Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων"

Transcript

1 ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

2 Περιεχόμενα Διακριτές Πηγές Πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση πηγής Αλγόριθμοι κωδικοποίησης Διακριτές Πηγές Πληροφορίας με μνήμη Πηγές Markoff Εντροπία των πηγών Markoff Ζητήματα κωδικοποίησης των πηγών Markoff Σελίδα-2

3 Πηγές Πληροφορίας ρ Η έξοδος της πηγής είναι κάτι τυχαίο και άγνωστο μια τυχαία διαδικασία Αν είναι κάτι σταθερό, δεν υπάρχει λόγος να το μεταδώσουμε... Παραδείγματα πηγών πληροφορίας: Ήχος, ομιλία, εικόνα, video Bits, χαρακτήρες ASCII Διάκριση ως προς το χρόνο: συνεχούς χρόνου (π.χ. αναλογικό ηχητικό σήμα) διακριτού χρόνου (δειγματοληπτημένο σήμα, bits) Διάκριση ως προς τις δυνατές τιμές (αλφάβητο): συνεχείς τιμές (π.χ. αναλογικό σήμα) διακριτές τιμές (π.χ. ASCII) Σελίδα-3

4 Πηγές Πληροφορίας ρ Μετατροπή πηγής από συνεχή σε διακριτού χρόνου δειγματοληψία το σήμα πρέπει να έχει πεπερασμένο εύρος ζώνης αν είναι κατωπερατό με μέγιστη συχνότητα f max, τότε η συνθήκη Nyquist μας λέει ότι αρκεί να το δειγματοληπτήσω με f s 2 f max τότε μπορώ να ανακατασκευάσω το αναλογικό σήμα από τα δείγματα χωρίς απώλειες Οι πηγές που μας ενδιαφέρουν, έχουν περιορισμένο εύρος ζώνης ή μπορούμε να το περιορίσουμε εμείς με φιλτράρισμα Συμπέρασμα: αρκεί να μελετήσω τις πηγές διακριτού χρόνου Σελίδα-4

5 Διακριτή Πηγή Χωρίς ρςμνήμη Discrete Memoryless Source (DMS): διακριτού χρόνου διακριτού αλφαβήτου τα σύμβολα στην έξοδό της είναι ανεξάρτητα ακολουθούν την ίδια κατανομή πιθανότητας Περιγράφεται πλήρως από: s,, 1 s N το αλφάβητο και τις πιθανότητες εμφάνισης p, 1, p N Ειδικές Περιπτώσεις: Δυαδική Πηγή Χωρίς Μνήμη: 01 0,1 p,1 p Για p=0.5, Δυαδική Συμμετρική Πηγή Χωρίς Μή Μνήμη Σελίδα-5

6 Εντροπία Η εντροπία μιας DMS ορίζεται ρζ ως Φυσική Σημασία: N log 2 H pi s p p i i i i i1 i1 N εκφράζει τη μέση αβεβαιότητα που έχω για την πηγή είναι ο μέσος όρος της πληροφορίας των συμβόλων Όσο μεγαλύτερη εντροπία έχει μια πηγή, τόσο περισσότερη πληροφορία φέρει, και τόσο περισσότερα bits χρειάζονται για την κωδικοποίησή της Σελίδα-6

7 Συνάρτηση ρηηδυαδικής εντροπίας Αν έχω δυαδική DMS Φ={0,1}, με πιθανότητες εμφάνισης {p,1-p}, τότε ορίζεται η συνάρτηση δυαδικής εντροπίας H p plog p 1 p log 1 p b 2 2 Παρατηρήσεις: 1. ελαχιστοποιείται όταν p=0 ή 1, Η(0)=Η(1)=0 Η(1) 0 2. μεγιστοποιείται όταν τα σύμβολα είναι ισοπίθανα, Η(0.5)=1 1 Σελίδα-7

8 Πλεονασμός μιας πηγής πληροφορίας max H( S) H( S) H( S) H( S) ό 1 1 max H ( S ) max H ( S ) log n Ο πλεονασμός μιας πηγής πληροφορίας οφείλεται στους παρακάτω λόγους: Στο γεγονός ότι τα σύμβολα της πηγής είναι μη ισοπίθανα Στη πιθανότητα η πηγή πληροφορίας να παρουσιάζει μνήμη. Σελίδα-8

9 Ρυθμός Παροχής Εντροπίας Αν μια πηγή πληροφορίας εκπέμπει σύμβολα με ρυθμό συμβόλων (σε σύμβολα /sec) και η πηγή παρουσιάζει εντροπία (σε bits / σύμβολο) τότε ο ρυθμός παροχής πληροφορίας από την πηγή (σε bits / sec) βρίσκεται άμεσα από τη σχέση: R r Hbits s / sec Σελίδα-9

10 Κωδικοποίηση Πηγής Στόχος: η αποδοτική αναπαράσταση / κωδικοποίηση / συμπίεση της πληροφορίας/σήματος/εξόδου μιας πηγής Η διαδικασία μετατροπής των ακολουθιών συμβόλων που παράγει η πηγή σε ακολουθίες συμβόλων κάποιου κώδικα (συνήθως δυαδικές ακολουθίες) ) έτσι ώστε να αφαιρείται ο πλεονασμός και να προκύπτει συμπιεσμένη αναπαράσταση των μηνυμάτων ονομάζεται κωδικοποίηση πηγής ή συμπίεση Σελίδα-10

11 Κωδικοποίηση Πηγής Βασικό χαρακτηριστικό κάθε κώδικα είναι ο αριθμός των bits που χρησιμοποιεί για να παραστήσει το κάθε σύμβολο. Αν ένας κώδικας χρησιμοποιεί μαριθμόbits, oαριθμός των δυνατών συνδυασμών των συμβόλων που μπορεί να περιγράψει με αυτά θα είναι ίσος με 2 μ. Αν ένας κώδικας έχει ως στόχο την κωδικοποίηση N διαφορετικών συμβόλων τότε ο αριθμός μ των bits που θα πρέπει να χρησιμοποιήσει δίνεται από τη σχέση: 2 μ-1 Ν 2 μ Σελίδα-11

12 Κωδικοποίηση πηγής Στόχος: Η αποδοτική αναπαράσταση μιας Μιαδικής πηγής Κώδικα σταθερού μήκους: το μήκος των κωδικών λέξεων είναι σταθερό για κάθε σύμβολο πηγής. Παράδειγμα τέτοιου κώδικα είναι ο κώδικας ASCII Κώδικα μεταβλητού μήκους: Τα σύμβολα της πηγής που έχουν μεγαλύτερη πιθανότητα εμφάνισης αντιστοιχίζονται χζ σε μικρότερες ρ κωδικές λέξεις και αντιστρόφως. Έτσι το συνολικό μήκος του κωδικού μηνύματος μπορεί να προκύψει μικρότερο από το αρχικό μήνυμα. Παράδειγμα τέτοιου κώδικα είναι ο κώδικας Morse Σελίδα-12

