1. Elemente de bază ale conducţiei termice

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. Elemente de bază ale conducţiei termice"

Transcript

1 Ecuaţiile diferenţiale ale conducţiei termice Calculul proceselor de schimb de căldură necesită cunoaşterea distribuţiei temperaturii în spaţiu şi timp. Distribuţia temperaturii se obţine prin rezolvarea unor ecuaţii diferenţiale specifice proceselor respectivi de schimb de căldură, ecuaţii stabilite, de regulă, prin scrierea bilanţurilor termice (în conformitate cu primul principiu al termodinamicii) la elemente diferenţiale de volum. Condiţiile generale de desfăşurare a proceselor de conducţie termică se referă la stabilirea următoarelor elemente: materialul este omogen sau eterogen; materialul este izotrop sau anizotrop; materialul conţine sau nu surse interioare de căldură cu o distribuţie dată; regimul termic este constant sau tranzitoriu; propagarea căldurii are loc uni, bi sau tri-direcţional. Legea lui Fourier, reprezintă ecuaţia de bază a conducţiei termice unidirecţionale printrun material cu conductivitatea termică λ. Ea are forma: Φ = dq dτ = -λs dt dx [W]; q s = Φ S = -λdt dx [W/m2 ], (1.1) în care : Φ este fluxul de căldură, în W; Q - căldura, în J; τ - timpul; λ - conductivitatea termică a materialului, în W/(m- C); S - aria suprafeţei de schimb de căldură în m 2 ; dt/dx - gradientul temperaturii, în C/m. Pe baza legii lui Fourier se pot stabili ecuaţiile diferenţiale ale conducţiei termice. Ecuaţia generală a conducţiei termice este ecuaţia transferului tri-direcţional de căldură prin conducţie în regim tranzitoriu printr-un corp cu surse interioare de căldură. Ea reprezintă bilanţul termic aplicat unui element de volum într-un interval de timp dat: Căldura acumulată = în corp Căldura intrată în corp prin suprafeţele + lui exterioare Se admit următoarele ipoteze simplificatoare: Căldura generată sau absorbită prin sursele interioare de căldură corpul este omogen şi izotrop, astfel încât conductivitatea sa termică este constantă, λ x = λ y = λ z = λ = const.; căldura specifică masică c p [J/(kg ºC)] şi densitatea materialului ρ [kg/m 3 ] rămân constante în intervalul de temperatură considerat; în interiorul corpului există surse uniforme de căldură cu densitatea volumetrică, (fluxul termic unitar volumetric) q v [W/m 3 ] = const. (1.2) 1

2 Din material se consideră un element infinitezimal dx, dy, dz în coordonate rectangulare (Figura 1.1). Se consideră direcţia x. Dacă temperatura feţei ABCD este t, iar gradientul temperaturii este dt/dx, atunci temperatura feţei opuse este t + (dt/dx)dx Căldura care traversează în timpul dτ faţa ABCD se determină cu legea lui Fourier pentru conducţia termică unidirecţională: dq x1 = -λ t dy dz dτ [J] (1.3) x unde dy dz, este aria suprafeţei de schimb de căldură normală pe direcţia x considerată de propagare a căldurii. Căldura care traversează faţa opusă A'B'C'D' este: dq x2 = -λ x t + t dx x dy dz dτ [J] (1.4) Căldura care rămâne în elementul de volum, după direcţia x, este: Figura 1.1 Conducţia termică printr-un element infinitezimal de volum în coordonate rectangulare. dq x = dq x1 - dq x2 = λ 2 t x 2 dx dy dz dτ [J] (1.5) în mod analog, se obţine pentru direcţiile y şi z dq y = dq y1 - dq y2 = λ 2 t y 2 dx dy dz dτ [J] (1.6) dq z = dq z1 - dq z2 = λ 2 t z 2 dx dy dz dτ [J] (1.7) Căldura totală acumulată de elementul dx, dy, dz este dq = dq x + dq y + dq z = λ x t z 2 dx dy dz dτ [J] (1.8) La această căldură trebuie adăugată căldura generată sau absorbită de sursele termice interioare (de exemplu, datorită schimbării stării de agregare a materialului corpului, curgerii curentului electric sau reacţiilor de fisiune nucleară) cu fluxul unitar volumetric q v, şi anume: dq 2 = q v dx dy dz dτ [J] (1.9) în care q v este, pozitiv pentru sursele generatoare de căldură şi negativ pentru sursele absorbante de căldură. Cantitatea de căldură acumulată dq = dq 1 + dq 2, produce în timpul dτ o variaţie de temperatură a elementului ( t/ τ)dτ, adică: dq = dx dy dz ρ c t p dτ [J] (1.10) τ 2

