ω (m Ω ). Η διεύθυνση Ω μετράται αριστερόστροφα στο ελλειψοειδές από την κύρια διεύθυνση της μέγιστης κλίμακας (m 1 ). Η κλίμακα γραμμικής παραμόρφωσης σε τυχαία διεύθυνση υπολογίζεται από τη σχέση: 1

16 m Ω = m cos Ω + m sin Ω. 1 Η σχέση αυτή αποδεικνύεται εύκολα αναλύοντας μια στοιχειώδη μετακίνηση στις συνιστώσες της ως προς τις κύριες διευθύνσεις και εφαρμόζοντας τον ορισμό της κλίμακας γραμμικής παραμόρφωσης για το ορθογώνιο τρίγωνο που σχηματίζεται (Σχήμα 1.5). Σχήμα 1.5 Τυχαία διεύθυνση στο ελλειψοειδές Αν οι κλίμακες γραμμικής παραμόρφωσης είναι ίσες στις δύο κύριες διευθύνσεις (m 1 =m ), τότε από τη σχέση αυτή αποδεικνύεται ότι η κλίμακα γραμμικής παραμόρφωσης έχει την ίδια τιμή σε οποιαδήποτε διεύθυνση (m Ω = m 1 =m ) Παραμορφώσεις γωνιών Αν Ω είναι η γωνία που σχηματίζεται από μία οποιαδήποτε διεύθυνση με την κύρια διεύθυνση της μέγιστης κλίμακας γραμμικής παραμόρφωσης (m 1 ) και ω η εικόνα της στο επίπεδο (Σχήμα 1.6) τότε, από τα ορθογώνια τρίγωνα που σχηματίζονται αναλύοντας μια στοιχειώδη μετακίνηση στην τυχαία αυτή διεύθυνση πάνω στην επιφάνεια του ελλειψοειδούς και στο επίπεδο απεικόνισης, οι γωνίες Ω και ω συνδέονται με τη σχέση: m tan ω = tan Ω. m 1 Αξιοποιώντας τη σχέση αυτή, τις ιδιότητες των αναλογιών και ταυτότητες τριγωνομετρικών συναρτήσεων, προκύπτει η παρακάτω σχέση: 13

17 m m sin = m + m sin 1 ( Ω - ω) ( Ω + ω) 1. Σχήμα 1.6 Τυχαία διεύθυνση στο επίπεδο απεικόνισης Ορίζοντας λοιπόν ως γωνιακή παραμόρφωση σε διεύθυνση (ε), τη διαφορά: ε = Ω - ω, τότε αυτή θα υπολογίζεται από τη σχέση: m1 m sin ε = sin( Ω + ω). m + m 1 Αξιοποιώντας την τελευταία σχέση παρατηρούμε ότι η μέγιστη γωνιακή παραμόρφωση σε διεύθυνση (Ε) θα είναι: sin E m m 1 =. m1 + m Η τιμή αυτή της μέγιστης γωνιακής παραμόρφωσης παρουσιάζεται στη διεύθυνση: π Ε Ω = +, 4 στην επιφάνεια του ελλειψοειδούς εκ περιστροφής και: 14

18 π Ε ω =, 4 στο επίπεδο της απεικόνισης. Μια γωνία επομένως, μπορεί να παραμορφωθεί μέχρι την τιμή Ε. Όταν οι κύριες κλίμακες μιας απεικόνισης είναι ίσες, δηλαδή m 1 = m, τότε η απεικόνιση αυτή δεν θα έχει καμία παραμόρφωση στις γωνίες επειδή: ε = 0. Οι απεικονίσεις που δεν έχουν παραμόρφωση στις γωνίες διατηρούν τη μορφή στοιχειωδών σχημάτων από την επιφάνεια του ελλειψοειδούς στο επίπεδο αναλλοίωτη, οι απεικονίσεις αυτές ονομάζονται σύμμορφες Κλίμακα επιφανειακής παραμόρφωσης Η παραμόρφωση του εμβαδού στοιχειώδους επιφάνειας μελετάται με τη βοήθεια της κλίμακας επιφανειακής παραμόρφωσης (Μ) ή απλώς επιφανειακής κλίμακας. Η κλίμακα επιφανειακής παραμόρφωσης ορίζεται από τη σχέση: Δψ dψ Μ = lim ΔΨ 0 =. ΔΨ dψ όπου: dψ είναι το εμβαδόν ενός στοιχειώδους χωρίου στην επιφάνεια του ελλειψοειδούς και dψ το εμβαδόν της εικόνας του στο επίπεδο (Σχήμα 1.7). Σχήμα 1.7 Στοιχειώδης επιφάνεια στο ελλειψοειδές και το επίπεδο απεικόνισης Εύκολα αποδεικνύεται ότι η κλίμακα επιφανειακής παραμόρφωσης συνδέεται με τις κύριες κλίμακες μιας απεικόνισης με τη σχέση: 15

19 Μ = m 1 m. Σε απεικονίσεις που η κλίμακα επιφανειακής παραμόρφωσης είναι ίση με τη μονάδα (Μ=1) δεν παρουσιάζεται παραμόρφωση στα εμβαδά, δηλαδή διατηρείται το εμβαδόν στοιχειωδών επιφανειών από την επιφάνεια του ελλειψοειδούς στο επίπεδο αναλλοίωτο. Οι απεικονίσεις αυτές ονομάζονται ισοδύναμες Νόμος των παραμορφώσεων - θεώρημα Tissot Στην ενότητα αυτή θα μελετήσουμε τον τρόπο με τον οποίο μεταβάλλεται η κλίμακα γραμμικής παραμόρφωσης για οποιαδήποτε απεικόνιση της επιφάνειας του ελλειψοειδούς εκ περιστροφής στο επίπεδο. Σε κάποιο σημείο η κλίμακα θα είναι: ds m =. ds Αν υψώσουμε τη σχέση αυτή στο τετράγωνο και αντικαταστήσουμε σε αυτήν το μήκος μιας στοιχειώδους γραμμής στην επιφάνεια του ελλειψοειδούς και το μήκος της απεικόνισής της στο επίπεδο, τότε προκύπτει η σχέση: m Edφ + F dφ dλ + G dλ =. ρ dφ + r dλ r dλ tan A =, ρ dφ Διαιρώντας τη σχέση αυτή με ρ²dφ² και επειδή ισχύει: προκύπτει για το τετράγωνο της κλίμακας γραμμικής παραμόρφωσης η σχέση: E F G + tana + tan A ρ ρ r r =. 1+ tan A m Εξετάζοντας τη σχέση αυτή παρατηρούμε ότι η κλίμακα γραμμικής παραμόρφωσης (m) είναι συνάρτηση της θέσης, δηλαδή ισχύει: m=f(φ,λ), και της διεύθυνσης, άρα: m=f(a). Επειδή λοιπόν, η τιμή της κλίμακας γραμμικής παραμόρφωσης σε κάποια θέση μεταβάλλεται στις διευθύνσεις γύρω από αυτή τη 16

20 θέση, θα υπάρχουν δύο διευθύνσεις που οι τιμές της θα είναι αντίστοιχα η μέγιστη και η ελάχιστη. Ας προσπαθήσουμε να βρούμε εκείνα τα αζιμούθια A για τα οποία η συνάρτηση m² παίρνει τη μέγιστη και ελάχιστη τιμή. Ξεκινάμε μηδενίζοντας την παράγωγο της m² ως προς το αζιμούθιο A: dm da G Ε r ρ = tan A - tana -1 = 0. F ρ r Βλέπουμε ότι η παράγωγος είναι ένα τριώνυμο ως προς την εφαπτομένη του αζιμουθίου. Οι ρίζες του τριωνύμου εξετάζοντας τους συντελεστές του έχουν την ιδιότητα: tana 1 tana = -1, τα αζιμούθια που μηδενίζουν το τριώνυμο βρίσκονται σε κάθετες μεταξύ τους διευθύνσεις, δηλαδή: Α 1 = Α + π. Επομένως, προκύπτει το συμπέρασμα ότι: οι διευθύνσεις στην επιφάνεια του ελλειψοειδούς εκ περιστροφής (ή της σφαίρας) στις οποίες η κλίμακα γραμμικής παραμόρφωσης έχει τη μέγιστη και ελάχιστη τιμή είναι κάθετες μεταξύ τους. Οι διευθύνσεις αυτές ονομάζονται κύριες διευθύνσεις. Ακολουθώντας ανάλογη πορεία και εξετάζοντας τις απεικονίσεις των κυρίων διευθύνσεων στο επίπεδο, οδηγούμαστε στο συμπέρασμα ότι και: στο επίπεδο της απεικόνισης οι κύριες διευθύνσεις απεικονίζονται σε κάθετες μεταξύ τους διευθύνσεις. Τα συμπεράσματα αυτά διατυπώνονται στο θεώρημα του Tissot: Σε κάθε σημείο της επιφάνειας του ελλειψοειδούς εκ περιστροφής (ή της σφαίρας) υπάρχει ένα τουλάχιστον ζεύγος καθέτων διευθύνσεων οι οποίες και στην απεικόνισή τους παραμένουν κάθετες. 17

