Λύσεις Τέταρτου Πακέτου Ασκήσεων

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Λύσεις Τέταρτου Πακέτου Ασκήσεων"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι Λύσεις Τέταρτου Πακέτου Ασκήσεων 1. Πρώτη άσκηση 2. Δεύτερη άσκηση

2 3. α) Για τη συνάρτηση κέρδους έχουµε Π=P f(x) - c x = 100 * 4x^(1/2) - 50 x = 400x^(1/2) - 50 x. β) Για το πλήθος των εισροών που µεγιστοποιούν το κέρδος, θα υπολογίσουµε την πρώτη παράγωγο του Π και θα την θέσουµε ίση µε το µηδέν. Έχουµε Π =400 * (1/2) x^(1/2-1) -50 = 200x^(-1/2) - 50 = 0, που µας δίνει x=16. (Μπορούµε επίσης να ελέγξουµε και την δεύτερη παράγωγο, για να βεβαιωθούµε ότι η συνάρτηση έχει µέγιστο στο x=16). To κέρδος σε αυτήν την περίπτωση είναι Π(16)=800. γ) Αν υπάρχει φόρος 20 ευρώ ανά τεµάχιο και κάθε εισροή επιχορηγείται µε 10 ευρώ, τότε το κέρδος Π2= (P-20) f(x) - (c-10) x = 80 * 4x^(1/2)-40x=320x^(1/2)-40x. Όπως και πριν, για το πλήθος των εισροών που µεγιστοποιούν το κέρδος, θα υπολογίσουµε την πρώτη παράγωγο του Π2 και θα την θέσουµε ίση µε το µηδέν. Έχουµε Π2 =320 * (1/2) x^(1/2-1) -40 = 160x^(-1/2) - 40 = 0, που µας δίνει x=16 (Μπορούµε επίσης να ελέγξουµε και την δεύτερη παράγωγο, για να βεβαιωθούµε ότι η συνάρτηση έχει µέγιστο στο x=16). To κέρδος σε αυτήν την περίπτωση είναι Π2(16)=640. δ) Αν τώρα αντί για φόρο και επιχορήγηση, η εταιρία πληρώνει φόρο 50% του κέρδους, τότε έχουµε συνάρτηση κέρδους Π3= 0.50 * (400x^(1/2) - 50 x). Το

3 πρόβληµα µεγιστοποίησης τώρα είναι το ίδιο µε το (β), οπότε για µεγιστοποίηση κέρδους x=16, για µεγιστοποίηση κέρδους πωλούνται f(16)=16 τεµάχια και το κέρδος µετά φόρων είναι Π3(16)= α) Για τις καµπύλες ίσου κόστους έχουµε: Η κλίση των ευθειων είναι ίση µε -4. β) Η εταιρία θέλει να µεγιστοποιήσει το κέρδος, άρα θα επιλέξει έναν συνδυασµό L,M όπου η γραµµές ίσου κόστους εφάπτονται µε την συνάρτηση παραγωγής, όπως απεικονίζεται παραπάνω. Το πρόβληµα µπορεί να επιλυθεί εύκολα µε Lagrange ή εξισώνοντας τον λόγο τον µερικών παραγώγων της f µε τον λόγο του κόστους L,M. Έχουµε f_l / f_m = P_L / P_M, όπου οι συµβολισµοί αναφέρονται στις µερικές παραγώγους και στο κόστος ανα ώρα εργασίας και ανα µηχανή, και αντικαθιστώντας, προκύπτει ότι M/L = 4, δηλαδή χρειάζονται τέσσερις µηχανές ανά ώρα εργασίας. γ) Οι συνδυασµοί M,L που έχουν ίδια συνολική παραγωγή και ίση µε 40 απεικονίζονται στην καµπύλη παραπάνω. Για να παραχθεί εµπόρευµα ίσο µε f=40 µε ελάχιστο κόστος, και δεδοµένου ότι M=4L, αντικαθιστούµε στην συνάρτηση παραγωγής και προκύπτει ότι 40=4 L^(1/2) (4L)^(1/2) ή 40=8L, και L=5, M=20. To ελάχιστο κόστος σε αυτήν την περίπτωση είναι c(l,m)=40l+10m= =400. δ) Γενικά για να παραχθεί f=y εµπόρευµα µε το λιγότερο κόστος, και δεδοµένου ότι

4 M=4L, αντικαθιστούµε στην συνάρτηση παραγωγης όπως και στο (γ) και έχουµε y=4 L^(1/2) (4L)^(1/2)=8L, οπότε L=y/8 και Μ=4L=y/2. To κόστος σε αυτήν την περίπτωση είναι c(l,m)=40l+10m=10y. 5. α) Έχουµε F=200, οπότε c(y)=y^2/200 και για την συνάρτηση οριακού κόστους έχουµε MC=y/100, ενώ για την συνάρτηση µέσου κόστους AC=FC/y+VC/y= 200/y+y/200. To µέσο κόστος AC έχει ελάχιστο για y=200 (αυτό προκύπτει θέτοντας την πρώτη παράγωγο ίση µε µηδέν, είτε από την γνωστή ταυτότητα του λυκείου a/b + b/a 2). Το ελάχιστο µέσο κόστος για y=200 είναι AC=2. β) Για F=500 τετραγωνικά µέτρα, έχουµε MC=y/250, ενώ για την συνάρτηση µέσου κόστους AC=FC/y+VC/y= 500/y+y/500, όπου το µέσο κόστος (προκύπτει όπως και προηγουµένως) έχει ελάχιστο για y=500, οπότε και AC=2. γ) Για F=1000 τετραγωνικά µέτρα, έχουµε MC=y/500, ενώ για την συνάρτηση µέσου κόστους AC=FC/y+VC/y= 1000/y+y/1000, όπου το µέσο κόστος (προκύπτει όπως και προηγουµένως) έχει ελάχιστο για y=1000, οπότε και AC=2. δ και ε) Παρακάτω απεικονίζονται µε κόκκινο οι καµπυλες µέσου και οριακού κόστους για 200 τετραγωνικά, µε µπλε και 500 και µε µαύρο για Με κίτρινο απεικονίζεται η µακροπρόθεσµη καµπήλη µέσου και οριακού κόστους.

5 6. α) Για την συνάρτηση οριακού κόστους MC, υπολογίζουµε την πρώτη παράγωγο και MC(y)=3y^2-16y+30 β) Για την συνάρτηση µέσου µεταβλητού κόστους έχουµε AVC(y)=[c(y)-c(0)]/y=y^2-8y+30 γ) Η παρακάτω γραφική παράσταση απεικονίζει το MC και AVC δ και ε) Η συνάρτηση µέσου µεταβλητού κόστους AVC είναι φθίνουσα όταν το y 4 και αύξουσα όταν y 4. Αυτό προκύπτει εύκολα υπολογίζοντας τα ακρότατα της AVC θέτοντας την πρώτη παράγωγο ίση µε µηδέν ή παρατηρώντας ότι AVC(y)=y^2-8y+30=(y-4)^ Ενας άλλος τρόπος είναι επίσης να θέσουµε AVC=MC και να υπολογίσουµε το y, µιας και το οριακό κόστος είναι ίσο µε το µέσο µεταβλητό κόστος όταν το AVC έχει ελάχιστο, οπότε και y=4. ζ) Η επιχείρηση θα επιλέξει να µην παράγει καθόλου αν AVC > P ή (y-4)^2 +14 > P. Δηλαδή αν η τιµή είναι κάτω από 14, τότε για οποιοδήποτε y θα ισχύει AVC>P και θα είναι ασύµφορο για την επιχείρηση να παράγει. Εξάλλου, η καµπύλη προσφοράς µιας επιχείρησης σε περιβάλλον τέλειου ανταγωνισµού είναι το κοµµάτι της καµπύλης MC για το οποίο MC>AVC, η προσφορά θα είναι µηδέν όταν MC<AVC.

6 η) Η επιχειρηση δεν θα παρήγαγε ποτέ λιγότερο από y=4, αφού σε αντίθετη περίπτωση θα είχε AVC>MC και θα προτιµούσε να µην παράγει καθόλου. (Η καµπύλη προσφοράς µιας επιχείρησης σε περιβάλλον τέλειου ανταγωνισµού είναι το κοµµάτι της καµπύλης MC για το οποίο MC>AVC). Για να παράγει η επιχείρηση έξι µονάδες προϊόντος, y=6, MC(6)=42 και σε συνθήκες τέλειου ανταγωνισµού, P=MC= α και β) Θέλουµε να βρούµε την συνάρτηση της καµπύλης προσφοράς για κάθε επιχείρηση ξεχωριστά (εκ παραδροµής η άσκηση ζητούσε καµπύλη ζήτησης, που είναι ήδη γνωστή). Έχουµε, για κάθε επιχείρηση, µια συνάρτηση κέρδους ως εξής: Π(y)=yp-c(y)=yp-(y^2+1), για τιµές y>0 και Π=0 για y=0. Η κάθε επιχείρηση µπορεί να επιλέξει πόσο y θα παράγει για να µεγιστοποιήσει το κέρδος Π. Το πρόβληµα της µεγιστοποίησης λύνεται αν θέσουµε την πρώτη παράγωγο του Π ίση µε µηδέν, δηλαδή Π =p-2y=0, οπότε η συνάρτηση προσφοράς είναι y(p)=p/2. Αν υπάρχουν n επιχειρήσης, τότε η συνάρτηση προσφοράς για όλο τον κλάδο είναι Y=ny=np/2. (Οι λύσεις αυτές ισχύουν µε την προϋπόθεση ότι Π 0, όπως θα δούµε). Η µικρότερη τιµή για την οποία θα γίνονται πωλήσεις είναι η τιµή όπου Π=0, δηλαδή yp-(y^2+1) = 0 και αντικαθιστώντας από την σχέση y(p)=p/2 έχουµε (p^2)/2 - (p^2)/4-1 = 0 που µας δίνει p=2. Άρα για τιµές p 2, δεν θα γίνονται πωλήσεις και η συνάρτηση προσφοράς του (α) γίνεται y(p)=0. γ, δ και ε) Σε κατάσταση ισορροπίας, πρέπει D(p)=Y(p). Εδώ µπορούµε να βρούµε πολλές λύσεις, για παράδειγµα αν p*=2, τότε y(2)=1, D(2)=50, και για n*=50 έχουµε D(2)=Y(2)=50*1. Για διαφορετικά p* µπορεί να προκύψουν διαφορετικές λύσεις. ζ) Τώρα που η ζήτηση έχει αυξηθεί λίγο, µπορούµε να εξετάσουµε αν θα συµφέρει για µια καινούρια επιχείρηση να εισελθει στον κλάδο. Τότε θα έχουµε 51 επιχειρήσεις και από την σχέση D(p)=Y(p) προκύπτει ότι 52.5-p=51p/2, ή p=105/53<2. Για τιµές µικρότερες του δυο η προσφορά είναι µηδενική και καµία καινούρια εταιρία δεν θα εισέλθει στον κλάδο παρά την αυξηµένη ζήτηση. Άρα θα εξακολουθούµε να έχουµε n*=50, και από την σχέση D(p)=Y(p) προκύπτει ότι 52.5-p=50p/2 ή p*=2.02, y*=1.01 και για καθε επιχείρηση Π=0.02. η) Και πάλι, τώρα που η ζήτηση έχει αυξηθεί λίγο, µπορούµε να εξετάσουµε αν θα συµφέρει για µια καινούρια επιχείρηση να εισελθει στον κλάδο. Τότε θα έχουµε 51 επιχειρήσεις και από την σχέση D(p)=Y(p) προκύπτει ότι 53-p=51p/2, ή p*=2. Για αυτήν την τιµή, οριακά µια εταιρία µπορεί να επιλέξει να εισέλθει στον κλάδο, οπότε n*=51, y*=1 και Π=0.

Ακαδημαϊκό έτος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Ακαδημαϊκό έτος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Ακαδημαϊκό έτος 2017-2018 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής ΛΥΣΕΙΣ ΤΡΙΤΟΥ ΠΑΚΕΤΟΥ ΑΣΚΗΣΕΩΝ Άσκηση 1. α) Για την συνάρτηση

Διαβάστε περισσότερα

Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ

Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ. Μερικές έννοιες Η συνάρτηση παραγωγής (, ), όπου είναι το συνολικό προϊόν και και οι συντελεστές

Διαβάστε περισσότερα

Οικονομικά του Τουρισμού και του Πολιτισμού 2

Οικονομικά του Τουρισμού και του Πολιτισμού 2 Οικονομικά του Τουρισμού και του Πολιτισμού 2 Υπεύθυνοι μαθήματος Κ αθηγητής Μιχαήλ Ζ ουμπουλάκης Επίκουρος Καθηγητής Θεόδωρος Μεταξάς 1 Ο κλάδος παραγωγής τουριστικών προϊόντων Δραστηριότητες που παράγουν

Διαβάστε περισσότερα

Διάλεξη 14. Προσφορά επιχείρησης

Διάλεξη 14. Προσφορά επιχείρησης Προσφορά επιχείρησης Διάλεξη 14 Προσφορά επιχείρησης Πώς αποφασίζει µια επιχείρηση για το πόσο θα παραγάγει; Αυτό εξαρτάται από: Την τεχνολογία της επιχείρησης Το περιβάλλον της αγοράς Τις επιδιώξεις της

Διαβάστε περισσότερα

Διάλεξη 13. Καµπύλες κόστους. Μορφές καµπυλών κόστους

Διάλεξη 13. Καµπύλες κόστους. Μορφές καµπυλών κόστους Μορφές καµπυλών κόστους Διάλεξη 13 Καµπύλες κόστους Καµπύλη συνολικού κόστους είναι η γραφική απεικόνιση της συνάρτησης συνολικού κόστους. Καµπύλη µεταβλητού κόστους είναι η γραφική απεικόνιση της συνάρτησης

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ Εξέταση Φεβρουαρίου 2012 / ιάρκεια: 2 ώρες ιδάσκοντες: Μ. Αθανασίου, Γ.

Διαβάστε περισσότερα

ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ «ΤΕΛΕΙΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ» Ακαδημαϊκό Έτος

ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ «ΤΕΛΕΙΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ» Ακαδημαϊκό Έτος ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ «ΤΕΛΕΙΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ» Δρ.Αριστέα Γκάγκα Ακαδημαϊκό Έτος 2017 2018 ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΜΟΡΦΕΣ ΑΓΟΡΑΣ: Τέλειος Ανταγωνισμός 2 Μορφές

Διαβάστε περισσότερα

Δεύτερο πακέτο ασκήσεων και λύσεων

Δεύτερο πακέτο ασκήσεων και λύσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 04-05 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Δεύτερο πακέτο ασκήσεων και λύσεων Αντιστοιχούν τέσσερις μονάδες

Διαβάστε περισσότερα

Διάλεξη 6. Μονοπωλιακή Συμπεριφορά VA 25

Διάλεξη 6. Μονοπωλιακή Συμπεριφορά VA 25 Διάλεξη 6 Μονοπωλιακή Συμπεριφορά VA 25 1 Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέχρι στιγμής το μονοπώλιο έχει θεωρηθεί σαν μια επιχείρηση η οποία πωλεί το προϊόν της σε κάθε πελάτη στην ίδια τιμή. Δηλαδή

Διαβάστε περισσότερα

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Μέχρι τώρα, αντιμετωπίζουμε ένα μονοπώλιο ως μια εταιρεία η οποία

Διαβάστε περισσότερα

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας Άσκηση στο μάθημα «Εισαγωγή στην Οικονομική Ανάλυση» Νίκος Θεοχαράκης

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 1 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής A1. Σε γραµµική ΚΠ της µορφής Y =

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά (1)

Επιχειρησιακά Μαθηματικά (1) Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής

Διαβάστε περισσότερα

Διάλεξη 11. Μεγιστοποίηση κέρδους. Οικονοµικό κέρδος. Η ανταγωνιστική επιχείρηση

Διάλεξη 11. Μεγιστοποίηση κέρδους. Οικονοµικό κέρδος. Η ανταγωνιστική επιχείρηση Οικονοµικό κέρδος Διάλεξη Μεγιστοποίηση Μια επιχείρηση χρησιµοποιεί εισροές j,m για να παραγάγει n προϊόντα i, n. Τα επίπεδα του προϊόντος είναι,, n. Τα επίπεδα των εισροών είναι,, m. Οι τιµές των προϊόντων

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΕΙΣ ΚΑΙ ΑΝΤΑΓΩΝΙΣΤΙΚΕΣ ΑΓΟΡΕΣ

ΕΠΙΧΕΙΡΗΣΕΙΣ ΚΑΙ ΑΝΤΑΓΩΝΙΣΤΙΚΕΣ ΑΓΟΡΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ ΚΑΙ ΑΝΤΑΓΩΝΙΣΤΙΚΕΣ ΑΓΟΡΕΣ Κεφάλαιο 11 Τα χαρακτηριστικά των ανταγωνιστικών αγορών! Τα κύρια χαρακτηριστικά των ανταγωνιστικών αγορών είναι: " Στην αγορά συµµετέχουν πολλοί αγοραστές και πωλητές

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ)

ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ) ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ) A. Κανόνας de L Hospital (Συνέχεια από το προηγούµενο µάθηµα) Παράδειγµα 1. Να βρεθεί το

Διαβάστε περισσότερα

Μικροοικονοµική Θεωρία. Μονοπώλιο. Μονοπώλιο. Μονοπώλιο. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 23 Σεπτεµβρίου 2014

Μικροοικονοµική Θεωρία. Μονοπώλιο. Μονοπώλιο. Μονοπώλιο. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 23 Σεπτεµβρίου 2014 Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 23 Σεπτεµβρίου 2014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 23 Σεπτεµβρίου 2014 1 / 26 Ως τώρα, υποθέσαµε ότι οι αγορές είναι ανταγωνιστικές.

Διαβάστε περισσότερα

Μικροοικονομία ΙΙ: Μονοπωλιακός ανταγωνισμός

Μικροοικονομία ΙΙ: Μονοπωλιακός ανταγωνισμός Μικροοικονομία ΙΙ: Μονοπωλιακός ανταγωνισμός Ρεβέκκα Χριστοπούλου Εαρινό εξάμηνο 2017 Πανεπιστήμιο Μακεδονίας Διαφοροποίηση προϊόντων Μέχρι τώρα περιγράψαμε: τον πλήρη ανταγωνισμό ως μια αγορά με πολλούς

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 14: Προσφορά επιχείρησης Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Προσφορά επιχείρησης

Διαβάστε περισσότερα

Μικροοικονοµική Θεωρία. Προσφορά προϊόντος από επιχείρηση. Προσφορά προϊόντος από επιχείρηση. = 0 p = dc(q) Notes. Notes. Notes.

Μικροοικονοµική Θεωρία. Προσφορά προϊόντος από επιχείρηση. Προσφορά προϊόντος από επιχείρηση. = 0 p = dc(q) Notes. Notes. Notes. Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 23 Σεπτεµβρίου 214 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 23 Σεπτεµβρίου 214 1 / 25 Προσφορά προϊόντος από επιχείρηση Ποια είναι

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΠΑΚΕΤΟΥ. max. ( ) (16 ) Q Q = +. [1]

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΠΑΚΕΤΟΥ. max. ( ) (16 ) Q Q = +. [1] ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΠΑΚΕΤΟΥ Θέµα ο. (α) Η µονοπωλιακή επιχείρηση µεγιστοποιεί το κέρδος της οποίο δίνεται από τη συνάρτηση π µε τύπο π ( ) = (6 ), δηλαδή λύνει το πρόβληµα max. π ( ) = (6 ) π '( ) =

Διαβάστε περισσότερα

ΟΜΑΔΑ Β Σχολικό βιβλίο σελ ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. TC Συνολικό κόστος. VC Μεταβλητό κόστος

ΟΜΑΔΑ Β Σχολικό βιβλίο σελ ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. TC Συνολικό κόστος. VC Μεταβλητό κόστος ΛΥΣΕΙΣ ΑΟΘ 1 ΓΙΑ ΑΡΙΣΤΑ ΔΙΑΒΑΣΜΕΝΟΥΣ ΟΜΑΔΑ Α Α1 γ Α2 β Α3 δ Α4 Σ Α5 Σ Α6 Σ Α7 Σ Α8 Λ ΟΜΑΔΑ Β Σχολικό βιβλίο σελ. 57-59 ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. ΟΜΑΔΑ Γ Γ1. Είναι γνωστό

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΟΜΑΔΑ ΠΡΩΤΗ ΟΜΑΔΑ ΔΕΥΤΕΡΗ

ΑΠΑΝΤΗΣΕΙΣ ΟΜΑΔΑ ΠΡΩΤΗ ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. α) Σωστό

Διαβάστε περισσότερα

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές

Διαβάστε περισσότερα

ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ

ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΥΠΟΛΟΓΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΤΥΠΟΛΟΓΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗ ΔΕΟ 13 ΚΟΣΤΗ TC = FC + VC ή TC = AC* SOS TC ATC = Το μέσο κόστος ισούται με το

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ

ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ Άσκηση 1 Αν το επιτόκιο είναι 10%, ποια είναι η παρούσα αξία των κερδών της Monroe orporation στα επόμενα 5 χρόνια; Χρόνια στο μέλλον

Διαβάστε περισσότερα

Μικροοικονοµική Θεωρία. Συνάρτηση και καµπύλη κόστους. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 22 Σεπτεµβρίου 2014

Μικροοικονοµική Θεωρία. Συνάρτηση και καµπύλη κόστους. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 22 Σεπτεµβρίου 2014 Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 22 Σεπτεµβρίου 2014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 22 Σεπτεµβρίου 2014 1 / 49 Συνάρτηση και καµπύλη κόστους Πολύ χρήσιµες

Διαβάστε περισσότερα

Τέλειος Ανταγωνισµός

Τέλειος Ανταγωνισµός Τέλειος Ανταγωνισµός Χαρακτηριστικά του τέλειου ανταγωνισµού: Πολλές µικρές επιχειρήσεις, καθεµία ασήµαντη σε σχέση µε τον κλάδο ως σύνολο Οµοιογενή προϊόντα Οι καταναλωτές έχουν τέλεια πληροφόρηση. Ελευθερία

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ( )

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ( ) ΘΕΜΑ Α Α1. α. Σωστό ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ (14.06.2017) ΟΜΑΔΑ ΠΡΩΤΗ β. Λάθος γ. Λάθος δ. Λάθος ε. Σωστό Α2. Σωστή επιλογή (γ) Α3. Σωστή επιλογή (δ) ΘΕΜΑ Β Β1. Σχολικό Βιβλίο (σελ. 16-17)

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Μονάδες ΟΜΑ Α Α Στις προτάσεις από Α µέχρι και Α, να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και

Διαβάστε περισσότερα

Ελαχιστοποίηση κόστους

Ελαχιστοποίηση κόστους Ελαχιστοποίηση κόστους Διάλεξη Ελαχιστοποίηση κόστους Μια επιχείρηση ελαχιστοποιεί το κόστος της αν παράγει κάθε δεδοµένο επίπεδο προϊόντος 0 στο µικρότερο δυνατό κόστος. Η ) συµβολίζει το µικρότερο δυνατό

Διαβάστε περισσότερα

Δεύτερο πακέτο ασκήσεων. έχει φθίνον τεχνικό λόγο υποκατάστασης (RTS); Απάντηση: Όλες τις τιμές αφού ο RTS = MP 1 MP 2

Δεύτερο πακέτο ασκήσεων. έχει φθίνον τεχνικό λόγο υποκατάστασης (RTS); Απάντηση: Όλες τις τιμές αφού ο RTS = MP 1 MP 2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Δεύτερο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 28 Μαρτίου

Διαβάστε περισσότερα

Οικονομικά του Τουρισμού και του Πολιτισμού 2

Οικονομικά του Τουρισμού και του Πολιτισμού 2 Οικονομικά του Τουρισμού και του Πολιτισμού 2 Υπεύθυνοι μαθήματος Κ αθηγητής Μιχαήλ Ζ ουμπουλάκης Επίκουρος Καθηγητής Θεόδωρος Μεταξάς 1 Ο κλάδος παραγωγής τουριστικών προϊόντων Δραστηριότητες που παράγουν

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 3 ο : Η Παραγωγή της Επιχείρησης και το Κόστος ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ερωτήσεις πολλαπλής επιλογής 1. Το συνολικό προϊόν παίρνει την μέγιστη τιμή

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ Λυγάτσικας Ζήνων Πειραµατικό Γενικό Λύκειο Βαρβακείου Σχολής 6 Ιανουαρίου 013 1 Ασκήσεις 1.1 Ασκήσεις Επανάληψης 1. είξτε ότι : ηµ x + 3συν y 5.. Να αποδείξτε ότι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις 1 Φεβρουαρίου 26 ιάρκεια εξέτασης: 3 ώρες (15:-18:) ΘΕΜΑ 1 ο (2.5) Κάθε ένας

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / ΕΠΙΛΟΓΗΣ Α1. α. Λάθος β. Σωστό γ. Σωστό δ. Λάθος ε. Σωστό Α2. δ Α3. β Ηµεροµηνία: Κυριακή 4 Μαΐου 2014 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΟΜΑ Α Α

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΟΜΑ Α Α ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΜΑ Α Α Στις προτάσεις από Α1 µέχρι και Α5, να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.

Διαβάστε περισσότερα

Λύσεις Πρώτου Πακέτου Ασκήσεων

Λύσεις Πρώτου Πακέτου Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι 2016-17 Λύσεις Πρώτου Πακέτου Ασκήσεων Άσκηση 1 1. α) Αν βάλουµε την ποσότητα του αγαθού X στον οριζόντιο και την ποσότητα

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

Notes. Notes. Notes. Notes

Notes. Notes. Notes. Notes Αγορές - Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 6 Δεκεμβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Αγορές - 6 Δεκεμβρίου 2012 1 / 26 Ως τώρα, υποθέσαμε ότι οι αγορές είναι ανταγωνιστικές. Μία συνέπεια των

Διαβάστε περισσότερα

HAL R. VARIAN. Μικροοικονομικ ή. Μια σύγχρονη προσέγγιση. 3 η έκδοση

HAL R. VARIAN. Μικροοικονομικ ή. Μια σύγχρονη προσέγγιση. 3 η έκδοση HAL R. VARIAN Μικροοικονομικ ή Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 25 Μονοπώλιο Τέλειο µονοπώλιο Μια μονοπωλιακή αγορά έχει έναν μόνο πωλητή. Η καμπύλη ζήτησης του μονοπωλητή είναι η (με κλίση

Διαβάστε περισσότερα

10/3/17. Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά. Μικροοικονομική. Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Πολιτικές διάκρισης τιµών

10/3/17. Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά. Μικροοικονομική. Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Πολιτικές διάκρισης τιµών /3/7 HL R. VRIN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Μέχρι τώρα, αντιμετωπίζουμε ένα μονοπώλιο ως μια εταιρεία η

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΠΛΗΡΩΣΗ ΘΕΣΕΩΝ ΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΤΟΥ ΗΜΟΣΙΟΥ TOMEΑ ΚΑΤΗΓΟΡΙΑ ΠΕ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ: «OIKONOMIKH»

ΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΠΛΗΡΩΣΗ ΘΕΣΕΩΝ ΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΤΟΥ ΗΜΟΣΙΟΥ TOMEΑ ΚΑΤΗΓΟΡΙΑ ΠΕ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ: «OIKONOMIKH» ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΟΥ ΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΠΛΗΡΩΣΗ ΘΕΣΕΩΝ ΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ ΚΑΙ ΝΟΜΙΚΩΝ ΠΡΟΣΩΠΩΝ ΤΟΥ ΗΜΟΣΙΟΥ TOMEΑ ΚΑΤΗΓΟΡΙΑ ΠΕ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ: «OIKONOMIKH»

Διαβάστε περισσότερα

2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ.

2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ. Άσκηση. α Να βρεθεί η εξίσωση της ευθείας που διέρχεται από τα σημεία (,y, Α=(, και Β=(0, β Να βρεθεί η εξίσωση της ευθείας που διέρχεται από το σημείο B(0, και έχει κλίση -0.. Να βρεθούν τα σημεία που

Διαβάστε περισσότερα

Notes. Notes. Notes. Notes. p = MC(q) = 0 p = dc(q) dq

Notes. Notes. Notes. Notes. p = MC(q) = 0 p = dc(q) dq Αγορές - Τέλειος Ανταγωνισμός Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 22 Δεκεμβρίου 211 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Αγορές - Τέλειος Ανταγωνισμός 22 Δεκεμβρίου 211 1 / 25 Προσφορά προϊόντος από επιχείρηση

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΟΜΑ Α ΕΥΤΕΡΗ

ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΟΜΑ Α ΕΥΤΕΡΗ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β) ΠΑΡΑΣΚΕΥΗ 17 ΙΟΥΝΙΟΥ 2016 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α.1 α. Λάθος β. Σωστό γ. Σωστό δ. Σωστό ε.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 Ε_3.Αλ3Ε(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / ΕΠΙΛΟΓΗΣ Ηµεροµηνία: Κυριακή 4 Μαΐου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που

Διαβάστε περισσότερα

Χ Γ Χ Γ Β Χ Β Α Β Γ Χ Α =100 Ψ 10 0 Α Β 0,25 4 0,

Χ Γ Χ Γ Β Χ Β Α Β Γ Χ Α =100 Ψ 10 0 Α Β 0,25 4 0, ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΙΟΥ ΚΥΡΙΑΚΗ 4 ΑΠΡΙΛΙΟΥ 16 ΑΡΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑ Α ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. α. Λ β.

Διαβάστε περισσότερα

Η έννοια του συναρτησιακού (functional).

Η έννοια του συναρτησιακού (functional). ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΛΟΓΙΣΜΟΥ ΤΩΝ ΜΕΤΑΒΟΛΩΝ (CALCULUS OF VARIATIONS) Η έννοια του συναρτησιακού (fnctionl). Ορισµός : Εάν σε κάθε συνάρτηση που ανήκει σε κάποιο χώρο συναρτήσεων A, αντιστοιχεί µέσω κάποιου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΜΑΘΗΜΑ ΟΓΔΟΟ-ΜΕΓΙΣΤΑ & ΕΛΑΧΙΣΤΑ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΜΑΘΗΜΑ ΟΓΔΟΟ-ΜΕΓΙΣΤΑ & ΕΛΑΧΙΣΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΜΑΘΗΜΑ ΟΓΔΟΟ-ΜΕΓΙΣΤΑ & ΕΛΑΧΙΣΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΒΑΣΙΚΑ ΕΡΩΤΗΜΑΤΑ Ποια η ποσότητα που μεγιστοποιεί τα κέρδη μιας επιχείρησης

Διαβάστε περισσότερα

Μικροοικονοµική Θεωρία. Γενική ισορροπία και παραγωγή. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 24 Σεπτεµβρίου 2014

Μικροοικονοµική Θεωρία. Γενική ισορροπία και παραγωγή. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 24 Σεπτεµβρίου 2014 Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 4 Σεπτεµβρίου 014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 4 Σεπτεµβρίου 014 1 / 60. Η παραγωγή στη γενική ισορροπία έχει πάλι µεγάλη

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1. Συνολικά Έσοδα Συνολικά Έσοδα αποκαλούμε τη συνολική πρόσοδο (Total Revenue) που αποκομίζει μια επιχείρηση από την πώληση των προϊόντων της. TR = P * όπου Ρ είναι η συνάρτηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΜΟΡΦΕΣ ΑΓΟΡΑΣ. 1. Τι πρέπει να κατανοήσει ο μαθητής

ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΜΟΡΦΕΣ ΑΓΟΡΑΣ. 1. Τι πρέπει να κατανοήσει ο μαθητής ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΜΟΡΦΕΣ ΑΓΟΡΑΣ 1. Τι πρέπει να κατανοήσει ο μαθητής Στο κεφάλαιο αυτό εξετάζονται τέσσερις βασικές μορφές οργάνωσης της αγοράς: ο πλήρης ανταγωνισμός, το μονοπώλιο, το ολιγοπώλιο και ο μονοπωλιακός

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Αρχές Οικονομικής Θεωρίας. Ημ/νία: 31 Μαΐου Απαντήσεις Θεμάτων

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Αρχές Οικονομικής Θεωρίας. Ημ/νία: 31 Μαΐου Απαντήσεις Θεμάτων Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Αρχές Οικονομικής Θεωρίας Ημ/νία: 31 Μαΐου 2013 Απαντήσεις Θεμάτων ΟΜΑΔΑ ΠΡΩΤΗ Α1. α. Σωστό β. Σωστό γ. Λάθος δ. Σωστό ε. Λάθος Α2. β.

Διαβάστε περισσότερα

Διάλεξη 15. Βραχυχρόνια προσφορά. Προσφορά κλάδου. Προσφορά από ανταγωνιστικό κλάδο

Διάλεξη 15. Βραχυχρόνια προσφορά. Προσφορά κλάδου. Προσφορά από ανταγωνιστικό κλάδο από ανταγωνιστικό κλάδο Διάλεξη 15 κλάδου Πώς συνδυάζονται οι αποφάσεις προσφοράς των πολλών ιδιωτικών επιχειρήσεων σε µια ανταγωνιστική αγορά για να βρούµε την καµπύλη προσφοράς ενός κλάδου;!1!2 1 2 από

Διαβάστε περισσότερα

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN 3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HESHER-OHIN Υπάρχουν δύο συντελεστές παραγωγής, το κεφάλαιο και η εργασία τους οποίους χρησιμοποιεί η επιχείρηση για να παράγει προϊόν Y μέσω μιας συνάρτησης παραγωγής

Διαβάστε περισσότερα

ΑΣΚΗΣΗ [5 μονάδες (6+6+6+7)] www.onlineclassroom.gr Δίνεται η ακόλουθη συνάρτηση των οριακών εσόδων MR μιας μονοπωλιακής επιχείρησης: MR() = 100 + 16 όπου είναι η ποσότητα παραγωγής του προϊόντος. Επίσης,

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλών επιλογών

Ερωτήσεις πολλαπλών επιλογών Ερωτήσεις πολλαπλών επιλογών 1. Έστω ότι μία οικονομία, που βρίσκεται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων, παράγει σε μία συγκεκριμένη χρονική στιγμή 10 τόνους υφάσματος και 00 τόνους τροφίμων.

Διαβάστε περισσότερα

Ολιγοπώλιο Με ιαφοροποιηµένο Προϊόν 1

Ολιγοπώλιο Με ιαφοροποιηµένο Προϊόν 1 Ολιγοπώλιο Με ιαφοροποιηµένο Προϊόν 1 Βασική ιάκριση: Προϊόντα κάθετα διαφοροποιηµένα (κοινός δείκτης ποιότητας) Προϊόντα οριζόντια διαφοροποιηµένα (δεν υπάρχει κοινός δείκτης ποιότητας) Προϊόντα Χώρος

Διαβάστε περισσότερα

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους. Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΕΝΑΤΟ- ΕΚΑΤΟ ΘΕΩΡΙΑ ΠΛΗΡΗΣ ΑΝΤΑΓΩΝΙΣΜΟΣ

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΕΝΑΤΟ- ΕΚΑΤΟ ΘΕΩΡΙΑ ΠΛΗΡΗΣ ΑΝΤΑΓΩΝΙΣΜΟΣ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΕΝΑΤΟ- ΕΚΑΤΟ ΘΕΩΡΙΑ ΠΛΗΡΗΣ ΑΝΤΑΓΩΝΙΣΜΟΣ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ακαδηµαϊκό Έτος 2008-2009 ΕΠΙΧ Μικροοικονοµική ιαφάνεια 1 Χαρακτηριστικά

Διαβάστε περισσότερα

Πλήρης ανταγωνισμός. Καθηγήτρια: Β. ΠΕΚΚΑ- ΟΙΚΟΝΟΜΟΥ. Υποψήφια Διδάκτωρ: Σ. ΤΑΚΑΟΓΛΟΥ

Πλήρης ανταγωνισμός. Καθηγήτρια: Β. ΠΕΚΚΑ- ΟΙΚΟΝΟΜΟΥ. Υποψήφια Διδάκτωρ: Σ. ΤΑΚΑΟΓΛΟΥ Πλήρης ανταγωνισμός Καθηγήτρια: Β. ΠΕΚΚΑ- ΟΙΚΟΝΟΜΟΥ Υποψήφια Διδάκτωρ: Σ. ΤΑΚΑΟΓΛΟΥ Θα Εξετάσουμε: Τέλειο ανταγωνισμό Υποθέσεις λειτουργίας τέλειου ανταγωνισμού Συνολικό, Μέσο και Οριακό έσοδο Βραχυχρόνια

Διαβάστε περισσότερα

Βασική θεωρία Ολιγοπωλιακού ανταγωνισµού

Βασική θεωρία Ολιγοπωλιακού ανταγωνισµού Βασική θεωρία Ολιγοπωλιακού ανταγωνισµού Οµοιογενή Προϊόντα Ισορροπία Courot-Nash Έστω δυοπώλιο µε συνάρτηση ζήτησης: ( ) a b a, b > 0 () Βέβαια ισχύει ότι: + () Ακόµα υποθέτουµε ότι η τεχνολογία παραγωγής

Διαβάστε περισσότερα

Πακέτο Επιχειρησιακά Μαθηµατικά #038 Ιδιαίτερα Μαθήµατα, τηλ.:

Πακέτο Επιχειρησιακά Μαθηµατικά #038   Ιδιαίτερα Μαθήµατα, τηλ.: Πακέτο Επιχειρησιακά Μαθηµατικά #038 www.maths.gr, www.facebook.com/maths.gr, maths@maths.gr Ιδιαίτερα Μαθήµατα, τηλ.: 6979210251 Ιδιαίτερα Μαθήµατα, Λυµένες Ασκήσεις Βοήθεια στη λύση εργασιών Μεγιστοποίηση

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Επιστήμη Ι. Επιχειρήσεις σε ανταγωνιστικές αγορές. Αρ. Διάλεξης: 09

Εισαγωγή στην Οικονομική Επιστήμη Ι. Επιχειρήσεις σε ανταγωνιστικές αγορές. Αρ. Διάλεξης: 09 Εισαγωγή στην Οικονομική Επιστήμη Ι Επιχειρήσεις σε ανταγωνιστικές αγορές Αρ. Διάλεξης: 09 Τι είναι ανταγωνιστική αγορά; Η ανταγωνιστική αγορά έχει πολλούς αγοραστές/καταναλωτές και πολλούς παραγωγούς/επιχειρήσεις

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΛΑ Β ) ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡ/ΚΗΣ ΕΠΙΜΕΛΕΙΑ: ΚΟΖΑΚΟΣ ΝΙΚΟΣ

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Μέρος Β. Καθ. Π. Κάπρος ΕΜΠ 2003

ΣΗΜΕΙΩΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Μέρος Β. Καθ. Π. Κάπρος ΕΜΠ 2003 ΣΗΜΕΙΩΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Μέρος Β Καθ. Π. Κάπρος ΕΜΠ 2003 ΑΘΡΟΙΣΤΙΚΗ ΖΗΤΗΣΗ & ΠΡΟΣΦΟΡΑ 1. Αθροιστική Καµπύλη Ζήτησης 2. Ειδικές Περιπτώσεις 3. Ελαστικότητα τιµής της ζήτησης 4. Εισόδηµα, απάνη, Έσοδο

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά

Επιχειρησιακά Μαθηματικά Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά () ΑΘΗΝΑ ΝΟΕΜΒΡΙΟΣ 01 1 Τηλ:10.93.4.450 Πεδίο Ορισμού Οικονομικών Συναρτήσεων Οι οικονομικές συναρτήσεις (συνάρτηση Ζήτησης, συνάρτηση

Διαβάστε περισσότερα

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Εφαρμογές Θεωρίας 1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Έστω ότι η συνάρτηση ζήτησης για την κατανάλωση του νερού ενός φράγματος (εκφρασμένη σε ευρώ) είναι q = 12-P και το οριακό κόστος

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 13: Καμπύλες κόστους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Μορφές καμπυλών κόστους Καμπύλη

Διαβάστε περισσότερα

1 ου πακέτου. Βαθµός πακέτου

1 ου πακέτου. Βαθµός πακέτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2011-2012 Τµήµα Οικονοµικών Επιστηµών Χειµώνας-Άνοιξη Μάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να στείλετε

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ

ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΧΑΑΚΤΗΙΣΤΙΚΑ Υπάρχουν πολλές επιχειρήσεις στον κλάδο. Οι επιχειρήσεις είναι τόσες πολλές ώστε η παραγωγή κάθε μίας, φαίνεται απειροελάχιστη μπροστά στη συνολική παραγωγή του κλάδου. Γι αυτό το λόγο δεν

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΙΙ (Ο Ε 2418) ΕΛΑΧΙΣΤΟ

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΙΙ (Ο Ε 2418) ΕΛΑΧΙΣΤΟ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΙΙ (Ο Ε 2418) ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΜΠΟΥΡΛΑΚΗΣ 4 ο ΕΞΑΜΗΝΟ ΑΚΑ ΗΜΑΪΚΟΥ ΕΤΟΥΣ 2016-2017 ΤΜΗΜΑΤΑ:

Διαβάστε περισσότερα

g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα

g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα ΔΙΑΓΩΝΙΣΜΑ 0 Μέρος Α. (.6 μονάδες) α). Οι μεταβλητές {,,} συνδέονται με τις εξισώσεις κανόνας αλυσωτής παραγώγισης. { = e +, = ln}. Να επαληθευτεί ο β). Οι μεταβλητές {, y} συνδέονται με μια εξίσωση. Για

Διαβάστε περισσότερα

Διάλεξη 3. Οικονομικά της ευημερίας. Οικονομικά της ευημερίας 3/9/2017. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης

Διάλεξη 3. Οικονομικά της ευημερίας. Οικονομικά της ευημερίας 3/9/2017. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης Περίγραμμα Διάλεξη Εργαλεία δεοντολογικής ανάλυσης Συνθήκες για αποτελεσματικότητα κατά areto Συνθήκες για ισορροπία σε ανταγωνιστικές αγορές Το πρώτο θεώρημα των οικονομικών της ευημερίας Το δεύτερο θεώρημα

Διαβάστε περισσότερα

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ και ΘΡΑΚΗΣ Σχολή Διοίκησης & Οικονομίας Τμήμα Λογιστικής και Χρηματοοικονομικής

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ και ΘΡΑΚΗΣ Σχολή Διοίκησης & Οικονομίας Τμήμα Λογιστικής και Χρηματοοικονομικής ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ - Α Εξαμήνου Διδάσκων : ΦΛΩΡΟΥ ΓΙΑΝΝΟΥΛΑ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ A ΗΜΕΡΟΜΗΝΙΑ ΕΞΕΤΑΣΗΣ 31 / 01/ 2014 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ 2,0 ώρες ΟΔΗΓΙΕΣ Η εξέταση γίνεται με κλειστά βιβλία

Διαβάστε περισσότερα

= δ P η ελαστικότητα ως προς την τιµή

= δ P η ελαστικότητα ως προς την τιµή ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 9 (για καλά διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής Α1. Η τεχνολογία παραγωγής του αγαθού

Διαβάστε περισσότερα

ΜΕΡΟΣ Α Ερώτηση Α1 Η ερώτηση Α.1 περιλαμβάνει 2 υπό-ερωτήσεις. α) Υποθέστε ότι η παραγωγική δραστηριότητα μιας επιχείρησης επηρεάζει αρνητικά την παραγωγική δραστηριότητα άλλων επιχειρήσεων. Εξηγήστε,

Διαβάστε περισσότερα

Γενική Ισορροπία. Γενική ισορροπία και παραγωγή. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 19 Απριλίου 2013

Γενική Ισορροπία. Γενική ισορροπία και παραγωγή. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 19 Απριλίου 2013 Γενική Ισορροπία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 19 Απριλίου 013 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Γενική Ισορροπία 19 Απριλίου 013 1 / 60. Η παραγωγή στη γενική ισορροπία έχει πάλι µεγάλη αντιστοιχία

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Δεσμευτικοί περιορισμοί Πρόβλημα Βιομηχανική επιχείρηση γαλακτοκομικών προϊόντων Συνολικό μοντέλο Maximize z = 150x 1 + 200x 2 (αντικειμενική

Διαβάστε περισσότερα

ΦΟΙΤΗΤΙΚΟ ΔΙΔΑΣΚΑΛΕΙΟ Facebook: Didaskaleio Foititiko

ΦΟΙΤΗΤΙΚΟ ΔΙΔΑΣΚΑΛΕΙΟ  Facebook: Didaskaleio Foititiko Άσκηση. «Σε ορισμένες περιπτώσεις παρατηρείται στον κλάδο της γεωργίας της Ευρωπαϊκής Ένωσης το φαινομενικά παράδοξο να ευημερούν οι αγρότες περισσότερο όταν οι σοδειές τους δεν είναι καλές, και να πλήττονται

Διαβάστε περισσότερα

Η προσδοκώµενη χρησιµότητα του κέρδους όταν η πιθανότητα η τιµή του προϊόντος Ρ1 είναι ψ, χ το επίπεδο παραγωγής και c(x) η συνάρτηση κόστους, είναι

Η προσδοκώµενη χρησιµότητα του κέρδους όταν η πιθανότητα η τιµή του προϊόντος Ρ1 είναι ψ, χ το επίπεδο παραγωγής και c(x) η συνάρτηση κόστους, είναι 3. Θεωρία της Επιχείρησης 3. Η Ανταγωνιστική Επιχείρηση. Το τµήµα αυτό έχει δύο στόχους. Πρώτα να δείξει ότι αν υπάρχει ουδετερότητα απέναντι στον κίνδυνο, τότε η µέση αξία ενός αβέβαιου γεγονότος είναι

Διαβάστε περισσότερα

Συναρτήσεις Κόστους και η Καμπύλη Προσφοράς της Ανταγωνιστικής Επιχείρησης

Συναρτήσεις Κόστους και η Καμπύλη Προσφοράς της Ανταγωνιστικής Επιχείρησης Συναρτήσεις Κόστους και η Καμπύλη Προσφοράς της Ανταγωνιστικής Επιχείρησης - Στο εξής, συμβολίζουμε την ποσότητα του καταναλωτικού αγαθού με q. - Έστω ότι η συνάρτηση παραγωγής της επιχείρησης είναι: q=f(k,l),

Διαβάστε περισσότερα

Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014)

Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Θέμα 1 Μια επιχείρηση χρησιμοποιεί 3 πρώτες ύλες Α, Β, Γ για να παράγει 2 προϊόντα Π1 και Π2. Για την παραγωγή μιας μονάδας προϊόντος Α απαιτούνται 1

Διαβάστε περισσότερα

Κεφάλαιο 3. x 300 = = = Άσκηση 3.1

Κεφάλαιο 3. x 300 = = = Άσκηση 3.1 Άσκηση. Κεφάλαιο Έστω χ η πόσοτητα ενός αγαθού που παράγει μια επιχείρηση. Η κάθε μονάδα αυτής της ποσότητας μπορεί να πουλήθει στην τιμή που δίνεται από τη συνάρτηση P = 00. Το συνολικό κόστος για την

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΚΤΟ. Ερωτήσεις

ΚΕΦΑΛΑΙΟ ΕΚΤΟ. Ερωτήσεις ΚΕΦΑΛΑΙΟ ΕΚΤΟ 1. 0) ζ ( ) ε. (ιιι) β. (ιν) β και δ. (ν) β. Ερωτήσεις Ασκήσεις 1. Από τις αγοραίες συναρτήσεις ζήτησης και προσφοράς προκύπτει η τιιιή ισορροπίας του αγαθού: Qs = Qd => 4 + 4Ρ = 180-18Ρ

Διαβάστε περισσότερα

Διάλεξη 3. Οικονομικά της ευημερίας 2/26/2016. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης. Αποτελεσματικότητα κατά Pareto: ορισμός. ορισμός.

Διάλεξη 3. Οικονομικά της ευημερίας 2/26/2016. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης. Αποτελεσματικότητα κατά Pareto: ορισμός. ορισμός. Περίγραμμα Διάλεξη Εργαλεία δεοντολογικής ανάλυσης υνθήκες για αποτελεσματικότητα κατά areto υνθήκες για ισορροπία σε ανταγωνιστικές αγορές Το πρώτο θεώρημα των οικονομικών της ευημερίας Το δεύτερο θεώρημα

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΕΚΤΟ ΕΚΤΟ ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ-ΙΣΟΡΡΟΠΙΑ ΙΣΟΡΡΟΠΙΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ακαδηµαϊκό Έτος 2011-2012 ΕΠΙΧ Μικροοικονοµική

Διαβάστε περισσότερα

Ελαχιστοποίηση του Κόστους

Ελαχιστοποίηση του Κόστους Ελαχιστοποίηση του Κόστους - H ανάλυση του προβλήματος ελαχιστοποίησης του κόστους παρουσιάζει τα εξής πλεονεκτήματα σε σχέση με το πρόβλημα μεγιστοποίησης του κέρδους: (1) Επιτρέπει τη διατύπωση μιας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος (διαβάζουμε κεφ. 4 από Μ. Χλέτσο και σημειώσεις στο eclass)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος (διαβάζουμε κεφ. 4 από Μ. Χλέτσο και σημειώσεις στο eclass) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος 2016-17 ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΤΗΣ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ (διαβάζουμε κεφ. 4 από Μ. Χλέτσο και σημειώσεις στο eclass) 1 ιάλεξη2 Ανταγωνισμός, οικονομική

Διαβάστε περισσότερα

ΔΕΟ34. Ενδεικτική Απάντηση 1ης γραπτής εργασίας Επιμέλεια: Γιάννης Σαραντής

ΔΕΟ34. Ενδεικτική Απάντηση 1ης γραπτής εργασίας Επιμέλεια: Γιάννης Σαραντής ΔΕΟ34 Ενδεικτική Απάντηση 1ης γραπτής εργασίας 2016-17 Επιμέλεια: Γιάννης Σαραντής 16/11/2016 2 Ερώτηση 1 α1) Αρχικό σημείο ισορροπίας της αγοράς είναι το σημείο Δ και η τιμή ισορροπίας του κλάδου είναι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές

Διαβάστε περισσότερα

25. Μία τυπική επιχείρηση που λειτουργεί σε καθεστώς τέλειου ανταγωνισμού, στη μακροχρόνια θέση ισορροπίας της: α. πραγματοποιεί θετικά οικονομικά κέρδη. β. πραγματοποιεί μηδενικά οικονομικά κέρδη. γ.

Διαβάστε περισσότερα

Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του

Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του ΣΥΜΒΟΛΙΣΜΟΙ - ΕΝΝΟΙΕΣ Q ή q : Ποσότητα (Quantity) προϊόντος ρ, Ρ : τιμή (Price) προϊόντος ανά μονάδα προϊόντος. Συνάρτηση τηςζητησης; Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του. Δηλαδή Qd = f(p).

Διαβάστε περισσότερα

(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:

(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως: http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6979 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΔΕΟ -: Άσκηση I. (α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:

Διαβάστε περισσότερα

Ας δούµε τώρα πως το εν λόγω υπόδειγµα µεταχειρίζεται τη συσσώρευση κεφαλαίου.

Ας δούµε τώρα πως το εν λόγω υπόδειγµα µεταχειρίζεται τη συσσώρευση κεφαλαίου. Το υπόδειγµα οικονοµικής µεγέθυνσης του Solow σχεδιάστηκε προκειµένου να δείξει πως η µεγέθυνση του κεφαλαίου, του εργατικού δυναµικού αλλά και οι µεταβολές στην τεχνολογία αλληλεπιδρούν σε µια οικονοµία,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΠΕΡΙΟΡΙΣΜΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΚΑΛΟΓΗΡΑΤΟΥ Ζ. - ΜΟΝΟΒΑΣΙΛΗΣ Θ. Τυπικές Συναρτήσεις Μικροοικονομικής Ανάλυσης Συνάρτηση Παραγωγής Q (production function):

Διαβάστε περισσότερα