10. Μη-κατευθυνόμενη ταξινόμηση ΚΥΡΊΩΣ ΜΈΡΗ ΔΕΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "10. Μη-κατευθυνόμενη ταξινόμηση ΚΥΡΊΩΣ ΜΈΡΗ ΔΕΥ"

Transcript

1 ΚΥΡΊΩΣ ΜΈΡΗ ΔΕΥ

2 ΚΑΤΗΓΟΡΊΕΣ ΤΑΞΙΝΌΜΗΣΗΣ Κατευθυνόμενη ταξινόμηση (supervised classification) Μη-κατευθυνόμενη ταξινόμηση (unsupervised classification) Γραμμική: Μη-Γραμμική: Ιεραρχική: Επιμεριστική: Linear Discriminant Analysis Νευρωνικά δίκτυα κλπ. Agglomerative Divisive k-means SOM κλπ. Spectral Μηχανές Διανυσμάτων Υποστήριξης (Support Vector Machines) κλπ. 2

3 9. ΜΈΘΟΔΟΙ ΤΑΞΙΝΌΜΗΣΗΣ 3 Μη-κατευθυνόμενη ταξινόμηση: clustering

4 ΜΗ-ΚΑΤΕΥΘΥΝΌΜΕΝΗ ΤΑΞΙΝΌΜΗΣΗ: ΣΥΣΤΑΔΟΠΟΊΗΣΗ (CLUSTERING) Ιεραρχική: οι νέες ομάδες ταξινόμησης βασίζονται σε προηγούμενες Agglomerative bottom-up Divisive top-down Επιμεριστική: όλες οι ομάδες ορίζονται ταυτόχρονα. Ορισμός του αριθμού ομάδων εκ των προτέρων Αυτόματος ορισμός αριθμού ομάδων (λίγες μέθοδοι) Μέρη συσταδοποίησης: Αντιπροσώπευση δεδομένων με χαρακτηριστικά Υπολογισμός απόστασης χαρακτηριστικών Ομαδοποίηση (ιεραρχική ή επιμεριστική) «Εγκυρότητα» ομάδων 4

5 (1) ΑΝΤΙΠΡΟΣΏΠΕΥΣΗ ΔΕΔΟΜΈΝΩΝ Μέσω χαρακτηριστικών ή επιλογής μιας υποομάδας δεδομένων Είδη χαρακτηριστικών: Ποσοτικά (quantitative), π.χ. αριθμητικές τιμές, διάρκεια Ποιοτικά (qualitative), π.χ. χρώμα, ένταση ήχου Πολύ σημαντικό μέρος της διαδικασίας, κυρίως για χρονοσειρές. Καλή επιλογή χαρακτηριστικών οδηγεί σε απλή και εύκολα κατανοητή ομαδοποίηση Κακή επιλογή χαρακτηριστικών μπορεί να οδηγήσει σε πολύπλοκη ομαδοποίηση που δεν αντιπροσωπεύει καλά τις φυσικές ομάδες των δεδομένων 5

6 (2) ΥΠΟΛΟΓΙΣΜΌΣ ΑΠΌΣΤΑΣΗΣ Υπολογισμός της ομοιότητας ή ανομοιότητας μεταξύ ζευγών δεδομένων μέσω μιας αριθμητικής απόστασης. (1) Aπόσταση Minkowski: D d 1/ p p i, j = xi, k x j, k k = 1 ( x x ) όπου xi και xj: ανύσματα χαρακτηριστικών ή δεδομένων διαστάσεων d. (2) Ευκλίδεια (Euclidean): η πιο δημοφιλής, ειδική περίπτωση της απόστασης Minkowski D d ( xi,x j ) = ( xi, k x j, k ) k = 1 2 6

7 (3) Απόσταση Manhattan: Minkowski για p=1 D d ( xi, x j ) = k = 1 x i, k x j, k - Μειονεκτήματα αποστάσεων Minkowski: (ι) η τάση του μεγαλύτερου (σε πλάτος) χαρακτηριστικού να υπερισχύει των άλλων (ιι) ο επηρεασμός τους από τις τιμές πλάτους, έτσι πρέπει τα χαρακτηριστικά να κανονικοποιούνται πρώτα - Ευκλίδεια απόσταση: πιο κατάλληλη όταν τα δεδομένα σχηματίζουν απομονωμένες ομάδες 7

8 (4) Τετραγωνισμένη Ευκλίδεια απόσταση: D d ( xi, x j ) = ( xi, k x j, k ) Χρησιμοποιείται κυρίως όταν θέλουμε να δίνεται προοδευτικά μεγαλύτερη βαρύτητα σε ομάδες που είναι πιο απομακρυσμένες. (5) Kullback-Leibler divergence: ομαδοποίηση τ.μ. Μεγάλη τιμή K-L σημαίνει ομοιότητα και ταξινόμηση στην ίδια ομάδα. k = 1 2 8

9 (6) Απόσταση Chebychev: όταν θέλουμε τα δεδομένα να θεωρούνται ανόμοια όταν διαφέρουν σε οποιαδήποτε διάσταση. DM ( xi, x j ) = max xi x j (7) Απόσταση Power: οι δύο περιπτώσεις του p έχουν διαφορετικές τιμές D d 1/ r p i, j = xi, k x j, k k = 1 ( x x ) p: βαρύτητα απόστασης μεταξύ των διαστάσεων r: βαρύτητα απόστασης μεταξύ δεδομένων 9

10 (8) Απόσταση Mahalanobis: DM 1 ( x, x ) = ( x x ) Σ ( x x ) T όπου Σ -1 : πίνακας συνδιασποράς i - Όταν Σ=Ι τότε έχουμε Ευκλίδεια απόσταση. j - Διαφέρει από την Ευκλίδεια απόσταση: (ι) λαμβάνει υπόψη τη συσχέτιση μεταξύ των δεδομένων, (ιι) δεν επηρεάζεται από το πλάτος των δεδομένων. i j i j 10

11 (3) ΟΜΑΔΟΠΟΊΗΣΗ: (Ι) ΙΕΡΑΡΧΙΚΉ Ιεραρχικό «δέντρο»: απεικόνιση ομαδοποίησης με δενδρόγραμμα. Όταν τα δεδομένα έχουν ψηλή διαστασιακότητα η απεικόνιση μέσω δενδρογράμματος δεν είναι η πιο κατάλληλη μέθοδος απεικόνισης και ομαδοποίησης. 11