13 Κωδικοποίηση πηγής Ανάλογα με το πόσο είναι δυνατή και εύκολη η αποκωδικοποίηση ενός κωδικού μηνύματος από το δέκτη οι κώδικες χωρίζονται σε: Ευκρινείς κώδικες (non-singular): χρησιμοποιεί διαφορετική κωδική λέξη για κάθε σύμβολο ή λέξη πληροφορίας. Η ευκρίνεια του κώδικα είναι η πρώτη προϋπόθεση για να υπάρχει δυνατότητα αποκωδικοποίησης. Μονοσήμαντοι κώδικες (uniquely decodable): χαρακτηρίζεται αν κάθε κωδική λέξη αναγνωρίζεται μέσα σε μακρά διαδοχή κωδικών συμβόλων. Δύο οποιαδήποτε μηνύματα πληροφορίας αντιστοιχίζονται με μονοσήμαντο κώδικα σε δύο διαφορετικά κωδικά μηνύματα. Στιγμιαία αποκωδικοποιήσιμοι κώδικες (instantaneous t code): είναι κάθε μονοσήμαντος κώδικας (uniquely decodable), ο οποίος επιτρέπει αποκωδικοποίηση των μηνυμάτων λέξη προς λέξη χωρίς να απαιτείται εξέταση επόμενων κωδικών συμβόλων. Σελίδα-13

14 Ταξινόμηση κωδίκων με βάση την αποκωδικοποίηση Σελίδα-14

15 Κωδικοποίηση πηγής Μέσο μήκος κώδικα: εκφράζει το μέσο πλήθος δυαδικών ψηφίων ανά σύμβολο πηγής τα οποία χρησιμοποιούνται στη διαδικασία της κωδικοποίησης. N L p si l s i11 Αποδοτικότητα κώδικα: Αν L min η ελάχιστη δυνατή τιμή του τότε μπορούμε να ορίσουμε την αποδοτικότητα του κώδικα ως: i n L min L Σελίδα-15

16 Θεώρημα Κωδικοποίησης Πηγής ή «Το Πρώτο Θεώρημα του Shannon» (1948) Χρησιμότητα: πόσο μπορούμε να συμπιέσουμε μια πηγή χωρίς να εισάγουμε σφάλματα; Θεώρημα: Έστω πηγή με εντροπία H που κωδικοποιείται ώστε να παρέχει ρχ ρυθμό R(bits/ (bits/έξοδο πηγής). Αν R>H, η πηγή μπορεί να κωδικοποιηθεί με οσοδήποτε μικρή πιθανότητα σφάλματος Αν R<H, όσο πολύπλοκος κι αν είναι ο κωδικοποιητής πηγής, η πιθανότητα σφάλματος θα είναι μακριά από το 0 Σχόλια: Όπου R μπορείτε να θεωρήσετε το μέσο μήκος κώδικα (\bar{l}) ο Shannon δίνει την ικανή και αναγκαία συνθήκη όμως δεν προτείνει κάποιον αλγόριθμο/μεθοδολογία λό / θ λ για να φτιάξουμε έναν κωδικοποιητή όταν R>H R<H : Data compression, Rate-Distortion Theory Σελίδα-16

17 Προθεματικοί κώδικες Αλγόριθμοι κωδικοποίησης (συμπίεσης) πηγής Επιτυγχάνουν ρυθμούς κωδικοποίησης κοντά στην εντροπία (στο όριο συμπίεσης χωρίς απώλειες) Κωδικοποίηση από σταθερό σε μεταβλητό μήκος: είσοδος: μπλοκ συμβόλων σταθερού μήκους (μήκος μπλοκ 1) έξοδος: μπλοκ bits μεταβλητού μήκους (κωδική λέξη) Πρόβλημα: Συγχρονισμός πώς μπορώ να βρω τα όρια των μπλοκ στην έξοδο για να γίνει η αποκωδικοποίηση Λύση: Προθεματικός Καμία κωδική λέξη δεν αποτελεί πρόθεμα κάποιας άλλης μοναδικά αποκωδικοποιήσιμος (κάθε έξοδος αντιστοιχεί σε μοναδική είσοδο) άμεσος (επιτρέπει απευθείας αποκωδικοποίηση) Σελίδα-17

18 Παραδείγματα Κωδίκων Source Symbol Probability Code 1 Code 2 Code 3 s s s s Uniquely decodable NO YES YES Prefix NO YES NO Σελίδα-18

19 Μέσο μήκος κώδικα Έστω DMS με πιθανότητες εμφάνισης p(s i ) και ένας κωδικοποιητής πηγής που αναθέτει l(s i ) bits στο σύμβολο s i Εάν είναι προθεματικός κώδικας έχει τις εξής ιδιότητες: Kraft-McMillan inequality (αναγκαία και ικανή) N i1 l( si ) 2 1 Φράγματα στο μέσο μήκος. Μπορεί να κατασκευαστεί προθεματικός για τον οποίο: H X L H X 1 Σελίδα-19

20 Αποδοτικότητα Κώδικα Η αποδοτικότητα ενός κώδικα ορίζεται ως H X 1 L και δείχνει πόσο κοντά βρίσκεται ο κωδικοποιητής στο όριο συμπίεσης της πηγής (εντροπία) Ένας κώδικας είναι αποδοτικός, όσο το η πλησιάζει στο 1 Σελίδα-20

21 Ν-οστής Τάξης Επέκτασης Πηγής Ο προθεματικός κώδικας (π.χ. ο αλγόριθμος Huffman) θεωρεί ένα μπλοκ από σύμβολα ως επεκτεταμένη είσοδο και τα κωδικοποιεί ως ένα σύνθετο σύμβολο, δηλαδή έστω s i και s j θέτει σ κ =(s i,s j ) με πιθανότητα εμφάνισης p(σ κ )=p(s i )p(s j ) για πηγή χωρίς μνήμη Γενικεύεται σε n-οστή επέκταση της πηγής και ισχύει n n n 1 H X L H X Για επεκταμένη πηγή χωρίς μνήμη αποδεικνύεται ότι: n nh X H X Σελίδα-21