3 înlocuind expresiile pentru dq 1, dq 2, dq, în ecuaţia bilanţului termic, se obţine : λ x t z 2 dx dy dz dτ + q v dx dy dz dτ = dx dy dz ρ c t p dτ (1.11) τ de unde rezultă ecuaţia diferenţială care exprimă variaţia temperaturii în timp în corpul considerat: t τ = λ ρ c p x t z 2 + q v (1.12) ρ c p care reprezintă totodată ecuaţia generală a conducţiei termice. Notând în ecuaţia precedentă: a = λ/(ρ c p ), denumită difuzivitatea termică a corpului, exprimată în m 2 /s, rezultă forma echivalentă: unde 2 t este laplacianul temperaturii. 1 t a τ = 2 t + q v (2.13) (1.13) λ Difuzivitatea termică a reprezintă o proprietate fizică a materialelor şi este raportul dintre conductivitatea termică λ şi proprietăţile materialului de acumulare a căldurii, exprimate prin căldura specifică volumetrică ρ c p [J/(m 3 ºC)]. Mărimea a apare în procesele termice tranzitorii şi caracterizează variaţia în timp a temperaturii. După cum rezultă din ecuaţia generală a conducţiei termice, gradientul temperaturii în timp dt/dτ într-un punct al unui corp este proporţional cu a, difuzivitatea termică fiind astfel o măsură a inerţiei termice a corpului considerat. Cu cât viteza de variaţie a temperaturii unui corp este mai mare cu atât difuzivitatea sa termică este mai ridicată, respectiv inerţia termică mai coborâtă. În acest sens, lichidele şi gazele au o difuzivitate termică coborâtă şi deci o inerţie termică ridicată, în timp ce metalele posedă o difuzivitate termică mare, respectiv o inerţie termică redusă. Ecuaţia generală a conducţiei termice are un număr de cazuri particulare prezentate în Tabelul 1.1. Tabelul Ecuaţiile diferenţiale ale conducţiei termice Denumirea ecuaţiei Tipul ecuaţiei Ecuaţia Ecuaţia generală a conducţiei Ecuaţia lui Poisson Ecuaţia lui Fourier Ecuaţia lui Laplace Regim tranzitoriu cu surse interioare de căldură Regim constant cu surse interioare de căldură Regim tranzitoriu fără surse interioare de căldură Regim constant fără surse interioare de căldură Ecuaţia lui Helmholz Regim constant cu o funcţie liniară a termenului de temperatură 2 t + q v λ = 1 a t τ 2 t + q v λ = 0 2 t = 1 a t τ 2 t = 0 2 t + B 2 t = 0 În Tabelul 1.2 se dau expresiile laplacianului temperaturii 2 t în coordonate rectangulare, cilindrice şi sferice, pentru procese uni şi tri-direcţionale. Tabelul 1.2 Laplacianul temperaturii, 2 t 3

4 Coordonate Rectangulare Cilindrice Sferice x = r cosφ x = r cosφ sinψ Relaţii x = r sinφ x = r sinφ sinψ z = z z = r cosψ O dimensiune (procese unidimensionale) dx 2 r r t r r r t r Trei dimensiuni (procese tridimensionale) x t z 2 r r t r + 1 r 2 2 t φ t z 2 r r t r + 1 r 2 tgψ t ψ + 1 r 2 2 t 1 t ψ 2 + r 2 sin 2 ψ 2 φ 2 Ecuaţia conducţiei termice se poate generaliza pentru cuprinderea tuturor cazurilor practice prin considerarea următoarelor ipoteze generale: corpul este neomogen şi anizotrop, astfel încât conductivitatea termică a acestuia se modifică cu direcţia: λ = λ(λ x, λ y, λ z ); densitatea şi căldura specifică a materialului sunt variabile cu temperatura: ρ = ρ(t), c p = c p (t); în interiorul corpului există surse discrete de energie plasate în punctele x i, y i, z i, generând sau absorbind cantitatea de căldură q i (x i, y i, z i, τ), unde i = 1, 2,, n Procedând în mod analog, prin aplicarea bilanţului termic la un element de volum într-un interval de timp dat, se obţine următoarea ecuaţie diferenţială: c p (t)ρ(t) t τ = x λ x + t x + y λ y + t y + z λ z + t z + Σ q i(x i, y i, z i, τ) [W/m 3 ] (1.14) În cazul particular al corpurilor omogene şi izotrope, solide sau fluide incompresibile fără frecare, cu conductivitatea termică λ = const., la care densitatea ρ şi căldura specifică c p nu depind de temperatură, având surse interioare uniforme de energie cu fluxul unitar volumetric q v = const., ecuaţia generală precedentă capătă forma ecuaţiei generale. În Tabelul 1.3 se prezintă principalele ecuaţii diferenţiale ale conducţiei termice în regim constant şi tranzitoriu întâlnite în aplicaţiile practice. 4

5 Tabelul 1.3 Principalele ecuaţii diferenţiale ale conducţiei termice pentru aplicaţiile practice curente Ecuaţia diferenţială Soluţia generală Observaţii Regim staţionar: dx 2 = 0 t = C 1 x + C 2 Placă, conducţie unidirecţională Transfer de căldură unidirecţional prin corpuri conductiv-convective (nervuri) dx 2 + m2 t = 0 t = C 1 sin mx + C 2 cos mx dx 2 - m2 t = 0 t = C 1 sinh mx + C 2 cosh mx Idem dx 2 + q v λ = 0 t = -q v Conducţie unidirecţională prin corpuri cu 2λ x2 + C 1 x + C 2 surse interioare de căldură cu densitatea q v dx 2 + d2 t dy 2 = 0 t = [C 1 sin ζx + C 2 cos ζx] [C 3 exp (ζy) Placă, conducţie bidirecţională + C 4 exp (-ζy)] r r t r = 0 t = C 1ln r + C 2 Conducţie simetrică în coordonate cilindrice r r t r + q v λ = 0 t = -q v Conducţie prin corpuri cilindrice cu surse 4λ r2 + C 1 ln r + C 2 interioare de căldură r 2 r 2 + r t r + (m2 r 2 + n 2 )t = 0 t = C 1 J n (mr) + C 2 Y n (mr) Conducţie unidirecţională în corpuri cilindrice r 2 r 2 + r t r - (m2 r 2 + n 2 )t t = C 1 I n (mr) + C 2 K n (mr) Idem = 0 r r t r + 2 t t = [C z 2 = 0 1 J 0 (ζr) + C 2 Y 0 (ζr)] [C 3 sinh(ζz) + Conducţie bidirecţională simetrică în C 4 cosh(ζz)] coordonate cilindrice r r t r + 1 r 2 2 t t = (C ϕ 2 = 0 1 r ζ + C 2 r -ζ ) [C 3 sin(ζϕ) + Conducţie bidirecţională în coordonate C 4 cos(ζϕ)] cilindrice r r t r = 0 t = -C Conducţie unidirecţională în coordonate 1/r + C 2 sferice (1 - r 2 ) 2 t r 2-2r t r + n(n + t = C 1 P n (r) + C 2 Q n (r) Idem 1)t = 0 r r 2 t + r 1 sinψ ψ sin t t = (C 1 r ζ + C 2 r -ζ ) P n cos(ψ) Conducţie bidirecţională în coordonate sferice ψ = 0 Regim tranzitoriu: x 2 = 1 t t = e -ζ2aτ [C 1 sin(ζx) + C 2 cos(ζx)] Placă, conducţie unidirecţională a τ x t r r = 1 t t = e a -ζ2 aτ C τ 1 J 0 ζr a + C 2Y 0 ζr Conducţie unidirecţională în coordonate a cilindrice x t r r = 1 2 t aτ a τ t = e-ζ Conducţie unidirecţională în coordonate r [C 1 sin(ζr) + C 2 cos(ζr)] sferice unde: t - temperatura, în ºC; x, y, z - coordonate rectangulare, în m; r, ϕ, z - coordonate cilindrice; r, ϕ, ψ - coordonate sferice; a - difuzivitatea termică în m 2 /s; λ - conductivitatea termică în W/(m 2 K); ρ - densitatea, în kg/m 3 ; c p - căldura specifică, în J/(kg K); q v - flux termic unitar volumetric, în W/m 3 ; τ - timpul în s; m 2 = αp/λs, în m 2 ; P - perimetrul în m; S - aria suprafeţei în m; α - coeficientul de convecţie, în W/(m 2 K); J n, Y n - funcţii Bessel de speţa întâi şi a doua, ordinul n; I n, K n - funcţii Bessel modificate de speţa întâi şi a doua, ordinul n; P n, Q n - funcţii Legendre de speţa întâi şi a doua, ordinul n; ζ - valori proprii. Constantele de integrare C 1 C 2 şi ζ se determină din condiţiile iniţiale şi la limită ale problemei. 5

6 1.2 Condiţiile de determinare univocă a proceselor de conducţie Ecuaţiile diferenţiale stabilite mai sus descriu categorii largi de fenomene de conducţie termică. Considerarea unui proces particular dintr-o multitudine de procese reprezintă, din punct de vedere matematic, ataşarea, la ecuaţiile diferenţiale generale a unui set de elemente descriptive specifice procesului analizat. Aceste elemente specifice poartă numele de condiţii de determinare univocă a procesului, astfel încât acestea împreună cu ecuaţiile diferenţiale dau o descriere fizico-matematică completă a procesului, permiţând rezolvarea problemei prin metode analitice, numerice sau experimentale. Condiţiile de determinare univocă a proceselor de conducţie cuprind următoarele date: Condiţii geometrice, care determină forma geometrică şi dimensiunile corpului în care se desfăşoară procesul de conducţie. Condiţii fizice, care stabilesc valorile proprietăţilor fizice ale corpului (conductivitatea termică, difuzivitatea termică, căldura specifică, densitatea etc.) şi variaţia în timp şi spaţiu a surselor interioare de căldură. Condiţii iniţiale, care determină distribuţia temperaturii în interiorul corpului, la momentul iniţial, τ = 0. în cazul general, această condiţie poate fi exprimată analitic sub forma: t = f(x, y, z) la τ = 0. Cazul cel mai simplu îl constituie distribuţia uniformă de temperatură în corp t = t 0 = const., pentru t = 0. Condiţii de limită sau de contur, care definesc legătura corpului cu mediul ambiant şi care pot fi exprimate în mai multe moduri: Condiţiile la limită de primul tip se referă la cunoaşterea distribuţiei temperaturii pe suprafaţa corpului în fiecare moment τ şi se exprimă,în cazul general, printr-o ecuaţie de forma t s = f(x, y, z, τ), unde t este temperatura suprafeţei, iar x, y, z sunt coordonatele suprafeţei. În cazul particular, în care temperatura suprafeţei rămâne constantă pe durata desfăşurării procesului de transfer de căldură, ecuaţia precedentă se simplifică în forma t s = const. Condiţiile la limită de al doilea tip stabilesc valorile fluxului termic la suprafaţa corpului pentru orice τ, cu exprimarea matematică generală q supr = f(x, y, s, τ), în care q supr, este densitatea fluxului termic pe suprafaţa corpului în punctele de coordonate x, y, z. În cazul cel mai simplu, q supr = const., respectiv densitatea, fluxului termic rămâne constantă în timp pe întreaga suprafaţă a corpului. Condiţiile la limită de al treilea tip cuprind cunoaşterea temperaturii mediului ambiant şi legea după care se desfăşoară transferul de căldură între suprafaţa corpului şi mediul înconjurător. După cum s-a arătat, procesul de schimb de căldură între suprafaţa unui corp cu temperatura t s şi mediul ambiant reprezentat de un fluid cu temperatura t f (de exemplu, t s > t f ) este dat de legea lui Newton: q s = α(t s - t f ), unde q s este fluxul unitar de suprafaţă, iar α - coeficientul de schimb de căldură prin convecţie. Dacă se consideră o arie egală cu unitatea pe suprafaţa corpului, atunci, potrivit legii conservării energiei, cantitatea de căldură transferată prin conducţie prin corp care traversează aria unitară este egală cu cantitatea de căldură preluată prin convecţie de către fluid de pe aceeaşi arie unitară (Figura 1.2, a), adică: α(t s - t f ) = -λ t x t s x = - α/λ (t s - t f ) (1.15) s 6