21 18 Τέλος, με απλή αντικατάσταση η κλίμακα επιφανειακής παραμόρφωσης προκύπτει ότι είναι: ρ r J M = Έλλειψη παραμόρφωσης. Δείκτρια Tissot Αν θεωρήσουμε πάνω στην επιφάνεια του ελλειψοειδούς ένα στοιχειώδη κύκλο με ακτίνα ds, η εξίσωση του κύκλου θα είναι: ds dp dm = +. Αντικαθιστώντας στη σχέση αυτή τα μεγέθη των στοιχειωδών γραμμών κατά μεσημβρινό και παράλληλο, θα έχουμε: ds dλ r dφ ρ = +. Ο κύκλος αυτός θα απεικονίζεται στο επίπεδο ως μια κλειστή γραμμή, την οποία θα προσπαθήσουμε να προσδιορίσουμε. Τα διαφορικά dx και dy του νόμου της απεικόνισης εκφράζουν τις στοιχειώδεις μετακινήσεις στο επίπεδο της απεικόνισης κατά τις διευθύνσεις των αξόνων x και y. Αν θεωρήσουμε ότι αποτελούν ένα σύστημα δύο εξισώσεων με αγνώστους ως προς τα dφ και dλ, θα έχουμε:, και J dy φ x dx φ y dλ J dx λ y dy λ x dφ = = δεδομένου ότι η ορίζουσα των συντελεστών των αγνώστων είναι η ιακωβιανή (J). Αντικαθιστώντας τα dφ και dλ στην εξίσωση του κύκλου και εκτελώντας ορισμένες πράξεις, θα έχουμε στο επίπεδο της απεικόνισης ως εικόνα του κύκλου την γραμμή με την εξίσωση:. ds J dx dy λ y λ x ρ φ y φ x r dy λ x r φ x ρ dx λ y r φ y ρ =

22 m P b ε p Ω Ο ω m 1 m r=1.00 a Σχήμα 1.8 Δείκτρια Tissot Η σχέση αυτή μπορεί να γραφτεί απλούστερα με την παρακάτω μορφή: a ² dx² + b² dy² - c dx dy = k². Είναι όμως γνωστό, ότι η τελευταία σχέση αποτελεί την εξίσωση μιας έλλειψης, της οποίας ο μεγάλος ημιάξονας εμφανίζει στροφή ως προς τον άξονα x. Επομένως προκύπτει το συμπέρασμα ότι: κάθε στοιχειώδης κύκλος στην επιφάνεια του ελλειψοειδούς εκ περιστροφής (ή της σφαίρας) απεικονίζεται στο επίπεδο ως έλλειψη ανεξάρτητα του συγκεκριμένου νόμου της απεικόνισης. Αν ο στοιχειώδης κύκλος γίνει μοναδιαίος (ds=1), τότε η έλλειψη θα μας δίνει μια άμεση εποπτεία των παραμορφώσεων της απεικόνισης (Σχήμα 1.8). Η έλλειψη που αντιστοιχεί σε κύκλο μοναδιαίας ακτίνας είναι γνωστή ως δείκτρια Tissot. Οι ημιάξονες της έλλειψης είναι προσανατολισμένοι στις διευθύνσεις των κυρίων κλιμάκων με το μεγάλο ημιάξονα να είναι ίσος με τη μέγιστη γραμμική κλίμακα (m 1 ) και το μικρό ημιάξονα αντίστοιχα να είναι ίσος με την ελάχιστη γραμμική κλίμακα (m ). 1.7 Παραμορφώσεις πεπερασμένων μεγεθών Όλα όσα μελετήθηκαν για τις παραμορφώσεις, αναφέρονται στην απεικόνιση στοιχειωδών μεγεθών από το ελλειψοειδές στο επίπεδο. Στις εφαρμογές όμως, 19

23 χρειάζεται πάντα να υπολογίζουμε τις παραμορφώσεις για πεπερασμένα μεγέθη. Η μελέτη μιας ολοκληρωμένης αντιμετώπισης των παραμορφώσεων πεπερασμένων μεγεθών ξεφεύγει από το πλαίσιο αυτών των σημειώσεων. Γι αυτό το λόγο στη συνέχεια του κεφαλαίου θα διατυπωθούν μόνο ορισμένες βασικές αρχές της μελέτης των παραμορφώσεων πεπερασμένων μεγεθών Παραμόρφωση μήκους πεπερασμένης γραμμής Ας θεωρήσουμε μια γραμμή Γ μήκους S πάνω στην επιφάνεια του ελλειψοειδούς, τότε η εικόνα της στο επίπεδο της απεικόνισης θα είναι η γ με μήκος s (Σχήμα 1.9). Αξιοποιώντας τη γνωστή σχέση της κλίμακας γραμμικής παραμόρφωσης θα έχουμε: ds = m ds. (Γ) (γ) ds ds Σχήμα 1.9 Πεπερασμένη γραμμή στο ελλειψοειδές και στο επίπεδο απεικόνισης Μπορούμε λοιπόν να θεωρήσουμε ότι η γραμμή αποτελείται από το άθροισμα ενός μεγάλου αριθμού στοιχειωδών γραμμών. Επομένως, το μήκος της γραμμής θα προσδιορίζεται από το επικαμπύλιο ολοκλήρωμα: s = m ds. S Γνωρίζουμε όμως, ότι η κλίμακα γραμμικής παραμόρφωσης (m) είναι συνάρτηση της θέσης και της διεύθυνσης. Το μήκος της πεπερασμένης γραμμής θα δίνεται από τη σχέση: 1 s = m ds S S S. Επειδή όμως, η παράσταση που βρίσκεται μέσα στις αγκύλες αποτελεί τη μέση κλίμακα γραμμικής παραμόρφωσης κατά μήκος της γραμμής: 0

24 m = 1 m ds. S S το μήκος της γραμμής στο επίπεδο της απεικόνισης θα δίνεται από τη σχέση: s = m S. Στην πράξη η μέση κλίμακα γραμμικής παραμόρφωσης προσδιορίζεται προσεγγιστικά, χωρίζοντας τη γραμμή σε τμήματα και υπολογίζοντας τη μέση τιμή της κλίμακας γραμμικής παραμόρφωσης για κάθε τμήμα Παραμόρφωση γωνίας Οι γωνιακές παραμορφώσεις αναφέρονται στις γωνίες που σχηματίζονται από τις εφαπτόμενες των αντίστοιχων γραμμών στην επιφάνεια του ελλειψοειδούς και των εικόνων τους στο επίπεδο της απεικόνισης. Επειδή είναι χρήσιμο στη μελέτη των γωνιακών παραμορφώσεων να αξιοποιηθούν οι απλές σχέσεις της ευκλείδιας γεωμετρίας στο επίπεδο και δεδομένου ότι οι εικόνες γραμμών της επιφάνειας του ελλειψοειδούς στο επίπεδο είναι εν γένει καμπύλες γραμμές, θα πρέπει να λάβουμε υπόψη στους υπολογισμούς τις γωνίες που σχηματίζονται μεταξύ χορδής και εφαπτομένης στα άκρα των γραμμών. Αυτό σημαίνει ότι κάθε γωνία θα πρέπει να διορθώνεται και για τη γωνιακή διαφορά τόξου-χορδής (δ). Έτσι, η γωνία β που είναι η εικόνα της γωνίας Β (Σχήματα 1.10 και 1.11), όπως ορίζεται από τα σημεία: b, a και c στο επίπεδο της απεικόνισης ως εικόνες των σημείων: B, A και C πάνω στην επιφάνεια του ελλειψοειδούς, θα είναι: β = Β + ε δ 1 + δ, όπου: ε = β Β. Σχήμα 1.10 Η γωνία στο ελλειψοειδές Σχήμα 1.11 Η γωνία στο επίπεδο 1

25 Η διόρθωση ε μπορεί να υπολογιστεί από τη διαφορά των διορθώσεων που αντιστοιχούν στις γωνίες διεύθυνσης (Ω Β και Ω C ) των δύο πλευρών της γωνίας στην επιφάνεια του ελλειψοειδούς, δηλαδή: ε = ε Β ε C Σχέση μεταξύ αζιμουθίου και γωνία διεύθυνσης σύγκλιση των μεσημβρινών Η μέτρηση των διευθύνσεων στην επιφάνεια του ελλειψοειδούς γίνεται με τη βοήθεια των αζιμουθίων Α, ενώ στο επίπεδο με τις γωνίες διεύθυνσης α. Ως αζιμούθιο μιας γραμμής (με άκρα τα σημεία P και Q) στην επιφάνεια του ελλειψοειδούς σε κάποιο σημείο P, ονομάζεται η γωνία που σχηματίζει η εφαπτομένη της γραμμής στο σημείο αυτό με το μεσημβρινό που διέρχεται από το σημείο P. Το αζιμούθιο μετριέται δεξιόστροφα από τη βορεινή φορά του μεσημβρινού μέχρι τη γραμμή. Ως γωνία διεύθυνσης μιας γραμμής στο επίπεδο σε κάποιο σημείο p, ονομάζεται η γωνία που σχηματίζεται από την εφαπτομένη της γραμμής στο σημείο αυτό με τη θετική φορά του άξονα y. Η γωνία διεύθυνσης μετριέται δεξιόστροφα από τον άξονα των y προς την εφαπτομένη της γραμμής. Παρατηρώντας τα Σχήματα 1.1 και 1.13 η γωνία Α αποτελεί την εικόνα της γωνίας του αζιμουθίου Α στο επίπεδο, επομένως για τη γωνία Α ισχύει: A = A + ε, όπου: ε είναι η γωνιακή παραμόρφωση του αζιμουθίου Α. Η γωνία Α όμως, όπως φαίνεται στο Σχήμα 1.13, σχηματίζεται από εφαπτόμενες των εικόνων του μεσημβρινού και της γραμμής με άκρα τα σημεία p και q στο επίπεδο, θα δίνεται από τη σχέση: Α = α + γ δ, όπου: γ είναι η γωνία που σχηματίζεται από τη θετική φορά του άξονα y και της εφαπτομένης της εικόνας του μεσημβρινού που διέρχεται από το σημείο p στο επίπεδο και: δ είναι η διαφορά τόξου-χορδής της γραμμής με άκρα τα σημεία p και q. Η γωνία γ, που ονομάζεται σύγκλιση μεσημβρινού, έχει οριστεί στην ενότητα 1.5. Συνδυάζοντας τις δύο παραπάνω σχέσεις η γωνία διεύθυνσης συνδέεται με τη γωνία του αζιμουθίου ως εξής: α = Α γ + ε + δ.

