7. ΣΥΓΚΡΙΣΗ ΚΑΙ ΣΥΝ ΙΑΣΜΟΣ ΤΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "7. ΣΥΓΚΡΙΣΗ ΚΑΙ ΣΥΝ ΙΑΣΜΟΣ ΤΩΝ"

Transcript

1 7. ΣΥΓΚΡΙΣΗ ΚΑΙ ΣΥΝ ΙΑΣΜΟΣ ΤΩΝ ΙΑΦΟΡΩΝ ΜΕΘΟ ΩΝ ΕΙΓΜΑΤΟΛΗΨΙΑΣ 7.. ΣΥΓΚΡΙΣΗ ΤΩΝ ΒΑΣΙΚΩΝ ΣΤΡΑΤΗΓΙΚΩΝ Στα προηγούµενα κεφάλαια αναφέρθηκαν λεπτοµερώς τα πλεονεκτήµατα και µειονεκτήµατα των διαφόρων στρατηγικών δειγµατοληψίας. Μια όµως συγκριτική ανάλυση θα δώσει µια πιο χρήσιµη πληροφορία. Αυτό που συνήθως επιθυµούµε από έναν εκτιµητή είναι η όσο το δυνατό µεγαλύτερη ακρίβειά του κρατώντας φυσικά το κόστος της µελέτης σταθερό. Όπως είπαµε στο πρώτο κεφάλαιο ο σχεδιασµός της δειγµατοληψίας πρέπει να γίνεται µε τρόπο που να αποφεύγονται τα ακραία δείγµατα. Και ακραία είναι τα δείγµατα των οποίων τα χαρακτηριστικά απέχουν πολύ απ αυτά του πληθυσµού. Στο σχήµα 7. παρουσιάζεται η κατανοµή στοιχείων δείγµατος σε ένα πληθυσµό σύµφωνα µε τις διάφορες στρατηγικές δειγµατοληψίας. Για να είναι συγκρίσιµες οι µέθοδοι, το µέγεθος του δείγµατος είναι σταθερό (/9 του πληθυσµού). Από την πρώτη µατιά φαίνεται πως η στρωµατοποιηµένη και η συστηµατική δειγµατοληψία καλύπτουν καλύτερα τον πληθυσµό. Άρα οι δυο αυτές στρατηγικές µειώνουν το ρίσκο ακραίου δείγµατος. Θα πρέπει λοιπόν να τις προτιµούµε. Όµως το αποτέλεσµα της δειγµατοληψίας εξαρτάται και από τα βασικά χαρακτηριστικά του πληθυσµού και κυρίως τη διασπορά του. Όσο πιο ετερογενής είναι ο πληθυσµός τόσο πιο µεγάλο είναι το ρίσκο ακραίου δείγµατος. Φυσικά την ίδια διασπορά µπορούµε να την έχουµε µε διάφορους τρόπους. Μπορούµε δηλαδή να έχουµε δυο µεγάλες συναθροίσεις των στοιχείων του πληθυσµού ή πολυάριθµες µικρού µεγέθους. Η απόφαση λοιπόν για την επιλογή µιας στρατηγικής δεν είναι και τόσο απλή. Κ. Κουτσικόπουλος - ειγµατοληψία Πανεπιστήµιο Πατρών, 00

2 7. ΣΥΓΚΡΙΣΗ ΚΑΙ ΣΥΝ ΥΑΣΜΟΣ ΜΕΘΟ ΩΝ 74 Απλή τυχαία δειγµατοληψία Στρωµατοποιηµένη δειγµατοληψία ισταδιακή δειγµατοληψία Συστηµατική δειγµατοληψία ΣΧΗΜΑ 7. Παρουσίαση της κατανοµής δειγµατοληπτικών µονάδων σε ένα πληθυσµό σύµφωνα µε τις διάφορες στρατηγικές (το µέγεθος του δείγµατος παραµένει το ίδιο). Φυσικά εκτός από την ακρίβεια των εκτιµήσεων ο γενικότερος σκοπός της µελέτης καθώς και τα βασικά δοµικά χαρακτηριστικά του πληθυσµού στόχου είναι καθοριστικά στην επιλογή της µεθόδου. Για παράδειγµα αν από τη φύση του ο πληθυσµός είναι χωρισµένος σε υποσύνολα (οµάδες) τότε η επιλογή µιας στρατηγικής που να εκµεταλλεύεται αυτό το γεγονός είναι σχεδόν αναπόφευκτη. Μπορεί επίσης η ίδια η µελέτη να επιζητά στοιχεία ή χαρακτηρισµό των υποσυνόλων ή ακόµα να επιθυµεί να δώσει περισσότερο βάρος σε κάποιες οµάδες. Το δεύτερο στοιχείο που παίζει καθοριστικό ρόλο στην επιλογή της στρατηγικής είναι το κόστος δειγµατοληψίας. Η έννοια του κόστους είναι σύνθετη. Εκτός από το κόστος ανάλυσης του επιλεγµένου στοιχείου, που είναι το ίδιο για όλες τις µεθόδους (φθάσαµε δηλαδή στο άτοµο, τη βασική µονάδα, και µετράµε κάποιο χαρακτηριστικό του), έχουµε και το κόστος µετακίνησης, το κόστος δηµιουργίας της λίστας των στοιχείων του πληθυσµού (όταν αυτό είναι αναγκαίο), το κόστος αναγνώρισης των οµάδων του πληθυσµού (στρώσεις, πρωτογενείς µονάδες, σειρά εµφάνισης των στοιχείων), και τέλος το κόστος αναγνώρισης και προσέγγισης των προς µέτρηση στοιχείων. Για παράδειγµα, στην περίπτωση µελέτης της αφθονίας ενός θαλάσσιου οργανισµού σε µια περιοχή συχνά χρησιµοποιούµε µια στρωµατοποιηµένη δειγµατοληψία µε βάση τοπογραφικά και/ή υδρολογικά χαρακτηριστικά. Το συνολικό κόστος της µελέτης αποτελείται από:. το κόστος ορισµού των στρώσεων. Για τoν καθορισµό τους είναι αναγκαία στοιχεία που είτε υπάρχουν διαθέσιµα σε διάφορες υπηρεσίες και πρέπει να συγκεντρωθούν είτε πρέπει να συλλεχθούν στα πλαίσια της µελέτης. το κόστος µετακίνησης στα διάφορα σηµεία της δειγµατοληψίας (σταθµούς) που στη συγκεκριµένη περίπτωση απαιτεί πλωτό µέσο που συνήθως έχει και µεγάλο κόστος µετακίνησης και συντήρησης 3. το κόστος αναγνώρισης του προεπιλεγµένου για δειγµατοληψία σηµείου (γεωγραφικές ή άλλες συντεταγµένες που ανάλογα µε την επιθυµητή ακρίβεια απαιτούν εξειδικευµένο ηλεκτρονικό υλικό συνήθως υψηλού κόστους) 4. το κόστος συλλογής του δείγµατος (αλιευτικό εργαλείο ή εξειδικευµένη συσκευή για την συλλογή π.χ. βενθικών οργανισµών ή ιζήµατος συγκεκριµένου πάχους) 5. το κόστος επεξεργασίας και συντήρησης του δείγµατος (δοχεία απλά ή εξειδικευµένα, χηµικά συντηρητικά, χώρος αποθήκευσης) 6. το κόστος ανάλυσης του δείγµατος (αναγνώριση των επιθυµητών οργανισµών, µετρήσεις 7. το κόστος αρχειοθέτησης της πληροφορίας 8. και τέλος το κόστος ανάλυσης και παρουσίασης των δεδοµένων. Κ. Κουτσικόπουλος - ειγµατοληψία Πανεπιστήµιο Πατρών, 00

