Frobenius integrable decompositions for PDEs

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Frobenius integrable decompositions for PDEs"

Transcript

1 Frobenius integrable decompositions for PDEs GAO Liang Department of Applied Mathematics, School of Science, Northwestern Polytechnical University Xi an, Shaanxi 71019, P.R. China Joint work with Wen-Xiu Ma and Wei Xu

2 Outline 1. Introduction. Specific PDEs possessing Frobenius integrable decompositions (FIDs) 3. Conclusions

3 1. Introduction Many PDEs exhibiting soliton phenomena appeared in many science subjects fluid physics, solid physics, elementary particle physics, biological physics, superconductor physics, It is a quite fascinating research topic that how to solve such PDEs to obtain interesting solutions including solitons, which attracts much attention of mathematicians, physicists and dynamicists.

4 In the past several decades, there have been many efficient methods for constructing exact solutions to nonlinear PDEs. Though the solving methods are diverse, appropriate reductions similarity reductions, symmetry constraints, travelling wave reductions To reduce given PDEs to simpler PDEs and/or integrable ODEs.

5 W.X. Ma, H.Y. Wu, J.S. He, Partial differential equations possessing Frobenius integrable decompositions, Physics Letters A, 364 (007) 9-3. They presented FIDs for two classes of nonlinear evolution equations (NEEs) with logarithmic derivative Bäcklund transformations in soliton theory. u ψ = (ln φ) x =, φ u λφ ψ = (ln φ) xx =. φ The discussed NEEs are transformed into systems of Frobenius integrable ODEs with cubic nonlinearity.

6 F.C. You, T.C. Xia, J. Zhang, Frobenius integrable decompositions for two classes of nonlinear evolution equations with variable coefficients, Modern Physics Letters B, 3 (1) (009) They obtained two classes of PDEs with variable coefficients possessing FIDs, including the KdV equation the potential KdV equation the Boussinesq equation the generalized BBM equation,

7 Puu (,, u, u, ) = 0 t x xt What is FIDs? u = v( Φ ) = v( Φ( x, t)), Φ =Α( Φ), Φ =Β( Φ), x t Then we say that the equation possesses a FID.

8 FIDs generalize compatible time-space decompositions requiring Hamiltonian structures, which aim to guarantee the Liouville integrability ([1, ]). [1] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, [] W.X. Ma, in: A. Scott (Ed.), Encyclopedia of Nonlinear Science, Taylor & Francis, New York, 005, pp Through FIDs, a PDE problem can be transformed into two associated ODE problems. Thus, the existence of solutions can be guaranteed easily by the theory of ODEs.

9 Our work Present two classes of PDEs of specific type possessing FIDs by introducing some general ansatzes on FIDs, motivated by the works about FIDs by Ma and You et al. Two kinds of functions for Bäcklund transformations are taken in our constructive computation algorithm, and the associated Frobenius integrable ODEs possess higher-order nonlinearity.

10 . Specific PDEs possessing FIDs Ruu (,, u, u, u, u, u, u, u, u, u, ) = 0. x xx xxx xxxx 5x 7x 9x t tt xxt Many interesting wave equations belong to this class of PDEs, the KdV, the potential KdV, the generalized seventh-order KdV, the Burgers, the spatially periodic third-order dispersive PDE, the b-equation,...

11 Based on the symmetry constrains theory [1-4], [1] W.X. Ma, W. Strampp, Physics Letters A, 185 (1994) 77. [] W.X. Ma, Journal of the Physical Society of Japan, 64 (1995) [3] W.X. Ma, Z.X. Zhou, Journal of Mathematical Physics, 4 (001) [4] Y.B. Zeng, W.X. Ma, Journal of Mathematical Physics, 40 (1999) 656. we consider the following case

12 T T Φ= ( φψ, ) = ( φ( xt, ), ψ( xt, )), which satisfies two Frobenius integrable systems: a real parameter φ = ψ, ψ = λφ, x x undetermined polynomials φ = θ ( φ, ψ), ψ = θ ( φ, ψ). t 1 t It is easy to see that the equation can be generated from the Schrödinger spectral problem with zero potential.

13 Then, we have the following mixed derivatives for the considered FIDs: and φxt = ψt = θ( φ, ψ), φtx = θ1, φψ + λθ1, ψφ, ψ xt = λφt = λθ1( φ, ψ ), ψ tx = θ, φψ + λθ, ψφ.

14 Thus, we get and accordingly, θ ( φψ, ) = θ ψ+ λθ φ, 1, φ 1, ψ λθ ( φ, ψ) = θ ψ + λθ φψ + λ θ φ + λ( θ φ+ θ ψ). 1 1, φφ 1, φψ 1, ψψ 1, φ 1, ψ the only condition on θ 1

15 To search for θ1 which satisfies λθ ( φ, ψ) = θ ψ + λθ φψ + λ θ φ + λ( θ φ + θ ψ). 1 1, φφ 1, φψ 1, ψψ 1, φ 1, ψ Take the following ansatze natural numbers θ m1 m i j 1 = bi, jφψ i= 0 j= 0, arbitrary constants

16 when m1 = m = 7 θ = λ b φ λ b φ ψ + 3λ b φ ψ + 3λ b φ ψ 3λb φ ψ 3λb φ ψ ,6 0,7 1,6 0,7 1,6 0,7 + b φψ + b ψ + λ b φ + λ b φ ψ λb φ ψ λb φ ψ + b φψ ,6 0,7 1,4 0,5 1,4 0,5 1,4 + b ψ λb φ λb φ ψ + b φψ + b ψ + b φ+ b ψ ,5 1, 0,3 1, 0,3 1,0 0,1 θ = λ( λ b φ + 6λ b φ ψ + 9λ b φ ψ 1λb φ ψ 15λb φ ψ + 6b φψ ,7 1,6 0,7 1,6 0,7 1,6 + 7b ψ + λ b φ 4λb φ ψ 6λb φ ψ + 4b φψ + 5b ψ λb φ ,7 0,5 1,4 0,5 1,4 0,5 0,3 + b φψ + 3 b ψ + b ) φ + ( 7λ b φ 6λ b φ ψ + 15λ b φ ψ , 0,3 0,1 1,6 0,7 1,6 + 1λ b φψ 9λb φψ 6λb φψ + b ψ + 5λ b φ , 7 1,6 0,7 1,6 1,4 + 4λ b φ ψ 6λb φ ψ 4λb φψ + b ψ ,5 1,4 0,5 1,4 3λb φ λb φψ + b ψ + b ) ψ. 1, 0,3 1, 1,0

17 On the other hand, we consider the following specific type of the polynomial R Ruu (,, u, u, u, u, u, u, u, u, u, ) x xx xxx xxxx 5x 7x 9x t tt xxt = d u+ d u + d u + d u + d u + d u + d uu + d uu + d uu 0,0 0,1 x 0, xx 0,3 xxx 0,4 xxxx 1,0 1,1 x 1, xx 1,3 xxx + d uu + d u + d uu + d uu + d uu + d u + d u u + d 1,4 xxxx,0 x,1 x xx, x xxx,3 x xxxx 3,0 xx 3,1 xx xxx 3, u u + d u + d u u + d u + e u + eu + e u xx xxxx 4,0 xxx 4,1 xxx xxxx 5,0 xxxx 0 5x 1 7x 9x + euu + euu + euu + fuu + fuu + fuu + fu 3 3 5x 4 7x 5 9x 0 x 1 xxx 5x 3 x + fuu + fuuu + gu+ gu + gu + gu 3 4 x 5 x xx 0 t 1 tt xxt 3 xxt.

18 Theorem (a) If we take a Bäcklund transformation ψ u = (ln φ) x = φ from the Frobenius integrable systems φ = ψ, ψ = λφ, x x φ = θ ( φ, ψ), ψ = θ ( φ, ψ), t 1 t to the PDE Puu (,, u, u, ) = 0, t x xt

19 θ = λ b φ + 3λ b φ ψ 3λb φ ψ + b φψ + λ b φ λb φ ψ ,6 1,6 1,6 1,6 1,4 1,4 + b φψ λb φ + b φψ + b φ + b ψ, 4 3 1,4 1, 1, 1,0 0,1 θ = λ(6λ b φ ψ 1λb φ ψ + 6b φψ 4λb φ ψ + 4b φψ + b φψ + b ) φ ,6 1,6 1,6 1,4 1,4 1, 0,1 + (15λ b φψ 7λ b φ 9λb φψ + b ψ + 5λ b φ 6λb φψ ,6 1,6 1,6 1,6 1,4 1,4 + b ψ 3 λb φ + b ψ + b ) ψ, 4 1,4 1, 1, 1,0

20 R = (4λ e + 8λd 40λe + 4d d 6 d ) u u + f u u + f u u + f u 3 3 4,3 3 0,4,1 1,3 x 1 xxx 5 x 3 x + d uu + d uu + (3d 40λ f 60e + d 3 f 1/ f + 1 d ) uu u 1,4 xxxx 1,3 xxx, 0 3, ,4 x xx + d uu + e uu + e uu + 630e u 35e u u + d u u 1, xx 3 5x 4 7x xxxx 4 xxx xxxx,3 x xxxx + d u u + d u + d u u (56λ e + 64λ e + 16λ f + 16λ e 4 3 3, x xxx 3,0 xx,1 x xx λ f 8λ d + 4λb g + 4λd λd + b g + d ) u u / λ 1 1,4 0,1 0,3 1, 0,1 0 0,1 + (4λ e 88λ e 8λ d + b g + λd + λd 3 3 4,3 0,1 1,1 16λd0,4 1,3 + d ) uu + (105e 3/4d + 5/f 3/4 b g ) u xx u xxxx 0, x 1 xxt + gu 3 xxt. 4,0 0,1 3 + d u (140λ e + d + 10 e ) u u + d u 0,4 xxxx 4,3 3 xx xxx 0,3 xxx + d u + e u + eu + e u + d u (4λ c g 3 0, xx 9x 1 7x 0 5x 0,1 x 0, λ e + 4λ d 7λ e + 16λ e ,0 1 0 λ d + λ f λb g λd, 3 0,1 0,3 + b g + d ) u / λ + g u + g u + gu 0,1 0 0,1 x 0 t 1 tt x + d 4,0 u xxx

21 (b) If we take a Bäcklund transformation u = (ln φ) xx = λφ ψ φ θ = λ b φ + 3λ b φ ψ 3λb φ ψ + b φψ + λ b φ λb φ ψ ,6 1,6 1,6 1,6 1,4 1,4 + b φψ λb φ + b φψ + b φ + b ψ, 4 3 1,4 1, 1, 1,0 0,1 θ = λb φψ+ 3λ b φψ 3λb φψ + λb φψ λb φψ ,6 1,6 1,6 1,4 1,4 λb φ ψ + λb φ+ b ψ + b ψ + b ψ + b ψ, , 0,1 1,6 1,4 1, 0,1

22 R = f uu + fuu + fuuu + (44350λ e 35λ d 3584λ e 10λe + 8λ f λ f + λ f 3 4 x 1 xxx 5 x xx 4, e + 1d + 6 d ) u u + (4d 5040e + 56 e ) u u + e uu + e uu + d uu + d uu 0 1,3,1 x 4,1 4 5x 4 7x 3 5x 1,4 xxxx 1,3 xxx + d uu + (40λd 30400λe λe + 30d,3 + 18d3,1 5040e1 + 90e3 3 f1 + 1/ 4 f4 1, xx 4,1 4 3/ f ) u + d u u + d u u + d u u + d u u + d u + d u u + (3λ d x,3 x xxxx,1 x xx 3, xx xxxx 4,1 xxx xxxx 3,0 xx 3,1 xx xxx 3, 16λ d 4λ d + 6b g + λd + 6 d ) u + (6580λ e 64λ d 64λ e 16λ d ,4 3,0 0,1 1 1, 0, 4,1 4,3 3, ,3,1 0,1 0,3 x 1,4 3, 0,4 1, x 1,4 3,0 x xxx 9x 1 7x 0 5x 0,4 xxxx 0,3 xxx 0, xx 0,1 3 3, xxx 16λ d + 403λ e 16λ e + 40λe 4λd 4λd + 1b g + 1 d ) uu + (10λd 4λ d + 30d 3 / d ) u (5 / d + 3 / 4 d ) u u + e u + eu + e u + d u + d u + d u ( b g + 5/4 d ) u 4 3 (4λb g + 16λ d + 4 λd ) u (56λ e + 64λ e + 16λ e 0,1 1 0,4 0, λb0,1g 4 λd0,3 b0,1g0) ux g0ut g1utt guxxt g3uxxt.

23 Take a special reduction as follows: Ruu (,, u, u, u, u, u, u, u, u, u, ) x xx xxx xxxx 5x 7x 9x t tt xxt = d u + d u + d u + d u + d u + d uu + d uu + d uu 0,0 0,1 x 0, xx 0,3 xxx 0,4 xxxx 1,1 x 1, xx 1,3 xxx + d u + d u u + d u u + d u u + d u u + e u + eu,0 x,1 x xx, x xxx,3 x xxxx 3,1 xx xxx 0 5x 1 7x + eu + euu + fu u + fu u + fu u + fu + fuu 3 3 9x 3 5x 0 x 1 xxx 5x 3 x 4 x 5 x xx 0 t 1 tt xxt. + fuuu + gu + gu + gu

24 For the u ψ = (ln φ) x = φ The corresponding results θ1 = λ b1,6φ + 3λ b1,6 φ ψ 3λb1,6φ ψ + b1,6 φψ + λ b1,4φ λb φ ψ + b φψ λb φ + b φψ + b φ + b ψ, ,4 1,4 1, 1, 1,0 0,1 θ = λ (6λ b φ ψ 1λb φ ψ + 6b φψ 4λb φ ψ + 4b φψ + b φψ ,6 1,6 1,6 1,4 1,4 1, + b ) φ+ ( 7λ b φ + 15λ b φ ψ 9λb φ ψ + b ψ + 5λ b φ ,1 1,6 1,6 1,6 1,6 1,4 6λb φ ψ + b ψ 3 λb φ + b ψ + b ) ψ, 4 1,4 1,4 1, 1, 1,0

25 R = (8 λ d 40 λe + 4 d 6 d d ) u u + f u u 4e u u + f u 3 3,3 3 0,4 1,3,1 x 1 xxx 1 5x 3 x + ( 336λ e λ d 4λ f + λ f 6b g 6 d + d + d ) uu 1, 1 3 0,1 0,3 1,,0 + d uu + (1680λ e + 3d 60e 3 f 1/ f ) uu u + d 1, xx 1, x xx 1,3 xxx + e uu + d u u + d u u 3 5x,1 x xx, x xxx,3 x xxxx,0 x 3,3 0,1 1 0,4 1,3,1 0,,3 3 xx xxx 0, xx 0,3 xxx 0,4 xxxx 3 0 5x 1 7 x 1, 0 λ f3 λb0,1g λ d0,3 λ d,0 0,1 0 + d uu + d u + (4λ e 8λ d + b g 16λ d + λ d + λ d + d ) uu (d + 10 e ) u u + d u + d u + d u + e u + eu + (7λ e + λ d 16λ e + + b g ) u + g u xxt. x + g u + g u 0 t 1 tt x uu x

26 It includes many nonlinear equations, the potential KdV equation gu 0 t + d0,3uxxx + 6d0,3ux = 0, the Burgers equation gu 0 t + d0,uux + d0,uxx = 0, b - equation 1 1 gu 0 t uxxt uux = ( 3 uu x xx + uuxxx ). λ a general case of the famous Rod equation [1] [1] H.H. Dai, Y. Huo, Proceedings of the Royal Society of London Series A, 456 (000) 331. λ

27 For the u = (ln φ) xx = λφ ψ φ The corresponding results θ = λ b φ + 3λ b φ ψ 3λb φ ψ + b φψ + λ b φ ,6 1,6 1,6 1,6 1,4 λ b φ ψ + b φψ λb φ + b φψ + b φ + b ψ, ,4 1,4 1, 1, 1,0 0,1 θ = λ b φ ψ + 3λ b φ ψ 3λb φ ψ + λ b φ ψ λb φ ψ ,6 1,6 1,6 1,4 1,4 λb φ ψ + λb φ+ b ψ + b ψ + b ψ + ψ b , 0,1 1,6 1,4 1, 1,0,

28 R = fuu + fuu + (44350λ e 10λ e + 8λ f λ f + λ f + 1 d + 6 d 3 4 x 1 xxx ,3,1 360 e ) u u + d uu + d uu + e uu + d u u + d u u + (30 d 0 x 1, xx 1,3 xxx 3 5x 3,0 xx xxx,1 x xx,3 + 18d 30400λ e 5040 e + 90 e 3 f + 1/ 4 f 3 / f ) u + e u 3 3, x 9x + d u + f uu 0,3 xxx 5 x u + d u + e u + eu + ( 30 d 3 / d ) u xx 0,4 xxxx 0 5x 1 7x 0,4 1, x + ( 4/3λ d 16 λ d ) u ( b g + 1/3 λ d ) u ( 64λ e 3 1, 0,4 0,1 1 1, xx λ e + 16λ e + 4λ c g + 4λ d + b g ) u 4 0 0,1 0,3 0,1 0 + d u u 5040 e u u + (6580λ e 3,3 x xxxx 5x 16λ d 16λ d λ e,3 3,0 1 16λ e3 4λ d1,3 4λ d,1 + 40λ e + 1b g 0 0,1 + 1 d ) uu + g u 0,3 x 0 + gu + gu 1 tt xxt. t x

29 It includes: the KdV equation gu+ 1d uu + d u = 0, 0 t 0,3 x 0,3 xxx the family of spatially periodic third-order dispersive PDE 1 b0,1g0ut b0,1g0ux + b0,1d0,3uxxx d0,3uxxt = b0,1αλ ( u + ux uuxx ) x,

30 the generalized seventh-order KdV equation 3 g u + (λf 10λe + 8 λ f ) uu + (30d + 18d f + 90e 5040e 3 f ) u + fuuu + fuu + d u u + d uu + euu + eu = 0, 3 0 t x,3 3, x 5 x xx 1 xxx 3,0 xx xxx,3 x xxxx 3 5x 1 7x which has two well-known special cases [1]: the Lax seventh-order equation the Sawada-Kotera-Ito seventh-order equation [1] M. Ito, Journal of the Physical Society of Japan, 49 (1980) 771

31 3. Conclusions Through two Bäcklund transformations of dependent variables, ninth-order PDEs possessing the FIDs have been obtained. Two special classes of such nonlinear PDEs possessing special FIDs have been presented under a reduction. The obtained PDEs contain various significant nonlinear wave equations.

32 The approach adopted here can be easily applied to nonlinear variable coefficient PDEs, which are quite intriguing in ocean dynamics, fluid mechanics, plasma physics, etc. A question? If we take the Möbius transformation u = ( aϕ + bψ)/( cϕ + dψ), ( ad bc 0) instead of the logarithmic derivative type Bäcklund transformations, what we will get?

33 Thank Prof. Wen-Xiu Ma, Prof. Xingbiao Hu and Prof. Qingping Liu! Thank you for your attention!

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Envelope Periodic Solutions to Coupled Nonlinear Equations

Envelope Periodic Solutions to Coupled Nonlinear Equations Commun. Theor. Phys. (Beijing, China) 39 (2003) pp. 167 172 c International Academic Publishers Vol. 39, No. 2, February 15, 2003 Envelope Periodic Solutions to Coupled Nonlinear Equations LIU Shi-Da,

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ» I ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΝΟΜΙΚΗ

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Περίληψη (Executive Summary)

Περίληψη (Executive Summary) 1 Περίληψη (Executive Summary) Η παρούσα διπλωματική εργασία έχει ως αντικείμενο την "Αγοραστική/ καταναλωτική συμπεριφορά. Η περίπτωση των Σπετσών" Κύριος σκοπός της διπλωματικής εργασίας είναι η διερεύνηση

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Journal of East China Normal University (Natural Science) DGH. Stability of peakons for the DGH equation. CHEN Hui-ping

Journal of East China Normal University (Natural Science) DGH. Stability of peakons for the DGH equation. CHEN Hui-ping 5 2010 9 ) Journal of East China Normal University Natural Science) No. 5 Sep. 2010 : 1000-56412010)05-0067-06 DGH, 226007) :,. DGH H 1.,,. : ; DGH ; : O29 : A Stability of peakons for the DGH equation

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Test Data Management in Practice

Test Data Management in Practice Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016 Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

Distances in Sierpiński Triangle Graphs

Distances in Sierpiński Triangle Graphs Distances in Sierpiński Triangle Graphs Sara Sabrina Zemljič joint work with Andreas M. Hinz June 18th 2015 Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. S. S. Zemljič 1 Motivation

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

athanasiadis@rhodes.aegean.gr , -.

athanasiadis@rhodes.aegean.gr , -. παιδαγωγικά ρεύµατα στο Αιγαίο Προσκήνιο 88 - * athanasiadis@rhodes.aegean.gr -., -.. Abstract The aim of this survey is to show how students of the three last school classes of the Primary School evaluated

Διαβάστε περισσότερα

Empirical best prediction under area-level Poisson mixed models

Empirical best prediction under area-level Poisson mixed models Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date

Διαβάστε περισσότερα

Symmetry Reduction of (2+1)-Dimensional Lax Kadomtsev Petviashvili Equation

Symmetry Reduction of (2+1)-Dimensional Lax Kadomtsev Petviashvili Equation Commun. Theor. Phys. 63 (2015) 136 140 Vol. 63, No. 2, February 1, 2015 Symmetry Reduction of (2+1)-Dimensional Lax Kadomtsev Petviashvili Equation HU Heng-Chun ( ), 1, WANG Jing-Bo ( ), 1 and ZHU Hai-Dong

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΑΥΤΟΜΑΤΟ ΕΛΕΓΧΟ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ανεµόµετρο AMD 1 Αισθητήρας AMD 2 11 ος όροφος Υπολογιστής

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Lie Symmetry Group of the Nonisospectral Kadomtsev-Petviashvili Equation

Lie Symmetry Group of the Nonisospectral Kadomtsev-Petviashvili Equation Lie Symmetry Group of the Nonisospectral Kadomtsev-Petviashvili Equation Yong Chen ab and Xiaorui Hu b a Shanghai Key Laboratory of Trustworthy Computing East China Normal University Shanghai 0006 China

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Πτυχιακή εργασία ΓΝΩΣΕΙΣ ΚΑΙ ΣΤΑΣΕΙΣ ΝΟΣΗΛΕΥΤΩΝ ΠΡΟΣ ΤΟΥΣ ΦΟΡΕΙΣ ΜΕ ΣΥΝΔΡΟΜΟ ΕΠΙΚΤΗΤΗΣ ΑΝΟΣΟΑΝΕΠΑΡΚΕΙΑΣ (AIDS) Αλέξης Δημήτρη Α.Φ.Τ: 20085675385 Λεμεσός

Διαβάστε περισσότερα

ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΚΑ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ ΣΔΛΙΚΗ ΔΡΓΑΙΑ

ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΚΑ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ ΣΔΛΙΚΗ ΔΡΓΑΙΑ Ε ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΚΑ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ ΣΜΗΜΑ ΓΔΝΙΚΗ ΓΙΟΙΚΗΗ ΣΔΛΙΚΗ ΔΡΓΑΙΑ Θέκα: Η Γηνίθεζε Αιιαγώλ (Change Management) ζην Γεκόζην Σνκέα: Η πεξίπησζε ηεο εθαξκνγήο ηνπ ύγρξνλνπ Γεκνζηνλνκηθνύ

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

A METHOD OF SOLVING LAGRANGE S FIRST-ORDER PARTIAL DIFFERENTIAL EQUATION WHOSE COEFFICIENTS ARE LINEAR FUNCTIONS

A METHOD OF SOLVING LAGRANGE S FIRST-ORDER PARTIAL DIFFERENTIAL EQUATION WHOSE COEFFICIENTS ARE LINEAR FUNCTIONS International Journal of Differential Equations and Applications Volume 14 No. 2 2015, 65-79 ISSN: 1311-2872 url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijdea.v14i2.2091 PA acadpubl.eu A METHOD

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Ακέραιος προγραμματισμός πολύ-κριτηριακές αντικειμενικές συναρτήσεις Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 12-13 η /2017

Διαβάστε περισσότερα

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014 LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV 18 February 2014 Slowly/quietly Clear/clearly Clean Quickly/quick/fast Hurry (in a hurry) Driver Attention/caution/notice/care Dance Σιγά Καθαρά Καθαρός/η/ο

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

The Number of Zeros of a Polynomial in a Disk as a Consequence of Restrictions on the Coefficients

The Number of Zeros of a Polynomial in a Disk as a Consequence of Restrictions on the Coefficients The Number of Zeros of a Polynomial in a Disk as a Consequence of Restrictions on the Coefficients Robert Gardner Brett Shields Department of Mathematics and Statistics Department of Mathematics and Statistics

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Buried Markov Model Pairwise

Buried Markov Model Pairwise Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

3.4 Αζηίεξ ημζκςκζηήξ ακζζυηδηαξ ζημ ζπμθείμ... 64 3.4.1 Πανάβμκηεξ πνμέθεοζδξ ηδξ ημζκςκζηήξ ακζζυηδηαξ... 64 3.5 οιαμθή ηςκ εηπαζδεοηζηχκ ζηδκ

3.4 Αζηίεξ ημζκςκζηήξ ακζζυηδηαξ ζημ ζπμθείμ... 64 3.4.1 Πανάβμκηεξ πνμέθεοζδξ ηδξ ημζκςκζηήξ ακζζυηδηαξ... 64 3.5 οιαμθή ηςκ εηπαζδεοηζηχκ ζηδκ 2 Πεξηερόκελα Δονεηήνζμ πζκάηςκ... 4 Δονεηήνζμ δζαβναιιάηςκ... 5 Abstract... 6 Πενίθδρδ... 7 Δζζαβςβή... 8 ΘΔΩΡΗΣΙΚΟ ΜΔΡΟ... 12 Κεθάθαζμ 1: Θεςνδηζηέξ πνμζεββίζεζξ βζα ηδκ ακζζυηδηα ζηδκ εηπαίδεοζδ...

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

ADVANCED STRUCTURAL MECHANICS

ADVANCED STRUCTURAL MECHANICS VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009 Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009 1 IV. Hedging of credit derivatives 1. Two default free assets, one defaultable asset 1.1 Two

Διαβάστε περισσότερα

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko M a t h e m a t i c a B a l k a n i c a New Series Vol. 26, 212, Fasc. 1-2 On Some Generalizations of Classical Integral Transforms Nina Virchenko Presented at 6 th International Conference TMSF 211 Using

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

ΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ

ΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ Ε ΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ ΙE ΕΚΠΑΙ ΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ ΓΕΝΙΚΗΣ ΙΟΙΚΗΣΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ Θέµα: Εκπαίδευση: Μέσο ανάπτυξης του ανθρώπινου παράγοντα και εργαλείο διοικητικής µεταρρύθµισης Επιβλέπουσα:

Διαβάστε περισσότερα

Επιβλέπουσα Καθηγήτρια: ΣΟΦΙΑ ΑΡΑΒΟΥ ΠΑΠΑΔΑΤΟΥ

Επιβλέπουσα Καθηγήτρια: ΣΟΦΙΑ ΑΡΑΒΟΥ ΠΑΠΑΔΑΤΟΥ EΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟ ΤΕΧΝΟΛΟΓΙΚΟ ΙΔΡΥΜΑ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : Λεωφ. Αντ.Τρίτση, Αργοστόλι Κεφαλληνίας Τ.Κ. 28 100 τηλ. : 26710-27311 fax : 26710-27312

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΦΟΡΟΛΟΓΙΑ Ο.Ε. ΕΙΣΗΓΗΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ: κ. ΟΥΡΑΝΟΥ ΕΡΜΙΟΝΗ ΣΠΟΥΔΑΣΤΡΙΕΣ: ΔΕΜΕΤΖΟΥ ΑΓΛΑΪΑ

Διαβάστε περισσότερα

Πτυχιακή Εργασία. Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους

Πτυχιακή Εργασία. Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΔΙΑΤΡΟΦΗΣ ΚΑΙ ΔΙΑΙΤΟΛΟΓΙΑΣ Πτυχιακή Εργασία Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους Εκπόνηση:

Διαβάστε περισσότερα

Appendix S1 1. ( z) α βc. dβ β δ β

Appendix S1 1. ( z) α βc. dβ β δ β Appendix S1 1 Proof of Lemma 1. Taking first and second partial derivatives of the expected profit function, as expressed in Eq. (7), with respect to l: Π Π ( z, λ, l) l θ + s ( s + h ) g ( t) dt λ Ω(

Διαβάστε περισσότερα