22 Ν-οστής Τάξης Επέκτασης Πηγής Προκύπτει H X L H X n 1 n Συμπέρασμα: Η n-οστής τάξης επέκταση μιας πηγής αποφέρει κώδικες που είναι ολοένα και πιο κοντά στο όριο συμπίεσης (εντροπία) ρ της πηγής 1 n lim L H X n Σελίδα-22

23 Αλγόριθμος Shannon 1. Τα σύμβολα της πηγής πληροφορίας συντάσσονται στη σειρά με κριτήριο την πιθανότητα τους (από την μέγιστη στην ελάχιστη πιθανότητα). 2. Σε κάθε σύμβολο πληροφορίας αντιστοιχίζεται ένας αριθμός με την λογική που περιγράφεται στο παρακάτω σχήμα: Σελίδα-23

24 Αλγόριθμος Shannon 3. Το μήκος της κωδικής λέξης που αντιστοιχεί στο σύμβολο πληροφορίας είναι ο ελάχιστος ακέραιος που ικανοποιεί την ταυτοανισότητα l i 1 l log 2 i p( xi) 1 px ( i ) 4. Οι δεκαδικοί αριθμοί, όπου μετατρέπονται σε δυαδικούς αριθμούς και από τους τελευταίους διατηρούνται μόνο σημαντικά ψηφία τα οποία θα αποτελέσουν τις αντίστοιχες κωδικές λέξεις για τα σύμβολα πληροφορίας Σελίδα-24

25 Παράδειγμα κωδικοποίησης ης Shannon Έστω πηγή πληροφορίας X { x1, x2,..., x M } με κατανομή πιθανότητας px ( ) {0.5,0.3,0.1,0.1} Βήμα 1 είναι έτοιμο (σωστά διατεταγμένα σύμβολα) Βήμα Σελίδα-25

26 Παράδειγμα κωδικοποίησης ης Shannon Βήμα 3 l1 2 (0.5) 1 l 1 l2 2 (0.3) 1l 2 l3 2 (0.1) 1 l l 4 2 (0.1) 1 l l 4 4 Οι λέξεις κώδικα για τα X { x, x, x, x } θα είναι (0,10,1100,1110) Σελίδα-26

27 Κωδικοποίηση η Shannon - Fano 1. Τα σύμβολα της πηγής πληροφορίας συντάσσονται στη σειρά με κριτήριο την πιθανότητα τους (από την μέγιστη στην ελάχιστη πιθανότητα). Για παράδειγμα: 2. Επιλέγεται συγκεκριμένη διάταξη για τα κωδικά σύμβολα ηοποία δεν αλλάζει σε καμία φάση της κωδικοποίησης αλλά και κατά την αποκωδικοποίηση η Σελίδα-27

28 Κωδικοποίηση η Shannon - Fano 3. Σχηματίζονται D ομάδες συμβόλων πηγής πληροφορίας με συγχώνευση γειτονικών συμβόλων. Οιπιθανότητες των συμβόλων που συμμετέχουν σε κάθε ομάδα αθροίζονται και το αποτέλεσμα επιδιώκεται να είναι όσο το δυνατόν πλησιέστερα στον αριθμό 1/D δηλαδή όλες οι ομάδες συμβόλων είναι κατά το δυνατόν ισοπίθανες. 4. Στα σύμβολα της πρώτης ομάδας αντιστοιχούμε σαν πρώτο κωδικό σύμβολο το γ1, της δεύτερης το γ2 κ.ο.κ. κ 5. Κάθε ομάδα συμβόλων την διαιρούμε σε D υποομάδες πάλι με το ίδιο κριτήριο (κατά το δυνατόν ισοπίθανες). Στα σύμβολα της κάθε υποομάδας αντιστοιχίζεται ως δεύτερο κωδικό σύμβολο ένα κωδικό σύμβολο με την προκαθορισμένη διάταξη. 6. Η συγκεκριμένη αναδρομική διαδικασία συνεχίζεται μέχρι να προκύψουν υποομάδες με ένα μόνο σύμβολο. Σελίδα-28

29 Παράδειγμα Κωδικοποίηση Shannon - Fano Έστω πηγή πληροφορίας X { x με κατανομή 1, x2, x3, x4, x5, x6, x7, x8} πιθανότητας Βήμα 1 px ( ) {0.25,0.25,0.125,0.125,0.0625,0.0625,0.0625,0.0625} Με βάση την κατανομή πιθανότητας βλέπουμε ότι τα σύμβολα πληροφορίας είναι διατεταγμένα σωστά (το βήμα (1) έχει πραγματοποιηθεί. Βήμα 2 Στο βήμα (2) επιλέγεται για τα σύμβολα του δυαδικού κώδικα Shannon-Fano ηδιάταξη(0,1). Ο παρακάτω πίνακας περιγράφει την σταδιακή κατασκευή του κώδικα: Σελίδα-29

30 Παράδειγμα κωδικοποίησης ης Shannon - Fano Σύμβολο Πιθανότητα 1ο βήμα 2ο Βήμα 3ο Βήμα 4ο Βήμα x x x x x x x x Σελίδα-30

31 Κωδικοποίηση πηγής Huffman Δημιουργία Δυαδικού Δέντρου: 1. Διάταξε τις εισόδους κατά φθίνουσα σειρά πιθανοτήτων 2. Συγχώνευσε τα δύο σύμβολα με τις μικρότερες πιθανότητες και δημιούργησε νέο «σύμβολο» 3. Αάθ Ανάθεσε στα δύοσύμβολα «0» και «1» 4. Ταξινόμησε εκ νέου τη λίστα των συμβόλων 5. Επανέλαβε ταπαραπάνω μέχρι όλατασύμβολα συγχωνευτούν σε ένα τελικό σύμβολο Δημιουργήθηκε η ένα δυαδικό δέντρο: ρίζα: το τελικό σύνθετο σύμβολο φύλλα: τα αρχικά σύμβολα ενδιάμεσοι κόμβοι: σύνθετα σύμβολα Σελίδα-31

32 Κωδικοποίηση η Πηγής Huffman Ανάθεση Bits σε Σύμβολα Εισόδου 1. Ξεκίνα από τη ρίζα και κινήσου προς ένα φύλλο 2. Η ακολουθία των bits που συναντώνται είναι η ακολουθία κωδικοποίησης 3. Επανέλαβε για όλα τα σύμβολα (φύλλα) Σελίδα-32

33 Παράδειγμα Κωδικοποίηση η Πηγής Huffman Προθεματική αντιστοίχηση: s 0 : 1 s 1 : 00 s 2 : 01 Μονοσήμαντη και άμεση αποκωδικοποίηση s s s s s s Σελίδα-33

34 ΚΩΔΙΚΑΣ HUFFMAN S α 1 1 P i 0,4 0,4 0,4 0,4 0 0,6 α ,3 0,3 0,3 00 0,3 1 0,4 α ,1 01 0, , ,3 α , , ,1 α , ,1 α ,04 Σ. 1.0

35 Χαρακτηριστικά Huffman Μειονέκτημα: απαιτεί να γνωρίζει εκ των προτέρων τις πιθανότητες εμφάνισης των συμβόλων της πηγής δε μπορεί να χρησιμοποιηθεί θίσε εφαρμογές πραγματικού χρόνου Βέλτιστος: ανάμεσα σε όλους τους προθεματικούς κώδικες (άρα μονοσήμαντα αποκωδικοποιήσιμους και άμεσους) πετυχαίνει το ελάχιστο μέσο μήκος κώδικα Συμβάσεις: Ο τρόπος ανάθεσης 0 και 1 Η τοποθέτηση στην ταξινομημένη λίστα σε περίπτωση «ισοβαθμίας» σύνθετου συμβόλου με άλλο σύμβολο (σχετίζεται με τη διασπορά του κώδικα) Σελίδα-35

36 Εντροπία Πηγής με μήμη μνήμη Πηγή πληροφορίας ρ με μνήμη μήμη 1 ης τάξης (πηγή στην οποία η εκπομπή ενός συμβόλου εξαρτάται από το προηγούμενο σύμβολο που εκπέμφθηκε): m m m H( S) ph( K ) p P logp i i i ij ij i1 i1 j1 Ο ρυθμός εκπομπής πληροφορίας στο κανάλι για μία πηγή με μνήμη: R rh ( S ) s Σελίδα-36

37 Εντροπία Πηγής με μήμη μνήμη Οι μεταπτώσεις της μπορούν να περιγραφούν με τη μήτρα πιθανοτήτων μετάπτωσης δηλαδή τη μήτρα των P ij : Μία πηγή με μνήμη q συμβόλων μπορεί να περιγραφτεί με μήτρα P τα στοιχεία της οποίας είναι τιμές πιθανοτήτων μετάπτωσης: Σελίδα-37

38 Εντροπία πηγής με μήμη μνήμη π.χ. Ηπιθανότητα¾ της πρώτης γραμμής και πρώτης στήλης είναι η πιθανότητα να σταλεί το σύμβολο Α δεδομένου ότι έχει ήδη σταλεί το σύμβολο Α, ηπιθανότητα 1/3 της τρίτης γραμμής και δεύτερης στήλης ερμηνεύεται ως η πιθανότητα να σταλεί λί το σύμβολο Γ δεδομένου δ ότι έχει σταλεί το σύμβολο Β Σελίδα-38

39 Εντροπία πηγής με μήμη μνήμη Η προηγούμενη μήτρα μεταπτώσεων ισοδυναμεί με το επόμενο διάγραμμα καταστάσεων της πηγής: P A +P B +P Γ = 1 Έχουμε ένα σύστημα 4 εξισώσεων με 3 αγνώστους (P A, P Β, και P Γ ) το οποίο μπορεί να λυθεί Σελίδα-39

Ψηφιακές Τηλεπικοινωνίες

Ψηφιακές Τηλεπικοινωνίες Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Κωδικοποίηση Πηγής Ψηφιακή Μετάδοση Υπάρχουν ιδιαίτερα εξελιγμένες τεχνικές αναλογικής μετάδοσης (που ακόμη χρησιμοποιούνται σε ορισμένες εφαρμογές) Επίσης,

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα ΙΙ

Τηλεπικοινωνιακά Συστήματα ΙΙ Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 11: Κωδικοποίηση Πηγής Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Αλγόριθμοι κωδικοποίησης πηγής Αλγόριθμος Fano Αλγόριθμος Shannon Αλγόριθμος Huffman

Διαβάστε περισσότερα

Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Θεωρία Πληροφορίας Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διακριτή πηγή πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση

Διαβάστε περισσότερα

Σημείωμα Αδειοδότησης

Σημείωμα Αδειοδότησης Μελέτη Περιπτώσεων στη Λήψη Αποφάσεων Σημείωμα Αδειοδότησης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2014-2015 Ρυθμός κωδικοποίησης Ένας κώδικας που απαιτεί L bits για την κωδικοποίηση μίας συμβολοσειράς N συμβόλων που εκπέμπει μία πηγή έχει ρυθμό κωδικοποίησης (μέσο μήκος λέξης) L

Διαβάστε περισσότερα

Συμπίεση Πολυμεσικών Δεδομένων

Συμπίεση Πολυμεσικών Δεδομένων Συμπίεση Πολυμεσικών Δεδομένων Εισαγωγή στο πρόβλημα και επιλεγμένες εφαρμογές Κώστας Μπερμπερίδης Εργαστήριο Σημάτων & Τηλεπικοινωνιών Τμήμα Μηχανικών Η/Υ & Πληροφορικής Ψηφιακή Αναπαράσταση Συμπίεση

Διαβάστε περισσότερα

Κωδικοποίηση Πηγής. Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα):

Κωδικοποίηση Πηγής. Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα): Κωδικοποίηση Πηγής Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα): Coder Decoder Μεταξύ πομπού-καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης

Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης Ψηφιακές Τηλεπικοινωνίες Θεωρία Ρυθμού Παραμόρφωσης Θεωρία Ρυθμού-Παραμόρφωσης Θεώρημα Κωδικοποίησης Πηγής: αν έχω αρκετά μεγάλο μπλοκ δεδομένων, μπορώ να φτάσω κοντά στην εντροπία Πιθανά Προβλήματα: >

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 9 : Κανάλι-Σύστημα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Χωρητικότητα Χ ό καναλιού Το Gaussian κανάλι επικοινωνίας Τα διακριτά

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 (2012-13) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #4. Έκδοση v2 με διόρθωση τυπογραφικού λάθους στο ερώτημα 6.3 Στόχος: Βασικό στόχο της 4 ης εργασίας αποτελεί η εξοικείωση με τα μέτρα ποσότητας πληροφορίας τυχαίων

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες

Ψηφιακές Τηλεπικοινωνίες Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Χωρητικότητα Καναλιού Χωρητικότητα Καναλιού Η θεωρία πληροφορίας περιλαμβάνει μεταξύ άλλων: κωδικοποίηση πηγής κωδικοποίηση καναλιού Κωδικοποίηση πηγής: πόση

Διαβάστε περισσότερα

Θεωρία Πληροφορίας. Διάλεξη 5: Διακριτή πηγή πληροφορίας με μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Θεωρία Πληροφορίας. Διάλεξη 5: Διακριτή πηγή πληροφορίας με μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Θεωρία Πληροφορίας Διάλεξη 5: Διακριτή πηγή πληροφορίας με μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Διακριτές πηγές πληροφορίας με μνήμη Μαρκοβιανές αλυσίδες Τάξη μακροβιανών αλυσίδων

Διαβάστε περισσότερα

( ) log 2 = E. Σεραφείµ Καραµπογιάς

( ) log 2 = E. Σεραφείµ Καραµπογιάς Παρατηρούµε ότι ο ορισµός της Η βασίζεται στη χρονική µέση τιµή. Για να ισχύει ο ορισµός αυτός και για µέση τιµή συνόλου πρέπει η πηγή να είναι εργοδική, δηλαδή H ( X) ( ) = E log 2 p k Η εντροπία µιας

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πληροφορία Μέτρο πληροφορίας Μέση πληροφορία ή Εντροπία Από κοινού εντροπία

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία πληροφορίας

Εισαγωγή στη θεωρία πληροφορίας Θεωρία πληροφορίας Εισαγωγή στη θεωρία πληροφορίας Τηλεπικοινωνιακά συστήματα Όλα τα τηλεπικοινωνιακά συστήματα σχεδιάζονται για να μεταφέρουν πληροφορία Σε κάθε τηλεπικοινωνιακό σύστημα υπάρχει μια πηγή

Διαβάστε περισσότερα

Μάθημα Επισκόπηση των Τηλεπικοινωνιών

Μάθημα Επισκόπηση των Τηλεπικοινωνιών Μάθημα Επισκόπηση των Τηλεπικοινωνιών Κωδικοποίηση Πηγής & Καναλιού Μάθημα 8 ο 9 ο ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τομέας Επικοινωνιών και Επεξεργασίας Σήματος Τμήμα Πληροφορικής & Τηλεπικοινωνιών

Διαβάστε περισσότερα

Θέματα Συστημάτων Πολυμέσων

Θέματα Συστημάτων Πολυμέσων Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης Κωδικοποίηση Πηγής Coder Decoder Μεταξύ πομπού και καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας της πηγής με εναλλακτικά σύμβολα ή λέξεις. Κωδικοποίηση

Διαβάστε περισσότερα

Θεώρημα κωδικοποίησης πηγής

Θεώρημα κωδικοποίησης πηγής Κωδικοποίηση Kωδικοποίηση πηγής Θεώρημα κωδικοποίησης πηγής Καθορίζει ένα θεμελιώδες όριο στον ρυθμό με τον οποίο η έξοδος μιας πηγής πληροφορίας μπορεί να συμπιεσθεί χωρίς να προκληθεί μεγάλη πιθανότητα

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 014-015 Μοναδικά Αποκωδικοποιήσιμοι Κώδικες Δρ. Ν. Π. Σγούρος Έλεγος μοναδικής Αποκωδικοποίησης Γενικοί ορισμοί Έστω δύο κωδικές λέξεις α,β με μήκη,m και

Διαβάστε περισσότερα

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Ενότητα 3: Επισκόπηση Συµπίεσης 2 Θεωρία Πληροφορίας Κωδικοποίηση Θεµελιώθηκε απο τον Claude

Διαβάστε περισσότερα

Συμπίεση χωρίς Απώλειες

Συμπίεση χωρίς Απώλειες Συμπίεση χωρίς Απώλειες Στόχοι της συμπίεσης δεδομένων: Μείωση του απαιτούμενου χώρου αποθήκευσης των δεδομένων. Περιορισμός της απαιτούμενης χωρητικότητας διαύλου επικοινωνίας για την μετάδοση. μείωση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ

ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ 5. Εισαγωγή Ο σκοπός κάθε συστήματος τηλεπικοινωνιών είναι η μεταφορά πληροφορίας από ένα σημείο (πηγή) σ ένα άλλο (δέκτης). Συνεπώς, κάθε μελέτη ενός τέτοιου συστήματος

Διαβάστε περισσότερα

Θέματα Συστημάτων Πολυμέσων

Θέματα Συστημάτων Πολυμέσων Θέματα Συστημάτων Πολυμέσων Ενότητα # 5: Βασική Θεωρία Πληροφορίας Διδάσκων: Γεώργιος Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΕΑΠ/ΠΛΗ22/ΑΘΗ-3. 3 η ΟΣΣ

ΕΑΠ/ΠΛΗ22/ΑΘΗ-3. 3 η ΟΣΣ ΕΑΠ/ΠΛΗ22/ΑΘΗ-3 3 η ΟΣΣ 04.02.207 Ν.Δημητρίου Σημείωση: Η παρουσίαση αυτή είναι συμπληρωματική της ύλης των βιβλίων (τόμος Β / μέρη Α,Β και τόμος Α ) καθώς και των 2 παρουσιάσεων στο study.eap.gr (oss3_plh22_digicomms_207,

Διαβάστε περισσότερα

ΕΑΠ/ΠΛΗ22/ΑΘΗ-4. 3 η ΟΣΣ

ΕΑΠ/ΠΛΗ22/ΑΘΗ-4. 3 η ΟΣΣ ΕΑΠ/ΠΛΗ22/ΑΘΗ-4 3 η ΟΣΣ 06.02.2016 Ν.Δημητρίου Σημείωση: Η παρουσίαση αυτή είναι συμπληρωματική της ύλης των βιβλίων (τόμος Β / μέρη Α,Β και τόμος Α ) καθώς και των 2 παρουσιάσεων στο study.eap.gr (PLH22_3rdOSS_2015_16,

Διαβάστε περισσότερα

ΕΑΠ/ΠΛΗ22/ΑΘΗ-4. 3 η ΟΣΣ

ΕΑΠ/ΠΛΗ22/ΑΘΗ-4. 3 η ΟΣΣ ΕΑΠ/ΠΛΗ22/ΑΘΗ-4 3 η ΟΣΣ 08.02.205 Ν.Δημητρίου Σημείωση: Η παρουσίαση αυτή είναι συμπληρωματική της ύλης των βιβλίων (τόμος Β / μέρη Α,Β και τόμος Α ) καθώς και των 2 παρουσιάσεων στο study.eap.gr (oss3_plh22_digicomms_205,

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες

Ψηφιακές Τηλεπικοινωνίες Ψηφιακές Τηλεπικοινωνίες Κωδικοποίηση Αναλογικής Πηγής: Κβάντιση Εισαγωγή Αναλογική πηγή: μετά από δειγματοληψία γίνεται διακριτού χρόνου άπειρος αριθμός bits/έξοδο για τέλεια αναπαράσταση Θεωρία Ρυθμού-Παραμόρφωσης

Διαβάστε περισσότερα

Σεραφείµ Καραµπογιάς. Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.3-1

Σεραφείµ Καραµπογιάς. Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.3-1 Ο αλγόριθµος Lempel-iv Ο αλγόριθµος Lempel-iv ανήκει στην κατηγορία των καθολικών universal αλγορίθµων κωδικοποίησης πηγής δηλαδή αλγορίθµων που είναι ανεξάρτητοι από τη στατιστική της πηγής. Ο αλγόριθµος

Διαβάστε περισσότερα

Θεωρία τησ Πληροφορίασ (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ

Θεωρία τησ Πληροφορίασ (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ Θεωρία τησ Πληροφορίασ (Θ) Ενότητα 3: Κωδικοποίηςη Πηγήσ ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΣΕ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε

Διαβάστε περισσότερα

Κεφάλαιο 2 Πληροφορία και εντροπία

Κεφάλαιο 2 Πληροφορία και εντροπία Κεφάλαιο 2 Πληροφορία και εντροπία Άσκηση. Έστω αλφάβητο Α={0,} και δύο πηγές p και q. Έστω οτι p(0)=-r, p()=r, q(0)=-s και q()=s. Να υπολογιστούν οι σχετικές εντροπίες Η(Α,p/q) και Η(Α,q/p). Να γίνει

Διαβάστε περισσότερα

Αριθμητική Κωδικοποίηση

Αριθμητική Κωδικοποίηση Αριθμητική Κωδικοποίηση Ο κώδικας Huffmann είναι βέλτιστος γιατί παράγει συμπαγή κώδικα για δεδομένες πιθανότητες Συμπαγής κώδικας: Δεν υπάρχει άλλος με μικρότερο μέσο μήκος κωδικής λέξης Δεν είναι 100%

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 9: Κωδικοποίηση εντροπίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 9: Κωδικοποίηση εντροπίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 9: Κωδικοποίηση εντροπίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Αναλογικά Ψηφιακά Σήματα Αναλογικό Σήμα x t, t [t min, t max ], x [x min, x max ] Δειγματοληψία t n, x t x n, n = 1,, N Κβάντιση x n x(n) 3 Αλφάβητο

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Δρ. Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Αναλογικά και ψηφιακά συστήματα Μετατροπή

Διαβάστε περισσότερα

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. 1 Εισαγωγή Αναλογικό σήμα (analog signal): συνεχής συνάρτηση στην οποία η ανεξάρτητη μεταβλητή και η εξαρτημένη μεταβλητή (π.χ.

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 10 : Κωδικοποίηση καναλιού Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Απόσταση και βάρος Hamming Τεχνικές και κώδικες ανίχνευσης &

Διαβάστε περισσότερα

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Ασύρματες και Κινητές Επικοινωνίες Κωδικοποίηση καναλιού Τι θα δούμε στο μάθημα Σύντομη εισαγωγή Γραμμικοί κώδικες

Διαβάστε περισσότερα

ιαφορική εντροπία Σεραφείµ Καραµπογιάς

ιαφορική εντροπία Σεραφείµ Καραµπογιάς ιαφορική εντροπία Σεραφείµ Καραµπογιάς Για πηγές διακριτού χρόνου µε συνεχές αλφάβητο, των οποίων οι έξοδοι είναι πραγµατικοί αριθµοί, ορίζεται µια άλλη ποσότητα που µοιάζει µε την εντροπία και καλείται

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.

Διαβάστε περισσότερα

Θεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1

Θεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1 Θεωρία πληροφοριών Εισαγωγή Αµοιβαία πληροφορία Εσωτερική πληροφορία Υπό συνθήκη πληροφορία Παραδείγµατα πληροφορίας Μέση πληροφορία και εντροπία Παραδείγµατα εντροπίας Εφαρµογές Τεχνολογία Πολυµέσων 07-

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣΟΡ Κεφάλαιο 1 : Εισαγωγή στη Θεωρία ωία Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Έννοια της πληροφορίας Άλλες βασικές έννοιες Στόχος

Διαβάστε περισσότερα

Ψηφιακή Μετάδοση Αναλογικών Σηµάτων

Ψηφιακή Μετάδοση Αναλογικών Σηµάτων Ψηφιακή Μετάδοση Αναλογικών Σηµάτων Τα σύγχρονα συστήµατα επικοινωνίας σε πολύ µεγάλο ποσοστό διαχειρίζονται σήµατα ψηφιακής µορφής, δηλαδή, σήµατα που δηµιουργούνται από ακολουθίες δυαδικών ψηφίων. Τα

Διαβάστε περισσότερα

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε.

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε. Ψηφιακά Δένδρα Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών τα οποία είναι ακολουθίες συμβάλλων από ένα πεπερασμένο αλφάβητο Ένα στοιχείο γράφεται ως, όπου κάθε. Μπορούμε να

Διαβάστε περισσότερα

Συμπίεση Δεδομένων Δοκιμής (Test Data Compression) Νικολός Δημήτριος, Τμήμα Μηχ. Ηλεκτρονικών Υπολογιστών & Πληροφορικής, Παν Πατρών

Συμπίεση Δεδομένων Δοκιμής (Test Data Compression) Νικολός Δημήτριος, Τμήμα Μηχ. Ηλεκτρονικών Υπολογιστών & Πληροφορικής, Παν Πατρών Συμπίεση Δεδομένων Δοκιμής (Test Data Compression), Παν Πατρών Test resource partitioning techniques ΑΤΕ Automatic Test Equipment (ATE) based BIST based Έλεγχος παραγωγής γής βασισμένος σε ΑΤΕ Μεγάλος

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Σωροί 1 Ορισμοί Ένα δέντρο μεγίστων (δένδρο ελαχίστων) είναι ένα δένδρο, όπου η τιμή κάθε κόμβου είναι μεγαλύτερη (μικρότερη) ή ίση με των τιμών των παιδιών του Ένας σωρός μεγίστων (σωρός ελαχίστων) είναι

Διαβάστε περισσότερα

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 13 Δ. Τουμπακάρης 30 Μαΐου 2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια Παράδοση:

Διαβάστε περισσότερα

a n + 6a n a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8

a n + 6a n a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8 Διακριτά Μαθηματικά Σχέσεις Αναδρομής Ι 1 / 17 a n + 6a n 1 + 12a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8 2 / 17 a n + 6a n 1 + 12a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8 1ος τρόπος: Εχουμε τη

Διαβάστε περισσότερα

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση

Διαβάστε περισσότερα

ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΕΦΑΛΑΙΟ 2ο ΑΝΑΛΟΓΙΚΑ - ΨΗΦΙΑΚΑ ΣΗΜΑΤΑ & ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Πληροφορία Επικοινωνία συντελείται με τη μεταβίβαση μηνυμάτων από ένα πομπό σε ένα δέκτη. Μήνυμα

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 6 : Κωδικοποίηση & Συμπίεση εικόνας Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από:

Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από: Δίαυλος Πληροφορίας Η λειτουργία του περιγράφεται από: Πίνακας Διαύλου (μαθηματική περιγραφή) Διάγραμμα Διαύλου (παραστατικός τρόπος περιγραφής της λειτουργίας) Πίνακας Διαύλου Χρησιμοποιούμε τις υπό συνθήκη

Διαβάστε περισσότερα

Θεωρία τησ Πληροφορίασ (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ

Θεωρία τησ Πληροφορίασ (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ Θεωρία τησ Πληροφορίασ (Θ) Ενότητα 4: Συμπίεςη χωρίσ Απώλειεσ ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΣΕ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες

Εισαγωγή στις Τηλεπικοινωνίες ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα 4: Κβάντιση και Κωδικοποίηση Σημάτων Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών

Διαβάστε περισσότερα

Τεράστιες ανάγκες σε αποθηκευτικό χώρο

Τεράστιες ανάγκες σε αποθηκευτικό χώρο ΣΥΜΠΙΕΣΗ Τεράστιες ανάγκες σε αποθηκευτικό χώρο Παράδειγμα: CD-ROM έχει χωρητικότητα 650MB, χωρά 75 λεπτά ασυμπίεστου στερεοφωνικού ήχου, αλλά 30 sec ασυμπίεστου βίντεο. Μαγνητικοί δίσκοι χωρητικότητας

Διαβάστε περισσότερα

Αρχές Τηλεπικοινωνιών

Αρχές Τηλεπικοινωνιών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #12: Δειγματοληψία, κβαντοποίηση και κωδικοποίηση Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε.

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτοαλγόριθμοι Χρήστος Ξενάκης Θεωρία Πληροφορίας Η Θεωρία πληροφορίας (Shannon 1948 1949) σχετίζεται με τις επικοινωνίες και την ασφάλεια

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Απαντήσεις σε απορίες

Απαντήσεις σε απορίες Ερώτηση Η µέση ποσότητα πληροφορίας κατά Shannon είναι Η(Χ)=-Σp(xi)logp(xi)...σελ 28 Στο παραδειγµα.3 στη σελιδα 29 στο τέλος δεν καταλαβαίνω πως γίνεται η εφαρµογή του παραπάνω τύπου ηλαδη δεν βλεπω συντελεστη

Διαβάστε περισσότερα

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010 11 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di288 1 Συμπίεση

Διαβάστε περισσότερα

Κατηγορίες Συμπίεσης. Συμπίεση με απώλειες δεδομένων (lossy compression) π.χ. συμπίεση εικόνας και ήχου

Κατηγορίες Συμπίεσης. Συμπίεση με απώλειες δεδομένων (lossy compression) π.χ. συμπίεση εικόνας και ήχου Συμπίεση Η συμπίεση δεδομένων ελαττώνει το μέγεθος ενός αρχείου : Εξοικονόμηση αποθηκευτικού χώρου Εξοικονόμηση χρόνου μετάδοσης Τα περισσότερα αρχεία έχουν πλεονασμό στα δεδομένα τους Είναι σημαντική

Διαβάστε περισσότερα

Αριθμητική Κωδικοποίηση

Αριθμητική Κωδικοποίηση Αριθμητική Κωδικοποίηση Σύμβολο Πιθανότητα a 0,2 b 0,5 c 0,3 Αντιστοίχιση κάθε συμβόλου σε τμήμα του διαστήματος [0, 1] ανάλογα με την πιθανότητα εμφάνισής του. Αναπαράσταση του συμβόλου με έναν αριθμό

Διαβάστε περισσότερα

Συστήµατα Πολυµέσων Ενδιάµεση Εξέταση: Οκτώβριος 2004

Συστήµατα Πολυµέσων Ενδιάµεση Εξέταση: Οκτώβριος 2004 Ενδιάµεση Εξέταση: Οκτώβριος 4 ΜΕΡΟΣ Β: ΑΣΚΗΣΕΙΣ Άσκηση (25 µονάδες): Μια εικόνα αποχρώσεων του γκρι και διαστάσεων 25 x pixel έχει κωδικοποιηθεί κατά PCM µε βάθος χρώµατος 3 bits /pixel. Οι τιµές φωτεινότητας

Διαβάστε περισσότερα

Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών»

Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών» Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών» Άσκηση 1 Πρόκειται να µεταδώσουµε δυαδικά δεδοµένα σε RF κανάλι µε. Αν ο θόρυβος του καναλιού είναι Gaussian - λευκός µε φασµατική πυκνότητα W, να βρεθεί

Διαβάστε περισσότερα

Θεωρία της Πληροφορίας 3 ο Εξάμηνο

Θεωρία της Πληροφορίας 3 ο Εξάμηνο Σμήμα Πληροφορικής & Επικοινωνιών Θεωρία της Πληροφορίας 3 ο Εξάμηνο Τομέας Τηλεπικοινωνιών και Δικτύων Δρ. Αναστάσιος Πολίτης Καθηγητής Εφαρμογών 1 Διεξαγωγή και Εξέταση του Μαθήματος Μάθημα Πώς? 13 Διαλέξεις.

Διαβάστε περισσότερα

Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1

Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1 Μάθημα 7 ο Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας πληροφορίας Ανάγκες που καλύπτονται Εξοικονόμηση μνήμης Ελάττωση χρόνου και εύρους

Διαβάστε περισσότερα

ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013)

ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013) ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 5 Μαρτίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 2 Βασικά μέρη συστήματος ΨΕΣ Φίλτρο αντι-αναδίπλωσης

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στη συμπίεση εικόνας Μη απωλεστικες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 422: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 2004 2005, Χειµερινό Εξάµηνο Φροντιστηριακή Άσκηση 3: Εντροπία, κωδικοποίηση Quadtree 1. Εντροπία 22 Σεπτεµβρίου 2004

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9 Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Ψηφιακή μετάδοση στη βασική ζώνη + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ +

Διαβάστε περισσότερα

Μοντέλο Επικοινωνίας Δεδομένων. Επικοινωνίες Δεδομένων Μάθημα 6 ο

Μοντέλο Επικοινωνίας Δεδομένων. Επικοινωνίες Δεδομένων Μάθημα 6 ο Μοντέλο Επικοινωνίας Δεδομένων Επικοινωνίες Δεδομένων Μάθημα 6 ο Εισαγωγή Με τη βοήθεια επικοινωνιακού σήματος, κάθε μορφή πληροφορίας (κείμενο, μορφή, εικόνα) είναι δυνατόν να μεταδοθεί σε απόσταση. Ανάλογα

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 7 ο : Διαμόρφωση Θέσης Παλμών

Διαβάστε περισσότερα

5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων

5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 5. Απλή Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 11/11/2016 Εισαγωγή Η

Διαβάστε περισσότερα

Συμπίεση Πολυμεσικών Δεδομένων

Συμπίεση Πολυμεσικών Δεδομένων Συμπίεση Πολυμεσικών Δεδομένων Εισαγωγή στο πρόβλημα και επιλεγμένες εφαρμογές Παράδειγμα 2: Συμπίεση Εικόνας ΔΠΜΣ ΜΥΑ, Ιούνιος 2011 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης Ψηφιακές Τηλεπικοινωνίες Βέλτιστος Δέκτης Σύνδεση με τα Προηγούμενα Επειδή το πραγματικό κανάλι είναι αναλογικό, κατά τη διαβίβαση ψηφιακής πληροφορίας, αντιστοιχίζουμε τα σύμβολα σε αναλογικές κυματομορφές

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 4

Αλγόριθμοι Ταξινόμησης Μέρος 4 Αλγόριθμοι Ταξινόμησης Μέρος 4 Μανόλης Κουμπαράκης Δομές Δεδομένων και Τεχνικές 1 Μέθοδοι Ταξινόμησης Βασισμένοι σε Συγκρίσεις Κλειδιών Οι αλγόριθμοι ταξινόμησης που είδαμε μέχρι τώρα αποφασίζουν πώς να

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Κεφάλαιο 7 ο Ταξινόμηση Συστημάτων Κρουστική Απόκριση Κεφάλαιο

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 10: Παλμοκωδική Διαμόρφωση, Διαμόρφωση Δέλτα και Πολύπλεξη Διαίρεσης Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Παλμοκωδική Διαμόρφωση (PCM) Παλμοκωδική Διαμόρφωση

Διαβάστε περισσότερα

Δεύτερη Σειρά Ασκήσεων

Δεύτερη Σειρά Ασκήσεων Δεύτερη Σειρά Ασκήσεων ΑΣΚΗΣΗ 1 Από ένα αθόρυβο κανάλι 4 khz παίρνουμε δείγματα κάθε 1 msec. - Ποιος είναι ο μέγιστος ρυθμός μετάδοσης δεδομένων; - Πώς μεταβάλλεται ο μέγιστος ρυθμός μετάδοσης δεδομένων

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Καθηγητής Ι. Τίγκελης itigelis@phys.uoa.gr ΚΒΑΝΤΙΣΗ Διαδικασία με την

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #08 Συµπίεση Κειµένων Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας 1 Άδεια χρήσης

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ (0-3) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #4 Στόχος : Βασικό στόχο της 4 ης εργασίας αποτελεί η εξοικείωση με τα μέτρα ποσότητας πληροφορίας τυχαίων μεταβλητών (Κεφάλαιο ), τις σχετικές έννοιες και τα μέτρα διακριτών

Διαβάστε περισσότερα

Κώδικες µεταβλητού µήκους

Κώδικες µεταβλητού µήκους 6 Κώδικες µεταβλητού µήκους Στο κεφάλαιο αυτό µελετώνται οι κώδικες µεταβλητού µήκους, στους οποίους όλες οι λέξεις δεν έχουν το ίδιο µήκος και δίνονται οι µέ- ϑοδοι Fano-Shannon και Huffman για την κατασκευή

Διαβάστε περισσότερα

Γραφική αναπαράσταση ενός ψηφιακού σήµατος

Γραφική αναπαράσταση ενός ψηφιακού σήµατος γ) Ψηφιακάτα x (n) 3 2 1 1 2 3 n Γραφική αναπαράσταση ενός ψηφιακού σήµατος Αφού δειγµατοληπτηθεί και κβαντιστεί η έξοδος µιας αναλογικής πηγής πληροφορίας, δηµιουργείταιµιαακολουθίααπόκβαντισµένεςτιµές

Διαβάστε περισσότερα

Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1

Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1 Αρχές κωδικοποίησης Απαιτήσεις κωδικοποίησης Είδη κωδικοποίησης Κωδικοποίηση εντροπίας Διαφορική κωδικοποίηση Κωδικοποίηση μετασχηματισμών Στρωματοποιημένη κωδικοποίηση Κβαντοποίηση διανυσμάτων Τεχνολογία

Διαβάστε περισσότερα

Εξωτερική Αναζήτηση. Ιεραρχία Μνήμης Υπολογιστή. Εξωτερική Μνήμη. Εσωτερική Μνήμη. Κρυφή Μνήμη (Cache) Καταχωρητές (Registers) μεγαλύτερη ταχύτητα

Εξωτερική Αναζήτηση. Ιεραρχία Μνήμης Υπολογιστή. Εξωτερική Μνήμη. Εσωτερική Μνήμη. Κρυφή Μνήμη (Cache) Καταχωρητές (Registers) μεγαλύτερη ταχύτητα Ιεραρχία Μνήμης Υπολογιστή Εξωτερική Μνήμη Εσωτερική Μνήμη Κρυφή Μνήμη (Cache) μεγαλύτερη χωρητικότητα Καταχωρητές (Registers) Κεντρική Μονάδα (CPU) μεγαλύτερη ταχύτητα Πολλές σημαντικές εφαρμογές διαχειρίζονται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 4: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Θεωρητικές Ασκήσεις (# ): ειγµατοληψία, κβαντοποίηση και συµπίεση σηµάτων. Στην τηλεφωνία θεωρείται ότι το ουσιαστικό περιεχόµενο της

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 6 ο : Διαμόρφωση Θέσης Παλμών Βασική Θεωρία Μ-αδική Διαμόρφωση Παλμών Κατά την μετατροπή

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 5 ο : Διαμόρφωση Παλμών Βασική Θεωρία Μ-αδική Διαμόρφωση Παλμών Κατά την μετατροπή

Διαβάστε περισσότερα

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης

Διαβάστε περισσότερα