3 7. ΣΥΓΚΡΙΣΗ ΚΑΙ ΣΥΝ ΥΑΣΜΟΣ ΜΕΘΟ ΩΝ 75 Οι δαπάνες 4 έως 8 µπορούν να θεωρηθούν κοινές για όλες τις στρατηγικές και εξαρτώνται µόνο από το σκοπό της δειγµατοληψίας. Έτσι η επιλογή της µεθόδου θα επηρεάσει τις δαπάνες -3. Το τρίτο στοιχείο που παίζει συχνά καθοριστικό ρόλο για την επιλογή της στρατηγικής είναι κάποια πρακτικά προβλήµατα που συχνά είναι ανυπέρβλητα και επιβάλλουν σχεδόν µια από τις στρατηγικές. Για παράδειγµα ο ακριβής κατάλογος όλων των ατόµων ενός φυσικού πληθυσµού είναι αδύνατος και συνεπώς τεχνικές που βασίζονται στην επιλογή τυχαίων ατόµων από το σύνολο του πληθυσµού δεν µπορούν να εφαρµοσθούν. Άλλα τέτοια προβλήµατα είναι για παράδειγµα η ανικανότητα να αποφασισθεί µε σιγουριά σε πια στρώση ανήκει ένα στοιχείο του πληθυσµού (λόγω ασάφειας στον ορισµό των στρώσεων ή περιορισµένης ακρίβειας πληροφορία για την προέλευση του στοιχείου). Ας εξετάσουµε λοιπόν συγκριτικά τις διάφορες µεθόδους. Στις επόµενες παραγράφους θα θεωρήσουµε σαν αναφορά την απλή τυχαία δειγµατοληψία. Θα αναφερθούν επίσης τύποι και στοιχεία που πηγάζουν από τους βασικούς εκτιµητές που έχουν αναφερθεί στα προηγούµενα κεφάλαια αλλά που η απόδειξή τους ξεπερνά τα όρια αυτού του συγγράµµατος. Η ανάπτυξη αυτών των θεµάτων µπορεί να βρεθεί σε εξειδικευµένα άρθρα και βιβλία µε κύρια αναφορά αυτό του Cochran (977). Εάν ο πληθυσµός έχει χωρισθεί σε στρώσεις και το δείγµα κατανεµηθεί στις στρώσεις σύµφωνα µε αναλογική κατανοµή (proportional allocation, n h /n=n h /N ή n h =w h n) τότε η διασπορά της µέσης τιµής είναι Var(Y strat prop ) = n ( ) n N h= w S (επιλέγουµε την περίπτωση της αναλογικής κατανοµής γιατί οι τύποι απλουστεύονται). Η διασπορά της µέσης τιµής της απλής τυχαίας δειγµατοληψίας από τον ίδιο πληθυσµό και µε το ίδιο συνολικό µέγεθος δείγµατος ν µπορεί να γραφεί (για απλούστευση θεωρούµε τα /N h αµελητέα, τύποι γενικής εφαρµογής βρίσκονται στον Cochran 977, σελ. 99-0) n n Var( Y ) = ( w S w Y Y rand ) + ( ) ( ) n N h= n N h= Από τους δυο αυτούς τύπους φαίνεται ότι η διασπορά της µέσης τιµής της απλής τυχαίας δειγµατοληψίας είναι µεγαλύτερη της διασποράς της στρωµατοποιηµένης κατά n ( ) w ( Y Y) n N h= Κ. Κουτσικόπουλος - ειγµατοληψία Πανεπιστήµιο Πατρών, 00

4 7. ΣΥΓΚΡΙΣΗ ΚΑΙ ΣΥΝ ΥΑΣΜΟΣ ΜΕΘΟ ΩΝ 76 αυτή η ποσότητα είναι ]0. Η ποσότητα αυτή είναι ίση µε το 0 µόνο όταν οι µέσες τιµές όλων των στρώσεων είναι ίσες µε τη µέση τιµή του πληθυσµού (πράγµα σπάνιο στην πράξη). Από τους τύπους αυτούς φαίνεται καθαρά ότι όσο πιο οµοιογενείς είναι οι στρώσεις στο εσωτερικό τους και όσο πιο πολύ διαφέρουν µεταξύ τους (άρα και οι Ύ i θα διαφέρουν πολύ από τη µέση τιµή Ύ) τόσο µεγαλύτερο είναι το κέρδος της στρωµατοποίησης. Κατά συνέπεια η διασπορά της στρωµατοποιηµένης δειγµατοληψίας είναι κατά µέσο όρο µικρότερη από αυτή της απλής τυχαίας. Var(Ύ strat-prop )[Var(Ύ rand ) όταν οι ποσότητες /N h µπορούν να θεωρηθούν αµελητέες (κάτι που ισχύει συχνά στη µελέτη των φυσικών πληθυσµών).. Η σύγκριση ανάµεσα στην στρωµατοποιηµένη και την πολυσταδιακή δειγµατοληψία δεν είναι τόσο εύκολη. Για να έχουµε µια όσο το δυνατό συµβατότερη εικόνα θα θεωρήσουµε την περίπτωση της δισταδιακής δειγµατοληψίας (οι στρώσεις αντιστοιχούν στις πρωτογενείς µονάδες). Μια από τις βασικές δυσκολίες είναι και τρόπος µε τον οποίο µοιράζεται η δειγµατοληπτική προσπάθεια στα διάφορα επίπεδα. Το ίδιο µέγεθος τελικού δείγµατος µπορεί να επιτευχθεί παίρνοντας λίγες πρωτογενείς µονάδες και πολλές δευτερογενείς στο εσωτερικό τους ή το αντίθετο. Έτσι ένας πρακτικός κανόνας επιλογής είναι: όσο µικρότερες είναι οι διαφορές ανάµεσα στις µέσες τιµές (ύ h ) και τις διασπορές (s h ) των υποσυνόλων του πληθυσµού (το κάθε υποσύνολο δηλαδή αποτελεί ένα αντίγραφο µινιατούρα του πληθυσµού) τόσο πιο αποδοτική είναι η δισταδιακή δειγµατοληψία, αντίθετα, όπως ήδη αναφέρθηκε, όσο µειώνεται η διασπορά στο εσωτερικό των υποσυνόλων (intra-group variance) και αυξάνονται οι διαφορές µεταξύ τους (inter-group variance) τόσο ενδείκνυται η στρωµατοποίηση. Η συστηµατική δειγµατοληψία µπορεί να καλύπτει καλύτερα το δείγµα όπως φαίνεται και από το σχήµα 7. όµως είναι περισσότερο ακριβής από την απλή τυχαία δειγµατοληψία µόνο όταν η µέση διασπορά στο εσωτερικό των συστηµατικών δειγµάτων είναι µεγαλύτερη από τη διασπορά του πληθυσµού, δηλαδή όταν (Cochran, 977, σελ. 08) S = k n ( yij Y) k n i= j= < ( yij yi ) N k( n ) i= j= Κατά συνέπεια η συστηµατική δειγµατοληψία είναι πιο ακριβής από την απλή τυχαία όταν τα συστηµατικά δείγµατα είναι ιδιαίτερα ετερογενή. Αυτό είναι αυτονόητο γιατί αν υπάρχει µικρότερη ετερογένεια στο εσωτερικό του συστηµατικού δείγµατος σε σχέση µε αυτήν του πληθυσµού τότε τα στοιχεία του δείγµατος δεν κάνουν τίποτε άλλο από το να επαναλαµβάνουν λίγο-πολύ την ίδια πληροφορία και κατά συνέπεια να βρίσκονται µακριά από την Κ. Κουτσικόπουλος - ειγµατοληψία Πανεπιστήµιο Πατρών, 00

5 7. ΣΥΓΚΡΙΣΗ ΚΑΙ ΣΥΝ ΥΑΣΜΟΣ ΜΕΘΟ ΩΝ 77 πραγµατικότητα. Φυσικά όπως αναφέρθηκε στο αντίστοιχο κεφάλαιο όταν η διασπορά των συστηµατικών δειγµάτων είναι ιδιαίτερα µικρή η συστηµατική συλλογή πρέπει να αποφεύγεται ή να λαµβάνονται σοβαρές προφυλάξεις πριν την εφαρµογή της. Από όλα αυτά φαίνεται ότι δεν υπάρχει καθαρή ιεράρχηση των µεθόδων όσον αφορά στη διασπορά των εκτιµητών τους, αλλά η ακρίβειά τους εξαρτάται από τα χαρακτηριστικά του πληθυσµού. Οποιαδήποτε λοιπόν πληροφορία που σχετίζεται µε τη δοµή του πληθυσµού από παλαιότερες µελέτες, από συγγενείς πληθυσµούς, από τη βιβλιογραφία κ.λ.π. πρέπει να χρησιµοποιείται διότι θα επιτρέψει την επιλογή της σωστής στρατηγικής και συνεπώς θα µειώσει την διασπορά του εκτιµητή. Από την πλευρά του κόστους τα πράγµατα είναι λίγο πιο ξεκάθαρα. Η συστηµατική δειγµατοληψία έχει το µεγαλύτερο κόστος µετακίνησης (όταν πρόκειται για πληθυσµούς διεσπαρµένους στο χώρο) ακολουθούµενη από την στρωµατοποιηµένη, την απλή τυχαία και τέλος την πολυσταδιακή. Ένα επιπλέον κόστος προέρχεται από την δηµιουργία του καταλόγου των στοιχείων του πληθυσµού µε σκοπό την τυχαία επιλογή κάποιων απ αυτά. Μόνο η πολυσταδιακή δειγµατοληψία περιορίζει αυτό το κόστος µε τη δηµιουργία καταλόγου των στοιχείων µόνο των πρωτογενών µονάδων που έχουν επιλεγεί. Σ αυτόν τον τοµέα η συστηµατική δειγµατοληψία απαιτεί την απόδοση ενός αύξοντος αριθµού στα στοιχεία του πληθυσµού ώστε να επιλέγεται ένα κάθε p (το βήµα της δειγµατοληψίας). Στην περίπτωση των φυσικών πληθυσµών αυτό συχνά είναι αδύνατο κι έτσι περιοριζόµαστε στην σειρά εµφάνισης των ατόµων και παίρνουµε ένα κάθε p. Φυσικά η σειρά αυτή πρέπει να είναι ξεκάθαρη, π.χ. ένα σµήνος πουλιών που εµφανίζεται ξαφνικά ποια είναι η σειρά εµφάνισης των ατόµων;. Σ αυτή όµως την περίπτωση τελικά δεν µπορούµε να γνωρίζουµε από πριν το συνολικό µέγεθος του δείγµατος. Τέλος οι διάφορες µέθοδοι εκµεταλλεύονται µε συγκεκριµένο τρόπο και σε διαφορετικό βαθµό την διαθέσιµη πληροφορία από άλλες παρόµοιες µελέτες από παλαιότερες παρατηρήσεις ή άλλη συσσωρευµένη γνώση. Για παράδειγµα η απλή τυχαία δειγµατοληψία καθώς και η συστηµατική δεν χρησιµοποιούν κανένα στοιχείο σχετικό µε τον πληθυσµό στόχο. Πρέπει λοιπόν να γίνει κατανοητό ότι η χρησιµοποίηση πληροφορίας για το σχεδιασµό µιας δειγµατοληπτικής στρατηγικής δεν είναι τίποτε άλλο παρά χρήµα που επενδύεται στη µελέτη (διότι αυτή η πληροφορία όταν είχε αποκτηθεί είχε απαιτήσει κάποια δαπάνη) και που έχει σαν αποτέλεσµα την αύξηση της ακρίβειας της εκτίµησης. Κ. Κουτσικόπουλος - ειγµατοληψία Πανεπιστήµιο Πατρών, 00

4.ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ

4.ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ 4.ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑ (STRATIFIED RANDOM SAMPLING) Στην τυχαία δειγµατοληψία κατά στρώµατα ο πληθυσµός των Ν µονάδων (πρόκειται για τον στατιστικό πληθυσµό και τις στατιστικές µονάδες)

Διαβάστε περισσότερα

6.ΣΥΣΤΗΜΑΤΙΚΗ ΕΙΓΜΑΤΟΛΗΨΙΑ (SYSTEMATIC SAMPLING)

6.ΣΥΣΤΗΜΑΤΙΚΗ ΕΙΓΜΑΤΟΛΗΨΙΑ (SYSTEMATIC SAMPLING) 6.ΣΥΣΤΗΜΑΤΙΚΗ ΕΙΓΜΑΤΟΛΗΨΙΑ (SYSTEMATIC SAMPLIG) ΣΧΗΜΑ 6.1 Συστηµατική δειγµατοληψία στον Πατραϊκό κόλπο (17 σταθµοί). Η συστηµατική δειγµατοληψία είναι µια στρατηγική που µοιάζει απλή και λογική και επιλέγεται

Διαβάστε περισσότερα

5. ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Systematic Sampling)

5. ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Systematic Sampling) 5. ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Systematic Sampling) Συχνά, είναι ταχύτερη και ευκολότερη η επιλογή των μονάδων του πληθυσμού, αν αυτή γίνεται από κάποιο κατάλογο ξεκινώντας από κάποιο τυχαίο αρχικό σημείο

Διαβάστε περισσότερα

στατιστική θεωρεία της δειγµατοληψίας

στατιστική θεωρεία της δειγµατοληψίας στατιστική θεωρεία της δειγµατοληψίας ΕΙΓΜΑΤΟΛΗΨΙΑ : Εισαγωγή δειγµατοληψία Τα στοιχεία που απαιτούνται τόσο για την ανάλυση των µεταφορικών συστηµάτων και όσο και για την ανάπτυξη των συγκοινωνιακών µοντέλων

Διαβάστε περισσότερα

2. Η ΟΡΓΑΝΩΣΗ ΤΗΣ ΕΙΓΜΑΤΟΛΗΨΙΑΣ

2. Η ΟΡΓΑΝΩΣΗ ΤΗΣ ΕΙΓΜΑΤΟΛΗΨΙΑΣ 2. Η ΟΡΓΑΝΩΣΗ ΤΗΣ ΕΙΓΜΑΤΟΛΗΨΙΑΣ Μετά την παρουσίαση των βασικών εννοιών, της φιλοσοφίας, και των πρακτικών εφαρµογών της θεωρίας της δειγµατοληψίας, θα ασχοληθούµε σε αυτό το κεφάλαιο µε την πρακτική οργάνωση

Διαβάστε περισσότερα

Ορισµένοι ερευνητές υποστηρίζουν ότι χρειαζόµαστε µίνιµουµ 30 περιπτώσεις για να προβούµε σε κάποιας µορφής ανάλυσης των δεδοµένων.

Ορισµένοι ερευνητές υποστηρίζουν ότι χρειαζόµαστε µίνιµουµ 30 περιπτώσεις για να προβούµε σε κάποιας µορφής ανάλυσης των δεδοµένων. ειγµατοληψία Καθώς δεν είναι εφικτό να παίρνουµε δεδοµένα από ολόκληρο τον πληθυσµό που µας ενδιαφέρει, διαλέγουµε µια µικρότερη οµάδα που θεωρούµε ότι είναι αντιπροσωπευτική ολόκληρου του πληθυσµού. Τέσσερις

Διαβάστε περισσότερα

Μεθοδολογίες παρεµβολής σε DTM.

Μεθοδολογίες παρεµβολής σε DTM. Μάθηµα : Αλγοριθµικές Βάσεις στη Γεωπληροφορική ιδάσκων : Συµεών Κατσουγιαννόπουλος Μεθοδολογίες παρεµβολής σε DTM.. Μέθοδοι παρεµβολής. Η παρεµβολή σε ψηφιακό µοντέλο εδάφους (DTM) είναι η διαδικασία

Διαβάστε περισσότερα

Δειγματοληψία στην Ερευνα. Ετος

Δειγματοληψία στην Ερευνα. Ετος ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Αγροτικής Οικονομίας & Ανάπτυξης Μέθοδοι Γεωργοοικονομικής και Κοινωνιολογικής Ερευνας Δειγματοληψία στην Έρευνα (Μέθοδοι Δειγματοληψίας - Τρόποι Επιλογής Τυχαίου Δείγματος)

Διαβάστε περισσότερα

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας ΙΕΚ ΞΑΝΘΗΣ Μάθημα : Στατιστική Ι Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας Επαμεινώνδας Διαμαντόπουλος Ιστοσελίδα : http://users.sch.gr/epdiaman/ Email : epdiamantopoulos@yahoo.gr 1 Στόχοι της υποενότητας

Διαβάστε περισσότερα

6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling)

6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling) 6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling) Από την θεωρία που αναπτύχθηκε στα προηγούμενα κεφάλαια, φαίνεται ότι μια αλλαγή στον σχεδιασμό της δειγματοληψίας και, κατά συνέπεια, στην μέθοδο εκτίμησης

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΓΕΩΡΓΙΟΣ ΛΑΓΟΥΜΙΝΤΖΗΣ, ΒΙΟΧΗΜΙΚΟΣ, PHD ΙΑΤΡΙΚΗΣ

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΓΕΩΡΓΙΟΣ ΛΑΓΟΥΜΙΝΤΖΗΣ, ΒΙΟΧΗΜΙΚΟΣ, PHD ΙΑΤΡΙΚΗΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΓΕΩΡΓΙΟΣ ΛΑΓΟΥΜΙΝΤΖΗΣ, ΒΙΟΧΗΜΙΚΟΣ, PHD ΙΑΤΡΙΚΗΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ Οι τεχνικές δειγματοληψίας είναι ένα σύνολο μεθόδων που επιτρέπει να μειώσουμε το μέγεθος των δεδομένων που

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Ι. Δημόπουλος, Καθηγητής, Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών-ΤΕΙ Πελοποννήσου

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Ι. Δημόπουλος, Καθηγητής, Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών-ΤΕΙ Πελοποννήσου ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ Ι. Δημόπουλος, Καθηγητής, Τμήμα Διοίκησης Επιχειρήσεων και Οργανισμών-ΤΕΙ Πελοποννήσου Σχηματική παρουσίαση της ερευνητικής διαδικασίας ΣΚΟΠΟΣ-ΣΤΟΧΟΣ ΘΕΩΡΙΑ ΥΠΟΘΕΣΕΙΣ ΕΡΓΑΣΙΑΣ Ερευνητικά

Διαβάστε περισσότερα

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling) 3 ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratfed Radom Samplg) Είναι προφανές από τα τυπικά σφάλματα των εκτιμητριών των προηγούμενων παραγράφων, ότι ένας τρόπος να αυξηθεί η ακρίβεια τους είναι να αυξηθεί

Διαβάστε περισσότερα

Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1.

Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1. Περιεχόμενα της Ενότητας Στατιστική ΙI Ενότητα 1: Δειγματοληψία και Κατανομές Δειγματοληψίας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 1. ειγµατοληψία Πιθανοτικές

Διαβάστε περισσότερα

Περιεχόµενο. «ιοικώ σηµαίνει διαχειρίζοµαι πληροφορίες για να πάρω αποφάσεις» Βασικότερες πηγές πληροφοριών. Τι είναι η Έρευνα Μάρκετινγκ

Περιεχόµενο. «ιοικώ σηµαίνει διαχειρίζοµαι πληροφορίες για να πάρω αποφάσεις» Βασικότερες πηγές πληροφοριών. Τι είναι η Έρευνα Μάρκετινγκ ΕΠΕΑΕΚ ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ Τ.Ε.Φ.Α.Α.ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΘΕΣΣΑΛΙΑΣ - ΑΥΤΕΠΙΣΤΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΚΕ 0111 «Σύγχρονα Θέµατα ιοίκησης Αθλητισµού»

Διαβάστε περισσότερα

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε µε τη χρήση µιας εικοσαβάθµιας κλίµακας) παρουσιάζεται

Διαβάστε περισσότερα

HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme. Επιλογή δείγματος. Κατερίνα Δημάκη

HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme. Επιλογή δείγματος. Κατερίνα Δημάκη HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme Επιλογή δείγματος Κατερίνα Δημάκη Αν. Καθηγήτρια Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών 1 Τρόποι Συλλογής Δεδομένων Απογραφική

Διαβάστε περισσότερα

Δειγματοληψία στην εκπαιδευτική έρευνα. Είδη δειγματοληψίας

Δειγματοληψία στην εκπαιδευτική έρευνα. Είδη δειγματοληψίας Δειγματοληψία στην εκπαιδευτική έρευνα Είδη δειγματοληψίας Γνωρίζουμε ότι: Με τη στατιστική τα δεδομένα γίνονται πληροφορίες Στατιστική Δεδομένα Πληροφορία Αλλά από πού προέρχονται τα δεδομένα; Πώς τα

Διαβάστε περισσότερα

ΜΕΘΟ ΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. ηµήτρης Ιωαννίδης. Email: dimioan@uom.gr. Τµήµα Οικονοµικών Επιστηµών. Μεθοδολογία Έρευνας: Μάθηµα 1 ο

ΜΕΘΟ ΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. ηµήτρης Ιωαννίδης. Email: dimioan@uom.gr. Τµήµα Οικονοµικών Επιστηµών. Μεθοδολογία Έρευνας: Μάθηµα 1 ο ΜΕΘΟ ΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ηµήτρης Ιωαννίδης Τµήµα Οικονοµικών Επιστηµών Email: dimioan@uom.gr 1 Εξέταση: Μεθοδολογία Έρευνας: Μάθηµα 1 ο 1. Οµαδική εργασία 30% 2. Ατοµική εργασία 70% 2 Σκοπός του µαθήµατος:

Διαβάστε περισσότερα

Περιεχόμενα. Γιατί Ένας Manager Πρέπει να Ξέρει Στατιστική. Περιεχόμενα. Η Ανάπτυξη και Εξέλιξη της Σύγχρονης Στατιστικής

Περιεχόμενα. Γιατί Ένας Manager Πρέπει να Ξέρει Στατιστική. Περιεχόμενα. Η Ανάπτυξη και Εξέλιξη της Σύγχρονης Στατιστικής Chapter 1 Student Lecture Notes 1-1 Ανάλυση Δεδομένων και Στατιστική για Διοικήση Επιχειρήσεων [Basic Business Statistics (8 th Edition)] Κεφάλαιο 1 Εισαγωγή και Συλλογή Δεδομένων Περιεχόμενα Γιατί ένας

Διαβάστε περισσότερα

Μέθοδοι Γεωργοοικονομικής & Κοινωνιολογικής Έρευνας

Μέθοδοι Γεωργοοικονομικής & Κοινωνιολογικής Έρευνας Μέθοδοι Γεωργοοικονομικής & Κοινωνιολογικής Έρευνας Ενότητα 4: Η Δειγματοληπτική έρευνα (2/2) 2ΔΩ Διδάσκοντες: Χ. Κασίμης- Ελ. Νέλλας Τμήμα: Αγροτικής Οικονομίας και Ανάπτυξης Μαθησιακοί στόχοι Η εκμάθηση

Διαβάστε περισσότερα

Ανάλυση και Σχεδιασμός Μεταφορών Ι Δειγματοληψία - Μέθοδοι συλλογής στοιχείων

Ανάλυση και Σχεδιασμός Μεταφορών Ι Δειγματοληψία - Μέθοδοι συλλογής στοιχείων Δειγματοληψία - Μέθοδοι συλλογής στοιχείων Παναγιώτης Παπαντωνίου Δρ. Πολιτικός Μηχανικός, Συγκοινωνιολόγος ppapant@upatras.gr Πάτρα, 2017 Στόχοι Βασικές έννοιες στατιστικής Μέθοδοι συλλογής στοιχείων

Διαβάστε περισσότερα

PIAAC GREECE Σχέδιο δειγµατοληψίας Κύριας Έρευνας (MS)

PIAAC GREECE Σχέδιο δειγµατοληψίας Κύριας Έρευνας (MS) PIAAC GREECE Σχέδιο δειγµατοληψίας Κύριας Έρευνας (MS) ΙωάννηςΝικολαΐδης, Ελληνική Στατιστική Αρχή Προϊστάµενος του Τµήµατος Μεθοδολογίας, Ανάλυσης και Μελετών e-mail: giannikol@statistics.gr 1. Ερευνώµενος

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ B ΕΚΔΟΣΗ ΑΘΗΝΑ 2004 ΠΡΟΛΟΓΟΣ Η συλλογή και επεξεργασία δεδομένων από πεπερασμένους πληθυσμούς

Διαβάστε περισσότερα

Επιλογή Δείγματος. Απόστολος Βανταράκης Αναπλ. Καθηγητής Ιατρικής

Επιλογή Δείγματος. Απόστολος Βανταράκης Αναπλ. Καθηγητής Ιατρικής Επιλογή Δείγματος Απόστολος Βανταράκης Αναπλ. Καθηγητής Ιατρικής Δειγματοληψία Να κατανοηθούν: Γιατί κάνουμε δειγματοληψία Ορισμοί δειγματοληψίας Αντιπροσωπευτικότητα Κύριοι μέθοδοι δειγματοληψίας Λάθη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

Έρευνα Μάρκετινγκ. Η δευτερογενής έρευνα

Έρευνα Μάρκετινγκ. Η δευτερογενής έρευνα Έρευνα Μάρκετινγκ ρ. Παναγιώτης Μπάλλας E-mail: ballas@staff.teicrete.gr Η δευτερογενής έρευνα ευτερογενή είναι τα στοιχεία που υπάρχουν έτοιµα να αναζητηθούν από κάποια πηγή και δεν χρειάζεται να τα συλλέξουµε

Διαβάστε περισσότερα

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ Επιλογή κειμένων των καθηγητών: Μ. GRAWITZ Καθηγήτρια Κοινωνιολογίας

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙ ΙΟ ΟΡΘΩΝ ΠΡΑΚΤΙΚΩΝ ΕΙΓΜΑΤΟΛΗΨΙΑ Ε ΑΦΟΥΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ

ΕΓΧΕΙΡΙ ΙΟ ΟΡΘΩΝ ΠΡΑΚΤΙΚΩΝ ΕΙΓΜΑΤΟΛΗΨΙΑ Ε ΑΦΟΥΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ Επιιστηµονιική Υποστήριιξη Νέων Αγροτών Καιινοτόµες µέθοδοιι καλλιιέργειιας ΕΓΧΕΙΡΙ ΙΟ ΟΡΘΩΝ ΠΡΑΚΤΙΚΩΝ ΕΙΓΜΑΤΟΛΗΨΙΑ Ε ΑΦΟΥΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ σελ. 1 Τι σηµαίνει; Τι σηµαίνει και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΟΛΗΨΙΑ. Ματσάγκος Ιωάννης-Μαθηματικός

ΔΕΙΓΜΑΤΟΛΗΨΙΑ. Ματσάγκος Ιωάννης-Μαθηματικός 1 ΔΕΙΓΜΑΤΟΛΗΨΙΑ -Είναι γνωστό, ότι στη Στατιστική, όταν χρησιμοποιούμε τον όρο πληθυσμός, δηλώνουμε, το σύνολο των ατόμων ή αντικειμένων, στα οποία αναφέρονται οι παρατηρήσεις μας Τα στοιχεία του συνόλου

Διαβάστε περισσότερα

Δειγματοληψία στις συγχρονικές επιδημιολογικές μελέτες

Δειγματοληψία στις συγχρονικές επιδημιολογικές μελέτες Δειγματοληψία στις συγχρονικές επιδημιολογικές μελέτες Μάθημα «Επιδημιολογία και Μεθοδολογία Έρευνας» Δημήτρης Παπαμιχαήλ Νοσηλευτής ΠΕ, MSc, MPH Υποψήφιος διδάκτορας Τμήματος Ιατρικής ΑΠΘ Γιατί χρειαζόμαστε

Διαβάστε περισσότερα

ΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟ ΟΣΕΩΣ ΤΩΝ ΤΑΜΙΕΥΤΗΡΩΝ

ΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟ ΟΣΕΩΣ ΤΩΝ ΤΑΜΙΕΥΤΗΡΩΝ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟ ΟΣΕΩΣ ΤΩΝ ΤΑΜΙΕΥΤΗΡΩΝ ΕΙΣΑΓΩΓΗ Οι ταµιευτήρες είναι υδραυλικά έργα που κατασκευάζονται µε σκοπό τον έλεγχο και την ρύθµιση της παροχής των υδατορρευµάτων. Ανάλογα µε το µέγεθός

Διαβάστε περισσότερα

Ζητήματα ηήμ με τα δεδομένα

Ζητήματα ηήμ με τα δεδομένα Ζητήματα ηήμ με τα δεδομένα Ποιότητα Απαλοιφή θορύβου Εντοπισμός ανωμαλιών λώ Ελλιπείς τιμές Μετασχηματισμός Κβάντωση Μείωση μεγέθους Γραμμών: ειγματοληψία Στηλών: Ιδιοδιανύσματα, Επιλογή χαρακτηριστικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 05 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο R, να αποδείξετε ότι: f + g ' = f ' + g ', R Μονάδες 7 Α. Πότε λέµε ότι µια συνάρτηση

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Εισαγωγικές Έννοιες ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων

ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Εισαγωγικές Έννοιες ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Εισαγωγικές Έννοιες ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων ΑΓΡΙΝΙΟ ΣΤΑΤΙΣΤΙΚΗ Φραγκίσκος Κουτελιέρης Αναπληρωτής

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΜΕΘΟ ΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 3 ΜΕΘΟ ΟΛΟΓΙΑ ΚΕΦΑΛΑΙΟ 3 ΜΕΘΟ ΟΛΟΓΙΑ Στην ενότητα αυτή θα παρουσιαστεί η µεθοδολογία της έρευνας και η διαδικασία µε την οποία διεξήχθη η συλλογή των ερωτηµατολογίων. 3.1 Μεθοδολογία Έρευνας & ειγµατοληπτική Τεχνική

Διαβάστε περισσότερα

ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ. ιάγραµµα 1

ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ. ιάγραµµα 1 ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ιάγραµµα Η ΤΑΥΤΟΤΗΤΑ ΤΗΣ ΕΡΕΥΝΑΣ Τύπος και µέθοδος: Περιοχή: Πληθυσµός: Μέγεθος δείγµατος: ειγµατοληψία: Ποσοτική Έρευνα, µε τηλεφωνικές συνεντεύξεις, στα νοικοκυριά των

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα Εργαστήριο Μαθηµατικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθηµα Στατιστική 5//8 ο Θέµα To % των ζώων µιας µεγάλης κτηνοτροφικής µονάδας έχει προσβληθεί από µια ασθένεια. Για τη διάγνωση της συγκεκριµένης

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Επιλέξτε μία σωστή απάντηση σε κάθε ένα από τα παρακάτω ερωτήματα. 1) Η χρήση απόλυτων δεσμεύσεων για την συνόρθωση ενός τοπογραφικού

Διαβάστε περισσότερα

1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4

1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4 ΘΕΜΑ ο Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) Ρ (Α) Ρ (Α Β). Μονάδες 8, Α.. Να µεταφέρετε στο τετράδιό σας τις παρακάτω σχέσεις και να συµπληρώσετε

Διαβάστε περισσότερα

Σκοπός του μαθήματος

Σκοπός του μαθήματος Σκοπός του μαθήματος Στο μάθημα αυτό γίνεται εφαρμογή, με τη βοήθεια του υπολογιστή και τη χρήση του στατιστικού προγράμματος S.P.S.S., της στατιστικής θεωρίας που αναπτύχθηκε στα μαθήματα «Εισαγωγή στη

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΤΡΙΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

ΜΑΡΚΕΤΙΝΓΚ & ΠΕΡΙΒΑΛΛΟΝ

ΜΑΡΚΕΤΙΝΓΚ & ΠΕΡΙΒΑΛΛΟΝ Τµήµα ιοίκησης ΕΡΕΥΝΑ ΜΑΡΚΕΤΙΝΓΚ ΕΙΣΑΓΩΓΗ ΣΤΟ ΜΑΡΚΕΤΙΝΓΚ ΜΑΡΚΕΤΙΝΓΚ & ΠΕΡΙΒΑΛΛΟΝ ΕΡΕΥΝΑ ΜΑΡΚΕΤΙΝΓΚ ΣΥΜΠΕΡΙΦΟΡΑ ΑΓΟΡΑΣΤΗ ΣΤΡΑΤΗΓΙΚΗ ΜΑΡΚΕΤΙΝΓΚ ΠΡΟΙΟΝ ΙΑΝΟΜΗ ΠΡΟΒΟΛΗ ΤΙΜΟΛΟΓΗΣΗ Τµήµα ιοίκησης Χρησιµότητα

Διαβάστε περισσότερα

ειγµατοληψία ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ Μέρη της Έρευνας Μέθοδος Πώς ερευνήθηκε το πρόβληµα? Μέθοδος

ειγµατοληψία ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ Μέρη της Έρευνας Μέθοδος Πώς ερευνήθηκε το πρόβληµα? Μέθοδος ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ ΠΘ ΑΥΤΕΠΙΣΤΑΣΙΑ ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

Δασική Δειγματοληψία

Δασική Δειγματοληψία Δασική Δειγματοληψία Δημοκρίτειο Πανεπιστήμιο Θράκης Τμήμα Δασολογίας και Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων 5 ο εξάμηνο ΚΙΤΙΚΙΔΟΥ ΚΥΡΙΑΚΗ Εισαγωγή Δειγματοληψία Επιλογή ενός μέρους από ένα σύνολο

Διαβάστε περισσότερα

δειγµατοληψία µέθοδοι συλλογής στοιχείων δίκτυο & ζωνικό σύστηµα

δειγµατοληψία µέθοδοι συλλογής στοιχείων δίκτυο & ζωνικό σύστηµα δειγµατοληψία µέθοδοι συλλογής στοιχείων δίκτυο & ζωνικό σύστηµα ΕΙΓΜΑΤΟΛΗΨΙΑ : Βασικές έννοιες βασικές έννοιες Πληθυσµός: είγµα: Το σύνολο των στοιχείων για τα οποία απαιτείται συγκεκριµένη πληροφορία.

Διαβάστε περισσότερα

ειγµατοληπτική κατανοµή

ειγµατοληπτική κατανοµή Ιωάννης Παραβάντης Επίκουρος Καθηγητής Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών Πανεπιστήµιο Πειραιώς Μάρτιος 2010 ειγµατοληπτική κατανοµή 1. Εισαγωγή Με την ενότητα αυτή, µπαίνουµε στις έννοιες της επαγωγικής

Διαβάστε περισσότερα

Έρευνα Μάρκετινγκ Ενότητα 4

Έρευνα Μάρκετινγκ Ενότητα 4 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4 : Δειγματοληψία Χριστίνα Μπουτσούκη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας Κεφάλαιο 5 Οι δείκτες διασποράς 1 Ένα παράδειγµα εργασίας Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε

Διαβάστε περισσότερα

2. Η τιµή της εκτιµήσεως της µεταβλητής στα σηµεία όπου υπάρχουν µετρήσεις να είναι η ίδια µε τη

2. Η τιµή της εκτιµήσεως της µεταβλητής στα σηµεία όπου υπάρχουν µετρήσεις να είναι η ίδια µε τη ΜΕΘΟ ΟΙ ΧΩΡΙΚΗΣ ΠΑΡΕΜΒΟΛΗΣ, ΒΕΛΤΙΣΤΗ ΠΑΡΕΜΒΟΛΗ ΠΡΟΧΩΡΗΜΕΝΕΣ ΓΕΩΣΤΑΤΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ Η παρεµβολή στο χώρο αποτελεί ένα σηµαντικό αντικείµενο µελέτης στη χαρτογραφία και σε όσους τοµείς της επιστήµης είναι

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία ΜΑΘΗΜΑ 5.. ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ Εφαπτοµένη ευθεία Παράγωγος βασικών συναρτήσεων ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Αθροίσµατος γινοµένου - πηλίκου Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Εξίσωση

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ Μετά από την εκτίµηση των παραµέτρων ενός προσοµοιώµατος, πρέπει να ελέγχουµε την αλήθεια της υποθέσεως που κάναµε. Είναι ορθή η υπόθεση που κάναµε? Βεβαίως συνήθως υπάρχουν

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ- ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Εργασία για το σεµινάριο «Στατιστική περιγραφική εφαρµοσµένη στην ψυχοπαιδαγωγική(β06σ03)» ΤΙΤΛΟΣ: «ΜΕΛΕΤΗ ΠΕΡΙΓΡΑΦΙΚΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #: Επαγωγική Στατιστική - Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Εκτίµηση παχών ασφαλτικών στρώσεων οδοστρώµατος µε χρήση γεωφυσικής µεθόδου

Εκτίµηση παχών ασφαλτικών στρώσεων οδοστρώµατος µε χρήση γεωφυσικής µεθόδου Εκτίµηση παχών ασφαλτικών στρώσεων οδοστρώµατος µε χρήση γεωφυσικής µεθόδου Ανδρέας Λοΐζος Αν. Καθηγητής ΕΜΠ Χριστίνα Πλατή Πολιτικός Μηχανικός ΕΜΠ Γεώργιος Ζάχος Πολιτικός Μηχανικός ΕΜΠ ΠΕΡΙΛΗΨΗ Τα τελευταία

Διαβάστε περισσότερα

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ Ενότητα 2: Επαγωγική-περιγραφική στατιστική, παραµετρικές

Διαβάστε περισσότερα

ΤΕΚΜΗΡΙΩΣΗ ΕΙΚΤΩΝ ΒΑΣΕΩΝ (ΑΝΑΘΕΩΡΗΜΕΝΗ)

ΤΕΚΜΗΡΙΩΣΗ ΕΙΚΤΩΝ ΒΑΣΕΩΝ (ΑΝΑΘΕΩΡΗΜΕΝΗ) ΤΕΚΜΗΡΙΩΣΗ ΕΙΚΤΩΝ ΒΑΣΕΩΝ (ΑΝΑΘΕΩΡΗΜΕΝΗ) Η πρόβλεψη των βάσεων είναι ένα δύσκολο και παρακινδυνευµένο εγχείρηµα, κάθε χρόνο, διότι αν και υπάρχουν τα βασικά βαθµολογικά και άλλα στοιχεία δεν είναι γνωστές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Πέµπτη, Ιουνίου 00 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι P(A B) P(A)

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΠΡΩΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

Στατιστική Εισαγωγικές Έννοιες

Στατιστική Εισαγωγικές Έννοιες Στατιστική Εισαγωγικές Έννοιες Στατιστική: η επιστήµη που παρέχει µεθόδους και εργαλεία για την οργάνωση, συστηµατική περιγραφή και περιληπτική παρουσίαση δεδοµένων, καθώς και για την ανάλυση της πληροφορίας

Διαβάστε περισσότερα

Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς

Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη, 2014-2015 Εµπειρικές Στατιστικές

Διαβάστε περισσότερα

Κεφάλαιο 5 - ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ

Κεφάλαιο 5 - ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ Σύνοψη Κεφάλαιο 5 - ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ Στο κεφάλαιο αυτό, εισάγεται ένα ακόμα δειγματοληπτικό σχέδιο, η συστηματική δειγματοληψία (systematic sampling). Το βασικό πλεονέκτημα του σχεδίου αυτού είναι

Διαβάστε περισσότερα

Κεφάλαιο 16 ειγµατοληψία στον έλεγχο

Κεφάλαιο 16 ειγµατοληψία στον έλεγχο Κεφάλαιο 16 ειγµατοληψία στον έλεγχο σφαλµάτων Θεµατολογία Κίνδυνοι δειγµατοληψίας στον έλεγχο σφαλµάτων Περίγραµµα ελεγκτικής διαδικασίας (audit process) (Ι) Αναζήτηση και αναδοχή πελάτη (ΙΙ) Κατανόηση

Διαβάστε περισσότερα

Περιεχόμενα. ΚΕΦΑΛΑΙΟ 1 Κατευθύνσεις στην έρευνα των επιστημών υγείας. ΚΕΦΑΛΑΙΟ 2 Έρευνα και θεωρία

Περιεχόμενα. ΚΕΦΑΛΑΙΟ 1 Κατευθύνσεις στην έρευνα των επιστημών υγείας. ΚΕΦΑΛΑΙΟ 2 Έρευνα και θεωρία Περιεχόμενα Σχετικά με τους συγγραφείς... ΧΙΙΙ Πρόλογος... XV Eισαγωγή...XVΙΙ ΚΕΦΑΛΑΙΟ 1 Κατευθύνσεις στην έρευνα των επιστημών υγείας Εισαγωγή... 1 Τι είναι η έρευνα;... 2 Τι είναι η έρευνα των επιστημών

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεµάτων επανάληψης 1. Έστω η εξίσωση (k 5k+ 4) x (k 1)x + 1= 0 Να βρείτε την τιµή του k ώστε η εξίσωση να έχει µία µόνο ρίζα την οποία ρίζα να προσδιορίσετε i Να βρείτε την τιµή του k ώστε η

Διαβάστε περισσότερα

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1 Στη συνέχεια θεωρούµε ένα τυχαίο διάνυσµα Σ 1 γράφεται ως, το οποίο στο σύστηµα Το ίδιο διάνυσµα µπορεί να γραφεί στο Σ 1 ως ένας άλλος συνδυασµός τριών γραµµικώς ανεξαρτήτων διανυσµάτων (τα οποία αποτελούν

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://users.auth.gr/dkugiu/teach/civilengineer E mail: dkugiu@gen.auth.gr 1/11/2009 2 Περιεχόµενα 1 ΠΕΡΙΓΡΑΦΙΚΗ

Διαβάστε περισσότερα

Δειγματοληψία. Δειγματοληψία στην επιδημιολογική επιτήρηση και διερεύνηση επιδημιών. Τύπος μελέτης και στόχος δειγματοληψίας

Δειγματοληψία. Δειγματοληψία στην επιδημιολογική επιτήρηση και διερεύνηση επιδημιών. Τύπος μελέτης και στόχος δειγματοληψίας Δειγματοληψία στην επιδημιολογική επιτήρηση και διερεύνηση επιδημιών Πρόγραμμα εκπαίδευσης στην επιδημιολογική επιτήρηση και διερεύνηση επιδημιών ΕΣΔΥ ΚΕΕΛΠΝΟ, 2008 Ορισμός Δειγματοληψία Η διαδικασία με

Διαβάστε περισσότερα

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.)

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.) 3 Οριακά θεωρήµατα Κεντρικό Οριακό Θεώρηµα (ΚΟΘ) Ένα από τα πιο συνηθισµένα προβλήµατα που ανακύπτουν στη στατιστική είναι ο προσδιορισµός της κατανοµής ενός µεγάλου αθροίσµατος ανεξάρτητων τµ Έστω Χ Χ

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

Σεμινάριο ΕΚΠ65 ιπλωματικές Εργασίες Αθήνα, 11 Οκτωβρίου 2009

Σεμινάριο ΕΚΠ65 ιπλωματικές Εργασίες Αθήνα, 11 Οκτωβρίου 2009 Με δείγματα ευκολίας δεν γίνεται έρευνα: Η επιλογή των υποκειμένων της έρευνας Βιβή Βασάλα ΣΕΠ στο ΕΑΠ Ερωτήματα Πώς προσδιορίζονται τα όρια του ερευνητικού πληθυσμού; ; Ποιος είναι ο τρόπος-μέθοδος επιλογής

Διαβάστε περισσότερα

Συλλογή και παρουσίαση στατιστικών δεδομένων

Συλλογή και παρουσίαση στατιστικών δεδομένων Συλλογή και παρουσίαση στατιστικών δεδομένων Απογραφή Δειγματοληψία Συνεχής καταγραφή Πίνακες Διαγράμματα Στατιστικές εκθέσεις Τρόποι συλλογής δεδομένων Οι μέθοδοι συλλογής δεδομένων ποικίλουν και κυρίως

Διαβάστε περισσότερα

ΣΥΝ ΥΑΣΤΙΚΗ ΑΝΑΛΥΣΗ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών

ΣΥΝ ΥΑΣΤΙΚΗ ΑΝΑΛΥΣΗ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών Τµ. Επιστήµης των Υλικών Χώρος Πιθανότητας Συµµετρικός Χώρος Πιθανότητας 1 Θεωρούµε ότι ο δειγµατοχώρος Ω είναι πεπερασµένος, Ω= {ω 1,ω 2,...,ω n }. 2 Κάθε δειγµατοσηµείο έχει τις ίδιες ευκαιρίες εµφάνισης

Διαβάστε περισσότερα

επ. Κωνσταντίνος Π. Χρήστου Κεφάλαιο 2

επ. Κωνσταντίνος Π. Χρήστου Κεφάλαιο 2 Κεφάλαιο 2 Μεταβλητές Είδη Μεταβλητών Πείραµα (ένα παράδειγµα, Bandura, Ross & Ross, 1963) Υπόθεση: ένα από τα αίτια της συµπεριφοράς µπορεί να είναι η παρατήρηση ενός επιθετικού προτύπου Διαδικασία: τα

Διαβάστε περισσότερα

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΘΕΜΑ: ΤΟ ΕΝΔΙΑΦΕΡΟΝ ΤΩΝ ΦΟΙΤΗΤΩΝ ΓΙΑ ΤΙΣ ΣΠΟΥΔΕΣ ΤΟΥΣ ΣΤΟ

Διαβάστε περισσότερα

Λύσεις Παλιών Θεµάτων. Συστήµατα Παράλληλης Επεξεργασίας, 9ο εξάµηνο Υπεύθ. Καθ. Νεκτάριος Κοζύρης

Λύσεις Παλιών Θεµάτων. Συστήµατα Παράλληλης Επεξεργασίας, 9ο εξάµηνο Υπεύθ. Καθ. Νεκτάριος Κοζύρης Λύσεις Παλιών Θεµάτων Συστήµατα Παράλληλης Επεξεργασίας, 9ο εξάµηνο Υπεύθ. Καθ. Νεκτάριος Κοζύρης Θέµα Φεβρουάριος 2003 1) Έστω ένας υπερκύβος n-διαστάσεων. i. Να βρεθεί ο αριθµός των διαφορετικών τρόπων

Διαβάστε περισσότερα

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone Hµέθοδος Stepping Stoneείναι µία επαναληπτική διαδικασία για τον προσδιορισµό της βέλτιστης λύσης σε ένα πρόβληµα µεταφοράς.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: Γενική Οικολογία

ΜΑΘΗΜΑ: Γενική Οικολογία ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος ΜΑΘΗΜΑ: Γενική Οικολογία 1 η Άσκηση Έρευνα στο πεδίο - Οργάνωση πειράματος Μέθοδοι Δειγματοληψίας Εύρεση πληθυσμιακής

Διαβάστε περισσότερα

Βασικές έννοιες. Παραδείγµατα: Το σύνολο των φοιτητών που είναι εγγεγραµµένοι

Βασικές έννοιες. Παραδείγµατα: Το σύνολο των φοιτητών που είναι εγγεγραµµένοι Τι είναι η Στατιστική? Η ΣΤΑΤΙΣΤΙΚΗ ορίζεται σήµερα ως η επιστήµη που σχετίζεται µε τις επιστηµονικές µεθόδους συλλογής, παρουσίασης, αξιολόγησης και γενίκευσης (: εξαγωγής συµπερασµάτων) της πληροφορίας.

Διαβάστε περισσότερα

Εκτίµηση περιβαλλοντικών επιπτώσεων:

Εκτίµηση περιβαλλοντικών επιπτώσεων: ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ, ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΒΙΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Εκτίµηση περιβαλλοντικών επιπτώσεων: Παράµετροι που επηρεάζουν την ανιχνευτική

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΕΥΤΕΡΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α) Ρ (Α Β). Μονάδες

Διαβάστε περισσότερα

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Οι µηνιαίες αποδοχές, σε, ν υπαλλήλων είναι x, x,, x ν και αυτές αποτελούν οµοιογενές δείγµα µε µέση τιµή 000. Αν το 8% έχει µισθό Α, το 6% Β και οι υπόλοιποι Γ : Να βρείτε το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη

ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 2 Ιουνίου 2015 ηµήτρης-αλέξανδρος Τουµπακάρης Προχ. Θέµατα Θεωρίας Πληροφορίας 12η

Διαβάστε περισσότερα

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 Ζήτηµα 1ο Α.1. Α.2. Β.1. Β.2. Β.3. Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α)

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ. 1.1 Σκοπός Έρευνας

1. ΕΙΣΑΓΩΓΗ. 1.1 Σκοπός Έρευνας ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 1.1 Σκοπός Έρευνας 1. ΕΙΣΑΓΩΓΗ Ο βασικός σκοπός της παρούσας μελέτης είναι η αξιολόγηση των παραγόντων που επιδρούν και διαμορφώνουν τη γνώμη, στάση και αντίληψη των νέων (μαθητών)

Διαβάστε περισσότερα

E-Class. https://mediasrv.aua.gr/eclass/modules/document/?course=aoa137

E-Class. https://mediasrv.aua.gr/eclass/modules/document/?course=aoa137 Προτεινόμενα Βιβλία E-Class https://mediasrv.aua.gr/eclass/modules/document/?course=aoa137 Γιατί χρειαζόμαστε την Στατιστική Εκλογικές Δημοσκοπήσεις Έρευνα Αγοράς Αθλητική Στατιστική Μεταβολή: +21.58 Χαμηλό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα

Διαβάστε περισσότερα