To φαινόµενο της κό ωσης. N.. Αλεξόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "To φαινόµενο της κό ωσης. N.. Αλεξόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ"

Transcript

1 To φαινόµενο της κό ωης N.. Αλεξόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ 1 οµή Παρουίαης Η κόπωη ε µηχανολογικές εφαρµογές Μηχανιµός κόπωης Στάδιο 1: ηµιουργία των µικρο-ρωγµών Στάδιο 2: Εξέλιξη των ρωγµών 2 1

2 οµή Παρουίαης Η κόπωη ε µηχανολογικές εφαρµογές Μηχανιµός κόπωης Στάδιο 1: ηµιουργία των µικρο-ρωγµών Στάδιο 2: Εξέλιξη των ρωγµών 3 Τυ ικά µηχανικά φορτία ε κατακευές Πηγή: - Μανολάκος., Τεχνικά Υλικά, Σηµειώεις ΕΜΠ,

3 Κό ωη: µηχανικά φορτία max =100 MPa α m ¼ min = 10 MPa 0 κύκλου 1 κύκλος φόρτιης t Πηγή: - Royland D., Mechanics of Materials: Fatigue, MIT, Κό ωη: γιατί; το ατύχηµα της Aloha Airlines Πηγή: - Aloha Flight Air Disaster, Ιτοελίδα: - Aloha Airlines Flight 243, Ιτοελίδα: 6 3

4 οµή Παρουίαης Η κόπωη ε µηχανολογικές εφαρµογές Μηχανιµός κόπωης Στάδιο 1: ηµιουργία των µικρο-ρωγµών Στάδιο 2: Εξέλιξη των ρωγµών 7 Στάδιο Ι: δηµιουργία µικρο-ρωγµών + µετατόπιη διαταραχών + ευνοϊκότερος προανατολιµός (45 ο ) + δηµιουργία εοχών/εξοχών την επιφάνεια + πολλές επιφανειακές µικρο-ρωγµές ε µέγεθος κόκκου Στάδιο ΙΙ Στάδιο Ι Πηγή: - Callister W, Materials Science & Engineering, J. Wiley & Sons, Κερµανίδης Θ., Θραυτοµηχανική, Εκδόεις Πανεπιτηµίου Πατρών,

5 Στάδιο ΙΙ: εξέλιξη ρωγµής + µια κυρίαρχη ρωγµή + αλλαγή διεύθυνης + κάθετη την φόρτιη + διάδοη µέχρι την τελική θραύη Στάδιο ΙΙ Στάδιο Ι Πηγή: - Callister W, Materials Science & Engineering, J. Wiley & Sons, Royland D., Mechanics of Materials: Fatigue, MIT, οµή Παρουίαης Η κόπωη ε µηχανολογικές εφαρµογές Μηχανιµός κόπωης Στάδιο 1: ηµιουργία των µικρο-ρωγµών Στάδιο 2: Εξέλιξη των ρωγµών 10 5

6 Μακροκο ική ρωγµή: ο µηχανιµός της εξέλιξης (a) Κατώτατο φορτίο (b) Μικρό εφελκυτικό φορτίο (c) Μέγιτο εφελκυτικό φορτίο (d) Αποφόρτιη (e) Μηδενικό φορτίο (αύξηη κατά a) (f) Αύξηη του φορτίου max m ¼ 0 κύκλου min (b) (a) (c) (d) (e) (f) t Πηγή: - Callister W, Materials Science & Engineering, J. Wiley & Sons, Ο µηχανιµός της εξέλιξης της ρωγµής + µια ρωγµή κόπωης που εξελίεται αφήνει πίω της ίχνη + τα ίχνη κό ωης (striations) είναι το πειτήριο για µια ατοχία λόγω κόπωης + δηµιουργούνται µε την εξέλιξη της ρωγµής + κάθε ίχνος a ανά κύκλο φόρτιης ταχύτητα εξέλιξης Ίχνη κόπωης το αεροναυπηγικό κράµα Al 2024-Τ3 12 6

7 οκιµές ε µη-ρηγµατωµένα δοκίµια ASTM E466 Κύκλοι καταπόνηης για την ατοχία = ; 13 οκιµές ε µη-ρηγµατωµένα δοκίµια ( m = 0) Κόπωη ε µη-ρηγµατωµένα δοκίµια ολιγοκυκλική κόπωη ( max > y ) πολυκυκλική κόπωη ( max < y ) 14 7

8 οκιµές ε µη-ρηγµατωµένα δοκίµια ( m = 0) ολιγοκυκλική κόπωη ε πλ ( max > y ) N b f = D νόµος των Coffin-Manson b, D ταθερές πολυκυκλική κόπωη ( max < y ) m α Ν f = C νόµος του Basquin m, C ταθερές Καµπύλη Wöhler 15 οκιµές ε µη-ρηγµατωµένα δοκίµια ( m 0) Διάγραμμα S-N λόγος τάεων R R = min max Καµπύλες S-N 16 8

9 οκιµές ε µη-ρηγµατωµένα δοκίµια ( m 0) Εάν m 0, τότε υπολογίζεται ένα υποκατάτατο εύρος τάης f, που θα επιφέρει τους ίδιους κύκλους κόπωης για την ατοχία µε την πραγµατική καταπόνηη µε µέη τάη m και εύρος τάης α. O εµπειρικός κανόνας του Goodman : α m + f UTS =1 α Καµπύλη Woehler f N f 17 οκιµές ε µη-ρηγµατωµένα δοκίµια ( m 0) Υ ολογιµός διάρκειας ζωής ε κό ωη Για ταθερό εύρος τάης α και m = 0, το N f υπολογίζεται από το διάγραµµα Wöhler Πραγµατική καταπόνηη: Τά η Τά η Στάδιο 1 Στάδιο 2 Στάδιο 3 (α) Χρόνος t (β) Χρόνος t Οριµός της υνάρτηης βλάβης κό ωης D (fatigue damage) D = 0 για µηδενική βλάβη (παρθένο υλικό) D = 1 για 100% βλάβη (ατοχία λόγω κόπωης) O γραµµικός κανόνας του Miner : i ni N fi =1 D = n N f Συνά ρτη η βλάβ ης D D 2 D 1 0 n 1 /N f1 n 2 /N f2 n/n f

10 Εξέλιξη της ρωγµής ε ρο-ρηγµατωµένα δοκίµια οκίµιο Middle Tension M(T) ASTM E647 οκίµιο Compact Tension C(T) ASTM E Εξέλιξη της ρωγµής ε ρο-ρηγµατωµένα δοκίµια Καμπύλη διάδοης ρωγμής τεχνολογικού υλικού τελικό ημείο (θραύη) Μήκος ρωγμής α [mm] εκκίνηη της ρωγμής τάδιο διάδοης της ρωγμής ρυθμός διάδοης ρωγμής da/dn Κύκλοι φόρτιης ε κόπωη [-] Πηγή: - Αλεξόπουλος Ν.., Μη-δηµοιευµένα α οτελέµατα α ό το Ερευνητικό Πρόγραµµα AEROMAG, Πάτρα,

11 Εξέλιξη της ρωγµής ε ρο-ρηγµατωµένα δοκίµια Ταχύτητα διάδοης ρωγμής da/dn [m/κύκλο] 1E-4 1E-5 1E-6 1E-7 Καμπύλη διάδοης ρωγμής τεχνολογικού υλικού Σταθερός ρυθμός διάδοης ρωγμής da/dn = D. ΔΚ m Στάδιο 1: Εκκίνηη της ρωγμής Στάδιο 2: Διάδοη της ρωγμής Θραύη Στάδιο 3: Ταχεία διάδοη της ρωγμής - ατοχία 1E-8 1 Κατώφλι διάδοης ρωγμής ΔΚ [MPa*m 1/2 ] ΔΚ threshold Πηγή: - Αλεξόπουλος Ν.., Μη-δηµοιευµένα α οτελέµατα α ό το Ερευνητικό Πρόγραµµα AEROMAG, Πάτρα, Εξέλιξη της ρωγµής ε ρορηγµατωµένα δοκίµια Πηγή: - E. Hombergsmeier., Μη-δηµοιευµένα α οτελέµατα α ό το Ερευνητικό Πρόγραµµα IDA, Munich,

Σχ. 1 Eναλλασσόμενες καταπονήσεις

Σχ. 1 Eναλλασσόμενες καταπονήσεις Πανεπιτήμιο Θεαλίας Διδάκων: Αλ. Κερμανίδης Σχεδιαμός Στοιχείων Μηχανών ε μεταβαλλόμενα φορτία Μεταβαλλόμενα με τον χρόνο φορτία χαρακτηρίζονται τα φορτία που μεταβάλλουν το μέγεθος ή την διεύθυνη τους

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ VIII. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΕ ΥΝΑΜΙΚΕΣ ΚΑΤΑΠΟΝΗΣΕΙΣ 1. Ειαγωγή Ήδη από το 180 είχε διαπιτωθεί ότι τα µεταλλικά υλικά, όταν καταπονούνται από επαναλαµβανόµενες ή χρονικά µεταβαλλόµενες

Διαβάστε περισσότερα

Κεφάλαιο 9 ο ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΟΠΩΣΗ

Κεφάλαιο 9 ο ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΟΠΩΣΗ Κεφάλιο 9 ο ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΟΠΩΣΗ ρ. Ν. Αλεξό ουλος ΚΕΦΑΛΑΙΟ 9 ο : ΚΟΠΩΣΗ ΣΥΝΟΠΤΙΚΑ ΘΕΩΡΗΤΙΚΑ ΣΤΟΙΧΕΙΑ Έχει πρτηρηθεί ότι εάν έν µετλλικό εξάρτηµ ή δοκίµιο υποβληθεί ε ενλλόµενες περιοδικές

Διαβάστε περισσότερα

Σεισμολογία. Ελαστική Τάση, Παραμόρφωση (Κεφ.2, Σύγχρονη Σεισμολογία)

Σεισμολογία. Ελαστική Τάση, Παραμόρφωση (Κεφ.2, Σύγχρονη Σεισμολογία) Σειμολογία Ελατική Τάη, Παραμόρφωη (Κεφ., Σύγχρονη Σειμολογία) Τι είναι Σειμός O ειμός είναι η γένεη και μετάδοη ελατικών κυμάτων μέα από το φλοιό της γης, τα κύματα δημιουργούνται από τη διάρρηξη των

Διαβάστε περισσότερα

Μάθημα: Πειραματική αντοχή των υλικών Συμπεριφορά των υλικών σε δυναμικές φορτίσεις-κόπωση

Μάθημα: Πειραματική αντοχή των υλικών Συμπεριφορά των υλικών σε δυναμικές φορτίσεις-κόπωση Μάθημα: Πειραματική αντοχή των υλικών Συμπεριφορά των υλικών σε δυναμικές φορτίσεις-κόπωση Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Κόπωσης. ΕργαστηριακήΆσκηση 5 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Κόπωσης. ΕργαστηριακήΆσκηση 5 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Κόπωσης ΕργαστηριακήΆσκηση 5 η Σκοπός Σκοπός του πειράµατος είναι να κατανοηθούν οι αρχές του πειράµατος κόπωσης ο προσδιορισµός της καµπύλης Wöhler ενός υλικού µέσω της οποίας καθορίζονται

Διαβάστε περισσότερα

Επίδραση υπεργήρανσης στην κυκλική συμπεριφορά τάσης παραμόρφωσης κράματος Αλουμινίου 2024-T3

Επίδραση υπεργήρανσης στην κυκλική συμπεριφορά τάσης παραμόρφωσης κράματος Αλουμινίου 2024-T3 Επίδραση υπεργήρανσης στην κυκλική συμπεριφορά τάσης παραμόρφωσης κράματος Αλουμινίου 2024-T3 Α. Tζαμτζής 1,*, Α.Θ. Κερμανίδης 2 1 Εργαστήριο Μηχανικής & Αντοχής Υλικών, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ Διάλεξη 4η ΣΧΕΔΙΑΣΜΟΣ ΕΚΣΚΑΦΩΝ ΣΕ ΣΥΜΠΑΓΕΣ ΠΕΤΡΩΜΑ

ΣΧΕΔΙΑΣΜΟΣ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ Διάλεξη 4η ΣΧΕΔΙΑΣΜΟΣ ΕΚΣΚΑΦΩΝ ΣΕ ΣΥΜΠΑΓΕΣ ΠΕΤΡΩΜΑ Εργατήριο Τεχνολογίας ιάνοιξης Σηράγγων, ΕΜΠ. ΣΧΕΔΙΑΣΜΟΣ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ Διάλεξη η ΣΧΕΔΙΑΣΜΟΣ ΕΚΣΚΑΦΩΝ ΣΕ ΣΥΜΠΑΓΕΣ ΠΕΤΡΩΜΑ Α.Ι. Σοφιανός Τάεις γύρω από υπόγεια ανοίγματα ε ελατικό πέτρωμα - Κυκλικό άνοιγμα

Διαβάστε περισσότερα

ΚΟΠΩΣΗ και SolidWorks SIMULATION Professional, Σχεδιάστε τις κατασκευές σας προβλέποντας την κόπωση.

ΚΟΠΩΣΗ και SolidWorks SIMULATION Professional, Σχεδιάστε τις κατασκευές σας προβλέποντας την κόπωση. ΚΟΠΩΣΗ και SolidWorks SIMULATION Professional, Σχεδιάστε τις κατασκευές σας προβλέποντας την κόπωση. Η εμπειρία και πολλές φορές τα τραγικά λάθη, οδηγούν στην γνώση και την πρόοδο: το 1954, ο όρος κόπωση

Διαβάστε περισσότερα

12.1 Σχεδιασμός αξόνων

12.1 Σχεδιασμός αξόνων 1.1 Σχεδιαμός αξόνων Επιδιώκοντας τον χεδιαμό αξόνων αναζητούμε τις διαμέτρους τα διάφορα ημεία αλλαγής διατομών ή επιβολής φορτίων και τα μήκη του άξονα που αντιτοιχούν τις διαμέτρους, την ακτίνα καμπυλότητας

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ IΙ ΕΦΕΛΚΥΣΜΟΣ ΘΛΙΨΗ ΡΑΒ ΩΤΩΝ ΦΟΡΕΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ IΙ ΕΦΕΛΚΥΣΜΟΣ ΘΛΙΨΗ ΡΑΒ ΩΤΩΝ ΦΟΡΕΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ IΙ ΕΦΕΛΚΥΣΜΟΣ ΘΛΙΨΗ ΡΑΒ ΩΤΩΝ ΦΟΡΕΩΝ Η περίπτωη του εφελκυμού και της θλίψης των ραβδωτών φορέων είναι ενδεικτική για την αφετηρία της μελέτης παραμορφώιμων τερεών. Πρόκειται για προβλήματα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ V: ΜHXANIKH ΣYMΠΕΡΙΦΟΡΑ Ε ΑΦΙΚΟΥ ΣΤΟΙΧΕΙΟΥ

ΚΕΦΑΛΑΙΟ V: ΜHXANIKH ΣYMΠΕΡΙΦΟΡΑ Ε ΑΦΙΚΟΥ ΣΤΟΙΧΕΙΟΥ ΚΕΦΑΛΑΙΟ V: ΜHXANIKH ΣYMΠΕΡΙΦΟΡΑ Ε ΑΦΙΚΟΥ ΣΤΟΙΧΕΙΟΥ 1 Οι υνηθέτερες δοκιμές της Εδαφομηχανικής 2 Μονοδιάτατη υμπίεη Τυπική υμπεριφορά ( v -ε v ) Μέτρο Συμπίεης (D) Φόρτιη αποφόρτιη επαναφόρτιη ιαφορές

Διαβάστε περισσότερα

6 η ΕΝΟΤΗΤΑ ΣΚΥΡΟΔΕΜΑ: ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ, ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ

6 η ΕΝΟΤΗΤΑ ΣΚΥΡΟΔΕΜΑ: ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ, ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΤΕΧΝΙΚΑ ΥΛΙΚΑ 6 η ΕΝΟΤΗΤΑ ΣΚΥΡΟΔΕΜΑ: ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ, ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ Ε. Βιντζηλαίου (Συντονιστής), Ε. Βουγιούκας, Ε. Μπαδογιάννης Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Οριζόντια βολή. Επιλέγοντας την ταχύτητα βολής.

Οριζόντια βολή. Επιλέγοντας την ταχύτητα βολής. η Εφαρμογή (Το επιτυχημένο service) Οριζόντια βολή. Επιλέγοντας την ταχύτητα βολής. Νεαρός τενίτας που έχει ύψος h ν =,6m εκτελεί service και το μπαλάκι φεύγει από ύψος h =,4m πάνω από το κεφάλι του με

Διαβάστε περισσότερα

ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων Εφαρμογές. A. Μπενάρδος Λέκτορας ΕΜΠ. Δ. Καλιαμπάκος Καθηγητής ΕΜΠ

ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων Εφαρμογές. A. Μπενάρδος Λέκτορας ΕΜΠ. Δ. Καλιαμπάκος Καθηγητής ΕΜΠ ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ Μέθοδος και Εφαρμογές. Μπενάρδος Λέκτορας ΕΜΠ Δ. Καλιαμπάκος Καθηγητής ΕΜΠ Στύλων Παράδειγμα Ο χεδιαμός των τη μέθοδο και γίνεται με βάη τη θεωρία της υνειφέρουας ς Κάθε τύλος φέρει το

Διαβάστε περισσότερα

(a) Λεία δοκίµια, (b) δοκίµια µε εγκοπή, (c) δοκίµια µε ρωγµή

(a) Λεία δοκίµια, (b) δοκίµια µε εγκοπή, (c) δοκίµια µε ρωγµή ΜηχανικέςΜετρήσεις Βασισµένοστο Norman E. Dowling, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, Third Edition, 2007 Pearson Education (a) οκιµήεφελκυσµού,

Διαβάστε περισσότερα

S συµβολίζονται ως. Είδη φορτίων: (α) επιφανειακά (π.χ. λόγω επαφής του θεωρούµενου σώµατος µε άλλα σώµατα),

S συµβολίζονται ως. Είδη φορτίων: (α) επιφανειακά (π.χ. λόγω επαφής του θεωρούµενου σώµατος µε άλλα σώµατα), ΑΝΑΛΥΣΗ ΤΩΝ ΤΑΣΕΩΝ Η έννοια του ελκυτή (tracto): M(υνιταµένη ροπή) F (υνιταµένη δύναµη) Θεωρείται παραµορφώιµο τερεό ε ιορροπία υπό εξωτερική φόρτιη (αποκλείονται ταχέως µεταβαλλόµενες φορτίεις και εποµένως

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Α. Ασημακόπουλος

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΑ ΙΑΡΡΟΗΣ (YIELD CRITERIA)- ΝΟΜΟΙ ΡΟΗΣ- ΑΝΙΣΟΤΡΟΠΙΑ

ΚΡΙΤΗΡΙΑ ΙΑΡΡΟΗΣ (YIELD CRITERIA)- ΝΟΜΟΙ ΡΟΗΣ- ΑΝΙΣΟΤΡΟΠΙΑ ΚΡΙΤΗΡΙΑ ΙΑΡΡΟΗΣ YIELD CRITERIA- ΝΟΜΟΙ ΡΟΗΣ- ΑΝΙΣΟΤΡΟΠΙΑ Κριτήριο διαρροής είναι η µαθηµατική υνθήκη που περιγράφει την εντατική κατάταη ε ένα ηµείο της µάζας του υλικού, ώτε το ηµείο αυτό να υµβαίνει

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Τεχνικής Μηχανικής Διαγράμματα Ελευθέρου Σώματος (Δ.Ε.Σ.) Υπολογισμός Αντιδράσεων Διαγράμματα Φορτίσεων Διατομών (MNQ) Αντοχή Φορέα? Αντικείμενο Τεχνικής Μηχανικής Σχήμα 2 F Y A Γ B A Y B Y 1000N

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΚΑΙ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ. Βιβλίο διδάσκοντα με λύσεις προβλημάτων. Κεφάλαιο 2. ΕΥΡΙΠΙΔΗΣ ΠΑΠΑΜΙΧΟΣ Καθηγητής

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΚΑΙ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ. Βιβλίο διδάσκοντα με λύσεις προβλημάτων. Κεφάλαιο 2. ΕΥΡΙΠΙΔΗΣ ΠΑΠΑΜΙΧΟΣ Καθηγητής ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΚΑΙ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Βιβλίο διδάκοντα με λύεις προβλημάτων Κεφάλαιο ΕΥΡΙΠΙΔΗΣ ΠΑΠΑΜΙΧΟΣ Καθηγητής epapamic@civil.auth.gr Euripides apamichos Digitally signed y Euripides apamichos DN: c=gr,

Διαβάστε περισσότερα

Σ. Η. ΔΡΙΤΣΟΣ. Kg/m³. Kg/m³ 0,80

Σ. Η. ΔΡΙΤΣΟΣ. Kg/m³. Kg/m³ 0,80 TΟΙΧΟΠΟΙΙΕΣ ΜΗΧΑΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΗΣ Η µηχανική υµπεριφορά της τοιχοποιίας περιράφεται από τα εξής χαρακτηριτικά: καθ. Στέφανος ρίτος Τµήµα Πολιτικών Σ. Μηχανικών, Πανεπιτήµιο Η. Πατρών ΔΡΙΤΣΟΣ Θλιπτική

Διαβάστε περισσότερα

1 Η ΕΡΓΑΣΤΗΡΙΑΚΗ ΜΕΛΕΤΗ ΧΑΛΥΒΕΣ

1 Η ΕΡΓΑΣΤΗΡΙΑΚΗ ΜΕΛΕΤΗ ΧΑΛΥΒΕΣ Η ΕΡΓΑΣΤΗΡΙΑΚΗ ΜΕΛΕΤΗ ΧΑΛΥΒΕΣ ΕΡΓΑΣΤΗΡΙΑΚΟ ΤΡΙΩΡΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ Α.Μ. ΗΜΕΡΟΜΗΝΙΑ ΑΣΚΗΣΗ Α. ΟΠΤΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ. Στο μεταλλογραφικό μικροσκόπιο Leitz μελετήθηκαν κατάλληλα προετοιμασμένα δοκίμια χάλυβα. 2.

Διαβάστε περισσότερα

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και 9 Έτω U R ανοικτό ύνολο και Επικαµπύλια ολοκληρώµατα f : U R R C καµπύλη :[, ] U υνεχής πραγµατική υνάρτηη. Θεωρούµε µια ώτε ( t) x( t), y( t), z( t) ύνθετη υνάρτηη fo :[, ] R t [, ] f x( t), y( t), z(

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Μελέτη εντατικοπαραµορφωιακής κατάταης ρηγµατωµένων τερεών ωµάτων µε τη µέθοδο των αυνεχών µετατοπίεων» ΤΣΟΥΤΣΟΥΒΑ ΜΑΡΙΑ ΕΞΕΤΑΣΤΙΚΗ

Διαβάστε περισσότερα

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Θεματική Ενότητα 4 Υπόγεια ροή Νόμος Darcy Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εφαρµογή κριτηρίου παραβολοειδούς εκ περιστροφής στη Βραχοµηχανική

Εφαρµογή κριτηρίου παραβολοειδούς εκ περιστροφής στη Βραχοµηχανική Εφαρµογή κριτηρίου παραβολοειδούς εκ περιτροφής τη Βραχοµηχανική Appliaion of a paaboloid ieion in Rok Mehanis ΣΑΚΕΛΛΑΡΙΟΥ, Μ.Γ., ρ Μηχ., Π.Μ. & Α.Τ.Μ., Αναπληρωτής Καθηγητής, Ε.Μ.Π. ΠΕΡΙΛΗΨΗ : Στο παρόν

Διαβάστε περισσότερα

20/3/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Εφελκυσμός χαλύβδινης ράβδου. Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος)

20/3/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Εφελκυσμός χαλύβδινης ράβδου. Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Σημειώσεις Εργαστηριακής Άσκησης Εφελκυσμός χαλύβδινης ράβδου Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Εργαστηριακή Άσκηση 1 Εισαγωγή στη Δοκιμή Εφελκυσμού Δοκίμιο στερεωμένο ακλόνητα

Διαβάστε περισσότερα

Δυναμική Αντοχή. Σύνδεση με προηγούμενο μάθημα. Περιεχόμενα F = A V = M r = J. Δυναμική καταπόνηση κόπωση. Καμπύλη Woehler.

Δυναμική Αντοχή. Σύνδεση με προηγούμενο μάθημα. Περιεχόμενα F = A V = M r = J. Δυναμική καταπόνηση κόπωση. Καμπύλη Woehler. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Μάθημα: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Δυναμική Αντοχή Σύνδεση με προηγούμενο μάθημα Καμπύλη τάσης παραμόρφωσης Βασικές φορτίσεις A V y A M y M x M I

Διαβάστε περισσότερα

Υπόγεια ροή. Παρουσίαση 2 από 4: Νόμος Darcy

Υπόγεια ροή. Παρουσίαση 2 από 4: Νόμος Darcy Υπόγεια ροή Παρουσίαση 2 από 4: Νόμος Darcy 1 Κύρια ερωτήματα ροής & νόμος Darcy Πόσον όγκο νερού μπορούμε να αντλήσουμε; Σχετικά μεγέθη: ταχύτητα, παροχή σε απλά μονοδιάστατα προβλήματα, τα βρίσκουμε

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 8β Θεμελιώσεις με πασσάλους : Αξονική φέρουσα ικανότητα εμπηγνυόμενων πασσάλων με στατικούς τύπους 25.12.2005

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ IΙ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΥΡΙΕΣ ΤΑΣΕΙΣ 1. Τάεις γύρω από ένα Σηµείο Όπως αναφέρθηκε ε προηγούµενη ενότητα, υχνά είναι πιο εύχρητο να αναλύονται οι τάεις γύρω από ένα ηµείο

Διαβάστε περισσότερα

5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ

5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ ΜΑΘΗΜΑ : ΕΑΦΟΜΗΧΑΝΙΚΗ Ι - 5 ο Εξ. Πολιτικών Μηχανικών - Ακαδημαϊκό Έτος : 00 004 5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια : Γιάννης Κουκούλης, Υποψήφιος ιδάκτορας ΕΜΠ Λίγα «Θεωρητικά»!!! Η παρούα

Διαβάστε περισσότερα

Ελαττώματα συγκόλλησης Έλεγχος συγκολλήσεων Αρχές σχεδιασμού. Στοιχεία συγκολλήσεων

Ελαττώματα συγκόλλησης Έλεγχος συγκολλήσεων Αρχές σχεδιασμού. Στοιχεία συγκολλήσεων Ποιότητα συγκολλήσεων Ελαττώματα συγκόλλησης Έλεγχος συγκολλήσεων Αρχές σχεδιασμού Νοε-14 Γ.Βοσνιάκος Στοιχεία συγκολλήσεων Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε

Διαβάστε περισσότερα

Θεμελιώσεις τεχνικών έργων. Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας

Θεμελιώσεις τεχνικών έργων. Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Θεμελιώσεις τεχνικών έργων Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Ορισμός Θεμελίωση (foundation) είναι το κατώτερο τμήμα μιας κατασκευής και αποτελεί τον τρόπο διάταξης των δομικών

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 25-6 ΔΙΑΛΕΞΗ 9 Θεμελιώσεις με πασσάλους Αξονική φέρουσα ικανότητα έγχυτων πασσάλων 21.12.25 2. Αξονική φέρουσα ικανότητα μεμονωμένου

Διαβάστε περισσότερα

Εικόνα 2: Ηλεκτρονική σύστηµα ελέγχου παραγωγής τροποποιηµένης ασφάλτου / ασφαλτοµίγµατος

Εικόνα 2: Ηλεκτρονική σύστηµα ελέγχου παραγωγής τροποποιηµένης ασφάλτου / ασφαλτοµίγµατος Εικόνα 2: Ηλεκτρονική σύστηµα ελέγχου παραγωγής τροποποιηµένης ασφάλτου / ασφαλτοµίγµατος Η επιλογή της κοκκοµετρικής διαβάθµισης των αδρανών για τη σύνθεση του ασφαλτοµίγµατος έγινε µε όρια που προέκυψαν

Διαβάστε περισσότερα

S AB = m. S A = m. Υ = m

S AB = m. S A = m. Υ = m χολή αγρονόµων και τοπογράφων µηχανικών ο εξάµηνο Άκηη Απλοί γεωµετρικοί υπολογιµοί ίνεται το τετράπλευρο ΑΒΓ που φαίνεται το χήµα. Στο ύπαιθρο µετρήθηκαν οι οριζόντιες πλευρές (µήκη) ΑΒ και Α. Επίης είναι

Διαβάστε περισσότερα

(α) (β) (γ) Σχήμα Error! No text of specified style in document.-1: Ελικοειδή ελατήρια διαφόρων διατομών και μορφών

(α) (β) (γ) Σχήμα Error! No text of specified style in document.-1: Ελικοειδή ελατήρια διαφόρων διατομών και μορφών 11.6 Ελικοειδή θλιπτικά ελατήρια Στα προηγούμενο κεφάλαιο είδαμε αναλυτικά τα ελικοειδή κυλινδρικά ελατήρια υμπίεης, κυκλικής διατομής ύρματος. Στο Σχήμα 11-7 φαίνονται (α) κυλινδρικό ελατήριο υμπίεης

Διαβάστε περισσότερα

Αντοχή κατασκευαστικών στοιχείων σε κόπωση

Αντοχή κατασκευαστικών στοιχείων σε κόπωση 11.. ΚΟΠΩΣΗ Ενώ ο υπολογισμός της ροπής αντίστασης της μέσης τομής ως το πηλίκο της ροπής σχεδίασης προς τη μέγιστη επιτρεπόμενη τάση, όπως τα μεγέθη αυτά ορίζονται κατά ΙΑS, προσβλέπει στο να εξασφαλίσει

Διαβάστε περισσότερα

Νόμος των Wiedemann-Franz

Νόμος των Wiedemann-Franz Άκηη 38 Νόμος των Widmann-Franz 38.1 Σκοπός Σκοπός της άκηης αυτής είναι η μέτρηη της ταθεράς Lorntz ε δύο διαφορετικά μέταα οι ιδιότητες των οποίων διαφέρουν ημαντικά. Η ταθερά του Lorntz μετράται μέω

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΥΠΟΛΟΓΙΣΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ Μέρος» 9ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 6-7 Μ. ΚΑΒΒΑΔΑΣ, Αναπλ. Καθηγητής

Διαβάστε περισσότερα

Διδακτορική διατριβή. Προσδιορισμός της διάρκειας ζωής σε κόπωση ινωδών συνθέτων υλικών υπό επίπεδη εντατική κατάσταση

Διδακτορική διατριβή. Προσδιορισμός της διάρκειας ζωής σε κόπωση ινωδών συνθέτων υλικών υπό επίπεδη εντατική κατάσταση Πανεπιτήμιο Πατρών Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Τομέας Εφαρμομένης Μηχανικής Διδακτορική διατριβή Προδιοριμός της διάρκειας ζωής ε κόπωη ινωδών υνθέτων υλικών υπό επίπεδη εντατική κατάταη

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΣΤΗ ΘΡΑΥΣΤΟΜΗΧΑΝΙΚΗ (Με εφαρμογές σε προβλήματα μηχανικής των υλικών, υπογείων έργων και σηράγγων)

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΣΤΗ ΘΡΑΥΣΤΟΜΗΧΑΝΙΚΗ (Με εφαρμογές σε προβλήματα μηχανικής των υλικών, υπογείων έργων και σηράγγων) Γ. Ε. ΕΞΑΔΑΚΤΥΛΟΥ ΚΑΘΗΓΗΤΟΥ ΠΟΛΥΤΕΧΝΕΙΟΥ ΚΡΗΤΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΣΤΗ ΘΡΑΥΣΤΟΜΗΧΑΝΙΚΗ (Με εφαρμογές ε προβλήματα μηχανικής των υλικών, υπογείων έργων και ηράγγων) Χανιά 006 Eιαγωγή

Διαβάστε περισσότερα

Άσκηση 19 Εξαναγκασμένες ηλεκτρικές ταλαντώσεις και συντονισμός

Άσκηση 19 Εξαναγκασμένες ηλεκτρικές ταλαντώσεις και συντονισμός Μιχάλης Καλογεράκης 9 ο Εξάμηνο ΣΕΜΦΕ ΑΜ:987 Υπεύθυνος Άκηης: Κα Μανωλάτου Συνεργάτις: Ζάννα Βιργινία Ημερομηνία Διεξαγωγής:8//5 Άκηη 9 Εξαναγκαμένες ηλεκτρικές ταλαντώεις και υντονιμός ) Ειαγωγή: Σκοπός

Διαβάστε περισσότερα

Εργαστήριο Τεχνολογίας Υλικών

Εργαστήριο Τεχνολογίας Υλικών Εργαστήριο Τεχνολογίας Υλικών Εργαστηριακή Άσκηση 07 Εφελκυσμός Διδάσκοντες: Δρ Γεώργιος Ι. Γιαννόπουλος Δρ Θεώνη Ασημακοπούλου Δρ Θεόδωρος Λούτας Τμήμα Μηχανολογίας ΑΤΕΙ Πατρών Πάτρα 2011 1 Μηχανικές

Διαβάστε περισσότερα

ΑΣΤΟΧIΑ ΤΩΝ ΥΛΙΚVΝ ΙΙ ΚOΠΩΣΗ, ΕΡΠΥΣΜOΣ

ΑΣΤΟΧIΑ ΤΩΝ ΥΛΙΚVΝ ΙΙ ΚOΠΩΣΗ, ΕΡΠΥΣΜOΣ ΑΣΤΟΧIΑ ΤΩΝ ΥΛΙΚVΝ ΙΙ ΚOΠΩΣΗ, ΕΡΠΥΣΜOΣ 1. ΚΟΠΩΣΗ ( FATIGUE ) Η κόπωση = μορφή αστοχίας που εμφανίζεται κάτω από επίδραση δυναμικών και κυμαινομένων τάσεων (π.χ. γέφυρες, αεροσκάφη, εξαρτήματα μηχανών)

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΟΥ ΕΦΑΡΜΟΓΩΝ ΡΟΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του Γεωργίου Π. Νίνη «Η Θεωρία Ομάδων και

Διαβάστε περισσότερα

Δδά Διδάσκοντες: Δημήτριος Ρόζος, Επικ. Καθηγητής ΕΜΠ Τομέας Γεωλογικών Επιστημών, Σχολή Μηχανικών Μεταλλείων Μεταλλουργών

Δδά Διδάσκοντες: Δημήτριος Ρόζος, Επικ. Καθηγητής ΕΜΠ Τομέας Γεωλογικών Επιστημών, Σχολή Μηχανικών Μεταλλείων Μεταλλουργών ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ Δδά Διδάκοντες: Δημήτριος Ρόζος, Επικ. Καθηγητής ΕΜΠ Τομέας Γεωλογικών

Διαβάστε περισσότερα

3 η ΕΝΟΤΗΤΑ ΦΥΣΙΚΕΣ ΚΑΙ ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ

3 η ΕΝΟΤΗΤΑ ΦΥΣΙΚΕΣ ΚΑΙ ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΤΕΧΝΙΚΑ ΥΛΙΚΑ 3 η ΕΝΟΤΗΤΑ ΦΥΣΙΚΕΣ ΚΑΙ ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ Ε. Βιντζηλαίου (Συντονιστής), Ε. Βουγιούκας, Ε. Μπαδογιάννης Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑ ΡΟΗΣ ΥΠΕΡΑΝΩ ΤΟΠΙΚΗΣ ΑΝΥΨΩΣΕΩΣ

ΠΡΟΒΛΗΜΑ ΡΟΗΣ ΥΠΕΡΑΝΩ ΤΟΠΙΚΗΣ ΑΝΥΨΩΣΕΩΣ ΠΡΟΒΛΗΜΑ ΡΟΗΣ ΥΠΕΡΑΝΩ ΤΟΠΙΚΗΣ ΑΝΥΨΩΣΕΩΣ Ενέργειας Η ανάλυη του προβλήµατος γίνεται µε την χρήη του διαγράµµατος Ειδικής (α) Υποκρίιµη ροή τα ανάντη επί Ήπιας Κλίεως Πυθµένα το Σχήµα 1 Έτω ότι οµοιόµορφη,

Διαβάστε περισσότερα

Κεφάλαιο 11 Ιξώδης συμπεριφορά

Κεφάλαιο 11 Ιξώδης συμπεριφορά Κεφάλαιο Ιξώδης υμπεριφορά Οριμοί Ερπυμός (creep) καλείται η χρονικά εξαρτημένη παραμόρφωη του πετρώματος, που παρατηρείται όταν το πέτρωμα φορτίζεται υπό ταθερή εντατική κατάταη ε ταθερή θερμοκραία. Η

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Ερπυσμού. ΕργαστηριακήΆσκηση 4 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Ερπυσμού. ΕργαστηριακήΆσκηση 4 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Ερπυσμού ΕργαστηριακήΆσκηση 4 η Σκοπός Σκοπός του πειράµατος είναι ο πειραµατικός προσδιορισµός της καµπύλης ερπυσµού, υπό σταθερό εξωτερικό φορτίο και ελεγχοµένη θερµοκρασία εκτέλεσης

Διαβάστε περισσότερα

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Απρίλιος 2016

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Απρίλιος 2016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΘΕΜΑ 1 ο (25 Μονάδες) (Καθ. Β.Ζασπάλης) Σε μια διεργασία ενανθράκωσης κάποιου

Διαβάστε περισσότερα

Ακαδημαϊκό έτος ΘΕΜΑ 1. Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = k[a] α [B] β

Ακαδημαϊκό έτος ΘΕΜΑ 1. Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = k[a] α [B] β Ακαδημαϊκό έτος 4-5 ΘΕΜΑ Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = [] α [B] β Χρησιμοποιώντας τη μέθοδο των αρχικών ταχυτήτων βρήκαμε ότι η αντίδραση είναι δεύτερης τάξης ως προς Α και πρώτης

Διαβάστε περισσότερα

«Αλληλεπίδραση Εδάφους Κατασκευής»

«Αλληλεπίδραση Εδάφους Κατασκευής» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «Αηεπίδραη Εδάφους Κατακευής» 8ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 5-6 ΔΙΑΛΕΞΗ Διάνοιξη και προωρινή

Διαβάστε περισσότερα

Μηχανικές ιδιότητες συνθέτων υλικών: Θραύση. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών

Μηχανικές ιδιότητες συνθέτων υλικών: Θραύση. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Μηχανικές ιδιότητες συνθέτων υλικών: Θραύση Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Μηχανική της θραύσης: Εισαγωγή Υποθέσεις: Τα υλικά συμπεριφέρονται γραμμικώς ελαστικά Οι ρωγμές (ή τα ελαττώματα)

Διαβάστε περισσότερα

Εργαστήριο Εδαφομηχανικής

Εργαστήριο Εδαφομηχανικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εργαστήριο Εδαφομηχανικής Ενότητα 12η: Δοκιμή Άμεσης Διάτμησης Πλαστήρα Βιολέττα Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1

ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1 Στατιτική υµπεραµατολογία για τη διαδικαία της ποιότητας Στο προηγούµενο κεφάλαιο κάναµε την παραδοχή και υποθέαµε ότι οι παράµετροι των κατανοµών των πιθανοτήτων άρα και οι παράµετροι της διαδικαίας ήταν

Διαβάστε περισσότερα

Παναγιώτης Σισμάνης 1, Αβραάμ Μαστοράκης 2

Παναγιώτης Σισμάνης 1, Αβραάμ Μαστοράκης 2 Αντοχή σε Κόπωση των Χαλύβων Οπλισμού Σκυροδέματος (ΧΟΣ) Κανονιστικές απαιτήσεις και πειραματικά συμπεράσματα Fatigue strength of reinforced-concrete steel bars (rebars) Regulations and experimental conclusions

Διαβάστε περισσότερα

Ψηφιακός Έλεγχος. 8 η διάλεξη Σφάλματα. Ψηφιακός Έλεγχος 1

Ψηφιακός Έλεγχος. 8 η διάλεξη Σφάλματα. Ψηφιακός Έλεγχος 1 Ψηφιακός Έλεγχος 8 η διάλεξη Σφάλματα Ψηφιακός Έλεγχος Δυαδική αριθμητική και μήκος λέξης Ένας αριθμός μπορεί να αναπαραταθεί απο C+ bits που ονομάζονται λέξη. Το μήκος της λέξης είναι πάντα πεπεραμένο,

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ - 2017 Β3. Κόπωση Υλικών Κώστας Γαλιώτης, καθηγητης Τμήματος Χημικών Μηχανικών galiotis@chemeng.upatras.gr Β3. Κόπωση/Μηχανική Υλικών 1 Εισαγωγή (1/2) Η κόπωση είναι μία μορφή αστοχίας

Διαβάστε περισσότερα

EN EN Μερικοί συντ αντιστάσεων (R) g b = g s = Συντελεστές μείωσης Συντ μείωσης καμπύλης φορτίου καθίζησης : k = 1,00 [ ] Έλεγχοι Συντ.

EN EN Μερικοί συντ αντιστάσεων (R) g b = g s = Συντελεστές μείωσης Συντ μείωσης καμπύλης φορτίου καθίζησης : k = 1,00 [ ] Έλεγχοι Συντ. Ανάλυση πασσάλου CPT Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 09.10.2008 Ρυθμίσεις Πρότυπο - EN 1997 - DA1 CPT πάσσαλος Μεθοδολογία επαλήθευσης : Τύπος ανάλυσης : Μερικός συντ αντίστασης αιχμής : Μερικός

Διαβάστε περισσότερα

Επιφανειακή οξείδωση χάλυβα οπλισµού σκυροδέµατος: επίδραση στην συνάφεια

Επιφανειακή οξείδωση χάλυβα οπλισµού σκυροδέµατος: επίδραση στην συνάφεια Επιφανειακή οξείδωση χάλυβα οπλισµού σκυροδέµατος: επίδραση στην συνάφεια Κ.Γ. Τρέζος, Θ. Βασιλόπουλος, Εργαστήριο Ωπλισµένου Σκυροδέµατος Ε.Μ.Π Σ. Μουγιάκος, Εργαστήριο Μετάλλων ΚΕ Ε. Λέξεις κλειδιά:

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ

ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ Ιχύς P 10 KW Στροφές ειόδου n 1450 τρ./λεπτό Σχέη μετάδοης i 4 Α. ΥΠΟΛΟΓΙΣΜΟΙ ΟΔΟΝΤΩΤΩΝ ΤΡΟΧΩΝ 1. Προωρινή εκλογή υλικού δοντιού: Για την επιλογή του υλικού

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα εφελκυσμού

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα εφελκυσμού Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα εφελκυσμού Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 οκίμια εφελκυσμού

Διαβάστε περισσότερα

Διαμορφώσεις συμπαγούς υλικού (bulk deformation processes)

Διαμορφώσεις συμπαγούς υλικού (bulk deformation processes) Διαμορφώσεις συμπαγούς υλικού (bulk deformation processes) 1. Στις κατεργασίες διαμορφώσεων αναπτύσσονται σύνθετες τασικές καταστάσεις που συνοψίζονται στους δύο πίνακες που ακολουθούν. 1 2. Τα χαρακτηριστικά

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας 1 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Πρόβλημα 1 Μηχανική Ρευστών Κεφάλαιο 1 Λυμένα Προβλήματα Μια αμελητέου πάχους επίπεδη πλάκα διαστάσεων (0 cm)x(0

Διαβάστε περισσότερα

ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ

ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ Η ερµιονική εκποµπή ηλεκτρονίων είναι ένα φαινόµενο το οποίο βαίζεται η λειτουργία της λυχνίας κενού. Η δίοδος λυχνία κενού αποτελεί ορόηµο τον πολιτιµό του ύγχρονου ανρώπου

Διαβάστε περισσότερα

3 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

3 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3.1 3 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΤΡΙΒΗΣ 3.1. Θεωρίες περί τριβής Οι θεωρίες για τη φύση της τριβής έχουν μεταβάλλονται, καθώς η γνώση του ανθρώπου για τη φύση των στερεών σωμάτων συμπληρώνεται και

Διαβάστε περισσότερα

ΑΚΡΑΙΟΙ ΚΟΜΒΟΙ Ω.Σ. ΜΕ ΣΠΕΙΡΟΕΙ ΕΙΣ ΟΠΛΙΣΜΟΥΣ. ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ

ΑΚΡΑΙΟΙ ΚΟΜΒΟΙ Ω.Σ. ΜΕ ΣΠΕΙΡΟΕΙ ΕΙΣ ΟΠΛΙΣΜΟΥΣ. ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΑΚΡΑΙΟΙ ΚΟΜΒΟΙ Ω.Σ. ΜΕ ΣΠΕΙΡΟΕΙ ΕΙΣ ΟΠΛΙΣΜΟΥΣ. ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ Χρ. Καραγιάννης Πολιτικός Μηχ. ΕΜΠ, ρ.μηχ., Καθηγητής Πολυτεχνικής Σχ. ΠΘ Γ. Σιρκελής Πολιτικός Μηχανικός, MSc ΠΘ Κ. Χαλιορής ρ. Πολιτικός

Διαβάστε περισσότερα

(MPa) f ctk0.05 = 0.7f ctm (MPa); E s = 200 GPa

(MPa) f ctk0.05 = 0.7f ctm (MPa); E s = 200 GPa Βοήθηµα µαθήµατος Ωπλισµένο Σκυρόδεµα Ια (Προσοχή: Εκτύπωση 6 σελίδων σε 3 φύλλα) Ε ΟΜΕΝΑ ΓΙΑ ΤΟ ΣΚΥΡΟ ΕΜΑ ΚΑΙ ΤΟΝ ΧΑΛΥΒΑ Συντελεστές υλικών και φορτίων για ΟΚΑ (βασικοί συνδυασµοί): γ c =1.5, γ =1.15

Διαβάστε περισσότερα

Ασκήσεις 2 ου Κεφαλαίου, Νόμος του Gauss

Ασκήσεις 2 ου Κεφαλαίου, Νόμος του Gauss Ασκήσεις 2 ου Κεφαλαίου, Νόμος του Guss 22.36.Μία αγώγιμη σφαίρα με φορτίο q έχει ακτίνα α. Η σφαίρα βρίσκεται στο εσωτερικό μίας κοίλης ομόκεντρης αγώγιμης σφαίρας με εσωτερική ακτίνα και εξωτερική ακτίνα.

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή τυχαία μεταβλητή (τ.μ. ( είναι μια υνάρτηη που ε κάθε απλό ενδεχόμενο (ω ενός δειγματικού χώρου (Ω αντιτοιχεί έναν αριθμό. Ω ω (ω R ιακριτή τ.μ. : παίρνει πεπεραμένο

Διαβάστε περισσότερα

Μηχανικές ιδιότητες των μεταλλικών υλικών. Πλαστική συμπεριφορά

Μηχανικές ιδιότητες των μεταλλικών υλικών. Πλαστική συμπεριφορά Μηχανικές ιδιότητες των μεταλλικών υλικών Πλαστική συμπεριφορά Πλαστική παραμόρφωση των μετάλλων Πλαστική παραμόρφωση σημαίνει Μόνιμη παραμόρφωση. 2 Tensile strength (TS) Fracture strength Necking Διάγραμμα

Διαβάστε περισσότερα

Μηχανικές ιδιότητες και δοκιµές ΙΙ

Μηχανικές ιδιότητες και δοκιµές ΙΙ Μηχανικές ιδιότητες και δοκιµές ΙΙ ΟΚΙΜΗ ΚΑΜΨΗΣ ΕΙ Η ΟΚΙΜΩΝ (Σχ. 1) οκιµή κάµψης τριών σηµείων (3-point bending test) οκιµή κάµψης τεσσάρων σηµείων (4-point bending test) Σχήµα 1: Σχηµατική παράσταση της

Διαβάστε περισσότερα

1. Η κανονική κατανοµή

1. Η κανονική κατανοµή . Η κανονική κατανοµή Η κανονική κατανοµή είναι η ηµαντικότερη κατανοµή πιθανοτήτων µε τις περιότερες εφαρµογές. Μελετήθηκε αρχικά από τον De Moire (667-754) και από τον Lple (749-87) οι οποίοι απέδειξαν

Διαβάστε περισσότερα

Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Ιούνιος 2016

Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Ιούνιος 2016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΘΕΜΑ 1 ο (25 Μονάδες) (Καθ. Β.Ζασπάλης) Δοκίμιο από PMMA (Poly Methyl MethAcrylate)

Διαβάστε περισσότερα

Έλαση Διέλαση Ολκή Σφυρηλάτηση. Επισκόπηση κατεργασιών διαμόρφωσης συμπαγούς υλικού - ΕΜΤ

Έλαση Διέλαση Ολκή Σφυρηλάτηση. Επισκόπηση κατεργασιών διαμόρφωσης συμπαγούς υλικού - ΕΜΤ Επισκόπηση κατεργασιών διαμόρφωσης συμπαγούς υλικού Έλαση Διέλαση Ολκή Σφυρηλάτηση Οκτ-15 Γ. Βοσνιάκος Επισκόπηση κατεργασιών διαμόρφωσης συμπαγούς υλικού - ΕΜΤ Άδεια Χρήσης Το παρόν υλικό υπόκειται σε

Διαβάστε περισσότερα

ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ

ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ Ημερίδα: ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΚΤΙΡΙΩΝ & ΓΕΩΤΕΧΝΙΚΩΝ ΕΡΓΩΝ Σ.Π.Μ.Ε. ΗΡΑΚΛΕΙΟ 14.11.2008 ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π.

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ ΚΕΦΑΛΑΙΟ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΔΙΑΚΥΜΑΝΣΗ ΕΝΟΣ ΠΛΗΘΥΣΜΟΥ Έχουμε ήδη δει την εκτιμητική ότι αν ο υπό μελέτη πληθυμός είναι κανονικός, τότε: [ Χi Χ] ( n 1) i= 1 = =

Διαβάστε περισσότερα

Αντοχή σε κόπωση ανακυκλωµένου µε αφρώδη άσφαλτο µίγµατος από φρεζαρισµένο ασφαλτοσκυρόδεµα και ΚΘΑ.

Αντοχή σε κόπωση ανακυκλωµένου µε αφρώδη άσφαλτο µίγµατος από φρεζαρισµένο ασφαλτοσκυρόδεµα και ΚΘΑ. Αντοχή σε κόπωση ανακυκλωµένου µε αφρώδη άσφαλτο µίγµατος από φρεζαρισµένο ασφαλτοσκυρόδεµα και ΚΘΑ. Σ. Κόλιας Αναπληρωτής καθηγητής ΕΜΠ Α. Καραχάλιος, Μ. Κατσάκου, Ε. Κυρκιλή Πολιτικοί Μηχανικοί ΕΜΠ Λέξεις

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους Συνοχή (c) Γωνία τριβής (φ ο ) 2. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας

Διαβάστε περισσότερα

καταστροφικά Δ αποτελέσµατα

καταστροφικά Δ αποτελέσµατα ΠΟΛΥΜΕΡΙΚΕ ΚΟΛΛΕ Ρηγµάτωση Επισκευή ΡΗΓΜΑΤΩΕΙ Αιτία ρηγµατώσεων - συστολή ξήρανσης - διάβρωση οπλισµού - αυξηµένα φορτία. τέφανος Η. ρίτσος Δ Ρ Ι Τ τατική επάρκεια φορέα Ο Τµήµα Πολιτικών Μηχανικών, Πανεπιστήµιο

Διαβάστε περισσότερα

Χ Ρ Η Σ Η Α Ν Α Σ Τ Ο Λ Ε Ω Ν Ι Α Β Ρ Ω Σ Η Σ Γ Ι Α Τ Η Ν Π Ρ Ο Σ Τ Α Σ Ι Α Τ Ο Υ Χ Α Λ Υ Β Α Σ Ε Κ Ο Ν Ι Α Μ Α Τ Α

Χ Ρ Η Σ Η Α Ν Α Σ Τ Ο Λ Ε Ω Ν Ι Α Β Ρ Ω Σ Η Σ Γ Ι Α Τ Η Ν Π Ρ Ο Σ Τ Α Σ Ι Α Τ Ο Υ Χ Α Λ Υ Β Α Σ Ε Κ Ο Ν Ι Α Μ Α Τ Α ΧΡΗΣΗ ΑΝΑΣΤΟΛΕΩΝ ΙΑΒΡΩΣΗΣ ΓΙΑ ΤΗΝ ΠΡΟΣΤΑΣΙΑ ΤΟΥ ΧΑΛΥΒΑ ΣΕ ΚΟΝΙΑΜΑΤΑ Η τεχνική των SG είναι µία εργαστηριακή µέθοδος επιταχυνόµενης δοκιµής, χρήσιµη για γρήγορη εκτίµηση της διάβρωσης των σιδηροπλισµών

Διαβάστε περισσότερα

Πλημμύρες Υδρολογικές εφαρμογές με τη χρήση GIS

Πλημμύρες Υδρολογικές εφαρμογές με τη χρήση GIS Πλημμύρες Υδρολογικές εφαρμογές με τη χρήση GIS Νίκος Μαμάσης Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα 2014 Υδρολογικές εφαρμογές με τη χρήση GIS Γενικά Η τεχνολογία των Συστημάτων Γεωγραφικής

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υλικών Αστοχία: Θραύση, Κόπωση και Ερπυσμός Callister Κεφάλαιο 10 / Ashby Κεφάλαιο 8

Εισαγωγή στην Επιστήμη των Υλικών Αστοχία: Θραύση, Κόπωση και Ερπυσμός Callister Κεφάλαιο 10 / Ashby Κεφάλαιο 8 Εισαγωγή στην Επιστήμη των Υλικών Αστοχία: Θραύση, Κόπωση και Ερπυσμός Callister Κεφάλαιο 10 / Ashby Κεφάλαιο 8 Αστοχία πλοίου λόγω κυκλικής φόρτισης από τα κύματα. Εμφύτευμα ισχίου-κυκλική Φόρτιση κατά

Διαβάστε περισσότερα

6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π.

6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π. 6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π. ΑΣΚΗΣΗ 1 Θα χρηιμοποιηθούν οι χέεις που προκύπτουν από τη θεώρηη γραμμικής ιότροπης

Διαβάστε περισσότερα

( ) 2. Β3) Βέλτιστος Οµοιόµορφος Κβαντιστής µε Κώδικα σταθερού µήκους (R=log 2 (N)). ΛΥΣΗ. R bits/sample. = 10 log10. Θεώρηµα Shannon: = H log 2 (N)

( ) 2. Β3) Βέλτιστος Οµοιόµορφος Κβαντιστής µε Κώδικα σταθερού µήκους (R=log 2 (N)). ΛΥΣΗ. R bits/sample. = 10 log10. Θεώρηµα Shannon: = H log 2 (N) ΠΡΟΒΛΗΜΑ 1 Α)Με βάη το θεώρηµα Shannon για την κωδικοποίηη αναλογικού ήµατος να χαράξετε το διάγραµµα της χέης (S/N) =(), =bit/sample για ένα ήµα µε Gaussian κατανοµή. Β) Χρηιµοποιείτε τους Πίνακες 6.

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος β) Υλικό σηµείο µάζας m κινείται στον άξονα Οx υπό την επίδραση του δυναµικού

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος β) Υλικό σηµείο µάζας m κινείται στον άξονα Οx υπό την επίδραση του δυναµικού ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 1 ΘΕΜΑ 1 α) Υλικό ηµείο µάζας κινείται τον άξονα x Οx υπό την επίδραη του δυναµικού V=V(x) Αν για t=t βρίκεται τη θέη x=x µε ενέργεια Ε δείξτε ότι η κίνηή του δίνεται από

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΟΓΝΩΣΙΑΣ. ΚΟΠΩΣΗ ΜΕ ΔΙΑΒΡΩΣΗ ΚΡΑΜΑΤΟΣ Al7075-T651

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΟΓΝΩΣΙΑΣ. ΚΟΠΩΣΗ ΜΕ ΔΙΑΒΡΩΣΗ ΚΡΑΜΑΤΟΣ Al7075-T651 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΟΓΝΩΣΙΑΣ Διπλωματική Εργασία: ΚΟΠΩΣΗ ΜΕ ΔΙΑΒΡΩΣΗ ΚΡΑΜΑΤΟΣ Al7075-T651 ΡΑΓΚΟΥΣΗΣ ΑΝΤΩΝΗΣ ΑΕΜ: 4753 Επιβλέπων: Αναπ. Καθηγητής

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΘΕΜΑ 3ο Θεωρούμε σημείο Κ μέσα σε ομογενές μαγνητικό πεδίο μεγάλης

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υλικών Θερμικές Ιδιότητες Callister Κεφάλαιο 20, Ashby Κεφάλαιο 12

Εισαγωγή στην Επιστήμη των Υλικών Θερμικές Ιδιότητες Callister Κεφάλαιο 20, Ashby Κεφάλαιο 12 Εισαγωγή στην Επιστήμη των Υλικών Θερμικές Ιδιότητες Callister Κεφάλαιο 20, Ashby Κεφάλαιο 12 Πως αντιδρά ένα υλικό στην θερμότητα. Πως ορίζουμε και μετράμε τα ακόλουθα μεγέθη: Θερμοχωρητικότητα Συντελεστή

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 006-07 ΔΙΑΛΕΞΗ 6 Καθιζήσεις Επιφανειακών Θεμελιώσεων : Υπολογισμός καθιζήσεων σε αμμώδη εδάφη 0.1.006 Υπολογισμός καθιζήσεων σε

Διαβάστε περισσότερα

Ν. Σαμπατακάκης Αν. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών

Ν. Σαμπατακάκης Αν. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών ΚΕΦΑΛΑΙΟ 6 ΥΝΑΜΙΚΗ ΤΩΝ Ε ΑΦΩΝ - ΓΕΩΤΕΧΝΙΚΗ ΣΕΙΣΜΙΚΗ ΜΗΧΑΝΙΚΗ Με τον όρο «δυναμική» εννοείται η συμπεριφορά που παρουσιάζει το έδαφος υπό την επίδραση δυναμικών τάσεων που επιβάλλονται σε αυτό είδη δυναμικών

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Κρούσης. ΕργαστηριακήΆσκηση 6 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Κρούσης. ΕργαστηριακήΆσκηση 6 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Κρούσης ΕργαστηριακήΆσκηση 6 η Σκοπός Σκοπός του πειράµατος είναι να κατανοηθούν οι αρχές του πειράµατος κρούσης οπροσδιορισµόςτουσυντελεστήδυσθραυστότητας ενόςυλικού. Η δοκιµή, είναι

Διαβάστε περισσότερα

Σχεδιασµός Φορέων από Σκυρόδεµα µε βάση τον Ευρωκώδικα 2

Σχεδιασµός Φορέων από Σκυρόδεµα µε βάση τον Ευρωκώδικα 2 Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Τοµέας οµικών Κατακευών Εργατήριο Ωπλιµένου Σκυροδέµατος Κωνταντίνος Χαλιορής, ρ. Πολιτικός Μηχανικός, Λέκτορας τηλ./fax: 54107963 Ε-mail: haliori@ivil.duth.gr

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιτήμιο Πελοποννήου Εκτιμήεις Διατήματα Εμπιτούνης Έλεγχοι Υποθέεων Stefao G. Giakoumato Εκτιμητική Οι κατανομές των τατιτικών έχουν άγνωτες παραμέτρους, οι οποίες πρέπει να εκτιμηθούν Εκτιμητές ε

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΜΕΤΑΛΛΩΝ I

ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΜΕΤΑΛΛΩΝ I ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΜΕΤΑΛΛΩΝ I 1. ΕΙΣΑΓΩΓΗ Μηχανική συμπεριφορά αντανακλά την σχέση παραμόρφωση ασκούμενο φορτίο/δύναμη Να γνωρίζουμε τα χαρακτηριστικά του υλικού - να αποφευχθεί υπερβολική παραμόρφωση,

Διαβάστε περισσότερα