26 Σχήμα 1.1 Γωνία αζιμουθίου Σχήμα 1.13 Γωνία διεύθυνσης Με δεδομένο ότι ένας χάρτης απεικονίζει -στις περισσότερες περιπτώσειςμια περιοχή έκτασης μερικών μοιρών, οι γωνίες ε και δ είναι μικρές όμως η γωνία γ μπορεί να είναι, ανάλογα με την προβολή, μεγαλύτερη από μία μοίρα Παραμόρφωση εμβαδού χωρίου Ας θεωρήσουμε ένα χωρίο εμβαδού Ψ πάνω στην επιφάνεια του ελλειψοειδούς, τότε η εικόνα του χωρίου στο επίπεδο της απεικόνισης θα έχει εμβαδόν ψ (Σχήματα 1.14 και 1.15). Αξιοποιώντας τη γνωστή σχέση της κλίμακας επιφανειακής παραμόρφωσης θα έχουμε: dψ = Μ dψ. Σχήμα 1.14 Χωρίο στο ελλειψοειδές Σχήμα 1.15 Χωρίο στο επίπεδο Μπορούμε λοιπόν να θεωρήσουμε ότι το χωρίο αποτελείται από το άθροισμα ενός μεγάλου αριθμού στοιχειωδών χωρίων. Επομένως, το εμβαδόν του θα προσδιορίζεται από το επιφανειακό ολοκλήρωμα: 3

27 ψ = Μ dψ. Ψ Γνωρίζουμε όμως, ότι η κλίμακα επιφανειακής παραμόρφωσης (Μ) είναι συνάρτηση της θέσης και της διεύθυνσης. Το εμβαδόν του χωρίου θα δίνεται από τη σχέση: 1 ψ = Ψ Ψ Μ dψ Ψ. Επειδή όμως, η παράσταση που βρίσκεται μέσα στις αγκύλες αποτελεί τη μέση κλίμακα επιφανειακής παραμόρφωσης κατά την έκταση του χωρίου θα έχουμε: Μ = 1 Μ dψ. Ψ Ψ και το εμβαδόν του χωρίου στο επίπεδο της απεικόνισης θα δίνεται από τη σχέση: ψ = Μ Ψ. Στην πράξη η μέση κλίμακα επιφανειακής παραμόρφωσης προσδιορίζεται προσεγγιστικά, χωρίζοντας το χωρίο σε στοιχειώδεις επιφάνειες και υπολογίζοντας τη μέση τιμή της κλίμακας επιφανειακής παραμόρφωσης για κάθε στοιχειώδη επιφάνεια. 1.8 Βιβλιογραφία Βέης, Γ. Μαθηματική Χαρτογραφία. Εργαστήριο Τοπογραφίας, Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, 1977, σελ. 69. Cuenin, R. Cartographie Generale. Tome 1. Editions Eyrolles, Paris, 197, p. 34. Maling, D.H. Coordinate systems and map projections. G. Philip & Son Ltd., London, 1973, p. 55. Νάκος, Β. και Β. Φιλιππακοπούλου. Γενική Χαρτογραφία. Τμήμα Αγρονόμων Τοπογράφων Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, 1993, σελ. 0. Richardus, P. and R.K. Adler. Map projections. North-Holland Pub. Co., Amsterdam, 197, p

28 Thomas, P.D. Conformal projections in geodesy and cartography. U.S. Deptartment of Commerce, Coast & Geodetic Survey. Special Publication No 51. Washington, 195, p

29 6

30 Κεφάλαιο. ΑΡΧΕΣ ΤΩΝ ΑΠΕΙΚΟΝΙΣΕΩΝ - ΠΡΟΒΟΛΩΝ.1 Εισαγωγή στις αρχές των απεικονίσεων Οι απεικονίσεις στη χαρτογραφία αναφέρονται στην προβολή ή απεικόνιση της επιφάνειας αναφοράς, δηλαδή του ελλειψοειδούς εκ περιστροφής (ή της σφαίρας) στο επίπεδο, δηλαδή στο επίπεδο του χάρτη. Η απεικόνιση αυτή πάντα συνοδεύεται από παραμορφώσεις. Έτσι λοιπόν, μπορούμε να επινοήσουμε τρόπους απεικόνισης που να διατηρούν ορισμένες γεωμετρικές ιδιότητες των χωρικών οντοτήτων αναλλοίωτες (για παράδειγμα: τα εμβαδά ή τις γωνίες ή τα μήκη σε ορισμένες όμως διευθύνσεις), αλλά είναι αδύνατο να παραμένουν ταυτόχρονα όλες οι γεωμετρικές ιδιότητες αναλλοίωτες.. Βασικές αρχές απεικονίσεων-προβολών Η απεικόνιση αντί να γίνει απ' ευθείας στην επιφάνεια ενός επιπέδου, μπορεί να γίνει πρώτα πάνω σε μια αναπτυκτή επιφάνεια και στη συνέχεια αυτή να αναπτυχθεί στο επίπεδο. Τέτοιες κατάλληλες αναπτυκτές επιφάνειες είναι η παράπλευρη επιφάνεια ενός κυλίνδρου ή ενός κώνου (Σχήμα.1). Οι απεικονίσεις λοιπόν, ανάλογα με την αναπτυκτή επιφάνεια που χρησιμοποιούμαι, ονομάζονται κυλινδρικές, κωνικές και επίπεδες ή αζιμουθιακές. Ανάλογα με τον προσανατολισμό του κυλίνδρου, του κώνου ή του επιπέδου σε σχέση με την επιφάνεια αναφοράς (έλλειψοειδές εκ περιστροφής ή σφαίρα) οι απεικονίσεις διακρίνονται σε: ορθές, εγκάρσιες και πλάγιες (Σχήμα.). Ορθές ονομάζονται οι απεικονίσεις που ο άξονας συμμετρίας της αναπτυκτής επιφάνειας ταυτίζεται με τον άξονα περιστροφής της γης. Εγκάρσιες ονομάζονται οι απεικονίσεις που ο άξονας συμμετρίας της αναπτυκτής επιφάνειας είναι κάθετος με τον άξονα περιστροφής της γης. Πλάγιες, τέλος, ονομάζονται οι απεικονίσεις που ο άξονας συμμετρίας της αναπτυκτής επιφάνειας σχηματίζει τυχαία γωνία με τον άξονα περιστροφής της γης. 7

31 ΚΥΛΙΝΔΡΙΚΕΣ ΚΩΝΙΚΕΣ ΕΠΙΠΕΔΕΣ Σχήμα.1 Κυλινδρικές, κωνικές και επίπεδες απεικονίσεις ΟΡΘΕΣ ΕΓΚΑΡΣΙΕΣ ΠΛΑΓΙΕΣ Σχήμα. Ορθές, εγκάρσιες και πλάγιες απεικονίσεις Οι απεικονίσεις μπορούν να πραγματοποιηθούν με καθαρά γεωμετρικούς τρόπους. Αρκεί να προβάλλουμε τα σημεία του ελλειψοειδούς ή της σφαίρας σε ένα επίπεδο ή σε μια αναπτυκτή επιφάνεια. Γι αυτό το λόγο άλλωστε πολλές φορές χρησιμοποιούμε και τον όρο προβολή. Η προβολή αυτή μπορεί να είναι κεντρική ή παράλληλη. Στις περισσότερες περιπτώσεις μια κεντρική προβολή απεικονίζει μονοσήμαντα μόνο ένα μέρος του ελλειψοειδούς ή της σφαίρας, για παράδειγμα μόνο το ένα ημισφαίριο. Η απεικόνιση όμως μπορεί να πραγματοποιηθεί και με καθαρά αναλυτικό τρόπο, χωρίς να προέρχεται από 8

32 γεωμετρική προβολή, ή και να προκύψει από συνδυασμό αναλυτικής και γεωμετρικής μεθόδου. Στο ελλειψοειδές ή τη σφαίρα συνήθως χρησιμοποιούμε ως σύστημα αναφοράς το σύστημα των γεωγραφικών συντεταγμένων (φ,λ), ενώ στο επίπεδο ένα σύστημα ορθογωνίων (x,y) ή πολικών συντεταγμένων (ρ,θ). Κάθε απεικόνιση ορίζεται με τη βοήθεια δύο συναρτήσεων f,g οι οποίες και καθορίζουν τις παραμορφώσεις των γεωμετρικών μεγεθών από το ελλειψοειδές ή τη σφαίρα στο επίπεδο. Επομένως, ο νόμος κάθε απεικόνισης ή προβολής εκφράζεται από τις σχέσεις: x = f(φ,λ) και y = g(φ,λ). (α) (γ) (β) (δ) Σχήμα.3 Εικόνες μεσημβρινών και παραλλήλων γενικών περιπτώσεων απεικονίσεων που ορίζονται με ορθογώνιες συντεταγμένες Στο Σχήμα.3 απεικονίζονται οι εικόνες των μεσημβρινών και παραλλήλων, που αποτελούν χαρακτηριστικές περιπτώσεις συναρτήσεων f και g ως προς ένα ορθογώνιο σύστημα συντεταγμένων (x,y) για το χάρτη. Στην πρώτη περίπτωση (Σχήμα.3α) έχουμε τη γενική μορφή μιας προβολής. Δηλαδή, οι σχέσεις που ορίζουν την απεικόνιση είναι: x=f(φ,λ) και y=g(φ,λ) και οι εικόνες των μεσημβρινών και παραλλήλων είναι εν γένει καμπύλες γραμμές. Στη δεύτερη περίπτωση (Σχήμα.3β) παρουσιάζονται οι εικόνες των μεσημβρινών και παραλλήλων όταν ισχύει: x=f(λ) και y=g(φ,λ). Δηλαδή, όταν η συντεταγμένη: x είναι συνάρτηση μόνον του γεωγραφικού μήκους, τότε οι εικόνες των μεσημβρινών αποτελούν μια παράλληλη δέσμη ευθειών. Στην τρίτη περίπτωση 9