7 în care transferul de căldură prin conducţie a fost stabilit cu ajutorul legii lui Fourier, (dt/dx) s reprezentând gradientul temperaturii pe suprafaţa corpului, în direcţia x normală pe suprafaţă. Relaţiile anterioare exprimă condiţiile la limită de al treilea tip prin Figura 1.2 Exprimarea grafică a condiţiilor la limită de tipul trei (a) şi patru (b). aplicarea legii conservării energiei la suprafaţa corpului, ca egalitatea dintre fluxul unitar de suprafaţă transmis prin conducţie şi fluxul unitar de suprafaţă transmis prin convecţie (q s,cond = q s,conv ). Conform cu Figura 1.2, a: (dt/dx) s = tg φ. Condiţiile la limită de al patrulea tip definesc procesul de conducţie între un corp sau un sistem de corpuri şi mediul ambiant. Admiţându-se un contact termic perfect între suprafeţele corpurilor vecine, se poate scrie egalitatea fluxurilor termice unitare prin suprafeţele în contact (Figura 1.2, b): λ 1 t 1 x = λ 2 t 2 s x (1.16) s în care λ 1 şi λ 2 sunt conductivităţile termice ale celor două corpuri vecine, iar dt/dx este gradientul temperaturii pe suprafaţa de contact în direcţie normală, pentru fiecare corp în parte. Pe suprafaţa de contact, pantele curbelor temperaturii îndeplinesc condiţia tg φ 1 = tg φ 2 = λ 1 /λ 2 = const. Bibliografie 1. Ştefănescu D., Leca A., s.a. - Transfer de căldură şi masă - Teorie şi aplicaţii, Ed.D.P., Bucureşti, 1982, pg

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

TRANSFERUL DE CĂLDURĂ

TRANSFERUL DE CĂLDURĂ TRANSFERUL DE CĂLDURĂ LUCIAN GAVRILĂ Fenomene de transfer II 1 OBIECTUL CURSULUI o TRANSFERUL DE CĂLDURĂ NOŢIUNI FUNDAMENTALE TRANSFER DE CĂLDURĂ PRIN CONDUCTIVITATE TRANSFER DE CĂLDURĂ PRIN RADIAŢIE TRANSFER

Διαβάστε περισσότερα

Lucian Maticiuc SEMINAR Conf. dr. Lucian Maticiuc. Capitolul VI. Integrala triplă. Teoria:

Lucian Maticiuc SEMINAR Conf. dr. Lucian Maticiuc. Capitolul VI. Integrala triplă. Teoria: Capitolul I: Integrala triplă Conf. dr. Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Analiza Matematică II, Semestrul II Conf. dr. Lucian MATICIUC Teoria: SEMINAR 3 Capitolul I. Integrala

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

Studiu privind soluţii de climatizare eficiente energetic

Studiu privind soluţii de climatizare eficiente energetic Studiu privind soluţii de climatizare eficiente energetic Varianta iniţială O schemă constructivă posibilă, a unei centrale de tratare a aerului, este prezentată în figura alăturată. Baterie încălzire/răcire

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Ecuatii trigonometrice

Ecuatii trigonometrice Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos

Διαβάστε περισσότερα

TRANSFER DE CĂLDURĂ ŞI MASĂ SEMINAR - probleme propuse şi consideraţii teoretice - 1. CONDUCŢIA TERMICĂ ÎN REGIM STAŢIONAR

TRANSFER DE CĂLDURĂ ŞI MASĂ SEMINAR - probleme propuse şi consideraţii teoretice - 1. CONDUCŢIA TERMICĂ ÎN REGIM STAŢIONAR TRANSFER DE CĂLDURĂ ŞI MASĂ SEMINAR - probleme propuse şi consideraţii teoretice -. CONDUCŢIA TERMICĂ ÎN REGIM STAŢIONAR Teoria propagării sau transmiterii căldurii se ocupă cu cercetarea fenomenelor şi

Διαβάστε περισσότερα

FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar

FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar Pagina 1 FNOMN TANZITOII ircuite şi L în regim nestaţionar 1. Baze teoretice A) ircuit : Descărcarea condensatorului ând comutatorul este pe poziţia 1 (FIG. 1b), energia potenţială a câmpului electric

Διαβάστε περισσότερα

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1) Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

VII.2. PROBLEME REZOLVATE

VII.2. PROBLEME REZOLVATE Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

Sisteme de ecuaţii diferenţiale

Sisteme de ecuaţii diferenţiale Curs 5 Sisteme de ecuaţii diferenţiale 5. Sisteme normale Definiţie 5.. Se numeşte sistem normal sistemul de ecuaţii diferenţiale de ordinul întâi dx dt = f (t, x, x 2,..., x n ) dx 2 dt = f 2(t, x, x

Διαβάστε περισσότερα

TRANSFER DE CĂLDURĂ PRIN CONDUCTIVITATE

TRANSFER DE CĂLDURĂ PRIN CONDUCTIVITATE RANSFER DE CĂLDURĂ PRIN CONDUCIVIAE continuare /4/003 LUCIAN GAVRILĂ Fenomene de transfer II COEFICIENUL DE CONDUCIVIAE ERMICĂ o proprietate fizică specifică fiecărui tip de material, o exprimă comportarea

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Integrale cu parametru

Integrale cu parametru 1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii în tehnică

Aplicaţii ale principiului I al termodinamicii în tehnică Aplicaţii ale principiului I al termodinamicii în tehnică Sisteme de încălzire a locuinţelor Scopul tuturor acestor sisteme, este de a compensa pierderile de căldură prin pereţii locuinţelor şi prin sistemul

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Tranzistoare bipolare şi cu efect de câmp

Tranzistoare bipolare şi cu efect de câmp apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

TEST GRILĂ DE VERIFICARE A CUNOŞTINŢELOR LA MATEMATICĂ-FIZICĂ VARIANTA 1 MATEMATICĂ

TEST GRILĂ DE VERIFICARE A CUNOŞTINŢELOR LA MATEMATICĂ-FIZICĂ VARIANTA 1 MATEMATICĂ ROMÂNIA MINISTERUL APĂRĂRII NAŢIONALE ŞCOALA MILITARĂ DE MAIŞTRI MILITARI ŞI SUBOFIŢERI A FORŢELOR TERESTRE BASARAB I Concurs de admitere la Programul de studii postliceale cu durata de 2 ani (pentru formarea

Διαβάστε περισσότερα

FIZICĂ. Bazele fizice ale mecanicii cuantice. ş.l. dr. Marius COSTACHE

FIZICĂ. Bazele fizice ale mecanicii cuantice. ş.l. dr. Marius COSTACHE FIZICĂ Bazele fizice ale mecanicii cuantice ş.l. d. Maius COSTACHE 1 BAZELE FIZICII CUANTICE Mecanica cuantică (Fizica cuantică) studiază legile de mişcae ale micoaticulelo (e -, +,...) şi ale sistemelo

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede

2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede 2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind

Διαβάστε περισσότερα

Laborator 6. Integrarea ecuaţiilor diferenţiale

Laborator 6. Integrarea ecuaţiilor diferenţiale Laborator 6 Integrarea ecuaţiilor diferenţiale Responsabili: 1. Surdu Cristina(anacristinasurdu@gmail.com) 2. Ştirbăţ Bogdan(bogdanstirbat@yahoo.com) Obiective În urma parcurgerii acestui laborator elevul

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα

r d r. r r ( ) Curba închisă Γ din (3.1 ) limitează o suprafaţă de arie S

r d r. r r ( ) Curba închisă Γ din (3.1 ) limitează o suprafaţă de arie S - 37-3. Ecuaţiile lui Maxwell 3.. Foma integală a ecuaţiilo lui Maxwell Foma cea mai geneală a ii lui Ampèe (.75) sau (.77) epezintă pima ecuaţie a lui Maxwell: d H dl j ds + D ds (3.) S dt S sau: B dl

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

Fie I R un interval deschis, G R n, n 1, un domeniu şi f : I G R n. Forma generala a unei ecuaţii diferenţiale de ordinul întâi este: = f(x, y).

Fie I R un interval deschis, G R n, n 1, un domeniu şi f : I G R n. Forma generala a unei ecuaţii diferenţiale de ordinul întâi este: = f(x, y). Ecuaţii diferenţiale Ecuaţii diferenţiale ordinare Ecuaţii cu derivate parţiale Ordinul unei ecuaţii Soluţia unei ecuaţii diferenţiale ordinare Fie I R un interval deschis, G R n, n 1, un domeniu şi f

Διαβάστε περισσότερα

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba

Διαβάστε περισσότερα

Capitolul 3 NELINIARITĂŢI ALE COMPORTAMENTULUI MATERIALELOR - III-

Capitolul 3 NELINIARITĂŢI ALE COMPORTAMENTULUI MATERIALELOR - III- Capitolul 3 NELINIARITĂŢI ALE COMPORTAMENTULUI MATERIALELOR - III- 3.4. Criterii de plasticitate Criteriile de plasticitate au apărut din necesitatea de a stabili care sunt factorii de care depinde trecerea

Διαβάστε περισσότερα

FIZICĂ. Oscilatii mecanice. ş.l. dr. Marius COSTACHE

FIZICĂ. Oscilatii mecanice. ş.l. dr. Marius COSTACHE FIZICĂ Oscilatii mecanice ş.l. dr. Marius COSTACHE 3.1. OSCILAŢII. Noţiuni generale Oscilaţii mecanice Oscilaţia fenomenul fizic în decursul căruia o anumită mărime fizică prezintă o variaţie periodică

Διαβάστε περισσότερα

1. ESTIMAREA UNUI SCHIMBĂTOR DE CĂLDURĂ CU PLĂCI

1. ESTIMAREA UNUI SCHIMBĂTOR DE CĂLDURĂ CU PLĂCI 1. ESTIMAREA UNUI SCHIMBĂTOR DE CĂLDURĂ CU PLĂCI a. Fluidul cald b. Fluidul rece c. Debitul masic total de fluid cald m 1 kg/s d. Temperatura de intrare a fluidului cald t 1i C e. Temperatura de ieşire

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de

Διαβάστε περισσότερα

prin egalizarea histogramei

prin egalizarea histogramei Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o

Διαβάστε περισσότερα

Ingineria proceselor chimice şi biologice/10

Ingineria proceselor chimice şi biologice/10 Universitatea Tehnică Gheorghe sachi din Iaşi acultatea de Inginerie Chimică şi Protecţia Mediului Ingineria proceselor chimice şi biologice/1 n universitar 213-214 Titular disciplină: Prof.dr.ing. Maria

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

ALGEBRĂ ŞI ELEMENTE DE ANALIZĂ MATEMATICĂ FIZICĂ

ALGEBRĂ ŞI ELEMENTE DE ANALIZĂ MATEMATICĂ FIZICĂ Sesiunea august 07 A ln x. Fie funcţia f : 0, R, f ( x). Aria suprafeţei plane delimitate de graficul funcţiei, x x axa Ox şi dreptele de ecuaţie x e şi x e este egală cu: a) e e b) e e c) d) e e e 5 e.

Διαβάστε περισσότερα

1Ecuaţii diferenţiale

1Ecuaţii diferenţiale 1Ecuaţii diferenţiale 1.1 Introducere Definitia 1.1 Se numeşte ecuaţie diferenţială ordinarădeordin1: y 0 (x) =f (x, y (x)) (EDO) unde y este funcţia necunoscută, iar f este o funcţie de două variabile

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6)

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6) SEMINAR TRANSFORMAREA LAPLACE. Probleme. Foloind proprieaea de liniariae, ă e demonreze urmăoarele: in σ(, Re > ; ( + penru orice C. co σ( h σ( ch σ(, Re > ; ( +, Re > ; (3, Re > ; (4. Să e arae că penru

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα