Κεφάλαιο 7 ΜΕΓΕΘΟΣ ΚΑΙ ΕΝΕΡΓΕΙΑ ΣΕΙΣΜΩΝ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 7 ΜΕΓΕΘΟΣ ΚΑΙ ΕΝΕΡΓΕΙΑ ΣΕΙΣΜΩΝ"

Transcript

1 Κεφάλαιο 7 ΜΕΓΕΘΟΣ ΚΑΙ ΕΝΕΡΓΕΙΑ ΣΕΙΣΜΩΝ Κατά την γένεση ενός σεισμού υπάρχει έκλυση ενέργειας λόγω παραμόρφωσης και μετατροπή της σε κυματική ενέργεια που είναι τα σεισμικά κύματα. ΜΕΓΕΘΟΣ Μ, ενός σεισμού είναι το μέτρο της ολικής ενέργειας που εκλύεται από αυτόν και υπολογίζεται από μετρήσεις διαφόρων σεισμικών παραμέτρων (πλάτος, διάρκεια, περίοδος) πάνω στα σεισμογράμματα όπου γράφονται τα σεισμικά κύματα

2 Ο πρώτος που επινόησε και διατύπωσε την ομώνυμη κλίμακα ήταν ο Richter το Στην συνέχεια αναπτύχθηκαν διάφορες κλίμακες μεγεθών γιατί ανάλογα με την αιτία που αναπτύσσονταν οι κλίμακες των μεγεθών χρησιμοποιούνταν ανάλογα χαρακτηριστικά των σεισμών, κύματα διαφόρων περιόδων ή διαφόρων ειδών, κτλ. Έτσι η κλίμακα που επινόησε ο Richter ονομάσθηκε αργότερα κλίμακα τοπικού μεγέθους Μ L και βασίζεται σε μετρήσεις πλατών σεισμικών κυμάτων τοπικών σεισμών περιόδου περίπου 1 sec που γράφονται σε σεισμόμετρο Wood-Anderson

3 ΑΛΛΕΣ ΚΛΙΜΑΚΕΣ ΜΕΓΕΘΩΝ ΣΕΙΣΜΩΝ Επιφανειακό μέγεθος Μ s Χωρικό μέγεθος m b Μέγεθος διάρκειας Μέγεθος ροπής Μ w Η τελευταία θεωρείται η πλέον ακριβής και χρησιμοποιείται σήμερα σε ευρεία κλίμακα.

4 Τοπικό μέγεθος Ας υποθέσουμε ότι έχουμε κοντά στο επίκεντρο μίας περιοχής εγκατεστημένους σεισμολογικούς σταθμούς σε διάφορες αποστάσεις και ότι αυτοί αναγράφουν τα μέγιστα πλάτη αναγραφής του σεισμού που μετρούμε εύκολα από όλους τους σταθμούς. Αν τα σεισμόμετρα γράφουν την ίδια συνιστώσα (οριζόντια ή κατακόρυφη, και την ίδια φάση κύματος (π.χ. S b ) έχουν τις ίδιες σταθερές (μεγέθυνση, ιδιοπερίοδο), τότε τα πλάτη που αναγράφονται εξαρτώνται από τις αποστάσεις των σταθμών από το επίκεντρο.

5 Χαρτογραφώντας τους δεκαδικούς λογαρίθμους των πλατών σε συνάρτηση με τις επικεντρικές αποστάσεις θα πάρουμε μια καμπύλη της μορφής που δείχνεται στο επόμενο σχήμα Αν κάνουμε την ίδια διαδικασία στην περιοχή με άλλον σεισμό μικρότερο του πρώτου θα πάρουμε καμπύλη της ίδιας μορφής αλλά παράλληλη με την προηγούμενη διότι αφού τα κύματα διαδίδονται στην ίδια περιοχή έχουν την ίδια σχέση απόσβεσης των πλατών με την απόσταση.

6 Αφού οι 2 καμπύλες είναι παράλληλες οι διαφορές των λογαρίθμων των πλατών των 2 σεισμών θα είναι οι ίδιες για όλες τις επικεντρικές αποστάσεις. Η διαφορά αυτή ορίζεται ως η διαφορά των μεγεθών των σεισμών. Με τον τρόπο αυτόν μπορούμε να ορίσουμε αυθαίρετα τον σεισμό μηδενικού μεγέθους ή πρότυπο σεισμό που δείχνεται στο προηγούμενο σχήμα με την συνεχή γραμμή. Ο Richter όρισε σαν πρότυπο σεισμό αυτός που γράφεται με μέγιστο πλάτος ίσο με ' A από o = 1μ σεσμόμετρο στρέψης (Τ ο =0.8 sec, V ο =2800 και ζ=0.7), βραχείας περιόδου που απέχει από το επίκεντρο του σεισμού 100 Κm. Θα είναι επομένως Μ L =lοgα ο - lοgα ο. Όμως lοgα ο =0 άρα Μ L =lοgα ο. Τοπικό μέγεθος Μ L επομένως λέγεται ο δεκαδικός λογάριθμος του μέγιστου πλάτους αναγραφής αυτού σε μ, από πρότυπο βραχείας περιόδου σεισμόμετρο στρέψης που βρίσκεται σε επικεντρική απόσταση 100 Κm από τον σεισμό και είναι:

7 M L = oga oga ' όπου Α είναι ο μέσος όρος των μέγιστων πλατών αναγραφής του σεισμού από τα 2 οριζόντια σεισμόμετρα Wood-Anderson ενός σταθμού και Α είναι το αντίστοιχο πλάτος αναγραφής του προτύπου σεισμού στη ίδια απόσταση το προηγούμενο σχήμα δείχνει το δείγμα των σεισμών που χρησιμοποίησε ο Richter για να ορίσει τον πρότυπο σεισμό. Τα διαφορετικά σύμβολα στο σχήμα αντιπροσωπεύουν διαφορετικούς σεισμούς.

8 Μέτρηση του τοπικού μεγέθους με απ ευθείας μέτρηση πάνω στο σεισμόγραμμα και με χρήση νομογράμματος

9 Επιφανειακό μέγεθος Για να υπολογισθεί το μέγεθος των επιφανειακών σεισμών (h<60 Κm) για οποιαδήποτε επικεντρική απόσταση από τα πλάτη των αναγραφών οποιουδήποτε σεισμομέτρου επινοήθηκε η κλίμακα του επιφανειακού μεγέθους Μ s. Για τον υπολογισμό του χρησιμοποιούνται επιφανειακά κύματα περιόδου sec. Οι Gutenberg-Richter χρησιμοποίησαν την ακόλουθη σχέση για τον υπολογισμό του M s = ogα oga' + c + 1 d 1 όπου α = το πραγματικό πλάτος της εδαφικής κίνησης σε μ, α = το ίδιο πλάτος για πρότυπο σεισμό, και c 1, d 1 οι σταθερές του σταθμού και της εστίας. Η ποσότητα -lοgα δίνεται από πίνακες.

10 Σήμερα για τον υπολογισμό του επιφανειακού μεγέθους χρησιμοποιείται ο τύπος της Πράγας (Vanek et al., 1962). M s α = og ogδ + T 3.3 όπου α = το μέγιστο εδαφικό πλάτος των επιφανειακών κυμάτων σε μ περιόδου 20+3 sec Τ = η περίοδος Δ = επικεντρική απόσταση σε Κm Ισχύει για επικεντρικές αποστάσεις 20 ο 160 ο. Δεν μπορεί να εφαρμοσθεί για τους σεισμούς βάθους γιατί οι σεισμοί αυτοί δεν διεγείρουν ισχυρά επιφανειακά κύματα.

11 Χωρικό μέγεθος Για να υπολογισθούν όλοι οι σεισμοί ανεξαρτήτως βάθους και επικεντρικής απόστασης ο Gutenberg (1945) πρότεινε την κλίμακα του χωρικού μεγέθους m b και δίνεται από τη σχέση: u m b = og + Q + T ( Δ, h) + c2 d2 όπου u και Τ είναι το μέγιστο πλάτος σε μ και η αντίστοιχη περίοδος σε sec, των επιμήκων ή των εγκαρσίων κυμάτων. Q(Δ, h) είναι συνάρτηση της επικεντρικής απόστασης και του εστιακού βάθους και δίνονται από γραφικές παραστάσεις, ενώ c 2, d 2 οι σταθερές του σταθμούκαιτηςπεριοχήςτηςεστίας.

12 Η τιμές της ποσότητας Q(Δ,h)

13 Ο υπολογισμός του μεγέθους αυτού από τον Gutenberg έγινε από μετρήσεις πλατών κυμάτων P περιόδου 5 sec και από μετρήσεις πλατών κυμάτων S περιόδου 10 sec. Σήμερα ό υπολογισμός του μεγέθους αυτού γίνεται με τον τρόπο που ακολούθησε ο Gutenberg αλλά βασίζεται σε μετρήσεις κυμάτων χώρου (P) περιόδου 1 sec τα οποία γράφονται σε επικεντρικές αποστάσεις 21 ο 100 ο. Το χωρικό αυτό μέγεθος παριστάνεται με m b και συνδέεται στατιστικά με το Μ s με τη σχέση m b 0.56M + = s 2.9 με την οποία υπολογίζουμε κατά προσέγγιση το m b όταν γνωρίζουμε το M s και αντίστροφα.

14 Μέγεθος διάρκεια σήματος Σε πολλές περιπτώσεις η μέτρηση του πλάτους δεν μπορεί να γίνει (π.χ. «κλιπάρισμα» της αναγραφής), αλλά πάντα μπορεί να μετρηθεί η διάρκεια της αναγραφής ή η αναγραφή από την αρχή μέχρι ένα ορισμένο πλάτος (π.χ. 2mm). Για τον λόγο αυτόν ο Bisztricsany (1958) πρότεινε την κλίμακα μεγέθους διάρκειας του σήματος, Μ τ. Η κλίμακα κυρίως εφαρμόζεται για να υπολογίσουμε από τοπικά δίκτυα το μέγεθος και βασίζεται στη γενικευμένη σχέση: M τ 2 ( ogτ ) + Δ = a1 + a2 ogτ + a3 a4 όπου τ είναι η διάρκεια του σήματος σε sec, Δ είναι η επικεντρική απόσταση σε Κm, και α 1, α 2, α 3, α 4 σταθερές και συνήθως είναι α 3 =0.

15 Μέγεθος Ροπής Όπωςπροαναφέραμεοιδιάφορεςκλίμακεςμεγεθώνβασίζονται σε μετρήσεις πλατών που καλύπτουν μόνο ένα μέρος του φάσματος. Επομένως τα μεγέθη αυτά εκφράζουν το μέτρο της ενέργειας που ακτινοβολείται στα αντίστοιχα παράθυρα συχνοτήτων και δεν αντιπροσωπεύουν την ολική ενέργεια του σεισμού. Βλέπουμε σε σχηματική παράσταση στο παρακάτω σχήμα τα παράθυρα της ακτινοβολίας της ενέργειας για σεισμούς που μετρούνται με m b και M s αντίστοιχα

16 Έπρεπε να βρεθεί μία κλίμακα που να εκφράζει το μέτρο της ολικής ενέργειας και όχι αυτής που ακτινοβολείται σε περιορισμένα φάσματα συχνοτήτων. Το μέγεθος ονομάζεται Μέγεθος Ροπής Μ w ή Μ και βασίζεται στη έννοια της σεισμικής ροπής Μ ο. Ονομάζουμε σεισμική ροπή Μ ο την ποσότητα: M = μau o όπου μ μέτρο δυσκαμψίας του υλικού στην εστία του ρήγματος Α Επιφάνεια ρήγματος ή Α=Lw μήκος και πλάτος ρήγματος u μέση μετάθεση κατά την γένεση σεισμού στη επιφάνεια του ρήγματος Η μέτρηση της σεισμικής ροπής βασίζεται στο φάσμα των σεισμικών κυμάτων που προκύπτει από την φασματική ανάλυση των σεισμογραμμάτων.

17 Στο σχήμα φαίνονται τα φάσματα (δηλ. τα εδαφικά πλάτη Ψ ο σε συνάρτηση με την περίοδο) μακρινού πεδίου (οι μεγάλες αποστάσεις) για έξι σεισμούς που έχουν διαφορετικά μεγέθη, που ο υπολογισμός τους έγινε σύμφωνα με το μοντέλο Brune (1970). Το φάσμα είναι παράλληλο με τον άξονα Χ για περιόδους Τ c (γωνιακή περίοδος) που υπερβαίνουν ορισμένη τιμή. Η αντίστοιχη συχνότητα f c (=1/T c ) λέγεται γωνιακή συχνότητα. Το φάσμα ελαττώνεται με την ελάττωση της περιόδου για περιόδους μικρότερες της γωνιακής περιόδου. Και η γωνιακή περίοδος ελαττώνεται με το μέγεθος του σεισμού.

18 Τόσο η T c όσο και η f c υπολογίζονται μέσω της φασματικής ανάλυσης των σεισμογραμμάτων. ΗσεισμικήροπήΜ ο υπολογίζεται από την τιμή Ψ του φάσματος του μακρινού πεδίου των εγκαρσίων κυμάτων, που αντιστοιχεί σε γωνιακή συχνότητα f c από την σχέση: 3 4 ΨR M o = πρβ 0.85 όπου ρ είναι η πυκνότητα του υλικού στη περιοχή του σεισμογόνου ρήγματος και R είναι η υποκεντρική απόσταση. Ο υπολογισμός της σεισμικής ροπής δεν επηρεάζεται από την ελάττωση του πλάτους του φάσματος με την ελάττωση της περιόδου που παρατηρείται σε μεγάλες συχνότητες (μικρές περιόδους).

19 Η ανεξαρτησία λοιπόν της σεισμικής ροπής από την περίοδο κάνει την σεισμική ροπή να θεωρείται το πλέον αξιόπιστο μέτρο της ολικής ενέργειας του σεισμού. Κάτι αντίστοιχο που δεν συμβαίνει με τα άλλα μεγέθη. ΟΙ Hanks και Kanamori (1979) πρότειναν την κλίμακα μεγέθους σεισμικής ροπής Μ w που εξαρτάται από το φάσμα μεγάλης περιόδου και δίνεται από την σχέση: M w ogm = o Όπου Μ ο ησεισμικήροπήσεdyn.cm. Το μέγεθος συμφωνει με το Μ s για μεγέθη μεταξύ και με το m L για μεγέθη μικρότερα ή ίσα του 6.0

20 Συνοπτικός πίνακας μεγεθών σεισμών Μέγεθος Σύμβολο Είδος κύματος Περίοδος Τοπικό (Richter) M L S ή Επιφανειακ άκύματα 0.8 s Χωρικό m b P 1 s Επιφανειακό M s Rayleigh 20 s Ροπής M ή Μ w διάρρηξης, Επιφάνεια ολίσθηση > 100 s

21 Κορεσμός των κλιμάκων των μεγεθών Σαν κορεσμό των κλιμάκων θεωρούμε το φαινόμενο κατά τα οποίο οι κλίμακες των μεγεθών (M L, M s και m b ) έχουν ένα ανώτερο όριο. Το φαινόμενο παρατηρήθηκε όταν βρέθηκε ότι τα μεγέθη αυτά αυξάνουν όσο αυξάνει η ενέργεια που ακτινοβολείται από την εστία τους μέχρι ορισμένο όριο. Πάνω από αυτό το όριο παρά το ότι αυξάνει το ποσό της ενέργειας που απελευθερώνουν τα μεγέθη αυτά δεν αυξάνουν ανάλογα. Αυτό συμβαίνει όπως προαναφέραμε γιατί το κάθε είδος κύματος μετριέται σε διαφορετικό είδος κυμάτων με διαφορετικές περιόδους. Κορεσμό έντονο παθαίνουν κυρίως τα μεγέθη που βασίζονται σε κύματα μικρών περιόδων και εξηγείται με βάση το φάσμα μακρινού πεδίου. Στο επόμενο σχήμα βλέπουμε των κορεσμό που παθαίνουν οι κλίμακες μεγεθών M s (<8.0, μακράς περίοδου κύματα) και m b (<6.0 βραχείας περιόδου κύματα)

22

23 Φάσματα για μεγέθη σεισμών από Μ s = Μπορούμε να παρατηρήσουμε ότι τα μεγέθη m b παθαίνουν κορεσμό μετά το μέγεθος 6.5, ενώ τα μεγέθη Μ s μετά το μέγεθος 8.5. Η διακεκομμένη γραμμή παριστάνει την γωνιακή συχνότητα

24 Για τους μεγάλους σεισμούς η περίοδος των βραχείας περιόδου κυμάτων είναι μικρότερη από την γωνιακή περίοδο Τ c και τα πλάτη τους είναι ελαττωμένα με συνέπεια η μέτρηση αυτών των πλατών να δίνει μεγέθη μικρότερα από τα πραγματικά. Γενικά μπορούμε να πούμε ότι τα μήκη των κυμάτων όλων των μεγεθών πλην του Μ w είναι μικρότερα από τις διαστάσεις των ρηγμάτων με συνέπεια να παθαίνουν κορεσμό. Συνεπώς ησεισμικήροπήήησεισμικήενέργειαενώαυξάνεισε περιπτώσεις μεγάλων σεισμών δεν αυξάνει ανάλογα και το μέγεθος. Τα μεγέθη ροπής υπολογίζονται από κύματα που έχουν μήκος κύματος ιδίων διαστάσεων με τις διαστάσεις του ρήγματος όσο μεγάλο και αν είναι αυτό και δεν παθαίνουν κορεσμό.

25 Βλέπουμε 2 σεισμούς που έγιναν στην Καμτσάτκα. Η διάρρηξη του σεισμού 6.1 είχε διάρκεια μερικά δευτερόλεπτα ενώ του 7.7 γύρω στο λεπτό. Αν ακολουθήσουμε τον κανόνα ότι για τον υπολογισμό των m b μετράμε μόνο το μέγιστο πλάτος των 5 πρώτων δευτερολέπτων είναι δυνατόν να οδηγήσει σε υποεκτίμηση του μεγέθους, αν αγνοήσουμε την υπόλοιπη κυματομορφή. Κανονικά τον σεισμό αυτόν πρέπει να τον μετρήσουμε σαν Μ s και όχι σαν m b. Προβλήματα μεγεθών

26 ΣΥΣΧΕΤΙΣΗ ΡΗΓΜΑΤΟΣ ΚΑΙ ΜΕΓΕΘΟΥΣ ΣΕΙΣΜΩΝ

27 Σχέσεις μεταξύ μεγέθους σεισμών και μήκους ρήγματος υπάρχουν αρκετές στη βιβλιογραφία. Από τους Παπαζάχος και Παπαζάχου (2002) διατυπώθηκε η εξής σχέση: logl=0.51μ-1.85 Με βάση αυτήν υπολογίζουμε: Μέγεθος Μήκος Ρήγματος M s = Km M s = Km M s = Km M s = Km Ο μεγαλύτερος γνωστός σεισμός στον κόσμο είχε μέγεθος M s =8.5 και έγινε στη Χιλή το 1960, με μήκος ρήγματος πάνω από 1000 Km.

28 Tο μέγεθος του σεισμού της Χιλής υπολογίστηκε σαν Μ w =9.6. Αν αντικαταστήσουμε στην προηγούμενη σχέση το μέγεθος του σεισμού με 9.6, τότε το μήκος ρήγματος είναι 1100 Km >1000 Km. Δηλαδή όσο είναι οι πραγματικές διαστάσεις του ρήγματος. Σεισμοί με μέγεθος συμβαίνουν 18/έτος Σεισμοί με μέγεθος συμβαίνουν 1/έτος Σεισμοί με μέγεθος συμβαίνουν 1/20 χρόνια Αναφερόμαστε στους σεισμούς της Γης

29 Οι πέντε μεγαλύτεροι γνωστοί σεισμοί είναι: m b M s M w M o (Nm) 1960 Χιλή X Αλάσκα Χ Σουμάτρα Χ Καμτσάτκα Χ Αλεούτια (9.1) 0.88Χ10 22

30 Ενέργεια σεισμών ΣΥΣΧΕΤΙΣΗ ΜΕΓΕΘΟΥΣ-ΕΝΕΡΓΕΙΑΣ ΕΝΕΡΓΕΙΑΣ Τα ποσά ενέργειας που εκλύονται από τους σεισμούς και ιδιαίτερα από τους μεγάλους είναι τεράστια. Αρκεί να αναφέρουμε ότι ένας σεισμός με μέγεθος Μ=8.0 θα μπορούσε να καλύψει όλες τις ενεργειακές ανάγκες της χώρας μας για ένα χρόνο. Σύμφωνα με την ΔΕΗ η ενεργειακές ανάγκες της χώρας ήταν: ΔΕΗ (1990) ΕΤΗΣΙΩΣ Ε=22Χ10 9 Kwh ΣΕΙΣΜΟΣ Μ=8.0 Ε=16Χ10 9 Kwh

31 Χαρακτηρισμός σεισμών ΑΝΑΛΟΓΑ ΜΕ ΤΟ ΜΕΓΕΘΟΣ ΤΟΥΣ ΟΙ ΣΕΙΣΜΟΙ ΛΕΓΟΝΤΑΙ: ΓΙΓΑΝΤΙΟΙ ΟΤΑΝ Μ>9.0 ΠΟΛΥ ΜΕΓΑΛΟΙ ΟΤΑΝ Μ= ΜΕΓΑΛΟΙ ΟΤΑΝ Μ= ΙΣΧΥΡΟΙ ΟΤΑΝ Μ= ΕΝΔΙΑΜΕΣΟΙ ΟΤΑΝ Μ= ΕΛΑΦΡΟΙ ΟΤΑΝ Μ= ΜΙΚΡΟΙ ΟΤΑΝ Μ=

32 Αισθητότητα Σεισμών

33 Ενέργεια σεισμών εκλυόμενη από διάφορες τεκτονικές δομές της Γης

34 Ενέργεια που εκλύθηκε από διάφορους γιγαντιαίους σεισμούς της Γης

35 Η ενέργεια που απελευθερώνεται σε έναν σεισμό με την μορφή κυμάτων χώρου δίνεται από τους Guterberg and Richter (1956) απότησχέση: E = 2 3πρ υ όπου ρ=η πυκνότητα το υλικού, h= το εστιακό βάθος, υ=η ταχύτητα διάδοσης των κυμάτων, t=η διάρκεια αναγραφής του κύματος, u=το μέγιστο πλάτος του κύματος και Τ=η περίοδος. h t u T 2 Ο Bath από την άλλη μεριά βρήκε σχέση ευρύτατα αποδεκτή σήμερα για μεγέθη σεισμών με Μ>5.0, και η ενέργεια μετριέται erg oge = M Η διαφορά 1 τάξης μεγέθους (π.χ. 6.0 και 7.0) σημαίνει ότι το 7.0 είναι περίπου 30 φορές μεγαλύτερο από το 6.0

36 Παρότι όλα τα μεγέθη των σεισμών ακόμα και οι μικρότεροι εκλύουν ενέργεια, το κυριότερο μέρος της προέρχεται από τους μεγάλους σεισμούς. Έτσι με δεδομένα οι Tsapanos and Papazachos (1998) βρήκαν ότι: Το 48.79% προέρχεται από σεισμούς με μεγέθη Μ>8.0 Το 44.18% προέρχεται από σεισμούς με μεγέθη 7.9<Μ<7.0 Δηλαδή το 92.97% προέρχεται από τους μεγάλους σεισμούς και μόνο το 7.03% προέρχεται από σεισμούς μεγέθη 6.9<Μ<6.0

37 Βρέθηκε επίσης ότι η μέση κατ έτος εκλυόμενη σεισμική ενέργεια της Γης είναι Ε w =3.02Χ10 24 Κwh. Αν όλη αυτή η ενέργεια μετατρέπονταν σε σεισμό θα αντιστοιχούσε σε μέγεθος Μ=8.4. Το 75% της σεισμικής ενέργειας εκλύτεται από τους επιφανειακούς σεισμούς, το 21% από τους σεισμούς ενδιαμέσου βάθους και ένα πολύ μικρό ποσοστό μόλις 4% από τους σεισμούς βάθους. Για την Ελλάδα και της γύρω περιοχές βρέθηκε ότι η μέση κατ έτος εκλυόμενη σεισμική ενέργεια είναι Ε Ε =0.043Χ10 24 Κwh που αντιστοιχεί σε σεισμό με μέγεθος Μ=7.1. Στην Ελλάδα εκλύεται το 2% της μέσης κατ έτος εκλυόμενης σεισμικής ενέργειας της Γης.

Μάθημα 7 ο. Μέγεθος Σεισμών

Μάθημα 7 ο. Μέγεθος Σεισμών Μάθημα 7 ο Μέγεθος Σεισμών Μέγεθος Σεισμού Σεισμική Ροπή Ενέργεια Σεισμού ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΕΙΣΜΟΛΟΓΙΑ Μάθημα 6ο: Σεισμομετρία ΤΟΜΕΑΣ ΓΕΩΦΥΣΙΚΗΣ Α.Π.Θ 1 Μέγεθος Σεισμού Ορισμός Το μέγεθος, Μ, ενός σεισμού,

Διαβάστε περισσότερα

Σεισμικές παράμετροι. Κεφάλαιο 12

Σεισμικές παράμετροι. Κεφάλαιο 12 Σεισμικές παράμετροι Κεφάλαιο 12 Σεισμικές παράμετροι Σεισμικό μέγεθος Σεισμική ενέργεια Σεισμική ροπή Σεισμική πτώση τάσης Σεισμικό μέγεθος Προέκυψε από την προσπάθεια εκτίμησης της εκλυόμενης ενέργειας.

Διαβάστε περισσότερα

Μέθοδος των γραμμών πόλωσης των εγκαρσίων κυμάτων

Μέθοδος των γραμμών πόλωσης των εγκαρσίων κυμάτων Μέθοδος των γραμμών πόλωσης των εγκαρσίων κυμάτων Πρώτες αποκλίσεις των SH και SV κυμάτων καθορισμός των ορικών επιφανειών u V =0 και u H =0 Μειονέκτημα : η ανάλυση της πρώτης απόκλισης δεν είναι εύκολη

Διαβάστε περισσότερα

Το Πρώτο Δίκτυο Σεισμολογικών Σταθμών στη Σελήνη. Ιδιότητες των Σεισμικών Αναγραφών στη Σελήνη. Μηχανισμός και Αίτια Γένεσης των Σεισμών της Σελήνης

Το Πρώτο Δίκτυο Σεισμολογικών Σταθμών στη Σελήνη. Ιδιότητες των Σεισμικών Αναγραφών στη Σελήνη. Μηχανισμός και Αίτια Γένεσης των Σεισμών της Σελήνης Μάθημα 12ο Σεισμολογία της Σελήνης Το Πρώτο Δίκτυο Σεισμολογικών Σταθμών στη Σελήνη Ιδιότητες των Σεισμικών Αναγραφών στη Σελήνη Μέθοδοι Διάκρισης των Δονήσεων της Σελήνης Σεισμικότητα της Σελήνης Μηχανισμός

Διαβάστε περισσότερα

Κεφάλαιο 6 ΣΕΙΣΜΟΜΕΤΡΙΑ

Κεφάλαιο 6 ΣΕΙΣΜΟΜΕΤΡΙΑ Κεφάλαιο 6 ΣΕΙΣΜΟΜΕΤΡΙΑ Στην σεισμολογία μετρούμε πάντα μήκος πάνω στα σεισμογράμματα. -Κατά την διεύθυνση του άξονα Χ μετρούμε χρόνο ή περίοδο -Κατά την διεύθυνση του άξονα Υ μετρούμε μετάθεση ή ταχύτητα

Διαβάστε περισσότερα

Μάθημα 6 ο. Σεισμομετρία. Γεωγραφικές Συντεταγμένες του Επικέντρου

Μάθημα 6 ο. Σεισμομετρία. Γεωγραφικές Συντεταγμένες του Επικέντρου Μάθημα 6 ο Σεισμομετρία Χρόνος Γένεσης Σεισμού Γεωγραφικές Συντεταγμένες του Επικέντρου Εστιακό Βάθος Μάθημα 6 ο Σεισμομετρία Στο μάθημα αυτό περιγράφονται οι τρόποι μέτρησης των φυσικών μεγεθών που μετριούνται

Διαβάστε περισσότερα

Κεφάλαιο 5 ΣΕΙΣΜΙΚΑ ΚΥΜΑΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΑΥΤΩΝ ΜΕΣΑ ΣΤΗ ΓΗ. Για την μελέτη της διάδοσης των σεισμικών κυμάτων μέσα στη Γη γίνονται 3 υποθέσεις.

Κεφάλαιο 5 ΣΕΙΣΜΙΚΑ ΚΥΜΑΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΑΥΤΩΝ ΜΕΣΑ ΣΤΗ ΓΗ. Για την μελέτη της διάδοσης των σεισμικών κυμάτων μέσα στη Γη γίνονται 3 υποθέσεις. Κεφάλαιο 5 ΣΕΙΣΜΙΚΑ ΚΥΜΑΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΑΥΤΩΝ ΜΕΣΑ ΣΤΗ ΓΗ Για την μελέτη της διάδοσης των σεισμικών κυμάτων μέσα στη Γη γίνονται 3 υποθέσεις. 1) Τα πετρώματα μέσα από τα οποία διαδίδονται τα κύματα έχουν

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ

ΘΕΩΡΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΘΕΩΡΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ 1. Τι είναι σεισμός; Σεισμός είναι η δόνηση του εδάφους που οφείλεται στη θραύση (σπάσιμο) των πετρωμάτων. 2. Πως δημιουργείται ο σεισμός; Ο σεισμός στον πλανήτη μας συνήθως προκαλείται

Διαβάστε περισσότερα

Μηχανισμοί γένεσης σεισμών

Μηχανισμοί γένεσης σεισμών Μηχανισμοί γένεσης σεισμών Μέθοδοι προσδιορισμού ρ και σύνδεσή τους με σεισμοτεκτονικά μοντέλα στον Ελληνικό χώρο. Κεφ.10 http://seismo.geology.upatras.gr/seismology/ gy p g gy Σώκος Ευθύμιος Λέκτορας

Διαβάστε περισσότερα

Εξάρτηση της σεισμικής κίνησης από τις τοπικές εδαφικές συνθήκες

Εξάρτηση της σεισμικής κίνησης από τις τοπικές εδαφικές συνθήκες Εξάρτηση της σεισμικής κίνησης από τις τοπικές εδαφικές συνθήκες Μηχανικές ιδιότητες του εδάφους θεμελίωσης Πάχος και δυσκαμψία του επιφανειακού ιζηματογενούς στρώματος Κλίση των στρωμάτων και τοπογραφία

Διαβάστε περισσότερα

Κεφάλαιο 3 TΑΣΗ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ

Κεφάλαιο 3 TΑΣΗ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ Κεφάλαιο 3 TΑΣΗ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΚΑΤΑ ΤΗΝ ΔΙΑΔΟΣΗ ΤΩΝ ΣΕΙΣΜΙΚΩΝ ΚΥΜΑΤΩΝ ΜΕΣΑ ΣΤΗ ΓΗ ΔΕΧΟΜΑΣΤΕ: ΟΤΙ ΤΟ ΥΛΙΚΟ ΔΙΑΔΟΣΗΣ ΕΧΕΙ ΑΠΟΛΥΤΑ ΕΛΑΣΤΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΔΕΧΟΜΑΣΤΕ ΜΕ ΑΛΛΑ ΛΟΓΙΑ ΟΤΙ ΤΑ ΣΕΙΣΜΙΚΑ ΚΥΜΑΤΑ ΕΙΝΑΙ

Διαβάστε περισσότερα

Καθορισμός του μηχανισμού γένεσης

Καθορισμός του μηχανισμού γένεσης Καθορισμός του μηχανισμού γένεσης Σκοπός Σκοπός της άσκησης αυτής είναι ο καθορισμός του μηχανισμού γένεσης ενός σεισμού με βάση τις πρώτες αποκλίσεις των επιμήκων κυμάτων όπως αυτές καταγράφονται στους

Διαβάστε περισσότερα

Σεισμική Πρόγνωση Κεφάλαιο 15. Σώκος Ευθύμιος Λέκτορας

Σεισμική Πρόγνωση Κεφάλαιο 15. Σώκος Ευθύμιος Λέκτορας Σεισμική Πρόγνωση Κεφάλαιο 15 Σώκος Ευθύμιος Λέκτορας Σεισμική Πρόγνωση Από πολύ παλιά ο άνθρωπος προσπάθησε να προβλέψει τους σεισμούς Μετεωρολογικά φαινόμενα Ο Παυσανίας κατέγραψε «πρόδρομα» φαινόμενα

Διαβάστε περισσότερα

Κεφάλαιο 8 H ΣΕΙΣΜΙΚΗ ΔΡΑΣΗ ΤΗΣ ΓΗΣ ΚΑΙ Η ΚΑΤΑΝΟΜΗ ΤΗΣ

Κεφάλαιο 8 H ΣΕΙΣΜΙΚΗ ΔΡΑΣΗ ΤΗΣ ΓΗΣ ΚΑΙ Η ΚΑΤΑΝΟΜΗ ΤΗΣ Κεφάλαιο 8 H ΣΕΙΣΜΙΚΗ ΔΡΑΣΗ ΤΗΣ ΓΗΣ ΚΑΙ Η ΚΑΤΑΝΟΜΗ ΤΗΣ -Δεν υπάρχει συμφωνία μεταξύ των σεισμολόγων για τον όρο «σεισμική δράση». -Μία ποιοτική εικόνα της σεισμικής δράσης μπορούμε να αποκτήσουμε με την

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΦΥΣΙΚΗ ΣΕΙΣΜΙΚΗ ΔΙΑΣΚΟΠΗΣΗ

ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΦΥΣΙΚΗ ΣΕΙΣΜΙΚΗ ΔΙΑΣΚΟΠΗΣΗ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΦΥΣΙΚΗ ΣΕΙΣΜΙΚΗ ΔΙΑΣΚΟΠΗΣΗ ΕΙΣΑΓΩΓΗ ΑΝΤΙΚΕΙΜΕΝΟ Μελέτη της δομής των επιφανειακών στρωμάτων του φλοιού της Γης ΣΚΟΠΟΣ Εντοπισμός Γεωλογικών δομών οικονομικής σημασίας και ανίχνευση γεωλογικών

Διαβάστε περισσότερα

Τι είναι η ΓΕΩΦΥΣΙΚΗ

Τι είναι η ΓΕΩΦΥΣΙΚΗ ΑΣΚΗΣΗ ΠΡΑΞΗ Τι είναι η ΓΕΩΦΥΣΙΚΗ Γεωφυσική Έρευνα Κάθε γεωφυσική έρευνα έχει στόχο τον εντοπισμό και την μελέτη των ιδιοτήτων των υπόγειων στρωμάτων, ή/και τον εντοπισμό και τη μελέτη ανωμαλιών στο υπέδαφος,

Διαβάστε περισσότερα

Κεφάλαιο 4 ΟΡΓΑΝΑ ΑΝΑΓΡΑΦΗΣ ΤΩΝ ΣΕΙΣΜΩΝ 1. ΚΑΤΑ ΤΗΝ ΚΙΝΗΣΗ ΤΟΥ ΕΔΑΦΟΥΣ ΑΠΟ ΣΕΙΣΜΟ ΔΙΑΚΡΙΝΟΝΤΑΙ 3 ΚΙΝΗΣΕΙΣ:

Κεφάλαιο 4 ΟΡΓΑΝΑ ΑΝΑΓΡΑΦΗΣ ΤΩΝ ΣΕΙΣΜΩΝ 1. ΚΑΤΑ ΤΗΝ ΚΙΝΗΣΗ ΤΟΥ ΕΔΑΦΟΥΣ ΑΠΟ ΣΕΙΣΜΟ ΔΙΑΚΡΙΝΟΝΤΑΙ 3 ΚΙΝΗΣΕΙΣ: Κεφάλαιο 4 ΟΡΓΑΝΑ ΑΝΑΓΡΑΦΗΣ ΤΩΝ ΣΕΙΣΜΩΝ 1. ΚΑΤΑ ΤΗΝ ΚΙΝΗΣΗ ΤΟΥ ΕΔΑΦΟΥΣ ΑΠΟ ΣΕΙΣΜΟ ΔΙΑΚΡΙΝΟΝΤΑΙ 3 ΚΙΝΗΣΕΙΣ: Α) μετάθεση (καιοιπαράγωγοίτηςωςπροςτον χρόνο (ταχύτητα, επιτάχυνση) Β) περιστροφή (σημαντική

Διαβάστε περισσότερα

ΣΕΙΣΜΙΚΑ ΚΥΜΑΤΑ ΚΑΙ ΕΙΔΗ ΑΥΤΩΝ

ΣΕΙΣΜΙΚΑ ΚΥΜΑΤΑ ΚΑΙ ΕΙΔΗ ΑΥΤΩΝ ΣΕΙΣΜΙΚΑ ΚΥΜΑΤΑ ΚΑΙ ΕΙΔΗ ΑΥΤΩΝ Τι Είναι Τα Σεισμικά Κύματα Η ενέργεια που παράγεται κατά την εκδήλωση ενός σεισμού διαδίδεται με τα σεισμικά κύματα. Μετρώντας τα χαρακτηριστικά των κυμάτων είναι δυνατή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 28/12/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 28/12/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 28/12/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Κεφάλαιο 9 ΤΡΟΠΟΙ ΚΑΙ ΑΙΤΙΑ ΓΕΝΕΣΗΣ ΣΕΙΣΜΩΝ

Κεφάλαιο 9 ΤΡΟΠΟΙ ΚΑΙ ΑΙΤΙΑ ΓΕΝΕΣΗΣ ΣΕΙΣΜΩΝ Κεφάλαιο 9 ΤΡΟΠΟΙ ΚΑΙ ΑΙΤΙΑ ΓΕΝΕΣΗΣ ΣΕΙΣΜΩΝ Οι δυνάμεις που ασκούνται στη πάνω στη Γη εξαιτίας των φυσικών αιτίων που βρίσκονται στο εσωτερικό της Γης είναι τεράστιες. Σαν αποτέλεσμα των δυνάμεων αυτών

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΜΕΤΡΩΝ ΚΑΙ ΕΚΤΙΜΗΣΗ ΤΗΣ ΣΕΙΣΜΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ R=H*V

ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΜΕΤΡΩΝ ΚΑΙ ΕΚΤΙΜΗΣΗ ΤΗΣ ΣΕΙΣΜΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ R=H*V Εισαγωγή - Ορισµοί R=H*V Ο σεισµικός κίνδυνος (R-seismic risk) αποτελεί εκτιµήσεις της πιθανότητας να συµβούν απώλειες που σχετίζονται µε παράγοντες της σεισµικής επικινδυνότητας (ανθρώπινες, κοινωνικές,

Διαβάστε περισσότερα

Συμπεράσματα Κεφάλαιο 7.

Συμπεράσματα Κεφάλαιο 7. 7. ΣΥΜΠΕΡΑΣΜΑΤΑ Ο κύριος στόχος της παρούσας διατριβής ήταν η προσομοίωση της σεισμικής κίνησης με τη χρήση τρισδιάστατων προσομοιωμάτων για τους εδαφικούς σχηματισμούς της ευρύτερης περιοχής της Θεσσαλονίκης.

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Σεισμολογία. Μάθημα 4: Ταλαντώσεις Κύματα

Σεισμολογία. Μάθημα 4: Ταλαντώσεις Κύματα Σεισμολογία Μάθημα 4: Ταλαντώσεις Κύματα Κεφ.4 http://seismo.geology.upatras.gr/seismology/ Τι έχουμε μάθει έως τώρα. Τάση Τανυστής Ελαστικότητα Κύρια επίπεδα άξονες Παραμόρφωση Βασικές έννοιες από θεωρία

Διαβάστε περισσότερα

συνάρτηση κατανομής πιθανότητας

συνάρτηση κατανομής πιθανότητας Στατιστική των σεισμών Κεφ.13 Θ.Σώκος Εργαστήριο Σεισμολογίας Τμήμα Γεωλογίας Η στατιστική των σεισμών ασχολείται λί με τη μελέτη της κατανομής των σεισμών λαμβάνοντας υπ όψη σαν κύρια παράμετρο το σεισμικό

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΚΑΘΟΡΙΣΜΟΥ ΤΟΥ ΜΗΧΑΝΙΣΜΟΥ ΓΕΝΕΣΗΣ ΤΩΝ ΣΕΙΣΜΩΝ

ΜΕΘΟΔΟΙ ΚΑΘΟΡΙΣΜΟΥ ΤΟΥ ΜΗΧΑΝΙΣΜΟΥ ΓΕΝΕΣΗΣ ΤΩΝ ΣΕΙΣΜΩΝ ΜΕΘΟΔΟΙ ΚΑΘΟΡΙΣΜΟΥ ΤΟΥ ΜΗΧΑΝΙΣΜΟΥ ΓΕΝΕΣΗΣ ΤΩΝ ΣΕΙΣΜΩΝ Η μέθοδος των πρώτων αποκλίσεων των επιμήκων κυμάτων sin i = υ V υ : ταχύτητα του κύματος στην εστία V: μέγιστη αποκτηθείσα ταχύτητα Μέθοδος της προβολής

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ

ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ Ενότητα 4: Ελαστικά Κύματα Σκορδύλης Εμμανουήλ Καθηγητής Σεισμολογίας, Τομέας Γεωφυσικής,

Διαβάστε περισσότερα

Εσωτερικού της Γης. Κεφάλαιο 2. Αναστασία Α Κυρατζή Τοµέας Γεωφυσικής. Κυρατζή Α.. "Φυσική" της Λιθόσφαιρας" 1

Εσωτερικού της Γης. Κεφάλαιο 2. Αναστασία Α Κυρατζή Τοµέας Γεωφυσικής. Κυρατζή Α.. Φυσική της Λιθόσφαιρας 1 οµή και Σύσταση του Εσωτερικού της Γης Μάθηµα: Φυσική της Λιθόσφαιρας Κεφάλαιο 2 Αναστασία Α Κυρατζή Τοµέας Γεωφυσικής της Λιθόσφαιρας" 1 Μάθηµα 1 ο Εισαγωγή Ορισµοί Ελαστικά κύµατα Ταχύτητες ιδιότητες

Διαβάστε περισσότερα

ΕΠΙΦΑΝΕΙΑΚΑ ΚΥΜΑΤΑ (Κύματα στην Επιφάνεια Υγρού Θαλάσσια Κύματα)

ΕΠΙΦΑΝΕΙΑΚΑ ΚΥΜΑΤΑ (Κύματα στην Επιφάνεια Υγρού Θαλάσσια Κύματα) ΕΠΙΦΑΝΕΙΑΚΑ ΚΥΜΑΤΑ (Κύματα στην Επιφάνεια Υγρού Θαλάσσια Κύματα) Εκτός από τα εγκάρσια και τα διαμήκη κύματα υπάρχουν και τα επιφανειακά κύματα τα οποία συνδυάζουν τα χαρακτηριστικά των δυο προαναφερθέντων

Διαβάστε περισσότερα

Mάθημα 5 ο. Σεισμικά Κύματα και Διάδοση Αυτών στο Εσωτερικό της Γης

Mάθημα 5 ο. Σεισμικά Κύματα και Διάδοση Αυτών στο Εσωτερικό της Γης Mάθημα 5 ο Σεισμικά Κύματα και Διάδοση Αυτών στο Εσωτερικό της Γης Εστιακές παράμετροι του σεισμού (επίκεντρο, χρόνος γένεσης, κλπ.) Καμπύλες χρόνων διαδρομής κυμάτων χώρου Μεταβολή των ταχυτήτων διάδοσης

Διαβάστε περισσότερα

Μια Κοντινή Ματιά στα Σεισμικά Φαινόμενα & στις Επιπτώσεις τους. Μανώλης Σκορδύλης Καθηγητής Σεισμολογίας Εργαστήριο Γεωφυσικής, Α.Π.Θ.

Μια Κοντινή Ματιά στα Σεισμικά Φαινόμενα & στις Επιπτώσεις τους. Μανώλης Σκορδύλης Καθηγητής Σεισμολογίας Εργαστήριο Γεωφυσικής, Α.Π.Θ. 1 Μια Κοντινή Ματιά στα Σεισμικά Φαινόμενα & στις Επιπτώσεις τους Μανώλης Σκορδύλης Καθηγητής Σεισμολογίας Εργαστήριο Γεωφυσικής, Α.Π.Θ. Ποια η εκπαίδευση για θέματα σεισμών που δίνουμε σήμερα στους αυριανούς

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 21 Κυματική ΦΥΣ102 1

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 21 Κυματική ΦΥΣ102 1 Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 21 Κυματική ΦΥΣ102 1 Χαρακτηριστικά Διάδοσης Κύματος Όλα τα κύματα μεταφέρουν ενέργεια.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ & ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ & ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ & ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 7. Σεισμοί Διδάσκων: Μπελόκας Γεώργιος Επίκουρος

Διαβάστε περισσότερα

Συνθετικές εδαφικές κινήσεις Κεφ.22. Ε.Σώκος Εργαστήριο Σεισμολογίας Παν.Πατρών

Συνθετικές εδαφικές κινήσεις Κεφ.22. Ε.Σώκος Εργαστήριο Σεισμολογίας Παν.Πατρών Συνθετικές εδαφικές κινήσεις Κεφ.22 Ε.Σώκος Εργαστήριο Σεισμολογίας Παν.Πατρών Συνθετικές εδαφικές κινήσεις Τι υπολογίζουμε από μια μελέτη σεισμικής επικινδυνότητας..? Μια πιθανολογική εκτίμηση των μέγιστων

Διαβάστε περισσότερα

Σεισμική Απόκριση Μονοβάθμιου Συστήματος. (συνέχεια)

Σεισμική Απόκριση Μονοβάθμιου Συστήματος. (συνέχεια) Σεισμική Απόκριση Μονοβάθμιου Συστήματος (συνέχεια) Βήματα κατασκευής φασμάτων απόκρισης για ένα σεισμό 1. Επιλογή ιδιοπεριόδου Τ n και λόγου απόσβεσης ζ ενός μονοβάθμιου συστήματος. Δ17-2 2. Επίλυση της

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Γ Λυκείου Φυσικής Θετικών Σπουδών

Επαναληπτικό Διαγώνισμα Γ Λυκείου Φυσικής Θετικών Σπουδών Επαναληπτικό Διαγώνισμα Γ Λυκείου Φυσικής Θετικών Σπουδών ΘΕΜΑ Α Α1) Η μεταβολή της στροφορμής ενός στερεού σε σχέση με τον χρόνο φαίνεται στο διπλανό L σχήμα. Να σημειώσετε τη σωστή πρόταση: α. Ο ρυθμός

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ. ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΞΙΣΩΣΗ Η/Μ ΚΥΜΑΤΟΣ ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ

Διαβάστε περισσότερα

ΘΕΜΑ Α ΕΡΩΤΗΣΕΙΣ ΘΕΜΑ Α

ΘΕΜΑ Α ΕΡΩΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Α 1. Να επιλέξετε τη σωστή απάντηση. Μηχανικό ονομάζεται το κύμα στο οποίο: α. Μεταφέρεται ύλη στον χώρο κατά την κατεύθυνση διάδοσης του κύματος. β. Μεταφέρεται ορμή και ενέργεια στον χώρο κατά την

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Χ. Δ. ΦΑΝΙΔΗΣ http://users.sch.gr/cdfan ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 Στόχοι των

Διαβάστε περισσότερα

Θεσσαλονίκη 14/4/2006

Θεσσαλονίκη 14/4/2006 Θεσσαλονίκη 14/4/2006 ΘΕΜΑ: Καταγραφές δικτύου επιταχυνσιογράφων του ΙΤΣΑΚ από τη πρόσφατη δράση στη περιοχή της Ζακύνθου. Στις 01:05 (ώρα Ελλάδας) της 5 ης Απριλίου 2006 συνέβη στο θαλάσσιο χώρο της Ζακύνθου

Διαβάστε περισσότερα

1. Πηγή αρμονικών κυμάτων συχνότητας 5 Hz εξαναγκάζει το άκρο Ο ενός γραμμικού ελαστικού μέσου, το

1. Πηγή αρμονικών κυμάτων συχνότητας 5 Hz εξαναγκάζει το άκρο Ο ενός γραμμικού ελαστικού μέσου, το Η φάση του αρμονικού κύματος 1. Πηγή αρμονικών κυμάτων συχνότητας 5 Hz εξαναγκάζει το άκρο Ο ενός γραμμικού ελαστικού μέσου, το οποίο ταυτίζεται με τον οριζόντιο ημιάξονα O, να εκτελεί απλή αρμονική ταλάντωση

Διαβάστε περισσότερα

Σκιερές ζώνες Ανισοτροπία Στρώµα D

Σκιερές ζώνες Ανισοτροπία Στρώµα D Σκιερές ζώνες Ανισοτροπία Στρώµα D Φυσική της Λιθόσφαιρας Κεφάλαιο 2 Καθ. Αναστασία Κυρατζή Α. Κυρατζή "Φυσική της Λιθόσφαιρας" 1 Α. Κυρατζή "Φυσική της Λιθόσφαιρας" 2 ιάδοση κυµάτων σε επιφάνειες ασυνέχειας

Διαβάστε περισσότερα

Σεισμολογία στην τάξη: ιδέες και προτάσεις Δρ. Ι. Καλογεράς Σεισμολόγος Διευθυντής Ερευνών Γεωδυναμικό Ινστιτούτο Εθνικού Αστεροσκοπείου Αθηνών

Σεισμολογία στην τάξη: ιδέες και προτάσεις Δρ. Ι. Καλογεράς Σεισμολόγος Διευθυντής Ερευνών Γεωδυναμικό Ινστιτούτο Εθνικού Αστεροσκοπείου Αθηνών Σεισμολογία στην τάξη: ιδέες και προτάσεις Δρ. Ι. Καλογεράς Σεισμολόγος Διευθυντής Ερευνών Γεωδυναμικό Ινστιτούτο Εθνικού Αστεροσκοπείου Αθηνών ΕΚΦΕ Ν. Φιλαδέλφειας, Οκτώβριος 2015 ως συνέχεια από την

Διαβάστε περισσότερα

Θέμα 1 ο (Μονάδες 25) προς τη θετική φορά του άξονα χ. Για τις φάσεις και τις ταχύτητες ταλάντωσης των σημείων Α και Β του μέσου ισχύει:

Θέμα 1 ο (Μονάδες 25) προς τη θετική φορά του άξονα χ. Για τις φάσεις και τις ταχύτητες ταλάντωσης των σημείων Α και Β του μέσου ισχύει: ΙΓΩΝΙΣΜ ΦΥΣΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΥ 99 11 -- 1111 Θέμα 1 ο 1. Στο σχήμα φαίνεται το στιγμιότυπο ενός εγκάρσιου αρμονικού κύματος που διαδίδεται προς τη θετική φορά του άξονα χ. Για τις φάσεις και τις ταχύτητες

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό κάθε μίας από τις παρακάτω ερωτήσεις Α.1- Α.4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό κάθε μίας από τις παρακάτω ερωτήσεις Α.1- Α.4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2011-2012 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό κάθε μίας από τις παρακάτω ερωτήσεις Α.1- Α.4 και δίπλα το

Διαβάστε περισσότερα

Κύκλος Επαναληπτικών Διαγωνισμάτων (Προσομοίωσης) Γ ΛΥΚΕΙΟΥ / Απρίλιος 2016 Μάθημα: Φυσική Ομάδας Προσανατολισμού Θετικών Σπουδών.

Κύκλος Επαναληπτικών Διαγωνισμάτων (Προσομοίωσης) Γ ΛΥΚΕΙΟΥ / Απρίλιος 2016 Μάθημα: Φυσική Ομάδας Προσανατολισμού Θετικών Σπουδών. Κύκλος Επαναληπτικών Διαγωνισμάτων (Προσομοίωσης) Γ ΛΥΚΕΙΟΥ / Απρίλιος 2016 Μάθημα: Φυσική Ομάδας Προσανατολισμού Θετικών Σπουδών. Ονοματεπώνυμο Τμήμα Καθηγητής: ΓΦΣ Επιτηρητής Αίθουσα ΣΤΟΙΧΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ

Διαβάστε περισσότερα

ΙΕΡΑ ΜΟΝΗ ΣΤΑΥΡΟΝΙΚΗΤΑ

ΙΕΡΑ ΜΟΝΗ ΣΤΑΥΡΟΝΙΚΗΤΑ ΙΕΡΑ ΜΟΝΗ ΣΤΑΥΡΟΝΙΚΗΤΑ ΙΕΡΑ ΜΟΝΗ ΣΤΑΥΡΟΝΙΚΗΤΑ 1 ΙΕΡΑ ΜΟΝΗ ΣΤΑΥΡΟΝΙΚΗΤΑ ΙΕΡΑ ΜΟΝΗ ΣΤΑΥΡΟΝΙΚΗΤΑ ΙΕΡΑ ΜΟΝΗ ΣΤΑΥΡΟΝΙΚΗΤΑ 2 ΙΕΡΑ ΜΟΝΗ ΣΤΑΥΡΟΝΙΚΗΤΑ ΙΕΡΑ ΜΟΝΗ ΣΤΑΥΡΟΝΙΚΗΤΑ 3 ΙΕΡΑ ΜΟΝΗ ΣΤΑΥΡΟΝΙΚΗΤΑ ΙΕΡΑ ΜΟΝΗ ΣΤΑΥΡΟΝΙΚΗΤΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 19/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 19/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 19/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω

Διαβάστε περισσότερα

δ. Ο χρόνος ανάμεσα σε δυο διαδοχικούς μηδενισμούς του πλάτους είναι Τ =

δ. Ο χρόνος ανάμεσα σε δυο διαδοχικούς μηδενισμούς του πλάτους είναι Τ = ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 01/11/2015 ΘΕΜΑ 1 Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ΕΦΕΥΡΕΣΗ ΤΩΝ ΣΕΙΣΜΟΓΡΑΦΩΝ

ΕΦΕΥΡΕΣΗ ΤΩΝ ΣΕΙΣΜΟΓΡΑΦΩΝ ΕΦΕΥΡΕΣΗ ΤΩΝ ΣΕΙΣΜΟΓΡΑΦΩΝ Εφεύρεση του σεισμογράφου Οι πρώτοι σεισμογράφοι κατασκευαστήκαν στην Ιαπωνία από τους Άγγλους Gray,Milne και Ewing περί το 1880 (μηχανικοί σεισμογράφοι που κατέγραφαν πάνω σε

Διαβάστε περισσότερα

α. φ Α < φ Β, u A < 0 και u Β < 0. β. φ Α > φ Β, u A > 0 και u Β > 0. γ. φ Α < φ Β, u A > 0 και u Β < 0. δ. φ Α > φ Β, u A < 0 και u Β > 0.

α. φ Α < φ Β, u A < 0 και u Β < 0. β. φ Α > φ Β, u A > 0 και u Β > 0. γ. φ Α < φ Β, u A > 0 και u Β < 0. δ. φ Α > φ Β, u A < 0 και u Β > 0. ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΛΥΥΚΚΕΕΙΙΟΥΥ ΚΚυυρρι ιιαακκήή 1133 ΙΙααννοουυααρρί ίίοουυ 001133 Θέμα 1 ο (Μονάδες 5) 1. Στο σχήμα φαίνεται το στιγμιότυπο ενός εγκάρσιου αρμονικού κύματος

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Στις προτάσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη

Διαβάστε περισσότερα

Σεισμική Επικινδυνότητα Κεφ.21

Σεισμική Επικινδυνότητα Κεφ.21 Σεισμική Επικινδυνότητα Κεφ.21 Αθήνα, 1999 Ε. Σώκος Εργαστήριο Σεισμολογίας Τμήμα Γεωλογίας Σεισμική επικινδυνότητα Ορισμοί Μεθοδολογίες Μοντέλα περιγραφής σεισμικότητας Εξασθένιση σεισμικής κίνησης Παραδείγματα

Διαβάστε περισσότερα

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ ΕΚΔΣΕΙΣ ΚΕΛΑΦΑ 19 Μιγαδικός αριθμός λέγεται η έκφραση α + i, με α, ΙR. Φανταστικός αριθμός λέγεται η έκφραση i, με ΙR. Αν z = α + i, α, ΙR, το α λέγεται πραγματικό μέρος του z. Αν z = α + i, α, ΙR, το

Διαβάστε περισσότερα

3. Εγκάρσιο γραμμικό κύμα που διαδίδεται σε ένα ομογενές ελαστικό μέσον και κατά την

3. Εγκάρσιο γραμμικό κύμα που διαδίδεται σε ένα ομογενές ελαστικό μέσον και κατά την ΚΥΜΑΤΑ 1. Μια πηγή Ο που βρίσκεται στην αρχή του άξονα, αρχίζει να εκτελεί τη χρονική στιγμή 0, απλή αρμονική ταλάντωση με εξίσωση 6 10 ημ S. I.. Το παραγόμενο γραμμικό αρμονικό κύμα διαδίδεται κατά τη

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέμα Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό της

Διαβάστε περισσότερα

2.1 Τρέχοντα Κύματα. Ομάδα Δ.

2.1 Τρέχοντα Κύματα. Ομάδα Δ. 2.1 Τρέχοντα Κύματα. Ομάδα Δ. 2.1.41. Κάποια ερωτήματα πάνω σε μια κυματομορφή. Α d B Γ d Δ t 0 E Ένα εγκάρσιο αρμονικό κύμα, πλάτους 0,2m, διαδίδεται κατά μήκος ενός ελαστικού γραμμικού μέσου, από αριστερά

Διαβάστε περισσότερα

Ενεργά ρήγµατα. Ειδικότερα θέµατα: Ο σεισµός ως φυσικό φαινόµενο. Ενεργά ρήγµατα στον Ελλαδικό χώρο και παρακολούθηση σεισµικής δραστηριότητας.

Ενεργά ρήγµατα. Ειδικότερα θέµατα: Ο σεισµός ως φυσικό φαινόµενο. Ενεργά ρήγµατα στον Ελλαδικό χώρο και παρακολούθηση σεισµικής δραστηριότητας. Ενεργά ρήγµατα. Ειδικότερα θέµατα: Ο σεισµός ως φυσικό φαινόµενο. Ενεργά ρήγµατα στον Ελλαδικό χώρο και παρακολούθηση σεισµικής δραστηριότητας. Σκοποί του προγράµµατος είναι η εξοικείωση µε το φαινόµενο

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΑΣΚΗΣΗ 1 d x dx Η διαφορική εξίσωση κίνησης ενός ταλαντωτή δίνεται από τη σχέση: λ μx. Αν η μάζα d d του ταλαντωτή είναι ίση με =.5 kg, τότε να διερευνήσετε την κίνηση

Διαβάστε περισσότερα

δ. έχουν πάντα την ίδια διεύθυνση.

δ. έχουν πάντα την ίδια διεύθυνση. Διαγώνισμα ΦΥΣΙΚΗ Κ.Τ Γ ΛΥΚΕΙΟΥ ΖΗΤΗΜΑ 1 ον 1.. Σφαίρα, μάζας m 1, κινούμενη με ταχύτητα υ1, συγκρούεται μετωπικά και ελαστικά με ακίνητη σφαίρα μάζας m. Οι ταχύτητες των σφαιρών μετά την κρούση α. έχουν

Διαβάστε περισσότερα

Παναγιώτης Χατζηδημητρίου και Γιώργος Καρακαίσης

Παναγιώτης Χατζηδημητρίου και Γιώργος Καρακαίσης ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΕΙΣΜΟΛΟΓΙΑ Παναγιώτης Χατζηδημητρίου και Γιώργος Καρακαίσης Ενα μεγάλο τμήμα της ηλεκτρονικής αυτής παρουσίασης του μαθήματος βασίζεται στο βιβλίο Β. Κ. Παπαζάχος, Γ. Φ. Καρακαίσης και Π.

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου

Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου Ζήτημα 1 ον 1.. Ένα σημειακό αντικείμενο εκτελεί απλή αρμονική ταλάντωση. Τις χρονικές στιγμές που το μέτρο της ταχύτητας του αντικειμένου είναι μέγιστο, το μέτρο

Διαβάστε περισσότερα

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς 1. Δύο σώματα ίδιας μάζας εκτελούν Α.Α.Τ. Στο διάγραμμα του σχήματος παριστάνεται η συνισταμένη δύναμη που ασκείται σε κάθε σώμα σε συνάρτηση

Διαβάστε περισσότερα

α. rad β. rad γ. rad δ. μηδέν

α. rad β. rad γ. rad δ. μηδέν ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ/ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/03/2017 ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

A e (t σε sec). Το πλάτος των ταλαντώσεων

A e (t σε sec). Το πλάτος των ταλαντώσεων ΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Επιλέξτε την σωστή απάντηση. 1. Σηµειακό αντικείµενο εκτελεί φθίνουσες ταλαντώσεις µε πλάτος που µειώνεται εκθετικά µε το χρόνο σύµφωνα µε την 0,01t σχέση

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ

ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ F ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του. Αν ασκούνται σε αρχικά

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.

Διαβάστε περισσότερα

1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ

1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ 1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Θέμα 1: Α. Στις ερωτήσεις 1-3 να σημειώσετε το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα σώμα μάζας m

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. f (x) =, x 0, (1), x. lim f (x) = lim = +. x

ΣΗΜΕΙΩΣΕΙΣ. f (x) =, x 0, (1), x. lim f (x) = lim = +. x ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 2.9: Ασύμπτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ ΑΣΥΜΠΤΩΤΕΣ-ΚΑΝΟΝΑΣ

Διαβάστε περισσότερα

ΣΕΙΡΑ: 3 Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής

ΣΕΙΡΑ: 3 Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής ΜΑΘΗΜΑ /ΤΑΞΗ: Φυσική Κατεύθυνσης Γ Λυκείου ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 16/03/014 ΣΕΙΡΑ: 3 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής ΘΕΜΑ Α Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Ο ΣΕΙΣΜΟΣ ΤΟΥ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ ΤΗΣ 24/5/2014 12:25 Μw=6.9. ΠΡΟΚΑΤΑΡΚΤΙΚΑ ΣΤΟΙΧΕΙΑ ΑΠΟ ΟΑΣΠ - ΙΤΣΑΚ. ΓΕΝΙΚΑ

Ο ΣΕΙΣΜΟΣ ΤΟΥ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ ΤΗΣ 24/5/2014 12:25 Μw=6.9. ΠΡΟΚΑΤΑΡΚΤΙΚΑ ΣΤΟΙΧΕΙΑ ΑΠΟ ΟΑΣΠ - ΙΤΣΑΚ. ΓΕΝΙΚΑ Ο ΣΕΙΣΜΟΣ ΤΟΥ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ ΤΗΣ 24/5/2014 12:25 Μw=6.9. ΠΡΟΚΑΤΑΡΚΤΙΚΑ ΣΤΟΙΧΕΙΑ ΑΠΟ ΟΑΣΠ - ΙΤΣΑΚ. ΓΕΝΙΚΑ Στις 24 Μαΐου 2014 και τοπική ώρα 12:25 (09:25 GΜT) σημειώθηκε ισχυρή σεισμική δόνηση στο Βόρειο

Διαβάστε περισσότερα

2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier

2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier 2.1 2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier 2.1 Εισαγωγή Η βασική ιδέα στην ανάλυση των κυματομορφών με την βοήθεια της μεθόδου Fourier συνίσταται στο ότι μία κυματομορφή μιας οποιασδήποτε

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ. 1 ο ΘΕΜΑ. Α. Ερωτήσεις πολλαπλής επιλογής

ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ. 1 ο ΘΕΜΑ.  Α. Ερωτήσεις πολλαπλής επιλογής ο ΘΕΜΑ Α. Ερωτήσεις πολλαπλής επιλογής ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ. Το µήκος κύµατος δύο κυµάτων που συµβάλλουν και δηµιουργούν στάσιµο κύµα είναι λ. Η απόσταση µεταξύ δύο διαδοχικών δεσµών του στάσιµου κύµατος θα

Διαβάστε περισσότερα

Η Διεύθυνση και οι καθηγητές του Σχολείου σάς εύχονται καλή επιτυχία στις εξετάσεις

Η Διεύθυνση και οι καθηγητές του Σχολείου σάς εύχονται καλή επιτυχία στις εξετάσεις ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Ο ΓΕ.Λ ΚΑΤΕΡΙΝΗΣ ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ' ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΜΑΪΟΥ 014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΜΕΡΟΣ Α : Αποτελείται από 6 ερωτήσεις των 5 μονάδων η κάθε μια.

ΜΕΡΟΣ Α : Αποτελείται από 6 ερωτήσεις των 5 μονάδων η κάθε μια. ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα: ΦΥΣΙΚΗ Ημερομηνία και ώρα εξέτασης: 6

Διαβάστε περισσότερα

ΔΙΑΔΟΣΗ ΜΗΧΑΝΙΚΩΝ ΚΥΜΑΤΩΝ. υ=, υ=λ.f, υ= tτ

ΔΙΑΔΟΣΗ ΜΗΧΑΝΙΚΩΝ ΚΥΜΑΤΩΝ. υ=, υ=λ.f, υ= tτ 1 ΤΥΠΟΛΟΓΙΟ ΚΥΜΑΤΩΝ ΔΙΑΔΟΣΗ ΜΗΧΑΝΙΚΩΝ ΚΥΜΑΤΩΝ Μήκος κύματος Ταχύτητα διάδοσης Συχνότητα Εξίσωση αρμονικού κύματος Φάση αρμονικού κύματος Ταχύτητα ταλάντωσης, Επιτάχυνση Κινητική Δυναμική ενέργεια ταλάντωσης

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου

Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου Τρέχοντα Κύματα Κύμα ονομάζεται η διάδοση μιας διαταραχής σε όλα τα σημεία του ελαστικού μέσου με ορισμένη ταχύτητα. Κατά τη διάδοση ενός κύματος

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ Θέμα1: Α. Η ταχύτητα διάδοσης ενός ηλεκτρομαγνητικού κύματος: α. εξαρτάται από τη συχνότητα ταλάντωσης της πηγής β. εξαρτάται

Διαβάστε περισσότερα

2.2. Συμβολή και στάσιμα κύματα. Ομάδα Γ.

2.2. Συμβολή και στάσιμα κύματα. Ομάδα Γ. 2.2. Συμβολή και στάσιμα κύματα. Ομάδα Γ. 2.2.21. σε γραμμικό ελαστικό μέσο. Δύο σύγχρονες πηγές Ο 1 και Ο 2 παράγουν αρμονικά κύματα που διαδίδονται με ταχύτητα υ=2m/s κατά μήκος ενός γραμμικού ελαστικού

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 29/12/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 29/12/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 29/12/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

1. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια

1. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ((ΑΠΟΦΟΙΤΟΙ)) 9 0-0 Θέμα ο. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια θέση ισορροπίας, προκύπτει μια νέα ΑΑΤ σταθερού πλάτους,

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 05 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3 ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) U β A

ΔΙΑΓΩΝΙΣΜΑ 05 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3 ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) U β A Σελίδα 1 από 5 ΔΙΑΓΩΝΙΣΜΑ 05 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3 ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α και

Διαβάστε περισσότερα

Γενικές εξετάσεις Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης

Γενικές εξετάσεις Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης Γενικές εξετάσεις 0 Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα.

Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα. ΕΙΣΑΓΩΓΗ ΕΝΝΟΙΑ ΤΟΥ ΚΥΜΑΤΟΣ Τι ονομάζουμε κύμα; Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα. Η διαταραχή μπορεί να είναι α. Η ταάντωση των μορίων του

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

Πυθαγόρειο θεώρημα στο τρίγωνο ΣΠ 1 Π 2 : r 1 ² = Π 1 Π 2 ² + r 2 ²

Πυθαγόρειο θεώρημα στο τρίγωνο ΣΠ 1 Π 2 : r 1 ² = Π 1 Π 2 ² + r 2 ² 1) Υποθέτουμε ότι δύο μικρά ηχεία τα οποία τροφοδοτούνται από τον ίδιο ενισχυτή είναι τοποθετημένα όπως φαίνεται στην εικόνα. Τα ηχεία εκπέμπουν ηχητικά κύματα ίδιας φάσης των οποίων η ταχύτητα είναι υ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΥΜΑΤΑ-ΚΡΟΥΣΕΙΣ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΥΜΑΤΑ-ΚΡΟΥΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΥΜΑΤΑ-ΚΡΟΥΣΕΙΣ ΚΟΡΥΦΑΙΟ ΦΡΟΝΤΙΣΤΗΡΙΟ korifeo.gr ΖΗΤΗΜΑ Ο Στις ερωτήσεις -5 επιλέξτε τη σωστή απάντηση. Αρμονικό κύμα διαδίδεται κατά μήκος γραμμικού ελαστικού

Διαβάστε περισσότερα

Το στάσιμο κύμα είναι ειδική περίπτωση συμβολής

Το στάσιμο κύμα είναι ειδική περίπτωση συμβολής Το στάσιμο κύμα είναι ειδική περίπτωση συμβολής Θεωρούμε μια οριζόντια ελαστική χορδή μεγάλου μήκους, Έστω Σ Σ 2 ένα τμήμα της χορδής μήκους d=36cm. Την στιγμή t=0 ένα εγκάρσιο αρμονικό κύμα πλάτους Α=5cm

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

Τεστ Αρμονικό κύμα Φάση κύματος

Τεστ Αρμονικό κύμα Φάση κύματος Τεστ Αρμονικό κύμα Φάση κύματος ~Διάρκεια 90 min~ Θέμα Α 1) Όταν ένα κύμα αλλάζει μέσο διάδοσης, αλλάζουν i) η ταχύτητα διάδοσης του κύματος και η συχνότητά του ii) το μήκος κύματος και η συχνότητά του

Διαβάστε περισσότερα

Ελαστικά με σταθερά ελαστικότητας k, σε πλευρικές φορτίσεις και άκαμπτα σε κάθετες φορτίσεις. Δυναμικό πρόβλημα..

Ελαστικά με σταθερά ελαστικότητας k, σε πλευρικές φορτίσεις και άκαμπτα σε κάθετες φορτίσεις. Δυναμικό πρόβλημα.. Φάσματα Απόκρισης Κεφ.20 Θ. Σώκος Εργαστήριο Σεισμολογίας Τμήμα Γεωλογίας Δυναμική των κατασκευών Φάσματα Απόκρισης Το πρόβλημα της αλληλεπίδρασης σεισμού με τις κατασκευές είναι δυναμικό πρόβλημα του

Διαβάστε περισσότερα

Μια χορδή βιολιού µε τα δύο άκρα της στερεωµένα, ταλαντώνεται µε συχνότητα 12 Ηz. Στο παρακάτω σχήµα φαίνονται δύο στιγµιότυπα του στάσιµου κύµατος.

Μια χορδή βιολιού µε τα δύο άκρα της στερεωµένα, ταλαντώνεται µε συχνότητα 12 Ηz. Στο παρακάτω σχήµα φαίνονται δύο στιγµιότυπα του στάσιµου κύµατος. ΘΕΜΑ A ΤΕΣΤ 15. 1. Δύο σύγχρονες πηγές Ο 1 και Ο προκαλούν, πάνω σε μία επιφάνεια υγρού, αρμονικά κύματα με ίσα πλάτη Α. Σ ένα σημείο Μ, πάνω στην επιφάνεια του υγρού, παρατηρείται ενισχυτική συμβολή.

Διαβάστε περισσότερα

ΑΣΚΗΣΗ ΔΙΑΘΛΑΣΗΣ Ασυνέχεια με κλίση

ΑΣΚΗΣΗ ΔΙΑΘΛΑΣΗΣ Ασυνέχεια με κλίση ΑΣΚΗΣΗ ΔΙΑΘΛΑΣΗΣ Ασυνέχεια με κλίση Για να ναμελετηθεί μία γεωφυσική δομή ασυνέχειας με μεκλίση χρησιμοποιήθηκε η μέθοδος της σεισμικής διάθλασης με μετην εφαρμογή σεισμικού προφίλ 66 66γεωφώνων. Αυτά

Διαβάστε περισσότερα

γ) Να σχεδιάσετε τις γραφικές παραστάσεις απομάκρυνσης - χρόνου, για τα σημεία Α, Β και Γ, τα οποία απέχουν από το ελεύθερο άκρο αντίστοιχα,,

γ) Να σχεδιάσετε τις γραφικές παραστάσεις απομάκρυνσης - χρόνου, για τα σημεία Α, Β και Γ, τα οποία απέχουν από το ελεύθερο άκρο αντίστοιχα,, 1. Κατά μήκος μιας ελαστικής χορδής μεγάλου μήκους που το ένα άκρο της είναι ακλόνητα στερεωμένο, διαδίδονται δύο κύματα, των οποίων οι εξισώσεις είναι αντίστοιχα: και, όπου και είναι μετρημένα σε και

Διαβάστε περισσότερα

F Στεφάνου Μ. 1 Φυσικός

F Στεφάνου Μ. 1 Φυσικός F 1 ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του. Αν ασκούνται σε αρχικά

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ γ τάξη ενιαίου λυκείου (εξεταστέα ύλη: κρούσεις, ταλαντώσεις, εξίσωση κύματος) διάρκεια εξέτασης: 1.8sec ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΜΑΘΗΤΡΙΑΣ: ΤΜΗΜΑ: ΘΕΜΑ Α Στις ερωτήσεις Α1 Α4 να επιλέξετε

Διαβάστε περισσότερα

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 10

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 10 ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 10 1. Τρια αντικείµενα Α, Β και C µε µάζα m, 2m και 8m αντίστοιχα βρίσκονται στο ίδιο επίπεδο και στις θέσεις που φαίνονται στο σχήµα. Σε ποια θέση (x,y) πρέπει να τοποθετεί ένα τέταρτο

Διαβάστε περισσότερα

ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ

ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του.

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ Συναρτήσεις Προεπισκόπηση Κεφαλαίου Τα μαθηματικά είναι μια γλώσσα με ένα συγκεκριμένο λεξιλόγιο και πολλούς κανόνες. Πριν ξεκινήσετε το ταξίδι σας στον Απειροστικό Λογισμό, θα πρέπει να έχετε εξοικειωθεί

Διαβάστε περισσότερα