33 (Σχήμα.3γ) παρουσιάζονται οι εικόνες των μεσημβρινών και παραλλήλων όταν ισχύει: x=f(φ,λ) και y=g(φ). Δηλαδή, όταν η συντεταγμένη: y είναι συνάρτηση μόνον του γεωγραφικού πλάτους, τότε οι εικόνες των παραλλήλων αποτελούν μια παράλληλη δέσμη ευθειών. Τέλος, όταν ισχύει: x=f(λ) και y=g(φ), τότε και οι μεσημβρινοί αλλά και οι παράλληλοι απεικονίζονται ως παράλληλες δέσμες ευθειών (Σχήμα.3δ). Η τελευταία αυτή περίπτωση αναφέρεται στις ορθές κυλινδρικές απεικονίσεις. (α) (γ) (β) Σχήμα.4 Εικόνες μεσημβρινών και παραλλήλων γενικών περιπτώσεων απεικονίσεων που ορίζονται με πολικές συντεταγμένες Στο Σχήμα.4 απεικονίζονται οι εικόνες των μεσημβρινών και παραλλήλων χαρακτηριστικών περιπτώσεων συναρτήσεων f και g ως προς ένα πολικό σύστημα συντεταγμένων (ρ,θ) για το χάρτη. Στην πρώτη περίπτωση (Σχήμα.4α) έχουμε τη γενική μορφή μιας προβολής. Δηλαδή, όταν οι σχέσεις που ορίζουν την απεικόνιση είναι: ρ=f(φ,λ) και θ=g(φ,λ) τότε εικόνες των παραλλήλων είναι κλειστές καμπύλες γραμμές και των μεσημβρινών κεντρική δέσμη καμπύλων γραμμών. Στη δεύτερη περίπτωση (Σχήμα.4β) παρουσιάζονται οι εικόνες των μεσημβρινών και παραλλήλων όταν ισχύει: ρ=f(φ,λ) και θ=g(λ). Δηλαδή, η πολική γωνία: θ είναι συνάρτηση μόνον του γεωγραφικού μήκους, τότε οι εικόνες των μεσημβρινών αποτελούν μια κεντρική δέσμη ευθειών. Στην τρίτη περίπτωση (Σχήμα.4γ) παρουσιάζονται οι εικόνες των μεσημβρινών και (δ) 30

34 παραλλήλων όταν ισχύει: ρ=f(φ) και y=g(φ,λ). Δηλαδή, η πολική ακτίνα: ρ είναι συνάρτηση μόνον του γεωγραφικού πλάτους, τότε οι εικόνες των παραλλήλων αποτελούν ομόκεντρους κύκλους. Τέλος, όταν ισχύει: ρ=f(φ) και θ=g(λ), τότε οι μεσημβρινοί απεικονίζονται ως κεντρική δέσμη ευθειών και οι παράλληλοι απεικονίζονται ως ομόκεντροι κύκλοι (Σχήμα.4δ). Ανάλογα με τις παραμορφώσεις που επιφέρουν σε γεωμετρικά μεγέθη, οι απεικονίσεις διακρίνονται σε: σύμμορφες, ισοδύναμες και ισαπέχουσες. Σύμμορφες ονομάζονται οι απεικονίσεις που διατηρούν αναλλοίωτη τη μορφή στοιχειωδών σχημάτων, δηλαδή διατηρούν το σχήμα τους. Ισοδύναμες ονομάζονται οι απεικονίσεις που διατηρούν αναλλοίωτα τα εμβαδά. Τέλος, ισαπέχουσες ονομάζονται οι απεικονίσεις εκείνες οι απεικονίσεις που διατηρούν αναλλοίωτα τα μήκη σε ορισμένες μόνο διευθύνσεις. Συνήθως, επιλέγουμε μια απεικόνιση με βασικό κριτήριο την απλότητα των σχέσεων που την ορίζουν, όμως πολλές φορές το είδος του χάρτη που πρόκειται να δημιουργηθεί είναι δυνατό να καθορίζει το είδος της απεικόνισης που θα χρησιμοποιηθεί. Έτσι, για τους θεματικούς χάρτες χρησιμοποιούμε συνήθως ισοδύναμες απεικονίσεις ενώ για τους τοπογραφικούς χάρτες σύμμορφες. Πολλές φορές, χρησιμοποιούμε πλάγιες απεικονίσεις για να ελαχιστοποιήσουμε τις παραμορφώσεις σε μια περιορισμένη περιοχή..3 Βιβλιογραφία Βέης, Γ. Μαθηματική Χαρτογραφία. Εργαστήριο Τοπογραφίας, Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, 1977, σελ. 69. Cuenin, R. Cartographie Generale. Tome 1. Editions Eyrolles, Paris, 197, p. 34. Maling, D. H. Coordinate systems and map projections. G. Philip & Son Ltd., London, 1973, p. 55. Νάκος, Β. και Β. Φιλιππακοπούλου. Γενική Χαρτογραφία. Τμήμα Αγρονόμων Τοπογράφων Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, 1993, σελ. 0. Richardus, P. and R. K. Adler. Map projections. North-Holland Pub. Co., Amsterdam, 197, p Tobler, W. R. "A classification of map projections". Annals of the Association of American Geographers, 5, 196, pp

35 3

36 Κεφάλαιο 3 3. ΣΥΣΤΗΜΑΤΑ ΑΠΕΙΚΟΝΙΣΕΩΝ 3.1 Εισαγωγή στα συστήματα απεικονίσεων Από την απειρία των απεικονίσεων που μπορούμε να φανταστούμε για να απεικονίσουμε την επιφάνεια ενός ελλειψοειδούς ή μιας σφαίρας στο επίπεδο μόνο ένας μικρός σχετικά αριθμός χρησιμοποιείται στην πράξη για χαρτογραφικούς σκοπούς και μάλιστα, ένας ακόμη μικρότερος για γεωδαιτικούς σκοπούς. Ένα σύστημα προβολής ή απεικόνισης μπορεί να προκύψει με γεωμετρικό ή αναλυτικό τρόπο. Ο νόμος της απεικόνισης μπορεί να ορισθεί ακόμα και αυθαίρετα αλλά συνήθως στην πράξη προκύπτει από την ολοκλήρωση μιας διαφορικής εξίσωσης που ικανοποιεί ορισμένες επιθυμητές ιδιότητες. Ένας απλός τρόπος δημιουργίας μιας οικογένειας συστημάτων απεικόνισης είναι να ξεκινήσουμε με μια απλή ισαπέχουσα απεικόνιση σε κύλινδρο ή κώνο ή επίπεδο και να τη μετατρέψουμε σε σύμμορφη ή ισοδύναμη. Μπορούμε ακόμα να εφαρμόσουμε στροφή 90 στην αναπτυκτή επιφάνεια μιας ορθής απεικόνισης για να παραχθεί μια εγκάρσια ή μια τυχαία στροφή με σκοπό να δημιουργηθεί μια πλάγια απεικόνιση. 3. Ορθές κυλινδρικές απεικονίσεις Οι κυλινδρικές απεικονίσεις προκύπτουν από την απεικόνιση της επιφάνειας του ελλειψοειδούς ή της σφαίρας στην παράπλευρη επιφάνεια ενός κυλίνδρου, η οποία εφάπτεται σε αυτήν Ορθή κυλινδρική ισαπέχουσα προβολή Η ορθή κυλινδρική ισαπέχουσα προβολή ορίζεται στη σφαίρα από τις σχέσεις: 33

37 x = R λ, y = R φ, όπου: R η ακτίνα της σφαίρας. Αντιστρέφοντας τις σχέσεις αυτές οι γεωγραφικές συντεταγμένες, συναρτήσει των ορθογωνίων δίνονται από τις ακόλουθες σχέσεις: x λ =, R y φ =. R Οι σχέσεις της προβολής για την απεικόνιση της επιφάνειας ενός ελλειψοειδούς, είναι: x = a λ και y = M, όπου: a ο μεγάλος ημιάξονας του ελλειψοειδούς και M το μήκος του μεσημβρινού από τον ισημερινό μέχρι το πλάτος φ. Το μήκος του μεσημβρινού (M) υπολογίζεται με τη βοήθεια του παρακάτω αναπτύγματος σειρών: M = (1 e ) [ M φ Μ sin φ + Μ sin 4φ Μ sin6φ]. Με: a M 0 = 1 + e + e + e M = e + e + e M 4 = e + e M 6 = e +..., 307 όπου: e η πρώτη εκκεντρότητα του ελλειψοειδούς. Εξετάζοντας τις σχέσεις αυτές εύκολα παρατηρούμε ότι οι μεσημβρινοί και οι παράλληλοι απεικονίζονται σε ευθείες κάθετες μεταξύ τους, που μάλιστα στην περίπτωση της σφαίρας ισαπέχουν. Δηλαδή στην επιφάνεια της σφαίρας, το 34

38 δίκτυο των μεσημβρινών και παραλλήλων απεικονίζεται στο επίπεδο σε ένα δίκτυο τετραγώνων (Σχήμα 3.1). Σχήμα 3.1 Ορθή κυλινδρική ισαπέχουσα προβολή Οι κύριες κλίμακες της απεικόνισης, δηλαδή οι κλίμακες κατά μεσημβρινό και παράλληλο για τη σφαίρα θα είναι: m m m p ds m dy R dφ = = = = 1, dm R dφ R dφ ds p dx R dλ = = = = dp R cos φ dλ R cos φ dλ Ενώ για το ελλειψοειδές θα είναι: 1. cos φ m m m p dsm dy dm = = = = 1, dm dm dm dsp dx a dλ = = = = dp N cos φ dλ a cos φ dλ 1 e sin φ 1 e sin cos φ φ. Εξετάζοντας τις κλίμακες κατά μεσημβρινό και παράλληλο, συμπεραίνουμε ότι τα μήκη των μεσημβρινών διατηρούνται αναλλοίωτα στο επίπεδο της απεικόνισης και επειδή ισχύει m p m m, ο μεγάλος ημιάξονας της δείκτριας Tissot είναι προσανατολισμένος κατά τη διεύθυνση των παραλλήλων. 35

39 Για τις παραμορφώσεις επιφανειών και γωνιών, εάν αντικαταστήσουμε στις γνωστές σχέσεις τις κλίμακες κατά μεσημβρινό και παράλληλο, θα έχουμε για τη σφαίρα: M = 1 και sin Ε = tan φ. cosφ Η προβολή αυτή δεν είναι σύμμορφη ούτε ισοδύναμη. Είναι όμως ιδιαίτερα απλή. Οι παραμορφώσεις είναι αρκετά σημαντικές εκτός από τις περιοχές που βρίσκονται κοντά στον ισημερινό (Σχήμα 3.). Σχήμα 3. Οι ελλείψεις παραμόρφωσης της ορθής κυλινδρικής ισαπέχουσας προβολής 3.. Μερκατορική προβολή Η Μερκατορική προβολή είναι μια σύμμορφη ορθή κυλινδρική απεικόνιση. Προκύπτει από την ορθή κυλινδρική ισαπέχουσα προβολή με κατάλληλη μετάθεση των θέσεων των παραλλήλων στο επίπεδο της απεικόνισης ώστε να ικανοποιηθεί η συνθήκη της συμμορφίας. Για να προσδιορίσουμε το νόμο της απεικόνισης στη σφαίρα διατηρούμε τη σχέση: x = R λ, και επειδή επιθυμούμε να ισχύει η ιδιότητα της συμμορφίας, θα έχουμε: 36

40 m ds ds m p dy dx = mp =. dm dp R dφ R cos φ dλ m = Όμως: dx = R dλ, οπότε θα έχουμε: R dy = dφ cos φ y = R φ 1 cos dφ. φ 0 Τέλος, ολοκληρώνοντας την τελευταία σχέση προκύπτει ότι: π φ y = R ln tan +. 4 Σχήμα 3.3 Ορθή Μερκατορική προβολή Στην απεικόνιση αυτή οι μεσημβρινοί και οι παράλληλοι απεικονίζονται ως παράλληλες δέσμες ευθειών και μάλιστα οι μεσημβρινοί ισαπέχουν μεταξύ τους (Σχήμα 3.3). Η ορθή Μερκατορική προβολή είναι σύμμορφη απεικόνιση (ε=0), δηλαδή οι ελλείψεις παραμόρφωσης εκφυλίζονται σε κύκλους (Σχήμα 3.4). Οι κύριες κλίμακες (δηλαδή, οι κλίμακες κατά μεσημβρινό και παράλληλο) δίνονται από τις σχέσεις: m 1 = mp, cos φ m = 37

41 Σχήμα 3.4 Οι κύκλοι παραμόρφωσης της ορθής Μερκατορικής προβολής ενώ η επιφανειακή κλίμακα θα είναι: 1 =. cos φ M λ = x R, φ = arc tan e Αντιστρέφοντας τις σχέσεις που ορίζουν την προβολή, προκύπτει ότι: y R π. 38

42 Στην περίπτωση που θέλουμε να απεικονίσουμε την επιφάνεια του ελλειψοειδούς στο επίπεδο, διατηρούμε τη σχέση: x = a λ, όπου: a ο μεγάλος ημιάξονας του ελλειψοειδούς. Ακολουθώντας την ίδια πορεία, λόγω του ότι επιθυμούμε να ισχύει η ιδιότητα της συμμορφίας, θα έχουμε: m ds ds m p dy dx = mp =. dm dp ρ dφ N cos φ dλ m = Επειδή όμως: dx =a dλ, θα έχουμε: ρ a a (1 - e ) dy = dφ = dφ y = a Ν cos φ (1 e sin φ) cos φ φ 0 1- e dφ. (1 e sin φ)cosφ Ολοκληρώνοντας την τελευταία σχέση προκύπτει ότι: e π φ 1 esin φ y = a ln tan esin φ Εύκολα αποδεικνύεται ότι για τη σύμμορφη αυτή απεικόνιση οι κύριες κλίμακες γραμμικής παραμόρφωσης στο ελλειψοειδές είναι: m 1- e sin φ = mp. cos φ m = Τέλος, η κλίμακα επιφανειακής παραμόρφωσης είναι: 1- e sin φ =. cos φ M Η ορθή Μερκατορική προβολή χρησιμοποιείται στη ναυτιλία, επειδή έχει την ιδιότητα να απεικονίζει τις λοξοδρομίες σε ευθείες γιατί αφενός είναι σύμμορφη αφετέρου η σύγκλιση των μεσημβρινών είναι μηδενική σε κάθε σημείο της προβολής. Οι λοξοδρομίες είναι γραμμές στην επιφάνεια του ελλειψοειδούς που έχουν σε κάθε σημείο σταθερό αζιμούθιο. 39

43 3..3 Ορθή κυλινδρική ισοδύναμη προβολή Ξεκινώντας πάλι από την ορθή κυλινδρική ισαπέχουσα προβολή μπορούμε να δημιουργήσουμε μια απεικόνιση που να είναι ισοδύναμη. Για να προσδιορίσουμε το νόμο της απεικόνισης στη σφαίρα διατηρούμε ξανά τη σχέση: x = R λ, και επειδή επιθυμούμε να ισχύει η ιδιότητα της ισοδυναμίας, θα έχουμε: m ds ds m p dy dx = 1 = 1 1. dm dp R dφ R cos φ dλ m mp = Επειδή όμως: dx = R dλ, θα έχουμε: dy = R cos φ dφ y = R cos φ dφ. y = R sinφ. λ = x R, φ = arc sin φ 0 Ολοκληρώνοντας την τελευταία σχέση προκύπτει ότι: Αντιστρέφοντας τις σχέσεις που ορίζουν την απεικόνιση προκύπτει ότι: y R. Η απεικόνιση αυτή (Σχήμα 3.5) είναι ισοδύναμη (δηλαδή Μ=1). Οι κύριες κλίμακες (στη σφαίρα) δίνονται από τις σχέσεις: m 1 = cos φ και mp, cos φ m = ενώ η μέγιστη γωνιακή παραμόρφωση σε διεύθυνση θα είναι: sin 1 cos φ =. 1+ cos φ E 40

Κεφάλαιο Αρχές των απεικονίσεων - προβολών Αναπτυκτές επιφάνειες και ο προσανατολισμός τους

Κεφάλαιο Αρχές των απεικονίσεων - προβολών Αναπτυκτές επιφάνειες και ο προσανατολισμός τους Κεφάλαιο 2 Σύνοψη Οι απεικονίσεις στη χαρτογραφία αναφέρονται στην προβολή ή απεικόνιση της επιφάνειας αναφοράς, δηλαδή, του ελλειψοειδούς εκ περιστροφής (ή της σφαίρας) στο επίπεδο στο επίπεδο του χάρτη.

Διαβάστε περισσότερα

Κεφάλαιο Βασικές έννοιες χαρτογραφικών προβολών Το σχήμα της Γης

Κεφάλαιο Βασικές έννοιες χαρτογραφικών προβολών Το σχήμα της Γης Κεφάλαιο 1 Σύνοψη Στο κεφάλαιο αυτό εισάγονται οι βασικές έννοιες που διέπουν τις χαρτογραφικές προβολές. Αρχικά ορίζονται οι επιφάνειες που προσομοιώνουν την επιφάνεια της Γης για τις ανάγκες της Χαρτογραφίας.

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΗ ΧΑΡΤΟΓΡΑΦΙΑ

ΑΝΑΛΥΤΙΚΗ ΧΑΡΤΟΓΡΑΦΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΑΝΑΛΥΤΙΚΗ ΧΑΡΤΟΓΡΑΦΙΑ ΒΥΡΩΝΑΣ ΝΑΚΟΣ ΑΘΗΝΑ 6 ΠΕΡΙΕΧΟΜΕΝΑ Περιεχόμενα ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ i vii ΜΕΡΟΣ Α ΧΑΡΤΟΓΡΑΦΙΚΕΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 1: ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ ΔΙΔΑΣΚΩΝ : Ι. ΖΑΧΑΡΙΑΣ ΑΓΡΙΝΙΟ, 2015 ΕΡΓΑΣΤΗΡΙΟ

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΗ ΧΑΡΤΟΓΡΑΦΙΑ

ΑΝΑΛΥΤΙΚΗ ΧΑΡΤΟΓΡΑΦΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΑΝΑΛΥΤΙΚΗ ΧΑΡΤΟΓΡΑΦΙΑ ΒΥΡΩΝΑΣ ΝΑΚΟΣ ΑΘΗΝΑ 004 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ

Διαβάστε περισσότερα

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ ΚΑΙ ΠΛΟΗΓΗΣΗ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ ΚΑΙ ΠΛΟΗΓΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ

Διαβάστε περισσότερα

ΒΥΡΩΝΑΣ ΝΑΚΟΣ Καθηγητής Ε.Μ.Π. Αναλυτική Χαρτογραφία

ΒΥΡΩΝΑΣ ΝΑΚΟΣ Καθηγητής Ε.Μ.Π. Αναλυτική Χαρτογραφία ΒΥΡΩΝΑΣ ΝΑΚΟΣ Καθηγητής Ε.Μ.Π. Αναλυτική Χαρτογραφία Αναλυτική Χαρτογραφία Συγγραφή Βύρωνας Νάκος Κριτικός αναγνώστης Λύσανδρος Τσούλος Συντελεστές έκδοσης Γλωσσική Επιμέλεια: Βύρωνας Νάκος Γραφιστική

Διαβάστε περισσότερα

ΧΑΡΤΟΓΡΑΦΙΑ. Στοιχεία χαρτογραφίας Σύστηµα γεωγραφικών συντεταγµένων

ΧΑΡΤΟΓΡΑΦΙΑ. Στοιχεία χαρτογραφίας Σύστηµα γεωγραφικών συντεταγµένων ΧΑΡΤΟΓΡΑΦΙΑ Στοιχεία χαρτογραφίας Σύστηµα γεωγραφικών συντεταγµένων ρ. Ε. Λυκούδη Αθήνα 2005 Χώρος Η ανάπτυξη της ικανότητας της αντίληψης του χώρου, ως προς τις διαστάσεις του και το περιεχόµενό του είναι

Διαβάστε περισσότερα

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων Κεφάλαιο 5 5 Συστήματα συντεταγμένων Στις Γεωεπιστήμες η μορφή της γήινης επιφάνειας προσομοιώνεται από μια επιφάνεια, που ονομάζεται γεωειδές. Το γεωειδές είναι μια ισοδυναμική επιφάνεια του βαρυτικού

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης)

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης) ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης) Ο χάρτης ως υπόβαθρο των ΓΣΠ Tα ΓΣΠ βασίζονται στη διαχείριση πληροφοριών που έχουν άμεση σχέση με το γεωγραφικό χώρο, περιέχουν δηλαδή δεδομένα με γεωγραφική

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΗΣΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΗΣΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΗΣΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ Ενότητα 10: Προβολικά Συστήματα (Μέρος 2 ο ) Νικολακόπουλος Κωνσταντίνος, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα

Διαβάστε περισσότερα

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ 77 10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Ολοκληρώνοντας την συνοπτική παρουσίαση των εννοιών και μεθόδων της Γεωδαιτικής Αστρονομίας θα κάνουμε μια σύντομη αναφορά στην αξιοποίηση των μεγεθών που προσδιορίστηκαν,

Διαβάστε περισσότερα

Προβολές Συστήματα Συντεταγμένων

Προβολές Συστήματα Συντεταγμένων Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης Προβολές Συστήματα Συντεταγμένων Ιωάννης Φαρασλής Τηλ : 24210-74466, Πεδίον Άρεως, Βόλος http://www.prd.uth.gr/el/staff/i_faraslis

Διαβάστε περισσότερα

Τηλεπισκόπηση - Φωτοερμηνεία

Τηλεπισκόπηση - Φωτοερμηνεία ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 9: Συστήματα Συντεταγμένων. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης Άδειες

Διαβάστε περισσότερα

ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ

ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ Χαρτογραφία Ι 1 Το σχήμα και το μέγεθος της Γης [Ι] Σφαιρική Γη Πυθαγόρεια & Αριστοτέλεια αντίληψη παρατηρήσεις φυσικών φαινομένων Ομαλότητα γεωμετρικού σχήματος (Διάμετρος

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΗΣΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΗΣΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΗΣΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ Ενότητα 9: Προβολικά Συστήματα (Μέρος 1 ο ) Νικολακόπουλος Κωνσταντίνος, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας

Διαβάστε περισσότερα

ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΠΡΟΒΟΛΕΣ

ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΠΡΟΒΟΛΕΣ ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ ΜΑΘΗΜΑ: ΘΕΩΡΗΤΙΚΗ ΝΑΥΤΙΛΙΑ Καθηγητής Δρ. Α. Παλληκάρης ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΠΡΟΒΟΛΕΣ Νοέμβριος 2016 ΕΝΔΕΙΚΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΑΠΕΙΚΟΝΙΣΗΣ ΤΗΣ ΕΠΙΦΑΝΕΙΑΣ ΤΗΣ ΓΗΣ ΣΕ ΕΠΙΠΕΔΟ (ΚΑΤΑΣΚΕΥΗ ΧΑΡΤΩΝ)

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0. Ι.Μ. Δόκας Επικ. Καθηγητής

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0. Ι.Μ. Δόκας Επικ. Καθηγητής ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0 Ι.Μ. Δόκας Επικ. Καθηγητής Γεωδαισία Μοιράζω τη γη (Γη + δαίομαι) Ακριβής Έννοια: Διαίρεση, διανομή /μέτρηση της Γής. Αντικείμενο της γεωδαισίας: Ο προσδιορισμός της μορφής, του

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΦΥΣΙΚΩΝ ΠΟΡΩΝ

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ 6 Ο ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΧΑΡΤΟΓΡΑΦΙΑ ΧΑΡΤΟΓΡΑΦΙΑ: Είναι η επιστήμη που ασχολείται με την απεικόνιση μιας γεωγραφικής ενότητας σε ένα χαρτί

Διαβάστε περισσότερα

Κεφάλαιο Χαρτογραφικές απεικονίσεις - προβολές Ορθές κυλινδρικές απεικονίσεις Ορθή κυλινδρική ισαπέχουσα προβολή

Κεφάλαιο Χαρτογραφικές απεικονίσεις - προβολές Ορθές κυλινδρικές απεικονίσεις Ορθή κυλινδρική ισαπέχουσα προβολή Κεφάλαιο 3 Σύνοψη Στο κεφάλαιο αυτό, γίνεται παρουσίαση των σημαντικότερων απεικονίσεων - προβολών που χρησιμοποιούνται για την απεικόνιση της επιφάνειας ενός ελλειψοειδούς εκ περιστροφής (ή μιας σφαίρας)

Διαβάστε περισσότερα

ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΠΡΟΒΟΛΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΝΑΥΤΙΛΙΑ ΚΑΙ ΤΙΣ ΝΑΥΤΙΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ. Δρ. ΑΘΑΝΑΣΙΟΣ Η. ΠΑΛΛΗΚΑΡΗΣ Αν.

ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΠΡΟΒΟΛΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΝΑΥΤΙΛΙΑ ΚΑΙ ΤΙΣ ΝΑΥΤΙΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ. Δρ. ΑΘΑΝΑΣΙΟΣ Η. ΠΑΛΛΗΚΑΡΗΣ Αν. ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΠΡΟΒΟΛΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΝΑΥΤΙΛΙΑ ΚΑΙ ΤΙΣ ΝΑΥΤΙΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ Δρ. ΑΘΑΝΑΣΙΟΣ Η. ΠΑΛΛΗΚΑΡΗΣ Αν. καθηγητής ΣΝΔ ΠΕΙΡΑΙΑΣ 2011 Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή

Διαβάστε περισσότερα

Συνέχεια της ζήτησης για την έννοια του χάρτη Βασικά συστατικά των χαρτών (συνέχεια)

Συνέχεια της ζήτησης για την έννοια του χάρτη Βασικά συστατικά των χαρτών (συνέχεια) Τµήµα Αρχιτεκτόνων Μηχανικών ΜΕ801 Χαρτογραφία 1 Μάθηµα επιλογής χειµερινού εξαµήνου Πάτρα, 2016 Συνέχεια της ζήτησης για την έννοια του χάρτη Βασικά συστατικά των χαρτών (συνέχεια) Βασίλης Παππάς, Καθηγητής

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας Γεωμετρικές Διορθώσεις

Ψηφιακή Επεξεργασία Εικόνας Γεωμετρικές Διορθώσεις Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης Ψηφιακή Επεξεργασία Εικόνας Γεωμετρικές Διορθώσεις Ιωάννης Φαρασλής Τηλ : 24210-74466, Πεδίον

Διαβάστε περισσότερα

ΜΕΤΡΩΝΤΑΣ ΤΟΝ ΠΛΑΝΗΤΗ ΓΗ

ΜΕΤΡΩΝΤΑΣ ΤΟΝ ΠΛΑΝΗΤΗ ΓΗ του Υποπυραγού Αλέξανδρου Μαλούνη* Μέρος 2 ο - Χαρτογραφικοί μετασχηματισμοί Εισαγωγή Είδαμε λοιπόν ως τώρα, ότι η γη θα μπορούσε να χαρακτηρισθεί και σφαιρική και αυτό μπορεί να γίνει εμφανές όταν την

Διαβάστε περισσότερα

Τηλεπισκόπηση - Φωτοερμηνεία

Τηλεπισκόπηση - Φωτοερμηνεία ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 8: Ψηφιακή Επεξεργασία Εικόνας Γεωμετρικές Διορθώσεις. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής

Διαβάστε περισσότερα

Κεφάλαιο 6. 6 Χαρτογραφικές προβολές-προβολικά συστήματα συντεταγμένων

Κεφάλαιο 6. 6 Χαρτογραφικές προβολές-προβολικά συστήματα συντεταγμένων Κεφάλαιο 6 6 Χαρτογραφικές προβολές-προβολικά συστήματα συντεταγμένων Για να παράξουμε ένα χάρτη πρέπει να χρησιμοποιήσουμε μία χαρτογραφική προβολή. Ως χαρτογραφική προβολή ονομάζουμε οποιοδήποτε μετασχηματισμό

Διαβάστε περισσότερα

πάχος 0 πλάτος 2a μήκος

πάχος 0 πλάτος 2a μήκος B1) Δεδομένου του τύπου E = 2kλ/ρ που έχει αποδειχθεί στο μάθημα και περιγράφει το ηλεκτρικό πεδίο Ε μιας άπειρης γραμμής φορτίου με γραμμική πυκνότητα φορτίου λ σε σημείο Α που βρίσκεται σε απόσταση ρ

Διαβάστε περισσότερα

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης Η Εξίσωση Euler-Lagrange Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ

ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ Χαρτογραφία Ι 1 ΤΡΟΠΟΙ ΧΑΡΤΟΓΡΑΦΗΣΗΣ: ΥΔΡΟΓΕΙΟΣ Πλεονεκτήματα: Διατήρηση σχετικών αποστάσεων, γωνιών, εμβαδών, αζιμουθίων, μέγιστων κύκλων, λοξοδρομιών Μειονεκτήματα: Είναι δαπανηρές

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑΣ...με απάντηση

1 ΘΕΩΡΙΑΣ...με απάντηση 1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.

Διαβάστε περισσότερα

Η μέθοδος του κινουμένου τριάκμου

Η μέθοδος του κινουμένου τριάκμου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Πρόγραμμα Μεταπτυχιακών Σπουδών Ειδίκευση Θεωρητικών Μαθηματικών Σ Σταματάκη Η μέθοδος του κινουμένου τριάκμου Σημειώσεις

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. 4. Να βρεθεί η κάθετη καμπυλότητα του υπερβολικού παραβολειδούς. 5. Να βρεθεί η κάθετη καμπυλότητα της ελικοειδούς επιφάνειας.

ΑΣΚΗΣΕΙΣ. 4. Να βρεθεί η κάθετη καμπυλότητα του υπερβολικού παραβολειδούς. 5. Να βρεθεί η κάθετη καμπυλότητα της ελικοειδούς επιφάνειας. ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α.Π.Θ. ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤΡΙΑ ΙΙ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2018 19 Kαθηγητής Στυλιανός Σταματάκης URL: http://stamata.webpages.auth.gr/geometry/ ΑΣΚΗΣΕΙΣ 1. Να εξεταστεί πώς αλλάζει

Διαβάστε περισσότερα

Λύσεις στο επαναληπτικό διαγώνισμα 3

Λύσεις στο επαναληπτικό διαγώνισμα 3 Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο επαναληπτικό διαγώνισμα Διπλά Ολοκληρώματα Άσκηση (Υπολογισμός διπλού ολοκληρώματος- Αλλαγή

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού.

ΠΡΟΛΟΓΟΣ. Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού. ΠΡΟΛΟΓΟΣ Το τεύχος αυτό περιέχει τα βασικά στοιχεία της Γεωδαιτικής Αστρονομίας (Geodetic Astronomy) που είναι αναγκαία στους φοιτητές της Σχολής Αγρονόμων και Τοπογράφων Μηχανικών του Ε.Μ.Πολυτεχνείου

Διαβάστε περισσότερα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις

Διαβάστε περισσότερα

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΕΙΣΑΓΩΓΗ

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΕΙΣΑΓΩΓΗ ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΕΙΣΑΓΩΓΗ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστημίου Δυτικής Αττικής 3ο εξάμηνο ΝΕΟ eclass http://eclass.uniwa.gr Παρουσιάσεις,

Διαβάστε περισσότερα

8. ΜΑΓΝΗΤΙΣΜΟΣ. Φυσική ΙΙ Δ. Κουζούδης. Πρόβλημα 8.6.

8. ΜΑΓΝΗΤΙΣΜΟΣ. Φυσική ΙΙ Δ. Κουζούδης. Πρόβλημα 8.6. 1 8. ΜΑΓΝΗΤΙΣΜΟΣ Πρόβλημα 8.6. Το σύρμα του παρακάτω σχήματος έχει άπειρο μήκος και διαρρέεται από ρεύμα I. Υπολογίστε με τη βοήθεια του νόμου του Biot-Savart με ολοκλήρωση το μέτρο και την κατεύθυνση

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009 ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009 Τοπογραφικοί Χάρτες Περίγραμμα - Ορισμοί - Χαρακτηριστικά Στοιχεία - Ισοϋψείς Καμπύλες - Κατασκευή τοπογραφικής τομής

Διαβάστε περισσότερα

Μέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα 1 Βάσης) (Απόστημα) 2 1 ό Βάσης) (Ύψος) 3

Μέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα 1 Βάσης) (Απόστημα) 2 1 ό Βάσης) (Ύψος) 3 Βασικά σύνολα αριθμών -Σύνολο φυσικών: Ν = {0,., } ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ -Σύνολο ακεραίων: Ζ= { -.-.0.,, } Συμβολίζουμε με ν=κ και τους άρτιους και τους περιττούς αντίστοιχα. * -Σύνολο ρητών: Q =, Z &

Διαβάστε περισσότερα

ds ds ds = τ b k t (3)

ds ds ds = τ b k t (3) Γενικά Μαθηματικά ΙΙΙ Πρώτο σετ ασκήσεων, Λύσεις Άσκηση 1 Γνωρίζουμε ότι το εφαπτόμενο διάνυσμα ( t), ορίζεται ως: t = r = d r ds (1) και επιπλέον το διάνυσμα της καμπυλότητας ( k), ορίζεται ως: d t k

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας

ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας 81 ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας Εισαγωγή Σε πολλά προβλήματα της Χαρτογραφίας, της Ανώτερης Γεωδαισίας, της Γεωδαιτικής Αστρονομίας και της Δορυφορικής Γεωδαισίας εμφανίζονται γεωμετρικά

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας

ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας 81 ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας Εισαγωγή Σε πολλά προβλήματα της Χαρτογραφίας, της Ανώτερης Γεωδαισίας, της Γεωδαιτικής Αστρονομίας και της Δορυφορικής Γεωδαισίας εμφανίζονται γεωμετρικά

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Κεφάλαιο Τοπολογικές απεικονίσεις Αζιμουθιακή ισόχρονη απεικόνιση

Κεφάλαιο Τοπολογικές απεικονίσεις Αζιμουθιακή ισόχρονη απεικόνιση Κεφάλαιο 9 Σύνοψη Στο κεφάλαιο αυτό, περιγράφονται αναλυτικές χαρτογραφικές μέθοδοι μετασχηματισμού του χώρου, μετατρέποντας τη γεωμετρία του χάρτη με τρόπο που να απεικονίζεται το ίδιο το χωρικό φαινόμενο

Διαβάστε περισσότερα

Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0)

Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0) . Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν γνωρίζουμε το κέντρο του, και την ακτίνα του ρ. Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο, τότε έχει εξίσωση της μορφής : και αντίστροφα. Ειδικότερα

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ 4η παρουσίαση

ΓΕΩΔΑΙΣΙΑ 4η παρουσίαση ΓΕΩΔΑΙΣΙΑ 4η παρουσίαση Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 4ο εξάμηνο http://eclass.survey.teiath.gr Παρουσιάσεις, Ασκήσεις, Σημειώσεις ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ 1. Ορισμός

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΤΗΣ ΑΠΟΡΡΟΗΣ ΤΩΝ ΟΜΒΡΙΩΝ ΣΕ ΚΡΙΣΙΜΕΣ ΓΙΑ ΤΗΝ ΑΣΦΑΛΕΙΑ ΠΕΡΙΟΧΕΣ ΤΩΝ ΟΔΙΚΩΝ ΧΑΡΑΞΕΩΝ

ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΤΗΣ ΑΠΟΡΡΟΗΣ ΤΩΝ ΟΜΒΡΙΩΝ ΣΕ ΚΡΙΣΙΜΕΣ ΓΙΑ ΤΗΝ ΑΣΦΑΛΕΙΑ ΠΕΡΙΟΧΕΣ ΤΩΝ ΟΔΙΚΩΝ ΧΑΡΑΞΕΩΝ ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΤΗΣ ΑΠΟΡΡΟΗΣ ΤΩΝ ΟΜΒΡΙΩΝ ΣΕ ΚΡΙΣΙΜΕΣ ΓΙΑ ΤΗΝ ΑΣΦΑΛΕΙΑ ΠΕΡΙΟΧΕΣ ΤΩΝ ΟΔΙΚΩΝ ΧΑΡΑΞΕΩΝ Ν. Ε. Ηλιού Αναπληρωτής Καθηγητής Τμήματος Πολιτικών Μηχανικών Πανεπιστημίου Θεσσαλίας Γ. Δ.

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΑ ΙΙΙ. Διδακτικές σημειώσεις. Δρ. Συμεών Κατσουγιαννόπουλος Διπλ. ΑΤΜ, MSc Γεωπληροφορική ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ

ΤΟΠΟΓΡΑΦΙΑ ΙΙΙ. Διδακτικές σημειώσεις. Δρ. Συμεών Κατσουγιαννόπουλος Διπλ. ΑΤΜ, MSc Γεωπληροφορική ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ ΤΟΠΟΓΡΑΦΙΑ ΙΙΙ Διδακτικές σημειώσεις Δρ. Συμεών Κατσουγιαννόπουλος Διπλ. ΑΤΜ MSc Γεωπληροφορική

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ...23 ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...15 ΚΕΦΑΛΑΙΟ 3 ΕΥΘΕΙΕΣ...32 ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...43

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ...23 ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...15 ΚΕΦΑΛΑΙΟ 3 ΕΥΘΕΙΕΣ...32 ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...43 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...5 ΚΕΦΑΛΑΙΟ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ... ΚΕΦΑΛΑΙΟ ΕΥΘΕΙΕΣ... ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...4 ΚΕΦΑΛΑΙΟ 5 ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΟΙ

Διαβάστε περισσότερα

14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών.

14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών. 14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών. 13 η εβδομάδα (16/01/2017 & 19/01/2017) Ασυμπτωτική διεύθυνση και ασυμπτωτικό

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Μεθοδολογία Έλλειψης

Μεθοδολογία Έλλειψης Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

GenCartoPro: Μια νεά εργαλειοθη κη παραγωγη ς χαρτογραφικω ν προβολω ν για την υποστη ριξη της χαρτογραφικη ς εκπαι δευσης

GenCartoPro: Μια νεά εργαλειοθη κη παραγωγη ς χαρτογραφικω ν προβολω ν για την υποστη ριξη της χαρτογραφικη ς εκπαι δευσης GenCartoPro: Μια νεά εργαλειοθη κη παραγωγη ς χαρτογραφικω ν προβολω ν για την υποστη ριξη της χαρτογραφικη ς εκπαι δευσης Βασι λειος ΚΡΑΣΑΝΑΚΗΣ, Βασι λειος ΜΗΤΡΟΠΟΥΛΟΣ, Βυ ρωνας ΝΑΚΟΣ Σχολη Αγρονο µων

Διαβάστε περισσότερα

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Δυο κάθετοι μεταξύ τους προσανατολισμένοι και βαθμονομημένοι άξονες A Α Έστω σημείο Α στο επίπεδο Η θέση του προσδιορίζεται από τις προβολές στους άξονες A, A 0 A Η

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.

Διαβάστε περισσότερα

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ ΚΑΙ ΠΛΟΗΓΗΣΗ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ ΚΑΙ ΠΛΟΗΓΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας. Πολυτεχνική Σχολή ΘΕΜΑΤΙΚΗ : ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ

Πανεπιστήμιο Θεσσαλίας. Πολυτεχνική Σχολή ΘΕΜΑΤΙΚΗ : ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης ΘΕΜΑΤΙΚΗ : ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ιωάννης Φαρασλής Τηλ : 24210-74466, Πεδίον Άρεως, Βόλος

Διαβάστε περισσότερα

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού 117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά Μαθηματικού Περιεχόμενα 1. Διανύσματα (47) ελ. - 9. Ευθεία (18) ελ. 10-1 3. Κύκλος (13).ελ. 13-15 4. Παραβολή (14) ελ. 16-18 5. Έλλειψη (18)..

Διαβάστε περισσότερα

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους τους άξονες και.

Διαβάστε περισσότερα

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε

Διαβάστε περισσότερα

x 2 + y 2 x y

x 2 + y 2 x y ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 014-15 Τμήμα Μαθηματικών και Διδάσκων: Χρήστος Κουρουνιώτης Εφαρμοσμένων Μαθηματικών ΜΕΜ0 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ Φυλλάδιο Προβλημάτων Κύκλος, Ελλειψη, Υπερβολή, Παραβολή

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΜΕΣΩ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ CLAIRAUT

ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΜΕΣΩ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ CLAIRAUT ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΜΕΣΩ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ CLAIRAUT Αρβανιτογεώργος Ανδρέας Πατέρας Ιωάννης ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ Στόχος Εργασίας Η εύρεση των γεωδαισιακών καμπυλών πάνω σε μια επιφάνεια.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΑΠΟ ΤΗΝ ΘΕΩΡΙΑ ΔΙΑΝΥΣΜΑΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΙΑΝΥΣΜΑΤΟΣ Αρχή και Πέρας Φορέας Διεύθυνση (Συγγραμμικά διανύσματα) Μέτρο Κατεύθυνση (Ομόρροπα Αντίρροπα διανύσματα)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ

ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ Ασκήσεις ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ για Γενική Επανάληψη Πολυχρόνη Μωυσιάδη, Καθηγητή ΑΠΘ ΟΜΑΔΑ 1. Συναρτήσεις 1. Δείξτε ότι: και υπολογίστε την τιμή 2. 2. Να υπολογισθούν οι τιμές και 3. Υπολογίστε τις τιμές

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.

Διαβάστε περισσότερα

1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων

1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων 3 1.1 Διανύσματα 1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων ΑΣΚΗΣΗ 1.1 Να βρεθεί η γωνία που σχηματίζουν τα διανύσματα î + ĵ + ˆk και î + ĵ ˆk. z k i j y x Τα δύο διανύσματα που προκύπτουν από

Διαβάστε περισσότερα

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1 I. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ d df() = f() = f (), = d d.κλίση ευθείας.μεταολές 3.(Οριακός) ρυθμός μεταολής ή παράγωγος 4.Παράγωγοι ασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία 8.Στάσιμα

Διαβάστε περισσότερα

Συστήματα Συντεταγμένων

Συστήματα Συντεταγμένων Σφαιρικό Σύστημα Συντεταγμένων DD = Degrees + ( Minutes / 60 ) + ( Seconds / 3600 ) Greenwich meridian =0 Z N Meridian of longitude Parallel of latitude P X W O Equator =0 R E - Geographic longitude -

Διαβάστε περισσότερα

ΠΡΟΒΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΑΝΑΛΥΣΗ ΤΡΙΜΕΤΑΒΛΗΤΩΝ ΠΑΡΑΜΕΤΡΩΝ

ΠΡΟΒΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΑΝΑΛΥΣΗ ΤΡΙΜΕΤΑΒΛΗΤΩΝ ΠΑΡΑΜΕΤΡΩΝ ΠΡΟΒΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΑΝΑΛΥΣΗ ΤΡΙΜΕΤΑΒΛΗΤΩΝ ΠΑΡΑΜΕΤΡΩΝ Σημειώσεις στα πλαίσια του μαθήματος ΜΑΘΗΜΑΤΙΚΗ ΓΕΩΓΡΑΦΙΑ του μεταπτυχιακού κύκλου σπουδών «Γεωγραφία & Περιβάλλον» Καθ. Βαϊόπουλος Δημήτριος Δρ.

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΧΑΡΤΟΓΡΑΦΙΑΣ

ΣΤΟΙΧΕΙΑ ΧΑΡΤΟΓΡΑΦΙΑΣ ΚΕΦΑΛΑΙΟ 1 / Η ΧΑΡΤΟΓΡΑΦΙΑ ΣΗΜΕΡΑ 1. Σε τί διαφέρουν η ψηφιακή χαρτογραφία και η αναλογική χαρτογραφία; 2. Ποιές λειτουργίες επιτελεί ο χάρτης; 3. Ποιά προϊόντα παρέχει η ψηφιακή χαρτογραφία και ποιές

Διαβάστε περισσότερα

Άλλοι χάρτες λαμβάνουν υπόψη και το υψόμετρο του αντικειμένου σε σχέση με ένα επίπεδο αναφοράς

Άλλοι χάρτες λαμβάνουν υπόψη και το υψόμετρο του αντικειμένου σε σχέση με ένα επίπεδο αναφοράς ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Ένας χάρτης είναι ένας τρόπος αναπαράστασης της πραγματικής θέσης ενός αντικειμένου ή αντικειμένων σε μια τεχνητά δημιουργουμένη επιφάνεια δύο διαστάσεων Πολλοί χάρτες (π.χ. χάρτες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 0/04/018 ΕΩΣ 14/04/018 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 1 Απριλίου 018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη ε του κύκλου

Διαβάστε περισσότερα

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Εισαγωγή Παραμορφώσεις Ισοστατικών Δοκών και Πλαισίων: Δ22-2 Οι κατασκευές, όταν υπόκεινται σε εξωτερική φόρτιση, αναπτύσσουν

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΚΕΦΑΛΑΙΟ Διάνυσμα ορίζεται ένα ευθύγραμμο τμήμα στο οποίο έχει ορισθεί ποια είναι η αρχή, ή σημείο εφαρμογής του

Διαβάστε περισσότερα

Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα

Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Σκοπός Σκοπός του κεφαλαίου είναι η ανασκόπηση βασικών μαθηματικών εργαλείων που αφορούν τη μελέτη διανυσματικών συναρτήσεων [π.χ. E(, t) ]. Τα εργαλεία αυτά είναι

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση; Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων;

Διαβάστε περισσότερα

Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο.

Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο. ΓΕΩΛΟΓΙΚΗ ΤΟΜΗ ΚΕΚΛΙΜΕΝΑ ΣΤΡΩΜΜΑΤΑ 6.1 ΚΛΙΣΗ ΣΤΡΩΜΑΤΟΣ Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο. Πραγματική κλίση στρώματος Η διεύθυνση μέγιστης κλίσης,

Διαβάστε περισσότερα

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ 61 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

15/4/2013. Αυτό το περιβάλλον είναι. Ο χάρτης

15/4/2013. Αυτό το περιβάλλον είναι. Ο χάρτης Ο χάρτης ως υπόβαθρο των ΓΣΠ Tα ΓΣΠ βασίζονται στη διαχείριση πληροφοριών που έχουν άμεση σχέση με το γεωγραφικό χώρο, περιέχουν δηλαδή δεδομένα με γεωγραφική ταυτότητα. Θα πρέπει συνεπώς να λειτουργούν

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ

ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΥ Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΛΙΚΥ ΒΙΒΛΙΥ Σχολικό βιβλίο: Απαντήσεις Λύσεις Κεφάλαιο ο: Συστήματα Γραμμικά συστήματα Α ΜΑΔΑΣ Έχουμε: = 4 i = 6 = + = + = = Άρα, η λύση του συστήματος

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑΧΑΡΤΟΓΡΑΦΙΑΣ ΟΡΟΙ-ΕΝΝΟΙΕΣ. ΚΕΦΑΛΑΙΟ 1 / Η ΧΑΡΤΟΓΡΑΦΙΑ ΣΗΜΕΡΑ Αναλογική χαρτογραφία Λειτουργίες του χάρτη Ψηφιακή χαρτογραφία

ΣΤΟΙΧΕΙΑΧΑΡΤΟΓΡΑΦΙΑΣ ΟΡΟΙ-ΕΝΝΟΙΕΣ. ΚΕΦΑΛΑΙΟ 1 / Η ΧΑΡΤΟΓΡΑΦΙΑ ΣΗΜΕΡΑ Αναλογική χαρτογραφία Λειτουργίες του χάρτη Ψηφιακή χαρτογραφία ΚΕΦΑΛΑΙΟ 1 / Η ΧΑΡΤΟΓΡΑΦΙΑ ΣΗΜΕΡΑ Αναλογική χαρτογραφία Λειτουργίες του χάρτη Ψηφιακή χαρτογραφία ΚΕΦΑΛΑΙΟ 2 / Η ΦΥΣΗ ΤΗΣ ΧΑΡΤΟΓΡΑΦΙΑΣ Αποτελεσµατικότητα χαρτών Ταξινόµηση χαρτών Χάρτης, βασικά χαρακτηριστικά,

Διαβάστε περισσότερα

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π.

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π. ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 04) Ε.Μ.Π. (παρατηρήσεις για τη βελτίωση των σημειώσεων ευπρόσδεκτες) Παράσταση σημείου. Σχήμα Σχήμα

Διαβάστε περισσότερα

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης

Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης Αναλυτική θεωρία Λυμένα παραδείγματα Ερωτήσεις κατανόησης Ασκήσεις Επαναληπτικά διαγωνίσματα ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο ο : Διανύσματα Ενότητα I: Η έννοια

Διαβάστε περισσότερα