12 ΑΛΓΌΡΙΘΜΟΙ AGGLOMERATIVE (1) Κοντινότεροι γείτονες (single-link, nearest neighbour): δημιουργώ ομάδες που έχουν τη μικρότερη απόσταση μεταξύ τους. Οι ομάδες τείνουν να είναι πιο επιμηκείς. (2) Μακρινότεροι γείτονες (complete-link, farthest neighbour): δημιουργώ ομάδες που έχουν τη μεγαλύτερη απόσταση μεταξύ τους. Οι ομάδες τείνουν να είναι πιο συμπαγείς. Για δεδομένα Χ={Χ 1, Χ Ν }, αριθμός ομάδων Μ, πίνακας αποστάσεων Δ με διαστάσεις ΜxΜ και στοιχεία d(.): (ι) Θεωρώ κάθε δεδομένο είναι μια ομάδα. Υπολογίζω την απόσταση Δ μεταξύ όλων των ομάδων, δηλ. d(χ ι,χ ξ ) για ι=ξ=1:ν (ιι) Βρίσκω τις ομάδες με τη μικρότερη (ή μεγαλύτερη ανάλογα με τη μέθοδο) απόσταση και τις συγχωνεύω έτσι ώστε να έχω μια μεγαλύτερη ομάδα. (ιιι) Αν ο αριθμός των ομάδων μετά τη συγχώνευση είναι 1, σταματώ. Αλλιώς, πάω πίσω στο (ιι). 12

13 Ο πίνακας αποστάσεων, Δ, όταν Μ=Ν υπολογίζεται απευθείας μέσω μιας μεθόδου υπολογισμού απόστασης Όταν Μ<Ν τότε ο πίνακας Δ υπολογίζεται: d is = a p d ps + a q d qs + bd όπου d pq : απόσταση μεταξύ ομάδων p και q, i: νέα ομάδα που δημιουργείται από τη συγχώνευση των ομάδων p και q, και s: μια ομάδα εκτός των p και q. Oι σταθερές a p, a q, b και g παίρνουν τιμές ανάλογα με την ιεραρχική μέθοδο επιλογής. pq + g d ps d qs 13

14 ΜΕΘΟΔΟΣ a p a q b g Κοντινότεροι γείτονες (Nearest neighbour (single-link)) Μακρινότεροι γείτονες (Farthest neighbour (complete-link)) Simple average Group (weighted) average n p /n i n q /n i 0 0 Median Centroid n p /n i n q /n i -n q n p /n 2 i 0 Ward s error sum of squares (n s +n p )/(n s +n i ) (n s +n q )/(n s +n i ) -n s /(n s +n i ) 0 n j : αριθμός δεδομένων στην ομάδα j 14

15 Γενικές παρατηρήσεις: Είναι πιο εύκολο να ενωθούν ήδη υπάρχουσες ομάδες μεταξύ τους παρά να δημιουργηθούν νέες ομάδες μεγάλες αλυσίδες ενωμένων ομάδων, linking effect (πιο εμφανές για τη μέθοδο single-link) Μέθοδος single-link είναι πιο ευαίσθητη σε παρεκτρεπόμενες τιμές από τη μέθοδο complete-link Για συμπαγείς και ισομεγέθεις ομάδες Μέθοδος Ward Για συμπαγείς ομάδες με δεδομένα πολύ όμοια completelink Επειδή είναι σπάνιο να υπάρχουν πληροφορίες για το είδος των δεδομένων πριν την ομαδοποίηση, συνήθως χρησιμοποιούνται διάφορες μέθοδοι και η μέθοδος που καταλήγει σε λύση που ερμηνεύεται πιο καλά επιλέγεται. 15

16 (3) ΟΜΑΔΟΠΌΙΗΣΗ: (ΙΙ) ΕΠΙΜΕΡΙΣΤΙΚΉ Για δεδομένα με ψηλή διαστατικότητα είναι πιο κατάλληλη από ιεραρχικές μεθόδους καλύτερη απεικόνιση Όμως, πρόβλημα: ο αριθμός των ομάδων, ο οποίος είναι συνήθως άγνωστος, πρέπει να προσδιοριστεί από προηγουμένως. Ομαδοποίηση βασίζεται σε βελτιστοποίηση μιας συνάρτησης κριτηρίου (criterion function) συνήθως τρέχουμε τον αλγόριθμο περισσότερο από μια φορά και παίρνουμε το καλύτερο αποτέλεσμα. 16

17 Σύνηθες κριτήριο για μια ομαδοποίηση L των δεδομένων Χ: squared error e 2 K j ( X L) = n ( j), x c j= 1 i= 1 i j 2 όπου x i (j) : το i th δεδομένο που ανήκει στην ομάδα j, c j : κέντρο της ομάδας j, K: αριθμός ομάδων, n j : αριθμός δεδομένων. 17

18 ΑΛΓΌΡΙΘΜΟΣ K-MEANS Τυχαία αρχική ομαδοποίηση σε k ομάδες και τα δεδομένα ανακατατάσσονται στις ομάδες recursively ανάλογα με την ομοιότητα του δεδομένου με το κέντρο της ομάδας. Μέθοδος: (1)(ι) Επιλέγω k δεδομένα τα οποία αντιπροσωπεύουν τα κέντρα των k ομάδων (ιι) τοποθετώ το κάθε δεδομένο στην ομάδα με της οποίας το κέντρο είναι πιο κοντά Ή (1)(ι) διαχωρίζω τα δεδομένα τυχαία σε k ομάδες (ιι) υπολογίζω τα κέντρα των ομάδων (2) Υπολογίζω τα νέα κέντρα των ομάδων (3) Αν δε χρειάζεται να μετακινηθούν δεδομένα σε άλλες ομάδες ή αν η αλλάγη στο squared error < μικρής σταθεράς, σταματώ. Αλλιώς πάω στο (1)(ιι) 18

19 Εξαπλωμένη μέθοδος Προβλήματα: Ευαίσθητη στην επιλογή της αρχικής ομαδοποίησης. Κακή επιλογή μπορεί να οδηγήσει σε local minimum. Ένας τρόπος επίλυσης: εφαρμογή ιεραρχικής μεθόδου για ομαδοποίηση και χρησιμοποίηση του μέσου όρου των ομάδων ως αρχικά κέντρα. Προσδιορισμός του αριθμού ομάδων k προηγουμένως. 19

20 ΑΛΓΌΡΙΘΜΟΣ SPECTRAL CLUSTERING Ταξινόμηση σε k ομάδες βασιζόμενη στα ιδιοδιανύσματα των δεδομένων, είτε ταυτόχρονα είτε μία-μία. Για δεδομένα Χ={Χ 1,,Χ Ν }: Υπολογισμός πίνακα: A Σχηματισμός πίνακα: ij 2 xi x j exp =, i j 2 2σ 0, i = j n 1/ 2 1/ 2 L = D AD, όπου D = diag j= 1 Εύρεση k ιδιοδιανυσμάτων του L που αντιστοιχούν στις k μεγαλύτερες ιδιοτιμές, Ε={e 1,,e k } A ij 20

21 Σχηματισμός του πίνακα Ε με διαστάσεις Νxk, όπου κάθε στήλη αντιστοιχεί σε ένα από τα k ιδιοδιανύσματα. Κανονικοποίηση: Y ij = E / ij E j Κάθε γραμμή του Υ θεωρείται ένα σημείο σε k-dimensional χώρο. Ταξινόμηση Υ σε k ομάδες χρησιμοποιώντας μία μέθοδο ομαδοποίησης, π.χ. k-means. Ανάθεση του αρχικού δεδομένου X i στην ομάδα j μόνο αν το ιδιοδιάνυσμα i ανήκει στην ομάδα j. 2 ij 1/ 2 21

22 Πλεονεκτήματα: Απλή μέθοδος Πραγματοποίηση ομαδοποίησης σε μειωμένες διαστάσεις Προβολή δεδομένων στα ιδιοδιανύσματα δημιουργεί απομωνομένες ομάδες καλύτερη και πιο φυσική ομαδοποίηση Ευσταθής δεν επηρεάζεται από παρεκτρεπόμενες τιμές Μειονέκτημα: Επιλογή αριθμού ομάδων εκ των προτέρων 22

23 SELF-ORGANISING MAPS (SOMS) «Πλαισιωτά» νευρωνικά δίκτυα (ΝΔ) οι κυψέλες (νευρώνες) των οποίων αντιπροσωπεύουν διαφορετικές ομάδες δεδομένων. Τα ψηλής διαστατικότητας δεδομένα απεικονίζονται σε 2-d πλαίσιο μέσω του SOM Η απόσταση των κυψέλων στο πλαίσιο αντιπροσωπεύει την ομοιότητα μεταξύ των δεδομένων - : Βοηθά στην απεικόνιση Μείωση διαστατικότητας 23

24 Αποτελείται από: Ένα στρώμα νευρώνων Τα outputs είναι οργανωμένα σε πλαίσιο 2- ή 3-d Κάθε input, X=(x 1,,x n ), είναι ενωμένο με όλους τους νευρώνες output Κάθε νευρώνας j έχει weight vector, w i =(w i1,,w in ) 24

25 Οι αρχικές τιμές των weight vectors είναι είτε τυχαίες μικρές τιμές, είτε από τις τιμές των 2 μεγαλύτερων principal components Για κάθε δεδομένο εκπαίδευσης υπολογίζεται η Ευκλίδεια απόσταση μεταξύ του και των weight vectors του κάθε νευρώνα. Ο νευρώνας του οποίου το weight vector έχει τη μικρότερη απόσταση με τα δεδομένα best matching unit (BMU) 25

26 Προσαρμογή των weights του BMU και των νευρώνων που είναι γειτονικά στο BMU: w j [ D( t) w ( )] ( t + 1) = w ( t) + Θ( j, t) α( t) t j j όπου w j (t): weight του νευρώνα j σε χρόνο t α(t): συντελεστής εκμάθησης (motonically decreasing) D(t): δεδομένα εκπαίδευσης Θ(j,t): συνάρτηση «γειτονιάς» (neighbourhood function) εξαρτάται από την απόσταση μεταξύ του BMU και του νευρώνα j. Πιο απλή περίπτωση: Θ( j, t) 1, = 0, για νευρώνες εκτός ττη "γειτονιάς" για νευρώνες εντός ττη "γειτονιάς" 26

27 (4) ΕΓΚΥΡΌΤΗΤΑ ΟΜΆΔΩΝ Αναγκαία η εκτίμηση των ομάδων γιατί: Μέθοδοι συσταδοποίησης πάντοντε καταλήγουν σε μια ομαδοποίηση, ακόμα κι αν τα δεδομένα είναι θόρυβος και δεν υπάρχει καμιά φυσική ομαδοποίηση Διαφορετικές μεθόδοι πολύ πιθανόν να δώσουν διαφορετικές ομαδοποιήσεις Απαντήσεις σε δύο ερωτήματα: Πόσο καλά η συγκεκριμένη ομαδοποίηση αντιπροσωπεύει τις πραγματικές φυσικές ομάδες των δεδομένων Πώς προσδιορίζουμε το «σωστό» αριθμό ομάδων 27

28 Χρησιμοποίηση συντελεστών παραμόρφωσης: (1) Εσωτερικά (internal): πληροφορίες από το goodness-of-fit μεταξύ των δεδομένων και της συγκεκριμένης ομαδοποίησης (2) Εξωτερικά (external): πληροφορίες εκτός της διαδικασίας ομαδοποίησης. Συνήθως δεν υπάρχουν πληροφορίες εκ των προτέρων για την αληθινή δομή των δεδομένων, άρα σπάνια χρησιμοποιούνται. Ο προσδιορισμός του αριθμού των ομάδων γίνεται για τις ιεραρχικές μεθόδους 28

29 (Ι) ΤΙΜΉ ΣΥΓΧΏΝΕΥΣΗΣ Εξέταση της τιμής συγχώνευσης (ΤΣ, fusion level) έναντι του αριθμού ομάδων, j, για προσδιορισμό του επιπέδου στο οποίο να γίνει η «κοπή» του δέντρου Σε κάθε επίπεδο j αντιστοιχεί μια ΤΣ, α 0,α 1,...,α Ν-1, όπου 0,1,...,Ν-1 αντιστοιχούν σε ομαδοποίηση με Ν,Ν-1,...,1 ομάδες. Δηλ. α j είναι η τιμή της απόστασης, d, στο επίπεδο j για την οποία συγχωνεύτηκαν οι δύο ομάδες, i και m: α j = min i< m [ d ], ή α = max[ d ], i, m = 1,..., N j im j i< m ανάλογα με τη μέθοδο (single-link ή complete-link αντίστοιχα) 29 im

30 Υπολογισμός επιπέδου «κοπής»: α j +1 > μ α + ks α όπου α j+1 : ΤΣ στο επίπεδο j+1, μ α και σ α : μέσος όρος και διασπορά του α αντίστοιχα, k: σταθερά (standard deviate), j=1,...,ν-2 Το επίπεδο j στο οποίο η σχέση αυτή ισχύει είναι το επίπεδο «κοπής» Δηλαδή: ψάχνουμε το επίπεδο j μετά το οποίο οι τιμές του α δεν παρουσιάζουν μεγάλη αλλαγή. 30

