ΚΕΦΑΛΑΙΟ 13ο. µείζονες κλίµακες

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΕΦΑΛΑΙΟ 13ο. µείζονες κλίµακες"

Transcript

1 ΚΕΦΑΛΑΙΟ 13ο 9 µείζονες κλίµακες Kλίµακα ή σκάλα ονοµάζεται µία σειρά από τους επτά φθόγγους της µουσικής που σαν 1ο και τελευταίο φθόγγο έχει την ίδια νότα αλλά σε διαφορετικό ύψος. Τοποθετούµε τους φθόγγους έτσι ώστε ο επόµενος να είναι ο αµέσως πιο πάνω από τον προηγούµενο. Τοποθετούµε τους µε διαδοχική σειρά. Καθώς οι φθόγγοι ανεβαίνουν λέµε ότι η κλίµακα, ή η σκάλα, ανεβαίνει (ανιούσα) και όταν κατεβαίνει, µε τον ίδιο τρόπο, διαδοχικά, λέµε ότι κατεβαίνει (κατιούσα) Τους φθόγγους της κλίµακας τους αριθµούµε από κάτω προς τα πάνω µε τους λατινικούς αριθµούς. Κάθε µία βαθµίδα (και έτσι λέγεται η κάθε νότα της κλίµακας) έχει και ένα δικό της όνοµα που χαρακτηρίζει την θέση της µέσα στην κλίµακα: η Ι λέγεται ΤΟΝΙΚΗ διότι αυτή δίνει το όνοµα στην κλίµακα και είναι η πρώτη κατά κυριότητα βαθµίδα της κλίµακας, I η ΙΙ ΕΠΙΤΟΝΙΚΗ διότι βρίσκεται πάνω από την τονική, II η ΙΙΙ ΜΕΣΗ γιατί δίνει την χροιά της κλίµακας (µείζονα ή ελάσσονα), III ή ΙV ΥΠΟ ΕΣΠΟΖΟΥΣΑ γιατί βρίσκεται κάτω από την δεσπόζουσα και είναι η τρίτη κατά σειρά, σε κυριότητα IV βαθµίδα στην κλίµακα. ή V ΕΣΠΟΖΟΥΣΑ και είναι η δεύτερη κατά σειρά σε κυριότητα βαθµίδα στην κλίµακα V VΙ ΕΠΙ ΕΣΠΟΖΟΥΣΑ που βρίσκεται πάνω από την δεσπόζουσα VI

2 10 η VΙΙ ΠΡΟΣΑΓΩΓΕΑΣ γιατί αυτός ο φθόγγος µας οδηγεί σε µία µελωδία πάντα στον φθόγγο της τονικής VII ή VIIΙ ή I που είναι ίδια µε την Ι ΤΟΝΙΚΗ ή ΟΓ ΟΗ VIII ή I α ν ι ο ύ σ α πορεία (προς τα πάνω ) I ΙI ΙΙΙ IV V VI VII VIII κ α τ ι ο ύ σ α πορεία (προς τα κάτω ) I VIII I VII VI V IV III II I Παρατηρούµε ότι οι αποστάσεις της κλίµακας είναι: I => II ΙΙ => ΙΙΙ ΙΙΙ => IV IV => V V => VI VI =>VII VII =>VIII και υπάρχουν ΤΟΝΟΙ µεταξύ των βαθµίδων Ι-ΙΙ, ΙΙ-ΙΙΙ, ΙV-V, V-VI, VI-VII και ΗΜΙΤΟΝΙΑ µεταξύ ΙΙΙ-ΙV και VII-VIII (Τ.Τ.Η.Τ.Τ.Τ.Η. ή 2Τ.Η 3 Τ.Η) που είναι και ο ΤΥΠΟΣ της µείζονας κλίµακας. I ΙI ΙΙΙ IV V VI VII VIII Αν παρατηρήσουµε καλύτερα θα προσέξουµε ότι: Οι πρώτες τέσσερεις νότες (1ο τετράχορδο) Α) µε τις επόµενες τέσσερεις (2ο τετράχορδο) Β) έχουν τα ίδια διαστήµατα στην ίδια σειρά (θέση) τα οποία συνδέονται µε ένα τόνο που ονοµάζεται

3 Πώς κατασκευάζουµε τις κλίµακες µε διέσεις. 11 µία άλλη κλίµακα θα βρούµε ότι πρέπει στην καινούργια να βάλουµε 1 δίεση στην νότα φα. # # µία άλλη κλίµακα θα βρούµε ότι πρέπει στην καινούργια να βάλουµε 2 διέσεις (σε αυτήν που είχαµε και στην νότα ντο) # # # # µία άλλη κλίµακα θα βρούµε ότι πρέπει στην καινούργια να βάλουµε 3 διέσεις (σε αυτές που είχαµε και στην νότα σολ) # # # # µία άλλη κλίµακα θα βρούµε ότι πρέπει στην καινούργια να βάλουµε 4 διέσεις (σε αυτές που είχαµε και στην νότα ρε) # # # # # #

4 12 µία άλλη κλίµακα θα βρούµε ότι πρέπει στην καινούργια να βάλουµε 5 διέσεις (σε αυτές που είχαµε και στην νότα λα) # # # # # # # # µία άλλη κλίµακα θα βρούµε ότι πρέπει στην καινούργια να βάλουµε 6 διέσεις (σε αυτές που είχαµε και στην νότα µι) # # # # # # # # # # # µία άλλη κλίµακα θα βρούµε ότι πρέπει στην καινούργια να βάλουµε 7 διέσεις (σε αυτές που είχαµε και στην νότα σι) # # # # # # # # # # #

5 13 Παρατηρούµε: 1ο: Ότι αν βάλουµε τις κλίµακες σε σειρά αναλόγως τον οπλισµό τους παρατηρούµε ότι όλες απέχουν από την προηγούµενη και την επόµενη 5 φθόγγους. Αυτό λέγεται και ''κύκλος των πεµπτών'' 2ο: Ότι όσες 5ες ανεβαίνουµε τόσες διέσεις έχουµε 3ο: Ότι η διέσεις είναι ''κοινές'' δηλ. δεν αλλάζουνε σειρά και 4ο: Είναι σε απόσταση 5ης προς τα πάνω η κάθε µία από την άλλη. 0# 1η 1# 2η 2# 3η 3# 4η 4# 5η 5# # 6η 6# # 7η 7# # η ΣΟΛ έχει την: η ΡΕ έχει τις: η ΛΑ έχει τις: # η ΜΙ η ΣΙ έχει τις: έχει τις: # η ΦΑ# η ΝΤΟ# έχει τις: έχει τις: #

6 14 Πώς κατασκευάζουµε τις κλίµακες µε υφέσεις. Αν τώρα αντί να πάρουµε τον πρώτο φθόγγο από το 2ο τετράχορδο πάρουµε το 1ο τετράχορδο και το κάνουµε 2ο και προσθέσουµε ένα 1ο τετράχορδο από κάτω τότε θα έχουµε µία κλίµακα µε µία ύφεση (σε αυτές που είχαµε και στην νότα σολ) Αν τώρα πάρουµε το 1ο τετράχορδο και το κάνουµε 2ο και προσθέσουµε ένα 1ο τετράχορδο από κάτω τότε θα έχουµε µία κλίµακα µε δύο υφέσεις (αυτήν που είχαµε και στη νότα µι) Αν τώρα πάρουµε το 1ο τετράχορδο και το κάνουµε 2ο και προσθέσουµε ένα 1ο τετράχορδο από κάτω τότε θα έχουµε µία κλίµακα µε τρεις υφέσεις (αυτές που είχαµε και στη νότα λα)

7 15 Αν τώρα πάρουµε το 1ο τετράχορδο και το κάνουµε 2ο και προσθέσουµε ένα 1ο τετράχορδο από κάτω τότε θα έχουµε µία κλίµακα µε τέσσερεις υφέσεις (αυτές που είχαµε και στη νότα ρε) Αν τώρα πάρουµε το 1ο τετράχορδο και το κάνουµε 2ο και προσθέσουµε ένα 1ο τετράχορδο από κάτω τότε θα έχουµε µία κλίµακα µε πέντε υφέσεις (αυτές που είχαµε και στη νότα σολ) Αν τώρα πάρουµε το 1ο τετράχορδο και το κάνουµε 2ο και προσθέσουµε ένα 1ο τετράχορδο από κάτω τότε θα έχουµε µία κλίµακα µε έξη υφέσεις (αυτές που είχαµε και στη νότα ντο) Αν τώρα πάρουµε το 1ο τετράχορδο και το κάνουµε 2ο και προσθέσουµε ένα 1ο τετράχορδο από κάτω τότε θα έχουµε µία κλίµακα µε επτά υφέσεις (αυτές που είχαµε και στη νότα φα)

8 16 Παρατηρούµε: 1ο: Ότι αν βάλουµε τις κλίµακες σε σειρά αναλόγως τον οπλισµό τους παρατηρούµε ότι όλες απέχουν από την προηγούµενη και την επόµενη 5 φθόγγους. Αυτό λέγεται και ''κύκλος των πεµπτών'' 2ο: Ότι όσες 5ες κατεβαίνουµε τόσες υφέσεις έχουµε 3ο: Ότι οι υφέσεις είναι ''κοινές'' δηλ. δεν αλλάζουνε σειρά και 4ο: Είναι σε απόσταση 5ης προς τα κάτω η κάθε µία από την άλλη. 0# 1η 1b 2η 2b 3η 3b 4η 4b 5η 5b 6η 6b 7η 7b b η ΦΑ έχει την: η ΣΙb b b έχει τις: η ΜΙb έχει b b τις: b η ΛΑb b b έχει τις: b b η ΡΕb b b έχει τις: b b b η ΣΟΛb έχει τις: b b b b b b η ΝΤΟb b b έχει τις: b b b b b

9 Παρατηρούµε: 17 1ο: Ότι η σειρά των κλιµάκων µε διέσεις είναι (ΝΤΟ) ΣΟΛ-ΡΕ-ΛΑ-ΜΙ-ΣΙ-ΦΑ#-ΝΤΟ# και των υφέσεων (είναι αντίθετη από την ΦΑ και µετά) : ΦΑ-ΣΙb-ΜΙb-ΛΑb-ΡΕb-ΣΟΛb-ΝΤΟb (ΝΤΟ) -- ΣΟΛ -- ΡΕ -- ΛΑ -- ΜΙ -- ΣΙ -- ΦΑ# -- ΝΤΟ# # # 2ο: Ότι οι σειρά των διέσεων είναι ΦΑ#-ΝΤΟ#-ΣΟΛ#-ΡΕ#-ΛΑ#-ΜΙ#-ΣΙ# # b b b b b b b και των υφέσεων είναι αντίθετη από την σειρά των διέσεων. ΣΙb-ΜΙb-ΛΑb-ΡΕb-ΣΟΛb-ΝΤΟb-ΦΑb 2ο: Ότι οι κλίµακες µε το ίδιο όνοµα αλλά διαφορετικό οπλισµό, αν προσθέσουµε τον οπλισµό τους θα έχουµε άθροισµα ΠΑΝΤΑ τον αριθµό επτά. 1# b b 6b 2# 5b 3# b b 4b 4# 3b 5# b 2b 6# # 1b

10 18 Μόνο η κλίµακα ΝΤΟ έχει δύο κλίµακες γιατί επειδή δεν έχει οπλισµό τότε οι άλλες έχουν από επτά b # 7b 0 7# Ερώτηση: Τί οπλισµό έχει η ΜΙ Μείζονα; Για να βρούµε τον οπλισµό µιας κλίµακας σκεφτόµαστε ως εξής: 1ο: Σχηµατίζουµε την κλίµακα µε πρώτο φθόγγο τον ΜΙ Πώς βρίσκουµε τον οπλισµό µιας κλίµακας. 1ος τρόπος 2ο: Τοποθετούµε τον τύπο των αποστάσεων της Μείζονας κλίµακας Τ.Τ.Η.Τ.Τ.Τ.Η ή(2τ.η.3.τ.η.) Τ Τ Η Τ Τ Τ Η 3ο: Τώρα αλλάζουµε τις αποστάσεις των διαστηµάτων όπου χρειασθεί και έχουµε την ΜΙ Μείζονα κλίµακα µε 4 διέσεις # # # # Τ Τ Η Τ Τ Τ Η ή την ΡΕb Μείζονα 1ο: Σχηµατίζουµε την κλίµακα µε πρώτο φθόγγο την ΡΕb 2ο: Τοποθετούµε τον τύπο των αποστάσεων της Μείζονας κλίµακας Τ.Τ.Η.Τ.Τ.Τ.Η ή (2Τ.Η.3.Τ.Η.) Τ Τ Η Τ Τ Τ Η 3ο: Τώρα αλλάζουµε τις αποστάσεις των διαστηµάτων όπου χρειασθεί και έχουµε την ΡΕb Μείζονα κλίµακα µε 5 υφέσεις (η νότα ρε που έχει ύφεση στην αρχική και στην τελική νότα µετράει για µία.) Τ Τ Η Τ Τ Τ Η

11 2ος τρόπος Ερώτηση: Τί οπλισµό έχει η ΜΙ Μείζονα 19 1ο: Ανεβαίνω από την νότα ΝΤΟ πέµπτες µέχρι να βρω την νότα ΜΙ Την βρήκα µετά από 4 πέµπτες, άρα θα έχει τέσσερεις διέσεις. 1η 2η 3η 4η 2ο: Σκέφτοµαι τον οπλισµό των τεσσάρων διέσεων. Αν δεν επηρεάζει την νότα ΜΙ τότε είναι η ΜΙ Μείζονα. Τί οπλισµό έχει η ΦΑ Μείζονα 1ο: Ανεβαίνω από την νότα ΝΤΟ πέµπτες µέχρι να βρω την νότα ΦΑ Την βρήκα µετά από 6 πέµπτες, άρα θα έχει έξη διέσεις. 1η 2η 3η 4η 5η 6η 2ο: Σκέφτοµαι τον οπλισµό των έξη διέσεων. Παρατηρώ ότι ο οπλισµός αλλάζει την νότα ΦΑ και την κάνει ΦΑ# Άρα είναι η αντίθετή της µε υφέσεις. (η ΦΑ# έχει 6 διέσεις αν αφαιρέσουµε από τον αριθµό 7 θα βρούµε ότι η ΦΑ έχει µία ) Τί οπλισµό έχει η ΣΟΛb Μείζονα 1ο: Eπειδή η ΣΟΛb έχει υφέσεις κατεβαίνω από την ΝΤΟ πέµπτες µέχρι να βρω την νότα ΣΟΛ 1η 2η 3η 4η 5η 6η 2ο: Βρήκα την νότα ΣΟΛ αφού κατέβηκα 6 πέµπτες. Άρα θα έχει 6 υφέσεις. εν πρέπει να ξεχνάµε ότι η σειρά των διέσεων και των υφέσεων είναι ΑΠΟΛΥΤΗ µε ΙΕΣΕΙΣ # # # ΕΝ ΑΛΛΑΖΕΙ # # # # µε ΥΦΕΣΕΙΣ b b b b b b b

12 20 3ος τρόπος Ερώτηση: Ποιά κλίµακα έχει 6 διέσεις; 1ο: Επειδή η κλίµακα πρέπει να έχει διέσεις ανεβαίνουµε από την ΝΤΟ Μείζονα 6 πέµπτες και βρίσκουµε την νότα ΦΑ. 1η 2η 3η 4η 5η 6η 2ο: Σχηµατίζουµε την καινούργια κλίµακα µε τονική την νότα ΦΑ 3ο: Τοποθετούµε τις 6 διέσεις στους φθόγγους και έτσι έχουµε ότι η κλίµακα που έχει 6 διέσεις είναι η ΦΑ# (νότα ΦΑ άλλαξε και έγινε ΦΑ # γιατί επηρεάστηκε από τον οπλισµό της κλίµακας) # # # # # # # Ή µε 4 υφέσεις 1ο: Επειδή η κλίµακα πρέπει να έχει υφέσεις κατεβαίνουµε από την ΝΤΟ Μείζονα 4 πέµπτες και βρίσκουµε την νότα ΛΑ. 2ο: Σχηµατίζουµε την καινούργια κλίµακα µε τονική την νότα ΛΑ 3ο: Τοποθετούµε τις 4 υφέσεις στους φθόγγους και έτσι έχουµε ότι η κλίµακα που έχει 4 υφέσεις είναι η ΛΑb (νότα ΛΑ άλλαξε και έγινε ΛΑb γιατί επηρεάστηκε από τον οπλισµό της κλίµακας καθώς επίσης ο οπλισµός της ΛΑb µετράει µονός)

13 4ος τρόπος 21 Ερώτηση: Τί οπλισµό έχει η ΜΙ Μείζονα 1ο: Ανεβαίνω από την νότα ΝΤΟ πέµπτες µέχρι να βρω την νότα ΜΙ Την βρήκα µετά από 4 πέµπτες, άρα θα έχει τέσσερεις διέσεις. 1η 2η 3η 4η 2ο: Σκέφτοµαι τον οπλισµό των τεσσάρων διέσεων. Αν δεν επειρεάζει την νότα ΜΙ τότε είναι η ΜΙ Μείζονα. Τί οπλισµό έχει η ΦΑ Μείζονα 1ο: Ανεβαίνω από την νότα ΝΤΟ πέµπτες µέχρι να βρω την νότα ΦΑ Την βρήκα µετά από 6 πέµπτες, άρα θα έχει έξη διέσεις. 1η 2η 3η 4η 5η 6η 2ο: Σκέφτοµαι τον οπλισµό των έξη διέσεων. Παρατηρώ ότι ο οπλισµός αλλάζει την νότα ΦΑ και την κάνει ΦΑ# Άρα είναι η αντίθετή της µε υφέσεις. (η ΦΑ# έχει 6 διέσεις αν αφαιρέσουµε από τον αριθµό 7 θα βρούµε ότι η ΦΑ έχει µία ) Τί οπλισµό έχει η ΣΟΛb Μείζονα 1ο: Eπειδή η ΣΟΛb έχει υφέσεις κατεβαίνω από την ΝΤΟ πέµπτες µέχρι να βρω την νότα ΣΟΛ 2ο: Βρήκα την νότα ΣΟΛ αφού κατέβηκα 6 πέµπτες. Άρα θα έχει 6 υφέσεις. 1η 2η 3η 4η 5η 6η εν πρέπει να ξεχνάµε ότι η σειρά των διέσεων και των υφέσεων είναι ΑΠΟΛΥΤΗ ΕΝ ΑΛΛΑΖΕΙ # µε ΙΕΣΕΙΣ # # # # # # b µε ΥΦΕΣΕΙΣ b b b b b b

ΚΕΦΑΛΑΙΟ 14ο ΕΛΑΣΣΟΝΕΣ ΚΛΙΜΑΚΕΣ. Η ελάσσονα κλίµακα ανήκει στην ίδια οικογένεια µε τις µείζονες γιατί έχει τον ίδιο οπλισµό µε αυτές.

ΚΕΦΑΛΑΙΟ 14ο ΕΛΑΣΣΟΝΕΣ ΚΛΙΜΑΚΕΣ. Η ελάσσονα κλίµακα ανήκει στην ίδια οικογένεια µε τις µείζονες γιατί έχει τον ίδιο οπλισµό µε αυτές. 22 ΚΕΦΑΛΑΙΟ 14ο ΕΛΑΣΣΟΝΕΣ ΚΛΙΜΑΚΕΣ Η ελάσσονα κλίµακα ανήκει στην ίδια οικογένεια µε τις µείζονες γιατί έχει τον ίδιο οπλισµό µε αυτές. Για να βρούµε µια ελάσσονα κλίµακα κάνουµε τα εξής: (απαιτείται καλή

Διαβάστε περισσότερα

ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ Α. ΜΟΥΣΙΚΕΣ ΚΛΙΜΑΚΕΣ-ΕΥΡΩΠΑΪΚΕΣ ΚΛΙΜΑΚΕΣ- ΜΕΙΖΟΝΑ ΚΛΙΜΑΚΑ ΤΟΥ ΝΤΟ ΑΣΚΗΣΗ ΠΡΩΤΗ Ονομ/πώνυμο:

ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ Α. ΜΟΥΣΙΚΕΣ ΚΛΙΜΑΚΕΣ-ΕΥΡΩΠΑΪΚΕΣ ΚΛΙΜΑΚΕΣ- ΜΕΙΖΟΝΑ ΚΛΙΜΑΚΑ ΤΟΥ ΝΤΟ ΑΣΚΗΣΗ ΠΡΩΤΗ Ονομ/πώνυμο: 1 ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ Α. ΜΟΥΣΙΚΕΣ ΚΛΙΜΑΚΕΣ-ΕΥΡΩΠΑΪΚΕΣ ΚΛΙΜΑΚΕΣ- ΜΕΙΖΟΝΑ ΚΛΙΜΑΚΑ ΤΟΥ ΝΤΟ ΑΣΚΗΣΗ ΠΡΩΤΗ Ονομ/πώνυμο: 1) Να διαβάσετε προσεκτικά και τις δύο σελίδες της θεωρίας. 2) Να μάθετε απέξω τα εξής: α) Την

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9ο. Ενώ µεταξύ του ΜΙ και του ΦΑ. Η διαφορά αυτή υπάρχει γιατί η απόσταση µερικών φθόγγων από άλλων είναι διαφορετική.

ΚΕΦΑΛΑΙΟ 9ο. Ενώ µεταξύ του ΜΙ και του ΦΑ. Η διαφορά αυτή υπάρχει γιατί η απόσταση µερικών φθόγγων από άλλων είναι διαφορετική. ΚΕΦΑΛΑΙΟ 9ο 7 α) τόνοι - ηµιτόνια Αν παρατηρήσουµε τις νότες στο πιάνο θα προσέξουµε ότι µεταξύ µερικών ΙΑ ΟΧΙΚΩΝ (συνεχόµενων) φθόγγων έχουµε µαύρα πλήκτρα και άλλων όχι. λ.χ. Μεταξύ του ΝΤΟ και του ΡΕ,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 17ο. κλειδιά

ΚΕΦΑΛΑΙΟ 17ο. κλειδιά ΚΕΦΑΛΑΙΟ 17ο 5 κλειδιά Όπως είπαµε στο κεφάλαιο 1ο υπάρχουν τρία κλειδιά σε επτά διαφορετικές θέσεις. Εδώ θα ασχοληθούµε µε τα άλλα δύο κλειδιά και τις άλλες έξη διαφορετικές θέσεις ς. 1) ΚΛΕΙ Ι ΤΟΥ ΦΑ

Διαβάστε περισσότερα

[ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ]

[ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ] 2013 Μουσικό Γυμνάσιο / Λύκειο Ιλίου Ευαγγελία Λουκάκη [ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ] Σημειώσεις για τις ανάγκες διδασκαλίας του μαθήματος της Αρμονίας. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ Στην Αρµονία συναντώνται συνηχήσεις-συγχορδίες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 12ο. œ œ œ œ œ œ œ œ ΙΑΣΤΗΜΑΤΑ. ιάστηµα λέγεται η απόσταση µεταξύ δύο φθόγγων. Η 1η νότα λέγεται ΒΑΣΗ και η 2η ΚΟΡΥΦΗ.

ΚΕΦΑΛΑΙΟ 12ο. œ œ œ œ œ œ œ œ ΙΑΣΤΗΜΑΤΑ. ιάστηµα λέγεται η απόσταση µεταξύ δύο φθόγγων. Η 1η νότα λέγεται ΒΑΣΗ και η 2η ΚΟΡΥΦΗ. ΚΕΦΑΛΑΙΟ 12ο 1 ΙΑΣΤΗΜΑΤΑ ιάστηµα λέγεται η απόσταση µεταξύ δύο φθόγγων Η 1η νότα λέγεται ΒΑΣΗ και η 2η ΚΟΡΥΦΗ διάστηµα 1ης 1 1 διάστηµα 2ας 1 2 διάστηµα 3ης 1 3 1 2 3 διάστηµα 4ης 1 4 1 2 3 4 διάστηµα

Διαβάστε περισσότερα

Τετράδια κιθάρας Θεωρία της μουσικής. Τετράδια κιθάρας. Μείζονες κλίμακες (με υφέσεις και διέσεις) Επιμέλεια: Ευγένιος Αστέρις

Τετράδια κιθάρας Θεωρία της μουσικής. Τετράδια κιθάρας. Μείζονες κλίμακες (με υφέσεις και διέσεις) Επιμέλεια: Ευγένιος Αστέρις Τετράδια κιθάρας Μείζονες κλίμακες (με υφέσεις και διέσεις) Επιμέλεια: Ευγένιος Αστέρις Επικοινωνία : evgeniosasteris@pathfinder.gr 1 Περιεχόμενα Κλίμακες... 3 Μείζονες κλίμακες... 3 Η κλίμακα Ντο μείζονα...

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ 1 Οι ήχοι που χρησιμοποιούμε στη μουσική λέγονται νότες ή φθόγγοι και έχουν επτά ονόματα : ντο - ρε - μι - φα - σολ - λα - σι. Η σειρά αυτή επαναλαμβάνεται πολλές φορές

Διαβάστε περισσότερα

Οπλισμοί μείζονων κλιμάκων

Οπλισμοί μείζονων κλιμάκων Οπλισμοί μείζονων κλιμάκων Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μουσική Δημιουργός: ΠΟΛΛΙΣ ΑΔΑΜΑΝΤΟΠΟΥΛΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση

Διαβάστε περισσότερα

ΜΕΡΟΣ Α. Την «Μουσική Αρµονία» θα µπορούσαµε να την δούµε κ έτσι?

ΜΕΡΟΣ Α. Την «Μουσική Αρµονία» θα µπορούσαµε να την δούµε κ έτσι? 1 Την «Μουσική Αρµονία» θα µπορούσαµε να την δούµε κ έτσι? Σήµερα η βιβλιογραφία της Αρµονίας είναι πλουσιότατη, σε πολλά επίπεδα σπουδής και σε πλήθος γλωσσών. Έτσι δεν θα πρότεινα µία από τα ίδια που

Διαβάστε περισσότερα

Κουρδίσµατα (περίληψη)

Κουρδίσµατα (περίληψη) Κουρδίσµατα (περίληψη) Ι. Αρµονική στήλη Κάθε νότα που παράγεται µε φυσικά µέσα είναι ένα πολύ σύνθετο φαινόµενο. Ως προς το τονικό ύψος, συνιστώσες του ("αρµονικοί") είναι η συχνότητα που ακούµε ("θεµελιώδης")

Διαβάστε περισσότερα

Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο

Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο) Φροντιστήριο 17/03/2010 (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/2010 1 / 27

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΜΟΥΣΙΚΗΣ ΓΡΑΦΗΣ

ΑΣΚΗΣΕΙΣ ΜΟΥΣΙΚΗΣ ΓΡΑΦΗΣ Απόστολος Σιόντας ΑΣΚΗΣΕΙΣ ΜΟΥΣΙΚΗΣ ΓΡΑΦΗΣ Η τονικότητα ΝΤΟ µείζων Πειραµατικό Μουσικό Γυµνάσιο Παλλήνης Παλλήνη 2010 Πρόλογος Καθώς θεωρούµε ότι είναι απαραίτητη η γνώση του περιεχοµένου του µουσικού

Διαβάστε περισσότερα

1 η ΤΑΞΗ. Κ Ε Φ Α Λ Α Ι Ο 1 ο. 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες.

1 η ΤΑΞΗ. Κ Ε Φ Α Λ Α Ι Ο 1 ο. 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες. Θ Ε Ω Ρ Ι Α Α Ρ Μ Ο Ν Ι Α Σ 1 η ΤΑΞΗ Κ Ε Φ Α Λ Α Ι Ο 1 ο 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες. Μία σαν ΒΑΣΗ, µία σαν ΜΕΣΗ και µία σαν ΚΟΡΥΦΗ Έχουµε τρία

Διαβάστε περισσότερα

Απευθείας Εναρμόνιση - Πώς να χρησιμοποιήσετε το παρόν βιβλίο

Απευθείας Εναρμόνιση - Πώς να χρησιμοποιήσετε το παρόν βιβλίο Απευθείας Εναρμόνιση - Πώς να χρησιμοποιήσετε το παρόν βιβλίο Γενικές Πληροφορίες 1. Τι είναι το μάθημα της Απευθείας Εναρμόνισης στο πιάνο: Αφορά την απευθείας εκτέλεση στο πιάνο, μιας δοσμένης μελωδικής

Διαβάστε περισσότερα

1. Κύριες συγχορδίες Ι,ΙV,V

1. Κύριες συγχορδίες Ι,ΙV,V 1. Κύριες συγχορδίες Ι,ΙV,V Χρησιμοποιούνται σε ευθεία κατάσταση ( 5 3), α αναστροφή ( 6 ) και β αναστροφή ( 6 4). Διπλασιάζουμε την 1 η και την 5 η. Ποτέ την 3 η. (εκτός αν έρχεται από αντίθετη κίνηση,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 19ο. œ œ bœ. œ œ œ. œ œ œ œ œ œ œ œ. œ nœ. & œ. # œ œ # œ œ # œ œ. υπάρχουν όπως είπαµε διαστήµατα:

ΚΕΦΑΛΑΙΟ 19ο. œ œ bœ. œ œ œ. œ œ œ œ œ œ œ œ. œ nœ. & œ. # œ œ # œ œ # œ œ. υπάρχουν όπως είπαµε διαστήµατα: 4 ΚΕΦΑΛΑΙΟ 19ο υπάρχουν όπως είπαµε διαστήµατα: ΧΡΩΜΑΤΙΚΑ ΙΑΤΟΝΙΚΑ ΜΙΚΡΑ ΜΕΓΑΛΑ ΚΑΘΑΡΑ ΕΛΑΤΤΩΜΕΝΑ ΙΣ ΕΛΑΤΤΩΜΕΝΑ ΑΥΞΗΜΕΝΑ ΙΣ ΑΥΞΗΜΕΝΑ ΜΕΛΩ ΙΚΑ ΑΡΜΟΝΙΚΑ ΧΡΩΜΑΤΙΚΑ δηµιουργούνται από ίδιες νότες. # # ΙΑΤΟΝΙΚΑ

Διαβάστε περισσότερα

ΑΝΟΙΚΤΗ ΘΕΣΗ συγχορδίας έχουµε όταν η απόσταση των φωνών µεταξύ ΤΕΝΟΡΟΥ και ΣΟΠΡΑΝΟ είναι

ΑΝΟΙΚΤΗ ΘΕΣΗ συγχορδίας έχουµε όταν η απόσταση των φωνών µεταξύ ΤΕΝΟΡΟΥ και ΣΟΠΡΑΝΟ είναι Θ Ε Ω Ρ Ι Α Α Ρ Μ Ο Ν Ι Α Σ Κ Ε Φ Α Λ Α Ι Ο 1 ο 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες. Μία σαν ΒΑΣΗ, µία σαν ΜΕΣΗ και µία σαν ΚΟΡΥΦΗ Έχουµε τρία είδη συγχορδιών

Διαβάστε περισσότερα

Θεωρία Μουσικής. Β εξάμηνο Θεωρία. Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός. Βιογραφικό

Θεωρία Μουσικής. Β εξάμηνο Θεωρία. Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός. Βιογραφικό Θεωρία Μουσικής Β εξάμηνο Θεωρία Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός 1 Θεωρία Μουσικής (Θ) - ΜΙΧΑ Παρασκευή 1 Μουσικολόγος, Μουσικοπαιδαγωγός Βιογραφικό Πτυχιούχος μουσικολογίας και κάτοχος

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 4 ΙΟΥΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 4 ΙΟΥΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 4 ΙΟΥΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΛΛΗΝΩΝ ΕΞΩΤΕΡΙΚΟΥ ΣΑΒΒΑΤΟ 19 ΣΕΠΤΕΜΒΡΙΟΥ 2009 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 1 η ΙΟΥΛΙΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 1 η ΙΟΥΛΙΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 1 η ΙΟΥΛΙΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 27 ΙΟΥΝΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 27 ΙΟΥΝΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 27 ΙΟΥΝΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΟΚΤΩ (8) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ. Ορισμός της θεωρίας Θεωρία είναι το μάθημα που μας διδάσκει το γράψιμο και το διάβασμα της μουσικής.

ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ. Ορισμός της θεωρίας Θεωρία είναι το μάθημα που μας διδάσκει το γράψιμο και το διάβασμα της μουσικής. 1 1 ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ Ορισμός της Μουσικής. Η Μουσική είναι μια τέχνη, η οποία εκφράζει τις αρετές της μέσα από την πλοκή και τον συνδυασμό των ήχων. Τα εργαλεία τα οποία χρησιμοποιούμε για την παραγωγή των

Διαβάστε περισσότερα

Λ. βαν Μπετόβεν ( ) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση. Γενικοί Στόχοι:

Λ. βαν Μπετόβεν ( ) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση. Γενικοί Στόχοι: Λ. βαν Μπετόβεν (1770-1827) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση Γενικοί Στόχοι: Πέρασμα από τον Κλασικισμό στο Ρομαντισμό. Σύγκριση Προγραμματικής και Απόλυτης Μουσικής.

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 20 10 ΘΕΜΑΤΑ ΜΟΥΣΙΚΗΣ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:... Βαθμός:...

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 20 10 ΘΕΜΑΤΑ ΜΟΥΣΙΚΗΣ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:... Βαθμός:... ΛΥΚΕΙΟ ΑΡΧΙΕΠΙΣΚΟΠΟΥ ΜΑΚΑΡΙΟΥ Γ' ΔΑΣΟΥΠΟΛΗ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 Ημερομηνία: 25/05/2010 Χρόνος: 2.5 ώρες ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 20 10 ΘΕΜΑΤΑ ΜΟΥΣΙΚΗΣ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός

Διαβάστε περισσότερα

ΝΟΤΕΣ. Η απεικόνιση του ύψους στο χαρτί, γίνεται με τη βοήθεια : Πενταγράμμου Κλειδιών Σημείων αλλοίωσης. Θεωρία της μουσικής

ΝΟΤΕΣ. Η απεικόνιση του ύψους στο χαρτί, γίνεται με τη βοήθεια : Πενταγράμμου Κλειδιών Σημείων αλλοίωσης. Θεωρία της μουσικής Θεωρία της μουσικής Θεωρία της μουσικής είναι η μελέτη των δομών της κατασκευασμένης μουσικής Αναλύει τις βασικές παραμέτρους ή τα στοιχεία της μουσικής: ρυθμό, αρμονική λειτουργία, μελωδία, δομή, μορφή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο. φθόγοι - νότες Φθόγγος ή νότα ονοµάζεται ο ήχος που παράγει είτε η φωνή του ανθρώπου είτε ένα µουσικό όργανο. œ œ œ œ.

ΚΕΦΑΛΑΙΟ 4ο. φθόγοι - νότες Φθόγγος ή νότα ονοµάζεται ο ήχος που παράγει είτε η φωνή του ανθρώπου είτε ένα µουσικό όργανο. œ œ œ œ. ΚΕΦΑΛΑΙΟ ο 1 φθόγοι - νότες Φθόγγος ή νότα ονοµάζεται ο ήχος που παράγει είτε η φωνή του ανθρώπου είτε ένα µουσικό όργανο. Αυτόν τον φθόγγο τον χωρίζουµε σε µικρότερα κοµµάτια για να δώσουµε και την διάρκειά

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

Ιωσήφ Βαλέτ. Σημειώσεις Αρμονίας 2012-13. Οι ξένοι φθόγγοι. Ι. Βαλέτ, Σημειώσεις Αρμονίας 2012-13

Ιωσήφ Βαλέτ. Σημειώσεις Αρμονίας 2012-13. Οι ξένοι φθόγγοι. Ι. Βαλέτ, Σημειώσεις Αρμονίας 2012-13 1 2 Ιωσήφ Βαλέτ Σημειώσεις Αρμονίας 2012-13 Οι ξένοι φθόγγοι 3 4 4δμητη ή 5δμητη αρμονία (συνηχήσεις από διαδοχικές 4 ες ή 5 ες ) καθώς δεν ανήκει στο στυλ που εξετάζουμε. 1. Καθυστερήσεις 1.1 Καθυστερήσεις

Διαβάστε περισσότερα

δημήτρης συκιάς σημειώσεις θεωρητικών μουσικής δεσπόζουσα μετ ενάτης

δημήτρης συκιάς σημειώσεις θεωρητικών μουσικής δεσπόζουσα μετ ενάτης δημήτρης συκιάς σημειώσεις θεωρητικών μουσικής δεσπόζουσα μετ ενάτης 2014 2 σημειώσεις θεωρητικών μουσικής 12 δεσπόζουσα μετ ενάτης 12.1 Γενικά 1. H V9/7 είναι μία πεντάφθογγη συγχορδία επί της 5 ης (5)

Διαβάστε περισσότερα

ΡΟΜΟΙ. Η βασική νότα και η βασική συγχορδία είναι κάθε φορά η πρώτη, αυτή που εµφανίζεται µε έντονο γράµµα.

ΡΟΜΟΙ. Η βασική νότα και η βασική συγχορδία είναι κάθε φορά η πρώτη, αυτή που εµφανίζεται µε έντονο γράµµα. ΡΟΜΟΙ Όσοι έχουν κάνει µαθήµατα µουσικής σε κάποιο ωδείο, πολύ γρήγορα θα έχουν ακούσει για τις κλιµακες µατζόρε και µινόρε. Πάνω σε αυτές στηρίζεται ολόκληρο σχεδόν το οικοδόµηµα της κλασικής µουσικής

Διαβάστε περισσότερα

Α Ρ Μ Ο Ν Ι Α. Κ Ε Φ Α Λ Α Ι Ο 1ο

Α Ρ Μ Ο Ν Ι Α. Κ Ε Φ Α Λ Α Ι Ο 1ο Α Ρ Μ Ο Ν Α Κ Ε Φ Α Λ Α Ο 1ο 1ο ΣΧΗΜΑΤΣΜΟΣ ΣΥΓΧΟΡ ΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες. Μία σαν ΒΑΣΗ, µία σαν ΜΕΣΗ και µία σαν ΚΟΡΥΦΗ Έχουµε τρία είδη συγχορδιών : α) Ελαττωµένη

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΔΕΥΤΕΡΑ 20 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΔΕΥΤΕΡΑ 20 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΔΕΥΤΕΡΑ 20 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 26 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 26 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 26 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΟΚΤΩ (8) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

ΣΟΛΩΝ ΜΙΧΑΗΛΙ ΗΣ «Ελληνική Σουίτα» για βιολοντσέλο και πιάνο 2 ο µέρος-andantino

ΣΟΛΩΝ ΜΙΧΑΗΛΙ ΗΣ «Ελληνική Σουίτα» για βιολοντσέλο και πιάνο 2 ο µέρος-andantino 1 Ελένη Κυπριανού Καθηγήτρια Μουσικής ΣΟΛΩΝ ΜΙΧΑΗΛΙ ΗΣ «Ελληνική Σουίτα» για βιολοντσέλο και πιάνο 2 ο µέρος-andantino Γενικά για το έργο H «Ελληνική σουίτα» για βιολοντσέλο και πιάνο γράφτηκε το 1966.

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Ι ΑΚΤΙΚΗ ΤΗΣ ΜΟΥΣΙΚΗΣ Ι

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Ι ΑΚΤΙΚΗ ΤΗΣ ΜΟΥΣΙΚΗΣ Ι ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΝΗΠΙΑΓΩΓΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Ι ΑΚΤΙΚΗ ΤΗΣ ΜΟΥΣΙΚΗΣ Ι ΓΕΩΡΓΙΑ ΠΑΡΠΑΡΟΥΣΗ 1. ΜΕΤΡΑ ΕΙ Η ΜΕΤΡΩΝ απλά µέτρα: 2/4, 2/8, 3/4, 3/8 2/4 q q \ e e e e \ x x x x x x x x \ εµβατήριο 2/8

Διαβάστε περισσότερα

Εισαγωγή στη μουσική. Μουσικοκινητική Αγωγή. Α εξάμηνο Θεωρία 3. ΝΟΤΕΣ. 1. Μουσική 2. Μελωδία 3. Νότες 4. Ρυθμός

Εισαγωγή στη μουσική. Μουσικοκινητική Αγωγή. Α εξάμηνο Θεωρία 3. ΝΟΤΕΣ. 1. Μουσική 2. Μελωδία 3. Νότες 4. Ρυθμός Μουσικοκινητική Αγωγή Α εξάμηνο Θεωρία Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός 1 Μουσικοκινητική Αγωγή (Θ) ΜΙΧΑ Παρασκευή 1 Εισαγωγή στη μουσική 1. Μουσική 2. Μελωδία 3. Νότες 4. Ρυθμός 2 Μουσικοκινητική

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 24 ΙΟΥΝΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΠΑΡΑΛΙΜΝΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013

ΛΥΚΕΙΟ ΠΑΡΑΛΙΜΝΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΛΥΚΕΙΟ ΠΑΡΑΛΙΜΝΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΜΑΘΗΜΑ: Θέματα Μουσικής ΗΜΕΡΟΜΗΝΙΑ: 27/05/2013 ΤΑΞΗ: Β Κατεύθυνσης ΔΙΑΡΚΕΙΑ: 2:30 ΩΡΑ: 7:45 10:15 πμ Όνομα

Διαβάστε περισσότερα

ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9)

ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΛΛΗΝΩΝ ΕΞΩΤΕΡΙΚΟΥ ΣΑΒΒΑΤΟ 19 ΣΕΠΤΕΜΒΡΙΟΥ 2009 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 23 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΛΛΗΝΩΝ ΕΞΩΤΕΡΙΚΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΛΛΗΝΩΝ ΕΞΩΤΕΡΙΚΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΛΛΗΝΩΝ ΕΞΩΤΕΡΙΚΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ 18 Σπτμρίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο. εισαγωγή

ΚΕΦΑΛΑΙΟ 1ο. εισαγωγή ΚΕΦΑΛΑΙΟ 1ο 1 εισαγωγή ΗΧΟΣ είναι κάθε τι που ακούµε. Παράγεται από µία πηγή και λαµβάνεται από το αυτί µας. Για να φτάσει ο ήχος από την πηγή στο δέκτη, µεσολαβεί ένα µέσο. Ένα µέσο, µπορεί να είναι ο

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΕΤΑΡΤΗ 20 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΕΤΑΡΤΗ 20 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΕΤΑΡΤΗ 20 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ

Διαβάστε περισσότερα

Συνοπτική Ιστορία 1ο Μάθηµα. Η Ιστορία της Μουσικής στον Πρώιµο Μεσαίωνα

Συνοπτική Ιστορία 1ο Μάθηµα. Η Ιστορία της Μουσικής στον Πρώιµο Μεσαίωνα Συνοπτική Ιστορία 1ο Μάθηµα Η Ιστορία της Μουσικής στον Πρώιµο Μεσαίωνα Ως ξεκίνηµα της ξεχωριστής πορείας της δυτικοευρωπαϊκής µουσικής θεωρείται η δηµιουργία της Πολυφωνίας Τα πρώτα δείγµατα πολυφωνίας

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ 1. ΣΥΓΧΟΡ ΙΕΣ: (α) Εύρεση και ορθή σύνδεση συγχορδιών (10) (β) Ορθές νότες συγχορδιών ορθοί διπλασιασµοί ( 6) (γ) Αναγνώριση και χρήση δεσπόζουσας µε εβδόµη ( 2) (δ) Αναγνώριση

Διαβάστε περισσότερα

Εξέταση Πρώτου Τετραδίου

Εξέταση Πρώτου Τετραδίου Εξέταση Πρώτου Τετραδίου Φύλλο αξιολόγησης Μέρος Ά: Θεωρία Ερώτηση Βαθμοί 1 2 3 4 5 6 7 8 9 10 11 12 Σύνολο βαθμών Μέρος Β: Πρακτική Τραγούδι Βαθμοί 1 2 3 4 Σύνολο βαθμών 1 Μέρος Ά: Θεωρία (Σύνολο βαθμών

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΜΟΝΟ ΓΙΑ ΠΡΟΣΒΑΣΗ. ιάρκεια εξέτασης: πέντε (5) ώρες

ΕΞΕΤΑΣΕΙΣ ΜΟΝΟ ΓΙΑ ΠΡΟΣΒΑΣΗ. ιάρκεια εξέτασης: πέντε (5) ώρες ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΜΑΘΗΜΑ: ΥΠΑΓΟΡΕΥΣΗ ΜΟΥΣΙΚΟΥ ΚΕΙΜΕΝΟΥ - ΑΡΜΟΝΙΑ ΕΞΕΤΑΣΕΙΣ ΜΟΝΟ ΓΙΑ ΠΡΟΣΒΑΣΗ ιάρκεια εξέτασης: πέντε (5) ώρες (Α) ΑΡΜΟΝΙΑ ιάρκεια εξέτασης: Τρεις (3) ώρες και τριάντα (30) λεπτά ίνονται στους

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΕΣ ΠΟΣΟΤΗΤΟΣ. Κεντήµατα ανάβαση 1 φωνής διάρκεια 1 χρόνου. Κέντηµα ανάβαση 2 φωνών διάρκεια 1 χρόνου πνεύµα

ΧΑΡΑΚΤΗΡΕΣ ΠΟΣΟΤΗΤΟΣ. Κεντήµατα ανάβαση 1 φωνής διάρκεια 1 χρόνου. Κέντηµα ανάβαση 2 φωνών διάρκεια 1 χρόνου πνεύµα ΧΑΡΑΚΤΗΡΕΣ ΠΟΣΟΤΗΤΟΣ Ίσον επανάληψη φωνής διάρκεια 1 χρόνου... Όλίγον ανάβαση 1 φωνής διάρκεια 1 χρόνου Κεντήµατα ανάβαση 1 φωνής διάρκεια 1 χρόνου Πεταστή ανάβαση 1 φωνής διάρκεια 1 χρόνου Κέντηµα ανάβαση

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

ΠΑΡΑΣΚΕΥΗ 19 ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΠΑΡΑΣΚΕΥΗ 19 ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΛΛΗΝΩΝ ΕΞΩΤΕΡΙΚΟΥ ΠΑΡΑΣΚΕΥΗ 19 ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΟΚΤΩ (8) ΟΜΑΔΑ

Διαβάστε περισσότερα

Μουσική Πληροφορική. Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015

Μουσική Πληροφορική. Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015 Μουσική Πληροφορική Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015 Άδεια Χρήσης 2 Άδεια Χρήσης 3 Άδεια Χρήσης 4 Ήχος Κλίμακες Β & Γ Δ. Πολίτης 2 ο Μάθημα Περιεχόμενα Μέρος Α : Ανατομία και φυσιολογία του αυτιού

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 26 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 26 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 26 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ Θα ακούσετε για

Διαβάστε περισσότερα

ΑΝΑΛΤΣΙΚΟ ΤΠΟΜΝΗΜΑ ΤΜΒΟΛΙΜΩΝ ΤΓΧΟΡΔΙΩΝ

ΑΝΑΛΤΣΙΚΟ ΤΠΟΜΝΗΜΑ ΤΜΒΟΛΙΜΩΝ ΤΓΧΟΡΔΙΩΝ ΑΝΑΛΤΣΙΚΟ ΤΠΟΜΝΗΜΑ ΤΜΒΟΛΙΜΩΝ ΤΓΧΟΡΔΙΩΝ Σρίφωνεσ ςυγχορδίεσ ςε ευκεία κατάςταςθ I ii τονικι επιτονικι / ςχετικι τθσ υποδεςπόηουςασ i ii o τονικι επιτονικι iii μζςθ / ςχετικι τθσ δεςπόηουςασ ΙΙΙ ΙΙΙ + μζςθ

Διαβάστε περισσότερα

Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο

Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Εισαγωγή στη Θεωρία Μουσικής (Μέρος 1ο) Φροντιστήριο 03/03/2010 (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 1ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 03/03/2010 1 / 32

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 28 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 28 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 28 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ Θα ακούσετε τον φθόγγο-αφετηρία και το μελωδικό

Διαβάστε περισσότερα

Γραµµατικές για Κανονικές Γλώσσες

Γραµµατικές για Κανονικές Γλώσσες Κανονικές Γραµµατικές Γραµµατικές για Κανονικές Γλώσσες Ταξινόµηση Γραµµατικών εξιά Παραγωγικές Γραµµατικές εξιά Παραγωγικές Γραµµατικές και NFA Αριστερά Παραγωγικές Γραµµατικές Κανονικές Γραµµατικές Γραµµατικές

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 29 ΙΟΥΝΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 29 ΙΟΥΝΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 29 ΙΟΥΝΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΟΚΤΩ (8) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

Πρόγραµµα Επιµόρφωσης Επιµορφωτών Μέσης Εκπαίδευσης σε θέµατα Πληροφορικής - Π5 Φθινόπωρο 2008. Διδακτικό Σενάριο για Μαθητές

Πρόγραµµα Επιµόρφωσης Επιµορφωτών Μέσης Εκπαίδευσης σε θέµατα Πληροφορικής - Π5 Φθινόπωρο 2008. Διδακτικό Σενάριο για Μαθητές Πρόγραµµα Επιµόρφωσης Επιµορφωτών Μέσης Εκπαίδευσης σε θέµατα Πληροφορικής - Π5 Φθινόπωρο 2008 Διδακτικό Σενάριο για Μαθητές Ενότητα: Ιµπρεσιονισµός Claude Debussy: Πρελούδιο για Πιάνο αρ. 2 «Voiles»,

Διαβάστε περισσότερα

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους. Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει

Διαβάστε περισσότερα

(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε)

(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε) 9. Τα τρίγωνα και έχουν κοινή γωνία, άρα: () () A E AB A E A (1) Όµοια τα τρίγωνα και, άρα: () () A E AB A A () E Όµως από το θεώρηµα του Θαλή: A A () ( // ) () () πό (1), (), () έχουµε. () () Άρα () ()

Διαβάστε περισσότερα

Τρόποι της Ελληνικής Παραδοσιακής Μουσικής

Τρόποι της Ελληνικής Παραδοσιακής Μουσικής Τρόποι της Ελληνικής Παραδοσιακής Μουσικής Δημήτρης Πυργιώτης www.music-theory.gr Εισαγωγή Η συνοπτική περιγραφή των τρόπων της ελληνικής παραδοσιακής μουσικής εξακολουθεί να είναι μια θεωρητική πρόκληση.

Διαβάστε περισσότερα

Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΜΟΥΣΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΜΗΜΑ ΛΑΪΚΗΣ & ΠΑΡΑΔΟΣΙΑΚΗΣ ΜΟΥΣΙΚΗΣ Ο ΛΑΪΚΟΣ ΔΡΟΜΟΣ ΠΕΙΡΑΙΩΤΙΚΟΣ ΤΡΟΠΙΚΗ ΑΝΑΛΥΣΗ.

Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΜΟΥΣΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΜΗΜΑ ΛΑΪΚΗΣ & ΠΑΡΑΔΟΣΙΑΚΗΣ ΜΟΥΣΙΚΗΣ Ο ΛΑΪΚΟΣ ΔΡΟΜΟΣ ΠΕΙΡΑΙΩΤΙΚΟΣ ΤΡΟΠΙΚΗ ΑΝΑΛΥΣΗ. Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΜΟΥΣΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΜΗΜΑ ΛΑΪΚΗΣ & ΠΑΡΑΔΟΣΙΑΚΗΣ ΜΟΥΣΙΚΗΣ Ο ΛΑΪΚΟΣ ΔΡΟΜΟΣ ΠΕΙΡΑΙΩΤΙΚΟΣ ΤΡΟΠΙΚΗ ΑΝΑΛΥΣΗ Πτυχιακή εργασία ΚΟΛΩΝΗΣ ΓΙΩΡΓΟΣ ΑΦΜ 463 Επόπτης καθηγητής: ΣΚΟΥΛΙΟΣ ΜΑΡΚΟΣ ΑΡΤΑ

Διαβάστε περισσότερα

Claude Debussy Prelude a l apres-midi d un faune. Πρελούδιο στο αποµεσήµερο ενός Φαύνου

Claude Debussy Prelude a l apres-midi d un faune. Πρελούδιο στο αποµεσήµερο ενός Φαύνου Claude Debussy Prelude a l apres-midi d un faune Κλωντ Ντεµπυσύ Πρελούδιο στο αποµεσήµερο ενός Φαύνου ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Χρονολογία: 1892-1894 Είδος: Συµφωνικό ποίηµα Πρελούδιο: Ένα έργο το οποίο προηγείται

Διαβάστε περισσότερα

α) να βρείτε το άθροισµα των τεσσάρων πρώτων όρων της S 4 και β) το άθροισµα των άπειρων όρων της.

α) να βρείτε το άθροισµα των τεσσάρων πρώτων όρων της S 4 και β) το άθροισµα των άπειρων όρων της. Ερωτήσεις ανάπτυξης 1. * Να σχηµατίσετε τις γεωµετρικές προόδους µε: α) α 1 = 5 και λ = 3 2 1 β) α 1 = και λ = 3 1 γ) α 1 = - 20 και λ = 2 2. * Ποιον αριθµό πρέπει να προσθέσουµε στους αριθµούς 2, 16,

Διαβάστε περισσότερα

1.i) 1.ii) v 2. v 1 = (2) (1) + ( 2) ( 1) + (-2) (2) + (0) (-4) v 3. Βρίσκουµε πρώτα µία ορθογώνια βάση: u 1. . u 1 u. u 2

1.i) 1.ii) v 2. v 1 = (2) (1) + ( 2) ( 1) + (-2) (2) + (0) (-4) v 3. Βρίσκουµε πρώτα µία ορθογώνια βάση: u 1. . u 1 u. u 2 http://elearn.maths.gr/, maths@maths.gr, Τηλ: 979 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 7-8: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΑ ΚΛΙΜΑΚΑ ΜΙΑ ΑΡΙΘΜΗΤΙΚΗ ΕΚΦΡΑΣΗ ΤΗΣ ΑΡΜΟΝΙΑΣ

ΠΥΘΑΓΟΡΕΙΑ ΚΛΙΜΑΚΑ ΜΙΑ ΑΡΙΘΜΗΤΙΚΗ ΕΚΦΡΑΣΗ ΤΗΣ ΑΡΜΟΝΙΑΣ ΠΥΘΑΓΟΡΕΙΑ ΚΛΙΜΑΚΑ ΜΙΑ ΑΡΙΘΜΗΤΙΚΗ ΕΚΦΡΑΣΗ ΤΗΣ ΑΡΜΟΝΙΑΣ Νίκος Α. Φωτιάδης ρ. Μαθηµατικών Επιµορφωτής Β επιπέδου κλάδου ΠΕ 0 Η αίσθηση της ακοής δηµιουργείται στον άνθρωπο όταν διακυµάνσεις του αέρα διεγείρουν

Διαβάστε περισσότερα

Κουιντέτο Πιάνου Η Πέστροφα του Φραντζ Σούμπερτ, 4η κίνηση: Μία αναλυτική προσέγγιση, Δρ Σ. Κοτσώνη-Brown

Κουιντέτο Πιάνου Η Πέστροφα του Φραντζ Σούμπερτ, 4η κίνηση: Μία αναλυτική προσέγγιση, Δρ Σ. Κοτσώνη-Brown Κουιντέτο Πιάνου Η Πέστροφα του Φραντζ Σούμπερτ, 4η κίνηση: Μία αναλυτική προσέγγιση, Δρ Σ. Κοτσώνη-Brown Ιστορικό Υπόβαθρο: Κατά τη ρομαντική περίοδο, το ληντ (Lied) ήταν ένα από τα πιο δημοφιλή γένη

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ασκηση 1. (i Υποθέτοντας ότι επιτρέπονται επαναλήψεις

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΙΚΕΣ - Α ΠΡΟΣΗΜΟ ΠΟΛΥΩΝΥΜΟΥ Μέχρι τώρα ξέρουµε να βρίσκουµε το πρόσηµο ενός πολυωνύµου βαθµού ή δεύτερου βαθµού Για να βρούµε το πρόσηµο ενός πολυωνύµου f πρώτου f βαθµού µεγαλύτερου

Διαβάστε περισσότερα

Άσπα Τσαούση, ρ. Κοινωνιολογίας, Επίκ. Καθηγήτρια ALBA

Άσπα Τσαούση, ρ. Κοινωνιολογίας, Επίκ. Καθηγήτρια ALBA Επιστηµονική Ευθύνη Συγγραφή Άσπα Τσαούση, ρ. Κοινωνιολογίας, Επίκ. Καθηγήτρια ALBA Στρόφαλης Μάριος, Νικήτας Αντώνης, Χατζηνικολάου Χρήστος, Λαµπροπούλου Ουρανία, Λαµπροπούλου Σοφία, Ψαρρός Αποστόλης,

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 3ο : Πρόοδοι)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 3ο : Πρόοδοι) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 3ο : Πρόοδοι) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής ή τροποποίησης

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ Έστω fµια συνάρτηση µε πεδίο ορισµού το Α. Το σύνολο των τιµών της είναι f( A) { R = υπάρχει (τουλάχιστον) ένα A : f () = }. Ο προσδιορισµός του συνόλου τιµών f( A) της

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

Μαθηματικά. Β'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Β'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Β'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της B Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν βάση των µαθηµατικών του

Διαβάστε περισσότερα

ΚΑΘΗΜΕΡΙΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

ΚΑΘΗΜΕΡΙΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΚΑΘΗΜΕΡΙΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΕΝΟΤΗΤΑ: Μελωδία Ντο Μείζων (2) ΣΧΟΛΕΙΟ/ΤΑΞΗ: ΑΡ. ΜΑΘΗΤΩΝ: ΗΜΕΡΟΜΗΝΙΑ: ΠΕΡΙΟΔΟΣ: ΣΤΟΧΟΙ και ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ: Οι μαθητές να: ο ΑΚΡΟΑΣΗΣ: Επίπεδο 1 Επίπεδο 2 Διακρίνουν τη Ακούσουν

Διαβάστε περισσότερα

Άσκηση 1. i) α) ============================================================== α > 0. Πρέπει κατ αρχήν να ορίζεται ο λογάριθµος, δηλ.

Άσκηση 1. i) α) ============================================================== α > 0. Πρέπει κατ αρχήν να ορίζεται ο λογάριθµος, δηλ. http://elearn.maths.gr/, maths@maths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις 4ης Γραπτής Εργασίας ΠΛΗ 007-008: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Μουσικοθεωρητικό σύστημα - Αρμονική

Μουσικοθεωρητικό σύστημα - Αρμονική Μουσικοθεωρητικό σύστημα - Αρμονική Κλεονίδης, Εισαγωγή Αρμονική. Αρμονική εστίν επιστήμη θεωρητική και πρακτική. μέρη δε αυτής επτά. Περί φθόγγων Περί διαστημάτων Περί γενών Περί συστήματος Περί τόνου

Διαβάστε περισσότερα

Οδηγίες για την κατασκευή του αρχείου «Ταυτότητα (α+β) 2» 1. Αποκρύπτουµε τους άξονες και το παράθυρο άλγεβρας: Παράθυρο προβολή

Οδηγίες για την κατασκευή του αρχείου «Ταυτότητα (α+β) 2» 1. Αποκρύπτουµε τους άξονες και το παράθυρο άλγεβρας: Παράθυρο προβολή Οδηγίες για την κατασκευή του αρχείου «Ταυτότητα (α+β) 2» 1. Αποκρύπτουµε τους άξονες και το παράθυρο άλγεβρας: Παράθυρο προβολή απο-επιλέγουµε άξονες και άλγεβρα 2. Από το εργαλείο κατασκευής πολυγώνων

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 5ο κεφάλαιο: Πρόοδοι ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 014 Περιεχόµενα 1 ΠΡΟΟ

Διαβάστε περισσότερα

ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ Επιστήµη και Τεχνολογία των Υπολογιστών Α.Μ.: 403. Πρώτη Οµάδα Ασκήσεων

ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ Επιστήµη και Τεχνολογία των Υπολογιστών Α.Μ.: 403. Πρώτη Οµάδα Ασκήσεων ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΘΕΜΕΛΙΩΣΕΩΝ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ LIBATI@CEIDUPATRASGR Επιστήµη και Τεχνολογία των Υπολογιστών ΑΜ: Πρώτη Οµάδα Ασκήσεων 8// Να βρεθούν οι OGF για καθεµία από τις

Διαβάστε περισσότερα

σημειώσεις αντίστιξης

σημειώσεις αντίστιξης δημήτρης συκιάς σημειώσεις αντίστιξης J.S. Bach. Ανάλυση της Invention I, BWV 772 3euk1L4 2003 / 20012 A c c I Inventio I C major, BWV 772 m m Ó V Œ 3 5 # # M # m # # 7 B m j Œ # j Œ # # V V/V 9 J Œ Œ

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 234 Κεφάλαιο 4ο: ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Απαντήσεις στις ερωτήσεις «Σωστό - Λάθος» 1. Λ 17. Σ 32. Σ 47. Σ 62. Σ 2. Σ 18. Σ 33. Λ 48. Λ 63. Σ 3. Λ 19. Λ 34. Σ 49. Σ 64. Λ 4.

Διαβάστε περισσότερα

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ 1 4.4 Η ΠΥΡΜΙ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΗΣ ΘΕΩΡΙ 1. Πυραµίδα Ονοµάζεται ένα στερεό του οποίου µία έδρα είναι ένα οποιοδήποτε πολύγωνο και όλες οι άλλες έδρες του είναι τρίγωνα µε κοινή κορυφή. ύο πυραµίδες φαίνονται

Διαβάστε περισσότερα

Claude Debussy Prelude a l apres-midi d un faune. Πρελούδιο στο αποµεσήµερο ενός Φαύνου

Claude Debussy Prelude a l apres-midi d un faune. Πρελούδιο στο αποµεσήµερο ενός Φαύνου Claude Debussy Prelude a l apres-midi d un faune Κλωντ Ντεµπυσύ Πρελούδιο στο αποµεσήµερο ενός Φαύνου ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Χρονολογία: 1892-1894 Είδος: Συµφωνικό ποίηµα Πρελούδιο: Ένα έργο το οποίο προηγείται

Διαβάστε περισσότερα

2.1 (i) f(x)=x -3x+2 Η f(x) ορίζεται x R

2.1 (i) f(x)=x -3x+2 Η f(x) ορίζεται x R ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ ο. (i) f()= -3+ Η f() ορίζεται R Έχει Π.Ο ολόκληρο το R Για το Π.Τ της f() έχουµε : ος τρόπος 3 9 3 = -3+= - - += - - () Το Π.Τ. της f() θα είναι οι τιµές που παίρνει το R. Από

Διαβάστε περισσότερα

Σύνδεση αντιστατών παράλληλα

Σύνδεση αντιστατών παράλληλα Σύνεση αντιστατών παράλληλα Στοιχεία θεωρίας: κατά τη σύνεση αντιστατών σε σειρά η ολική αντίσταση που προκύπτει είναι ίση µε το άθροισµα των επιµέρους αντιστάσεων: 1/R ολ = 1/ + 1/ + 1/R 3 +.. Κάθε φορά

Διαβάστε περισσότερα

Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x

Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x . Ασκήσεις σχολικού βιβλίου σελίδας 56 57 A µάδας. Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) () = ii) () = ln( ) iii) () = e + iv) () = ( ), i)

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2008 ΜΟΥΣΙΚΗ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:... Βαθμός:... Ονοματεπώνυμο:... Τμήμα:... Αρ.:...

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2008 ΜΟΥΣΙΚΗ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:... Βαθμός:... Ονοματεπώνυμο:... Τμήμα:... Αρ.:... ΛΥΚΕΙΟ ΑΡΧΙΕΠΙΣΚΟΠΟΥ ΜΑΚΑΡΙΟΥ Γ' ΔΑΣΟΥΠΟΛΗ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2007-2008 Ημερομηνία: 03/06/2008 Χρόνος: 2.5 ώρες ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2008 ΜΟΥΣΙΚΗ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:...

Διαβάστε περισσότερα

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R . ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε συνάρτηση µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου συνόλου Β. Σηµείωση: Στο εξής θα είναι Α R και

Διαβάστε περισσότερα

2. ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ SYNTHESIS ΣΤΗΝ ΑΠΟ ΟΣΗ ΤΩΝ ΙΑΣΤΗΜΑΤΩΝ ΚΑΙ Η ΑΙΤΙΟΛΟΓΗΣΗ ΤΟΥ

2. ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ SYNTHESIS ΣΤΗΝ ΑΠΟ ΟΣΗ ΤΩΝ ΙΑΣΤΗΜΑΤΩΝ ΚΑΙ Η ΑΙΤΙΟΛΟΓΗΣΗ ΤΟΥ 2. ΤΟ ΠΛΕΟΝΕΚΤΗΜΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ SYNTHESIS ΣΤΗΝ ΑΠΟ ΟΣΗ ΤΩΝ ΙΑΣΤΗΜΑΤΩΝ ΚΑΙ Η ΑΙΤΙΟΛΟΓΗΣΗ ΤΟΥ Tο σύστηµα γραφής που χρησιµοποιεί ο χρήστης στο πρόγραµµα Synthesis προσφέρει αρκετές από τις δυνατότητες

Διαβάστε περισσότερα

ΦΟΡΜΑ ΡΙΤΟΡΝΕΛΟ ΚΑΙ ΑΡΜΟΝΙΚΗ ΜΑΚΡΟΔΟΜΗ ΣΤΑ ΚΟΝΤΣΕΡΤΑ ΤΟΥ ANTONIO VIVALDI

ΦΟΡΜΑ ΡΙΤΟΡΝΕΛΟ ΚΑΙ ΑΡΜΟΝΙΚΗ ΜΑΚΡΟΔΟΜΗ ΣΤΑ ΚΟΝΤΣΕΡΤΑ ΤΟΥ ANTONIO VIVALDI ΦΟΡΜΑ ΡΙΤΟΡΝΕΛΟ ΚΑΙ ΑΡΜΟΝΙΚΗ ΜΑΚΡΟΔΟΜΗ ΣΤΑ ΚΟΝΤΣΕΡΤΑ ΤΟΥ ANTONIO VIVALDI ΒΑΡΤΣΑΚΗΣ ΓΕΩΡΓΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Επιβλέπων καθηγητής Πέτρος Βούβαρης, λέκτορας Συνεπιβλέπων καθηγητής Άννα-Μαρία Ρεντζεπέρη,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΙΓΜΑΤΙΚΗ Ι ΑΣΚΑΛΙΑ «ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟ Ο ΤΩΝ ΟΡΙΖΟΥΣΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ» 1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΟΡΙΣΜΟΣ 1 : Γραµµική εξίσωση λέγεται κάθε

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1 Δεκαδικό και Δυαδικό Σύστηµα Δύο κυρίαρχα συστήµατα στο χώρο των υπολογιστών Δεκαδικό: Η βάση του συστήµατος

Διαβάστε περισσότερα

ενώ το «β» μέρος είναι ένα «Μοιρολόι», αργό ρυθμικά.

ενώ το «β» μέρος είναι ένα «Μοιρολόι», αργό ρυθμικά. Το δεύτερο μέρος «Β», αντίθετο σε χαρακτήρα από αυτό που προηγήθηκε, κρύβει, μέσα από το έντονο ρυθμικό και χρωματικό του στοιχείο, την αισιοδοξία και την ελπίδα του Κύπριου για ένα καλύτερο «αύριο» για

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΡΑΦΗΣ. Η συγχορδία ΝΤΟ µείζων. Ευθεία κατάσταση α αναστροφή β αναστροφή. Απόστολος Σιόντας

ΑΣΚΗΣΕΙΣ ΓΡΑΦΗΣ. Η συγχορδία ΝΤΟ µείζων. Ευθεία κατάσταση α αναστροφή β αναστροφή. Απόστολος Σιόντας ΑΣΚΗΣΕΙΣ ΓΡΑΦΗΣ Η συγχορδία ΝΤΟ µείζων Ευθεία κατάσταση α αναστροφή β αναστροφή Απόστολος Σιόντας Πειραµατικό Μουσικό Γυµνάσιο Παλλήνης Παλλήνη 2009 Πρόλογος Θεωρώντας απαραίτητη την γνώση του περιεχοµένου

Διαβάστε περισσότερα

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με 5. ΑΚΟΛΟΥΘΙΕΣ Γενικά ακολουθία πραγματικών αριθμών είναι μια αντιστοίχιση των φυσικών αριθμών,,,...,ν,... στους πραγματικούς αριθμούς. Ο αριθμός στον οποίο αντιστοιχεί ο καλείται πρώτος όρος της ακολουθίας

Διαβάστε περισσότερα