31 α Ν-1 α Ν-2 α Ν-3 31

32 32

33 α=

34 (ΙΙ) ΆΛΛΕΣ ΤΙΜΈΣ Root mean squared standard deviation (RMSSTD) μικρές τιμές αντιστοιχούν σε ομοιογενείς ομάδες R-squared (RS) τιμές από [0,1], όπου 0 ενδυκνείει ομοιογενείς ομάδες Semipartial R-squared (SPR) δείχνει το πόσο αυξάνεται η ανομοιογένεια της ομάδας που δημιουργείται από συγχώνευση 2 ομάδων, δηλ. πρέπει να έχει μικρές τιμές Απόσταση μεταξύ ομάδων ανάλογα με τη μέθοδο: Single-link: η μικρότερη Ευκλίδεια απόσταση μεταξύ όλων των ζευγών των δεδομένων Complete-link: η τιμή sum-of-squares μεταξύ ζευγών ομάδων 34

35 ΕΠΌΜΕΝΟ ΜΆΘΗΜΑ: 35 Κατευθυνόμενη ταξινόμηση

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Χατζηλιάδη Παναγιώτα Ευανθία

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Χατζηλιάδη Παναγιώτα Ευανθία ΜΠΣ «ΜΕΘΟΔΟΛΟΓΙΑ ΒΪΟΙΑΤΡΙΚΗΣ ΕΡΕΥΝΑΣ, ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΚΛΙΝΙΚΗ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Ανάπτυξη λογισμικού σε γλώσσα προγραματισμού python για ομαδοποίηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Χατζηλιάδη Παναγιώτα Ευανθία

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Χατζηλιάδη Παναγιώτα Ευανθία ΜΠΣ «ΜΕΘΟΔΟΛΟΓΙΑ ΒΪΟΙΑΤΡΙΚΗΣ ΕΡΕΥΝΑΣ, ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΚΛΙΝΙΚΗ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Ανάπτυξη λογισμικού σε γλώσσα προγραματισμού python για ομαδοποίηση

Διαβάστε περισσότερα

ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ

ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ Κατευθυνόμενη ταξινόμηση (supervsed cassfcaton) Μη-κατευθυνόμενη ταξινόμηση (unsupervsed cassfcaton) Γραμμική: Lnear Dscrmnant Anayss Μη- Γραμμική: Νευρωνικά δίκτυα κλπ. Ιεραρχική

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος B http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

ΟΜΟΙΟΤΗΤΑ ΒΙΟΚΟΙΝΟΤΗΤΩΝ

ΟΜΟΙΟΤΗΤΑ ΒΙΟΚΟΙΝΟΤΗΤΩΝ ΟΜΟΙΟΤΗΤΑ ΒΙΟΚΟΙΝΟΤΗΤΩΝ Είναι δυνατόν δύο βιοκοινότητες να έχουν τον ίδιο (ή σχεδόν τον ίδιο) δείκτη ποικιλότητας ειδών αν και τα είδη που συνθέτουν τη μία βιοκοινότητα να είναι -σε μεγάλο βαθμό ή και

Διαβάστε περισσότερα

Ομαδοποίηση ΙΙ (Clustering)

Ομαδοποίηση ΙΙ (Clustering) Ομαδοποίηση ΙΙ (Clustering) Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr Αλγόριθμοι ομαδοποίησης Επίπεδοι αλγόριθμοι Αρχίζουμε με μια τυχαία ομαδοποίηση Βελτιώνουμε επαναληπτικά KMeans Ομαδοποίηση

Διαβάστε περισσότερα

Ομαδοποίηση Ι (Clustering)

Ομαδοποίηση Ι (Clustering) Ομαδοποίηση Ι (Clustering) Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr Αλγόριθμοι ομαδοποίησης Επίπεδοι αλγόριθμοι Αρχίζουμε με μια τυχαία ομαδοποίηση Βελτιώνουμε επαναληπτικά KMeans Ομαδοποίηση

Διαβάστε περισσότερα

Ανάλυση κατά Συστάδες. Cluster analysis

Ανάλυση κατά Συστάδες. Cluster analysis Ανάλυση κατά Συστάδες Cluster analysis 1 H ανάλυση κατά συστάδες είναι µια µέθοδος που σκοπό έχει να κατατάξει σε οµάδες τις υπάρχουσες παρατηρήσεις χρησιµοποιώντας την πληροφορία που υπάρχει σε κάποιες

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 8: Ομαδοποίηση Μέρος B Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

Ζητήματα ηήμ με τα δεδομένα

Ζητήματα ηήμ με τα δεδομένα Ζητήματα ηήμ με τα δεδομένα Ποιότητα Απαλοιφή θορύβου Εντοπισμός ανωμαλιών λώ Ελλιπείς τιμές Μετασχηματισμός Κβάντωση Μείωση μεγέθους Γραμμών: ειγματοληψία Στηλών: Ιδιοδιανύσματα, Επιλογή χαρακτηριστικών

Διαβάστε περισσότερα

ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εξόρυξη Δεδομένων. Ανάλυση Δεδομένων. Η διαδικασία εύρεσης κρυφών (ήκαλύτεραμηεμφανών) ιδιοτήτων από αποθηκευμένα δεδομένα,

ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εξόρυξη Δεδομένων. Ανάλυση Δεδομένων. Η διαδικασία εύρεσης κρυφών (ήκαλύτεραμηεμφανών) ιδιοτήτων από αποθηκευμένα δεδομένα, ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ Ηλίας Κ. Σάββας Εξόρυξη Δεδομένων Η διαδικασία εύρεσης κρυφών (ήκαλύτεραμηεμφανών) ιδιοτήτων από αποθηκευμένα δεδομένα, Μετατροπή δεδομένων σε ΠΛΗΡΟΦΟΡΙΑ, Πολλά δεδομένα αποθηκευμένα

Διαβάστε περισσότερα

7. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ

7. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ 7. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ 1 Principal & Independent Component Analysis (PCA, ICA) PRINCIPAL COMPONENT ANALYSIS (PCA) Principal Component Analysis (PCA): ορθογώνιος μετασχηματισμός κατά τον οποίο αφαιρείται

Διαβάστε περισσότερα

ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM Μάθηση χωρίς επίβλεψη (unsupervised learning) Σύνολο εκπαίδευσης D={(x n )}, n=1,,n. x n =(x n1,, x nd ) T, δεν υπάρχουν τιμές-στόχοι t n. Προβλήματα μάθησης χωρίς

Διαβάστε περισσότερα

Μέτρα της οργάνωσης και της ποιότητας για τον Self-Organizing Hidden Markov Model Map (SOHMMM)

Μέτρα της οργάνωσης και της ποιότητας για τον Self-Organizing Hidden Markov Model Map (SOHMMM) Μέτρα της οργάνωσης και της ποιότητας για τον Self-Organizing Hidden Markov Model Map (SOHMMM) Γενική περιγραφή του SOHMMM Ένα υβριδικό νευρωνικό δίκτυο, σύζευξη δύο πολύ επιτυχημένων μοντέλων: -Self-Organizing

Διαβάστε περισσότερα

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση Γιάννης Θεοδωρίδης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων http://isl.cs.unipi.gr/db

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο

Διαβάστε περισσότερα

11 Ανάλυση Συστάδων

11 Ανάλυση Συστάδων 11 Ανάλυση Συστάδων Σύνοψη Η Ανάλυση Συστάδων (ΑΣ) (Clustering) είναι μια από τις βασικότερες εργασίες Εξόρυξης Δεδομένων. Στόχος της ΑΣ είναι ο επιμερισμός ενός συνόλου παραδειγμάτων σε συστάδες. Οι συστάδες

Διαβάστε περισσότερα

Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση

Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση (clustering) Γιάννης Θεοδωρίδης, Νίκος Πελέκης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ. ιπλωµατική Εργασία

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ. ιπλωµατική Εργασία ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ιπλωµατική Εργασία «Μετάδοση πληροφορίας σε ασύρµατο δίκτυο αισθητήρων µε οµαδοποιηµένους κόµβους και µε χρήση διευθύνσεων

Διαβάστε περισσότερα

Κεφάλαιο 6 Πολυμεταβλητές Μέθοδοι Ανάλυσης

Κεφάλαιο 6 Πολυμεταβλητές Μέθοδοι Ανάλυσης Κεφάλαιο 6 Πολυμεταβλητές Μέθοδοι Ανάλυσης Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται τρεις βασικές μέθοδοι πολυμεταβλητής ανάλυσης. Συγκεκριμένα θα παρουσιαστούν η παραγοντική ανάλυση, η ανάλυση συστάδων

Διαβάστε περισσότερα

ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΙΙ

ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΙΙ Τι είναι συσταδοποίηση Εύρεση συστάδων αντικειμένων έτσι ώστε τα αντικείμενα σε κάθε ομάδα να είναι όμοια (ή να σχετίζονται) και διαφορετικά (ή μη σχετιζόμενα) από τα αντικείμενα των άλλων ομάδων Συσταδοποίηση

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΓΡΑΦΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΣΕ MATLAB ΓΙΑ ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΜΕΣΩ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ISODATA

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΓΡΑΦΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΣΕ MATLAB ΓΙΑ ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΜΕΣΩ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ISODATA ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΝΑΠΤΥΞΗ ΓΡΑΦΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΣΕ MATLAB ΓΙΑ ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΜΕΣΩ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ISODATA Μαρκαντωνάτου Μαρία Α.Μ.: 379 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Δρ. Τσιμπίρης

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΔΕ. 11 ΙΟΥΝΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΔΕ. 11 ΙΟΥΝΙΟΥ 2012 ΔΕ. ΙΟΥΝΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η ( μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάσει το συντελεστή συσχέτισης. (γράψτε ποιο χαρακτηριστικό

Διαβάστε περισσότερα

Ιεραρχική αναλυση αποφασεων Analytic hierarchy process (AHP)

Ιεραρχική αναλυση αποφασεων Analytic hierarchy process (AHP) Ιεραρχική αναλυση αποφασεων Analytic hierarchy process (AHP) Εισαγωγή Παρουσιάστηκε από τον Thomas L. Saaty τη δεκαετία του 70 Μεθοδολογία που εφαρμόζεται στην περιοχή των Multicriteria Problems Δίνει

Διαβάστε περισσότερα

Νευρωνικά ίκτυα και Εξελικτικός

Νευρωνικά ίκτυα και Εξελικτικός Νευρωνικά ίκτυα και Εξελικτικός Προγραµµατισµός Σηµερινό Μάθηµα Μη επιβλεπόµενη Μάθηση Ανταγωνιστική Μάθηση Αλγόριθµος Leader-follower clusterng Αυτοοργανούµενοι χάρτες Kohonen Ανταγωνισµός Συνεργασία

Διαβάστε περισσότερα

Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP)

Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP) Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP) x -0,5 a x x 2 0 0 0 0 - -0,5 y y 0 0 x 2 -,5 a 2 θ η τιμή κατωφλίου Μία λύση του προβλήματος XOR Multi Layer Perceptron (MLP) x -0,5 Μία

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Διαχωριστικές συναρτήσεις Ταξινόμηση κανονικών

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 2: Δομικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

Αλγόριθμος Ομαδοποίησης

Αλγόριθμος Ομαδοποίησης Αλγόριθμος Ομαδοποίησης Εμπειρίες από τη μελέτη αναλλοίωτων χαρακτηριστικών και ταξινομητών για συστήματα OCR Μορφονιός Κωνσταντίνος Αθήνα, Ιανουάριος 2002 Γενικά Ένα σύστημα OCR χρησιμοποιείται για την

Διαβάστε περισσότερα

Διερεύνηση περιβαλλοντικών χρονοσειρών με στατιστικές μεθόδους και τεχνικές εξόρυξης δεδομένων

Διερεύνηση περιβαλλοντικών χρονοσειρών με στατιστικές μεθόδους και τεχνικές εξόρυξης δεδομένων Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης - Τμήμα Φυσικής Π.Μ.Σ. Υπολογιστικής Φυσικής Διερεύνηση περιβαλλοντικών χρονοσειρών με στατιστικές μεθόδους και τεχνικές εξόρυξης δεδομένων Σταματέρης Γεώργιος Επιβλέπων

Διαβάστε περισσότερα

Κεφάλαιο 18. Μηχανική Μάθηση (Machine Learning) - 1 -

Κεφάλαιο 18. Μηχανική Μάθηση (Machine Learning) - 1 - Κεφάλαιο 18 Μηχανική Μάθηση (Machine Learning) - 1 - Εισαγωγή Η μάθηση σε ένα γνωστικό σύστημα, όπως γίνεται αντιληπτή στην καθημερινή ζωή, μπορεί να συνδεθεί με δύο βασικές ιδιότητες: την ικανότητά στην

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Γραμμική παλινδρόμηση (Linear regression) Εμπειρική συνάρτηση μεταφοράς Ομαλοποίηση (smoothing) Y ( ) ( ) ω G ω = U ( ω) ω +Δ ω γ ω Δω = ω +Δω W ( ξ ω ) U ( ξ) G(

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 7: Ομαδοποίηση Μέρος Α Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Αριάδνη Αργυράκη ΣΤΑΔΙΑ ΕΚΤΕΛΕΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΓΕΩΧΗΜΙΚΩΝ ΕΡΕΥΝΩΝ 1.ΣΧΕΔΙΑΣΜΟΣ: - Καθορισμός στόχων έρευνας - Ιστορικό περιοχής 2 4.

Διαβάστε περισσότερα

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5 IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό

Διαβάστε περισσότερα

ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΚΑΤΑΝΑΛΩΤΩΝ ΜΕ ΣΚΟΠΟ ΤΗΝ ΤΙΜΟΛΟΓΗΣΗ

ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΚΑΤΑΝΑΛΩΤΩΝ ΜΕ ΣΚΟΠΟ ΤΗΝ ΤΙΜΟΛΟΓΗΣΗ Σ ε λ ί δ α 0 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΚΑΤΑΝΑΛΩΤΩΝ ΜΕ ΣΚΟΠΟ ΤΗΝ ΤΙΜΟΛΟΓΗΣΗ Διπλωματική

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Δ http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

Κεφάλαιο 5: Ανάλυση Συστάδων

Κεφάλαιο 5: Ανάλυση Συστάδων Κεφάλαιο 5: Ανάλυση Συστάδων Σύνοψη Η ανάλυση συστάδων διευθετεί ένα σύνολο μεταβλητών ή παρατηρήσεων σε συγκεκριμένες ομάδες οι οποίες διαθέτουν κατ ιδίαν κοινά χαρακτηριστικά, ευκρινώς διαφοροποιημένα

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 5 6 Principal component analysis EM for Gaussian mixtures: μ k, Σ k, π k. Ορίζουμε το διάνυσμα z (διάσταση Κ) ώστε K p( x θ) = π ( x μ, Σ ) k = k k k Eκ των υστέρων

Διαβάστε περισσότερα

Το μοντέλο Perceptron

Το μοντέλο Perceptron Το μοντέλο Perceptron Αποτελείται από έναν μόνο νευρώνα McCulloch-Pitts w j x x 1, x2,..., w x T 1 1 x 2 w 2 Σ u x n f(u) Άνυσμα Εισόδου s i x j x n w n -θ w w 1, w2,..., w n T Άνυσμα Βαρών 1 Το μοντέλο

Διαβάστε περισσότερα

Δείκτες Κεντρικής Τάσης και Διασποράς. Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

Δείκτες Κεντρικής Τάσης και Διασποράς. Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Δείκτες Κεντρικής Τάσης και Διασποράς Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που γεννιούνται κατά την σύγκριση

Διαβάστε περισσότερα

Ανάλυση κατά συστάδες με χρήση στατιστικών πακέτων

Ανάλυση κατά συστάδες με χρήση στατιστικών πακέτων ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Εφαρμοσμένη Πολυμεταβλητή Ανάλυση : Ανάλυση κατά συστάδες 1. Εισαγωγή Ανάλυση κατά συστάδες με χρήση στατιστικών πακέτων Η ομαδοποίηση δεδομένων

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ ΒΕΛΤΙΣΤΟΥ ΠΛΗΘΟΥΣ ΟΜΑΔΩΝ ΓΙΑ ΠΟΛΥΔΙΑΣΤΑΤΑ ΔΕΔΟΜΕΝΑ

ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ ΒΕΛΤΙΣΤΟΥ ΠΛΗΘΟΥΣ ΟΜΑΔΩΝ ΓΙΑ ΠΟΛΥΔΙΑΣΤΑΤΑ ΔΕΔΟΜΕΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ ΒΕΛΤΙΣΤΟΥ ΠΛΗΘΟΥΣ ΟΜΑΔΩΝ ΓΙΑ ΠΟΛΥΔΙΑΣΤΑΤΑ ΔΕΔΟΜΕΝΑ Φανή Ζαφειροπούλου

Διαβάστε περισσότερα

Data Envelopment Analysis

Data Envelopment Analysis Data Envelopment Analysis Η μέθοδος των «Βέλτιστων Προτύπων Αποδοτικότητας», γνωστή στην διεθνή βιβλιογραφία ως «Data Envelopment Analysis», εφαρμόζεται για τον υπολογισμό της σχετικής αποδοτικότητας και

Διαβάστε περισσότερα

Α.Τ.ΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΟΛΥΜΕΣΩΝ. ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ

Α.Τ.ΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΟΛΥΜΕΣΩΝ. ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ Α.Τ.ΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΟΛΥΜΕΣΩΝ. ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΕΚΜΑΘΗΣΗ ΤΑ ΔΙΚΤΥΑ KOHONEN A. ΕΙΣΑΓΩΓΗ Στα προβλήματα που έχουμε αντιμετωπίσει μέχρι τώρα

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ

ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:

Διαβάστε περισσότερα

Clustering. Αλγόριθµοι Οµαδοποίησης Αντικειµένων

Clustering. Αλγόριθµοι Οµαδοποίησης Αντικειµένων Clustering Αλγόριθµοι Οµαδοποίησης Αντικειµένων Εισαγωγή Οµαδοποίηση (clustering): οργάνωση µιας συλλογής από αντικείµενα-στοιχεία (objects) σε οµάδες (clusters) µε βάση κάποιο µέτρο οµοιότητας. Στοιχεία

Διαβάστε περισσότερα

Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής

Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής (Least squares collocation) Χριστόφορος

Διαβάστε περισσότερα

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ Μαθηματικά για Οικονομολόγους ΙI-Μάθημα 4 Γραμμικά Συστήματα

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ Μαθηματικά για Οικονομολόγους ΙI-Μάθημα 4 Γραμμικά Συστήματα ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ 2009-2010 Μαθηματικά για Οικονομολόγους ΙI-Μάθημα 4 Γραμμικά Συστήματα ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ι Ένα σύνολο m εξισώσεων n αγνώστων που έχει την ακόλουθη

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16 HMY 795: Αναγνώριση Προτύπων Διαλέξεις 15-16 Νευρωνικά Δίκτυα(Neural Networks) Fisher s linear discriminant: Μείωση διαστάσεων (dimensionality reduction) y Τ =w x s + s =w S w 2 2 Τ 1 2 W ( ) 2 2 ( ) m2

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Εισαγωγή Στην πλειοψηφία των ορισμών για την ΤΝ, η δυνατότητα μάθησης / προσαρμογής

Διαβάστε περισσότερα

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις: Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y 7 50 6 7 6 6 96 7 0 5 55 9 5 59 6 8 8 5 0 59 7 7 8 8 5 5 0 7 69 9 6 6 7 6 9 5 7 6 8 5 6 69 8 0 50 66 0 0 50 8 59 76 8 7 60 7 87 6 5 7 88 9 8 50 0 5

Διαβάστε περισσότερα

Ανάλυση των Χρηματιστηριακών Δεδομένων με χρήση των Αλγορίθμων Εξόρυξης

Ανάλυση των Χρηματιστηριακών Δεδομένων με χρήση των Αλγορίθμων Εξόρυξης 1 Πανεπιστήμιο Πατρών Τμήμα Μαθηματικών & Τμήμα Μηχανικών Η/Υ και Πληροφορικής ΔΠΜΣ «Μαθηματικά των Υπολογιστών και των Αποφάσεων» Μεταπτυχιακή Διπλωματική Εργασία Ανάλυση των Χρηματιστηριακών Δεδομένων

Διαβάστε περισσότερα

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΟΝ ΕΝΤΟΠΙΣΜΟ ΓΕΩΧΗΜΙΚΗΣ ΑΝΩΜΑΛΙΑΣ Στατιστική ανάλυση του γεωχημικού δείγματος μας δίνει πληροφορίες για τον

Διαβάστε περισσότερα

ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΘΕΜΑ

ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΘΕΜΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΘΕΜΑ «Ανάπτυξη γραφικού περιβάλλοντος σε Matlab για συσταδοποίηση δεδομένων μέσω των ιεραρχικών αλγορίθμων

Διαβάστε περισσότερα

Ανάλυση και Σχεδιασμός Μεταφορών Ι Γένεση Μετακινήσεων

Ανάλυση και Σχεδιασμός Μεταφορών Ι Γένεση Μετακινήσεων Γένεση Μετακινήσεων Παναγιώτης Παπαντωνίου Δρ. Πολιτικός Μηχανικός, Συγκοινωνιολόγος ppapant@upatras.gr Πάτρα, 2017 Εισαγωγή Αθροιστικά μοντέλα (Aggregate models) Ανάλυση κατά ζώνη πόσες μετακινήσεις ξεκινούν

Διαβάστε περισσότερα

ΑΠΟΣΤΑΣΕΙΣ ΓΙΑ ΤΗΝ ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΠΟΙΟΤΙΚΕΣ ΜΕΤΑΒΛΗΤΈΣ (ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ)

ΑΠΟΣΤΑΣΕΙΣ ΓΙΑ ΤΗΝ ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΠΟΙΟΤΙΚΕΣ ΜΕΤΑΒΛΗΤΈΣ (ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ) «ΣΠ0ΥΔΑI», Τόμος 47, Τεύχος 3o-4o, Πανεπιστήμιο Πειραιώς / «SPOUDAI», Vol. 47, No 3-4, University of Piraeus ΑΠΟΣΤΑΣΕΙΣ ΓΙΑ ΤΗΝ ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΠΟΙΟΤΙΚΕΣ ΜΕΤΑΒΛΗΤΈΣ (ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ) Υπό Γιάννης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική

Διαβάστε περισσότερα

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα)

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα) ΤΕΙ Στερεάς Ελλάδας Τμήμα Φυσικοθεραπείας Προπτυχιακό Πρόγραμμα Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα) Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

Ανταγωνιστική Εκμάθηση Δίκτυα Kohonen. Κυριακίδης Ιωάννης 2013

Ανταγωνιστική Εκμάθηση Δίκτυα Kohonen. Κυριακίδης Ιωάννης 2013 Ανταγωνιστική Εκμάθηση Δίκτυα Kohonen Κυριακίδης Ιωάννης 2013 Εισαγωγή Στα προβλήματα που έχουμε αντιμετωπίσει μέχρι τώρα, υπήρχε μια διαδικασία εκπαίδευσης του δικτύου, κατά την οποία είχαμε διανύσματα

Διαβάστε περισσότερα

«ΑΝΑΛΥΣΗ ΣΥΣΤΑΔΩΝ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΠΟ ΤΟΥΣ ΦΟΙΤΗΤΕΣ»

«ΑΝΑΛΥΣΗ ΣΥΣΤΑΔΩΝ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΠΟ ΤΟΥΣ ΦΟΙΤΗΤΕΣ» Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΑΝΑΛΥΣΗ ΣΥΣΤΑΔΩΝ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΠΟ ΤΟΥΣ ΦΟΙΤΗΤΕΣ» Της σπουδάστριας ΚΑΤΣΑΡΟΥ ΧΑΡΙΚΛΕΙΑΣ Επιβλέπων Δρ. ΓΕΡΟΝΤΙΔΗΣ

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για

Διαβάστε περισσότερα

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων Δρ. Ε. Χάρου Πρόγραμμα υπολογιστικής ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΔΗΜΟΚΡΙΤΟΣ exarou@iit.demokritos.gr Μηχανική

Διαβάστε περισσότερα

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, 2013-2014 Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που

Διαβάστε περισσότερα

ιαµέριση - Partitioning

ιαµέριση - Partitioning ιαµέριση - Partitioning ιαµέριση ιαµέριση είναι η διαµοίραση αντικειµένων σε οµάδες µε στόχο την βελτιστοποίηση κάποιας συνάρτησης. Στην σύνθεση η διαµέριση χρησιµοποιείται ως εξής: Οµαδοποίηση µεταβλητών

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Χειμερινό εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Μέτρα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Θέματα εξέτασης στο μάθημα «Μηχανική του Συνεχούς Μέσου» (ΕΜ57) Ηράκλειο, 9 Μαΐου 009 Θέμα 1 ο (μονάδες.0) Έστω ο τανυστής προβολής P= 1 n n, όπου n

Διαβάστε περισσότερα

Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1

Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας. Ένας αποδεκτός ορισμός της ακμής είναι ο ακόλουθος: «Το σύνορο μεταξύ δύο ομοιογενών περιοχών με

Διαβάστε περισσότερα

Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1

Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή:

Διαβάστε περισσότερα

Mέτρα (παράμετροι) θέσεως

Mέτρα (παράμετροι) θέσεως Mέτρα (παράμετροι) θέσεως Είδη παραμέτρων Σκοπός μέτρων θέσεως Μέτρα θέσεως Αριθμητικός μέσος Επικρατούσα τιμή Διάμεσος Τεταρτημόρια Σύντομη περιγραφή Το πρώτο βήμα της ανάλυσης των δεδομένων, είναι η

Διαβάστε περισσότερα

Μάθημα 10 ο. Περιγραφή Σχήματος ΤΜΗΥΠ / ΕΕΣΤ 1

Μάθημα 10 ο. Περιγραφή Σχήματος ΤΜΗΥΠ / ΕΕΣΤ 1 Μάθημα 10 ο Περιγραφή Σχήματος ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Η περιγραφή μίας περιοχής μπορεί να γίνει: Με βάση τα εξωτερικά χαρακτηριστικά (ακμές, όρια). Αυτή η περιγραφή προτιμάται όταν μας ενδιαφέρουν

Διαβάστε περισσότερα

Μεθοδολογίες παρεµβολής σε DTM.

Μεθοδολογίες παρεµβολής σε DTM. Μάθηµα : Αλγοριθµικές Βάσεις στη Γεωπληροφορική ιδάσκων : Συµεών Κατσουγιαννόπουλος Μεθοδολογίες παρεµβολής σε DTM.. Μέθοδοι παρεµβολής. Η παρεµβολή σε ψηφιακό µοντέλο εδάφους (DTM) είναι η διαδικασία

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 8 Νοεμβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 6 Ιανουαρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για

Διαβάστε περισσότερα

1/12/2016. Πλεονεκτήματα. Μειονεκτήματα. (Roy, 1994)

1/12/2016. Πλεονεκτήματα. Μειονεκτήματα. (Roy, 1994) Πολυκριτηριακή Ανάλυση και Λήψη Αποφάσεων Δ. Καλιαμπάκος -Δ. Δαμίγος μγ Πολυκριτηριακή ανάλυση «Ο κύριος στόχος δεν είναι να ανακαλύψουμε μια λύση αλλά να δημιουργήσουμε ή να κατασκευάσουμε κάτι το οποίο

Διαβάστε περισσότερα

Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης

Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Τεχνικές Κλιμάκωσης (1) Αδυναμία επίλυσης Γ.Π. μεγάλης κλίμακας Ύπαρξη στοιχείων περιστροφής

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Εργασία 2η Clustering

Αναγνώριση Προτύπων Εργασία 2η Clustering ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Αναγνώριση Προτύπων Εργασία 2η Clustering Κιντσάκης Αθανάσιος 6667 Μόσχογλου Στυλιανός 6978 18 Ιανουαρίου, 2013

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΦΥΣΙΚΩΝ ΠΟΡΩΝ

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ 4 Ο Δ Ε Δ Ο Μ Ε Ν Α ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ Δεδομένα ή στοιχεία είναι μη επεξεργασμένα ποσοτικά και ποιοτικά χαρακτηριστικά

Διαβάστε περισσότερα

(p 1) (p m) (m 1) (p 1)

(p 1) (p m) (m 1) (p 1) ΠΑΡΑΓΟΝΤΙΚΗ ΑΝΑΛΥΣΗ Σκοπός της παραγοντικής ανάλυσης είναι να περιγράψει την συνδιασπορά μεταξύ των μεταβλητών με την βοήθεια τυχαίων άγνωστων ποσοτήτων που ονομάζονται παράγοντες. Το μοντέλο είναι το

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ Διεπαφές Εγκεφάλου-Υπολογιστή: από σκέψη σε πράξη

1. ΕΙΣΑΓΩΓΗ Διεπαφές Εγκεφάλου-Υπολογιστή: από σκέψη σε πράξη 1 1. ΕΙΣΑΓΩΓΗ Διεπαφές Εγκεφάλου-Υπολογιστή: από σκέψη σε πράξη GRAZ BCI, PROF. PFURTSCHELLER 2 ΔΙΕΠΑΦΕΣ ΕΓΚΕΦΑΛΟΥ-ΥΠΟΛΟΓΙΣΤΗ (ΔΕΥ) A brain-computer interface is a communication system that does not depend

Διαβάστε περισσότερα

Αναγνώριση Προτύπων - Νευρωνικά ίκτυα

Αναγνώριση Προτύπων - Νευρωνικά ίκτυα ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ Αναγνώριση Προτύπων - Νευρωνικά ίκτυα ρ. Χαράλαµπος Π. Στρουθόπουλος Αναπληρωτής Καθηγητής

Διαβάστε περισσότερα

5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων. Προετοιμασία & Ανάλυση Χρονοσειράς

Τεχνικές Προβλέψεων. Προετοιμασία & Ανάλυση Χρονοσειράς ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προετοιμασία & Ανάλυση Χρονοσειράς http://www.fsu.gr

Διαβάστε περισσότερα

HY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6

HY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6 HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο 2015-2016 Φροντιστήριο 6 Α) ΘΕΩΡΙΑ Μέθοδος Επίλυσης (Resolution) Στη μέθοδο της επίλυσης αποδεικνύουμε την ικανοποιησιμότητα ενός συνόλου προτάσεων,

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 10: Ομαδοποίηση Μέρος Δ Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 10: Ομαδοποίηση με Ανταγωνιστική Μάθηση - Δίκτυα Kohonen

Υπολογιστική Νοημοσύνη. Μάθημα 10: Ομαδοποίηση με Ανταγωνιστική Μάθηση - Δίκτυα Kohonen Υπολογιστική Νοημοσύνη Μάθημα 10: Ομαδοποίηση με Ανταγωνιστική Μάθηση - Δίκτυα Kohonen Ανταγωνιστικοί Νευρώνες Ένα στρώμα με ανταγωνιστικούς νευρώνες λειτουργεί ως εξής: Όλοι οι νευρώνες δέχονται το σήμα

Διαβάστε περισσότερα

Standard Template Library (STL) C++ library

Standard Template Library (STL) C++ library Τ Μ Η Μ Α Μ Η Χ Α Ν Ι Κ Ω Ν Η / Υ Κ Α Ι Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Standard Template Library (STL) C++ library Δομές Δεδομένων Μάριος Κενδέα kendea@ceid.upatras.gr Εισαγωγή Η Standard Βιβλιοθήκη προτύπων

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων. 2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς

Τεχνικές Προβλέψεων. 2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

Δέντρα Απόφασης (Decision(

Δέντρα Απόφασης (Decision( Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 9: Ομαδοποίηση Μέρος Γ Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα