arxiv: v3 [math.ca] 4 Jul 2013

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "arxiv: v3 [math.ca] 4 Jul 2013"

Transcript

1 POSITIVE SOLUTIONS OF NONLINEAR THREE-POINT INTEGRAL BOUNDARY-VALUE PROBLEMS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS arxiv: v3 [math.ca] 4 Jul 213 FAOUZI HADDOUCHI, SLIMANE BENAICHA Abstract. We investigate the existence of positive solutions to the nonlinear second-order three-point integral boundary value problem u (t)a(t)f(u(t)) =, < t < T, u() = βu(), u(t) = α u(s)ds, where < < T, < α < 2T 2, β < 2Tα2 α 2 are given constants. We 22T show the existence of at least one positive solution if f is either superlinear or sublinear by applying Krasnoselskii s fixed point theorem in cones. 1. Introduction The study of the existence of solutions of multipoint boundary value problems for linear second-order ordinary differential equations was initiated by II in and Moiseev [5]. Then Gupta [2] studied three-point boundary value problems for nonlinear second-order ordinary differential equations. Since then, nonlinear second-order three-point boundary value problems have also been studied by several authors. We refer the reader to [1, 3, 4, 7, 8, 9, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21] and the references therein. Tariboon and Sitthiwirattham [2] proved the existence of positive solutions for the three-point boundary-value problem with integral condition u (t)a(t)f(u(t)) =, t (,1), (1.1) u() =, u(1) = α u(s)ds, (1.2) where < < 1 and < α < 2 2. This paper is concerned with the existence of positive solutions of the equation u (t)a(t)f(u(t)) =, t (,T), (1.3) with the three-point integral boundary condition u() = βu(), u(t) = α u(s)ds, (1.4) whereα >, β, (,T)aregivenconstants. Clearlyifβ = and T = 1, then (1.4) reducesto (1.2). The purpose ofthis paper is to givesome results for existence 2 Mathematics Subject Classification. 34B15, 34C25, 34B18. Key words and phrases. Positive solutions; Krasnoselskii s fixed point theorem; Three-point boundary value problems; Cone. 1

2 2 F. HADDOUCHI, S. BENAICHA for positive solutions to (1.3)-(1.4), assuming that < α < 2T, β < 2Tα2 2 α 2 22T and f is either superlinear or sublinear. Our results extend and complete those obtained by J. Tariboon and T. Sitthiwirattham [2]. On the other hand, we point out that the proof of the last part in the sublinear case (f = ) of Theorem 3.1 in [2] is not correct since it is based on an inequality which is not true. We give a new proof, which is different from that of Theorem 3.1 in [2], and obtain an extended result. Set f(u) f = lim u u, f f(u) = lim u u. (1.5) Then f = and f = correspond to the superlinear case, and f = and f = correspond to the sublinear case. By the positive solution of (1.3)-(1.4) we mean that function u(t) is positive on < t < T and satisfies the problem (1.3)-(1.4). Throughout this paper, we assume the following hypotheses: (H1) f C([, ),[, )). (H2) a C([,T],[, )) and there exists t [,T] such that a(t ) >. The following theorem (Krasnoselskii s fixed-point theorem), will play an important role in the proof of our main results. Theorem 1.1 ([6]). Let E be a Banach space, and let K E be a cone. Assume Ω 1, Ω 2 are open bounded subsets of E with Ω 1, Ω 1 Ω 2, and let A : K (Ω 2 \Ω 1 ) K be a completely continuous operator such that either (i) Au u, u K Ω 1, and Au u, u K Ω 2 ; or (ii) Au u, u K Ω 1, and Au u, u K Ω 2 hold. Then A has a fixed point in K (Ω 2 \ Ω 1 ). 2. Preliminaries To prove the main existence results we will employ several straightforward lemmas. These lemmas are based on the linear boundary-value problem. Lemma 2.1. Let β 2Tα2 α 2 22T. Then for y C([,T],R), the problem has a unique solution u(t) = u (t)y(t) =, t (,T), (2.1) u() = βu(), u(t) = α β(2t α 2 )2β(1α)t (α 2 2T)β(2 α 2 2T) αβ α(β 1)t (α 2 2T)β(2 α 2 2T) 2(β 1)t2β (α 2 2T)β(2 α 2 2T) u(s)ds, (2.2) ( s)y(s)ds ( s) 2 y(s)ds (T s)y(s)ds t (t s)y(s)ds.

3 POSITIVE SOLUTIONS 3 Proof. From (2.1), we have u(t) = u()u ()t t Integrating (2.3) from to, where (,T), we have Since u(s)ds = u() u () 2 2 (t s)y(s)ds. (2.3) = u() u () u(t) = u()u ()T u() = u()u () By (2.2), from u() = βu(), we have and from u(t) = α (β 1)u()βu () = β u(s)ds, we have (1α)u()(T α 2 2 )u () = Therefore, u() = u () = ( τ (τ s)y(s)ds)dτ ( s) 2 y(s)ds. (T s)y(s)ds and ( s)y(s)ds. ( s)y(s)ds, (T s)y(s)ds α 2 β(2t α 2 ) (α 2 2T)β(2 α 2 2T) 2β (α 2 2T)β(2 α 2 2T) αβ (α 2 2T)β(2 α 2 2T) 2(β 1) (α 2 2T)β(2 α 2 2T) α(β 1) (α 2 2T)β(2 α 2 2T) 2β(1α) (α 2 2T)β(2 α 2 2T) from which it follows that β(2t α 2 )2β(1α)t u(t) = (α 2 2T)β(2 α 2 2T) αβ α(β 1)t (α 2 2T)β(2 α 2 2T) 2(β 1)t2β (α 2 2T)β(2 α 2 2T) ( s)y(s)ds ( s)y(s)ds ( s) 2 y(s)ds ( s) 2 y(s)ds. (T s)y(s)ds ( s) 2 y(s)ds, (T s)y(s)ds (T s)y(s)ds ( s) 2 y(s)ds ( s)y(s)ds, t (t s)y(s)ds.

4 4 F. HADDOUCHI, S. BENAICHA Lemma 2.2. Let < α < 2T, β < 2Tα2 2 α 2 22T. If y C([,T],[, )), then the unique solution u of (2.1)-(2.2) satisfies u(t) for t [,T]. Proof. From the fact that u (t) = y(t), we have that the graph of u(t) is concave down on (,T) and u(s)ds (u()u()). (2.4) 2 Combining (2.2) with (2.4), we get α(β 1) u(t) u(). (2.5) 2 Since the graph of u is concave down, we get u()u() u(t)u(). T Combining this with (2.2) and (2.5), we obtain (1β) u() α(β 1) 2β u(). 2T If u() <, then u() <. It implies β 2Tα2 α 2 22T, a contradiction to β < 2Tα2 α 2 22T. If u(t) <, then u() <, and the same contradiction emerges. Thus, it is true that u(), u(t), together with the concavity of u(t), we have u(t) for t [,T]. Lemma 2.3. Let α > 2T 2, β. If y C([,T],[, )), then the problem (2.1)-(2.2) has no positive solutions. Proof. Suppose that problem (2.1)-(2.2) has a positive solution u satisfying u(t), t [,T]. If u(t) >, then u(s)ds >. It implies u(t) = α u(s)ds > 2T T(β 1)u() 2 (u()u()) = 2 Tu(), that is u(t) > u() T, which is a contradiction to the concavity of u. If u(t) =, then u(s)ds =, this is u(t) for all t [,]. If there exists t (,T) such that u(t ) >, then u() = u() < u(t ), a violation of the concavity of u. Therefore, no positive solutions exist. Lemma 2.4. Let < α < 2T, β < 2Tα2 2 α 2 22T. If y C([,T],[, )), then the unique solution u of (2.1)-(2.2) satisfies where { γ := min T min u(t) γ u, u = max u(t), (2.6) t [,T] t [,T] α(β 1)2,, 2T } α(β 1)(T ) 2T α(β 1) 2 (,1). (2.7)

5 POSITIVE SOLUTIONS 5 Proof. We divide the proof into three cases. Set u(t 1 ) = u. Case 1. If t 1 T and min t [,T] u(t) = u(), then the concavity of u implies that Thus, u() u(t 1) t 1 u(t 1) T. min u(t) t [,T] T u. Case 2. If t 1 T and min t [,T] u(t) = u(t), then (2.2), (2.4) and the concavity of u implies This implies that α(β 1)2 u(t) = α u(s)ds 2 α(β 1)2 u(t 1 ) 2 min t [,T] α(β 1)2 2 t 1 u(t 1 ) T. α(β 1)2 u(t) u. 2T u() Case 3. If t 1 < T, then min t [,T] u(t) = u(t). Using the concavity of u and (2.2), (2.4), we obtain u(t 1 ) u(t) u(t)u() (t 1 T) T u(t) u(t)u() (T) T [ u(t) 1T 1 ] 2 α(β1) T = 2T α(β 1)2 α(β 1)(T ) u(t), from which it follows that α(β 1)(T ) min u(t) t [,T] 2T α(β 1) 2 u. Summing up, we have where { γ := min T This completes the proof. min u(t) γ u, t [,T] α(β 1)2,, 2T } α(β 1)(T ) 2T α(β 1) 2.

6 6 F. HADDOUCHI, S. BENAICHA 3. Existence of positive solutions Now we are in the position to establish the main result. Theorem 3.1. Assume (H1) and (H2) hold, and < α < 2T 2, β < 2Tα2 α 2 22T. Then the problem (1.3)-(1.4) has at least one positive solution in the case (i) f = and f = (superlinear), or (ii) f = and f = (sublinear). Proof. It is known that < α < 2T, β < 2Tα2 2 α 2 22T. From Lemma 2.1, u is a solution to the boundary value problem (1.3)-(1.4) if and only if u is a fixed point of operator A, where A is defined by Au(t) = β(2t α 2 )2β(1α)t (α 2 2T)β(2 α 2 2T) αβ α(β 1)t (α 2 2T)β(2 α 2 2T) 2(β 1)t2β (α 2 2T)β(2 α 2 2T) t (t s)a(s)f(u(s))ds. ( s)a(s)f(u(s))ds ( s) 2 a(s)f(u(s))ds Denote K = { } u/u C([,T],R),u, min u(t) γ u, t [,T] where γ is defined in (2.7). It is obvious that K is a cone in C([,T],R). Moreover, from Lemma 2.2 and Lemma 2.4, AK K. It is alsoeasy to check that A : K K is completely continuous. Superlinear case. f = and f =. Since f =, we may choose H 1 > so that f(u) ǫu, for < u H 1, where ǫ > satisfies ǫ 2(β 1)T1 β(α 2)αβT T(T s)a(s)ds 1. Thus, if we let Ω 1 = {u C([,T],R) : u < H 1 },

7 POSITIVE SOLUTIONS 7 then, for u K Ω 1, we get Au(t) 2β(1α)tβ(2T α 2 ) α(β 1)tαβ 2β 2(β 1)t 2βT αβ 2 αβt 2β 2T 2T(β 1)β(α 2) αβt 2T(β 1)β(α 2) αβt = 2(β 1)T1 β(α 2)αβT ( s)a(s)f(u(s))ds ( s) 2 a(s)f(u(s))ds ( s)a(s)f(u(s))ds ǫ u 2(β 1)T1 β(α 2)αβT u. ( s) 2 a(s)f(u(s))ds ( s) 2 a(s)f(u(s))ds T(T s)a(s)f(u(s))ds T(T s)a(s)f(u(s))ds T(T s)a(s)ds Thus Au u, u K Ω 1. Further, since f =, there exists Ĥ2 > such that f(u) ρu for u Ĥ2, where ρ > is chosen so that 2 ργ (T s)a(s)ds 1. Let H 2 = max{2h 1, Ĥ2 γ } and Ω 2 = {u C([,T],R) : u < H 2 }. Then u K Ω 2 implies that min u(t) γ u = γh 2 Ĥ2, t [,T]

8 8 F. HADDOUCHI, S. BENAICHA and so, Au() = = = = 2β(1α) β(2t α 2 ) α(β 1) αβ 2β 2(β 1) ( s)a(s)f(u(s))ds 2 α 2T α 2 2 α 2 2T α 2T 2 2(T ) α 2 2ρ 2ργ u u. ( s)a(s)f(u(s))ds ( s) 2 a(s)f(u(s))ds ( 2 2ss 2 )a(s)f(u(s))ds ( s)a(s)f(u(s))ds sa(s)f(u(s))ds sa(s)f(u(s))ds s 2 a(s)f(u(s))ds a(s)f(u(s))ds sa(s)f(u(s))ds s( s)a(s)f(u(s))ds (T s)a(s)u(s)ds (T s)a(s)ds Hence, Au u, u K Ω 2. By the first part of Theorem 1.1, A has a fixed point in K (Ω 2 \Ω 1 ) such that H 1 u H 2. This completes the superlinear part of the theorem.

9 POSITIVE SOLUTIONS 9 Sublinear case. f = and f =. Since f =, choose H 3 > such that f(u) Mu for < u H 3, where M > satisfies 2 Mγ (T s)a(s)ds 1. Let Ω 3 = {u C([,T],R) : u < H 3 }, then for u K Ω 3, we get Au() = 2 α 2T α 2 2 2M 2 u Mγ u. ( s) 2 a(s)f(u(s))ds ( s)a(s)f(u(s))ds (T s)a(s)u(s)ds (T s)a(s)ds Thus Au u, u K Ω 3. Now, since f =, there exists Ĥ4 > so that f(u) λu for u Ĥ4, where λ > satisfies λ 2(β 1)T1 β(α 2)αβT T(T s)a(s)ds 1. We consider two cases: Case (i). Suppose f is bounded, say f(u) N for all u [, ). Choosing H 4 max{2h 3, N λ }. For u K with u = H 4, we have Au(t) = 2β(1α)tβ(2T α 2 ) α(β 1)tαβ 2β 2(β 1)t t (t s)a(s)f(u(s))ds 2(β 1)T1 β(α 2)αβT N 2(β 1)T1 β(α 2)αβT ( s)a(s)f(u(s))ds ( s) 2 a(s)f(u(s))ds H 4 λ 2(β 1)T1 β(α 2)αβT H 4, T(T s)a(s)f(u(s))ds T(T s)a(s)ds T(T s)a(s)ds

10 1 F. HADDOUCHI, S. BENAICHA and therefore Au u. Case (ii). If f is unbounded, then we know from f C([, ),[, )) that there is H 4 : H 4 max{2h 3, Ĥ4 γ } such that Then for u K and u = H 4, we have f(u) f(h 4 ) for u [,H 4 ]. Au(t) 2(β 1)T1 β(α 2)αβT 2(β 1)T1 β(α 2)αβT H 4 λ 2(β 1)T1 β(α 2)αβT H 4 = u. Therefore, in either case we may set T(T s)a(s)f(u(s))ds T(T s)a(s)f(h 4 ))ds Ω 4 = {u C([,T],R) : u < H 4 }, T(T s)a(s)ds and for u K Ω 4 we may have Au u. By the second part of Theorem 1.1, it follows that A has a fixed point in K (Ω 4 \Ω 3 ) such that H 3 u H 4. This completes the sublinear part of the theorem. Therefore, the problem (1.3)-(1.4) has at least one positive solution. 4. Some examples In this section, in order to illustrate our result, we consider some examples. Example 4.1. Consider the boundary value problem u (t)tu p =, < t < 2, (4.1) u() = 1 2 u(3 2 ), u(2) = 3 2 u(s)ds. (4.2) Set β = 1/2, α = 1, = 3/2, T = 2, a(t) = t, f(u) = u p. We can show that < α = 1 < 16/9 = 2T/ 2, < β = 1/2 < 7/13 = (2T α 2 )/(α 2 2 2T). Now we consider the existence of positive solutions of the problem (4.1), (4.2) in two cases. Case 1: p > 1. In this case, f =, f = and (i) holds. Then (4.1), (4.2) has at least one positive solution. Case 2: p (,1). In this case, f =, f = and (ii) holds. Then ((4.1), (4.2) has at least one positive solution. Example 4.2. Consider the boundary value problem u (t)t 2 u 2 ln(1u) =, < t < 3 4, (4.3) u() = u(1 4 ), u(3 4 ) = 2 4 u(s)ds. (4.4)

11 POSITIVE SOLUTIONS 11 Set β = 1/1, α = 2, = 1/4, T = 3/4, a(t) = t 2, f(u) = u 2 ln(1u). We can show that < α = 2 < 24 = 2T/ 2, < β = 1/1 < 1/9 = (2T α 2 )/(α 2 2 2T). Through a simple calculation we can get f = and f =. Thus, by the first part of Theorem 3.1, we can get that the problem (4.3), (4.4)) has at least one positive solution. Example 4.3. Consider the boundary value problem u (t)e tsinuln(1u) u 2 =, < t < 1, (4.5) u() = u( 1 3 ), u(1) = u(s)ds. (4.6) Set β = 1, α = 2, = 1/3, T = 1, a(t) = e t, f(u) = (sinuln(1u))/u 2. We can show that < α = 2 < 18 = 2T/ 2, < β = 1 < 8/7 = (2T α 2 )/(α 2 2 2T). Through a simple calculation we can get f = and f =. Thus, by the second part of Theorem 3.1, we can get that the problem (4.5), (4.6)) has at least one positive solution. References [1] Z. Chengbo; Positive solutions for semi-positone three-point boundary value problems, J. Comput. Appl. Math. 228 (29), [2] C. P. Gupta; Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equations, J. Math. Anal. Appl. 168 (1992), [3] Y. Guo, W. Ge; Positive solutions for three-point boundary value problems with dependence on the first order derivative, J. Math. Anal. Appl. 29 (24), [4] X. Han, Positive solutions for a three-point boundary value problem, Nonlinear Anal. 66 (27), [5] V. A. Il in, E. I. Moiseev; Nonlocal boundary-value problem of the first kind for a Sturm- Liouville operator in its differential and finite difference aspects, Differ. Equ. 23 (1987), [6] M. A. Krasnoselskii; Positive Solutions of Operator Equations, P. Noordhoff, Groningen, The Netherlands, [7] S. Liang, L. Mu; Multiplicity of positive solutions for singular three-point boundary value problems at resonance, Nonlinear Anal. 71 (29), [8] R. Liang, J. Peng, J. Shen; Positive solutions to a generalized second order three-point boundary value problem, Appl. Math. Compt. 196 (28), [9] J. Li, J. Shen; Multiple positive solutions for a second-order three-point boundary value problem, Appl. Math. Compt. 182 (26), [1] B. Liu; Positive solutions of a nonlinear three-point boundary value problem, Appl. Math. Comput. 132 (22), [11] B. Liu; Positive solutions of a nonlinear three-point boundary value problem, Comput. Math. Appl. 44 (22), [12] B. Liu, L. Liu, Y. Wu; Positive solutions for singular second order three-point boundary value problems, Nonlinear Anal. 66 (27), [13] H. Luo, Q. Ma; Positive solutions to a generalized second-order three-point boundary-value problem on time scales, Electron. J. Differen. Equat. 25(25), No. 17, [14] R. Ma; Multiplicity of positive solutions for second-order three-point boundary value problems, Comput. Math. Appl. 4 (2), [15] R. Ma; Positive solutions of a nonlinear three-point boundary-value problem, Electron. J. Differen. Equat. 1999(1999), No. 34, 1-8. [16] R. Ma; Positive solutions for second-order three-point boundary value problems, Appl. Math. Lett. 14 (21), 1-5. [17] H. Pang, M. Feng, W. Ge; Existence and monotone iteration of positive solutions for a three-point boundary value problem, Appl. Math. Lett 21 (28),

12 12 F. HADDOUCHI, S. BENAICHA [18] Y. Sun, L. Liu, J. Zhang, R. P. Agarwal; Positive solutions of singular three-point boundary value problems for second-order differential equations, J. Comput. Appl. Math. 23 (29), [19] H. Sun, W. Li; Positive solutions for nonlinear three-point boundary value problems on time scales, J. Math. Anal. Appl. 299 (24), [2] J. Tariboon, T. Sitthiwirattham; Positive solutions of a nonlinear three-point integral boundary value problem, Bound. Val. Prob. 21 (21), ID 51921, 11 pages, doi:1.1155/21/ [21] X. Xu; Multiplicity results for positive solutions of some semi-positone three-point boundary value problems, J. Math. Anal. Appl. 291 (24), Faouzi Haddouchi, Department of Physics, University of Sciences and Technology of Oran, El Mnaouar, BP 155, 31 Oran, Algeria address: Slimane Benaicha, Department of Mathematics, University of Oran, Es-senia, 31 Oran, Algeria address:

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

n=2 In the present paper, we introduce and investigate the following two more generalized

n=2 In the present paper, we introduce and investigate the following two more generalized MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Eigenvalues and eigenfunctions of a non-local boundary value problem of Sturm Liouville differential equation

Eigenvalues and eigenfunctions of a non-local boundary value problem of Sturm Liouville differential equation Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 5 (2016, pp. 3885 3893 Research India Publications http://www.ripublication.com/gjpam.htm Eigenvalues and eigenfunctions

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

On a p(x)-kirchhoff Equation with Critical Exponent and an Additional Nonlocal Term

On a p(x)-kirchhoff Equation with Critical Exponent and an Additional Nonlocal Term On a p(x-kirchhoff Equation with Critical Exponent and an Additional Nonlocal Term Francisco Julio S.A. Corrêa Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Unidade Acadêmica de

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

MATRIX INVERSE EIGENVALUE PROBLEM

MATRIX INVERSE EIGENVALUE PROBLEM English NUMERICAL MATHEMATICS Vol.14, No.2 Series A Journal of Chinese Universities May 2005 A STABILITY ANALYSIS OF THE (k) JACOBI MATRIX INVERSE EIGENVALUE PROBLEM Hou Wenyuan ( ΛΠ) Jiang Erxiong( Ξ)

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

GAUGES OF BAIRE CLASS ONE FUNCTIONS

GAUGES OF BAIRE CLASS ONE FUNCTIONS GAUGES OF BAIRE CLASS ONE FUNCTIONS ZULIJANTO ATOK, WEE-KEE TANG, AND DONGSHENG ZHAO Abstract. Let K be a compact metric space and f : K R be a bounded Baire class one function. We proved that for any

Διαβάστε περισσότερα

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Memoirs on Differential Equations and Mathematical Physics

Memoirs on Differential Equations and Mathematical Physics Memoirs on Differential Equations and Mathematical Physics Volume 31, 2004, 83 97 T. Tadumadze and L. Alkhazishvili FORMULAS OF VARIATION OF SOLUTION FOR NON-LINEAR CONTROLLED DELAY DIFFERENTIAL EQUATIONS

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

Nontrivial solutions for a Robin problem with a nonlinear term asymptotically linear at and superlinear at +

Nontrivial solutions for a Robin problem with a nonlinear term asymptotically linear at and superlinear at + Revista Colombiana de Matemáticas Volumen 4(008), páginas 0-6 Nontrivial solutions for a Robin problem with a nonlinear term asymptotically linear at and superlinear at Soluciones no triviales para un

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

Strukturalna poprawność argumentu.

Strukturalna poprawność argumentu. Strukturalna poprawność argumentu. Marcin Selinger Uniwersytet Wrocławski Katedra Logiki i Metodologii Nauk marcisel@uni.wroc.pl Table of contents: 1. Definition of argument and further notions. 2. Operations

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

D. BAINOV, YU. DOMSHLAK, AND S. MILUSHEVA

D. BAINOV, YU. DOMSHLAK, AND S. MILUSHEVA GEORGIAN MATHEMATICAL JOURNAL: Vol. 3, No. 1, 1996, 11-26 PARTIAL AVERAGING FOR IMPULSIVE DIFFERENTIAL EQUATIONS WITH SUPREMUM D. BAINOV, YU. DOMSHLAK, AND S. MILUSHEVA Abstract. Partial averaging for

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Santiago de Compostela, Spain

Santiago de Compostela, Spain Filomat 28:8 (214), 1719 1736 DOI 1.2298/FIL148719A Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Boundary Value Problems of

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Bifurcating Continued Fractions II

Bifurcating Continued Fractions II Bifurcating Continued Fractions II Ashok Kumar Mittal Department of Physics Allahabad University, Allahabad 211 002, India (Email address: mittal_a@vsnl.com) Ashok Kumar Gupta Department of Electronics

Διαβάστε περισσότερα

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography Nonlinear Fourier transform for the conductivity equation Visibility and Invisibility in Impedance Tomography Kari Astala University of Helsinki CoE in Analysis and Dynamics Research What is the non linear

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

STAT200C: Hypothesis Testing

STAT200C: Hypothesis Testing STAT200C: Hypothesis Testing Zhaoxia Yu Spring 2017 Some Definitions A hypothesis is a statement about a population parameter. The two complementary hypotheses in a hypothesis testing are the null hypothesis

Διαβάστε περισσότερα

with N 4. We are concerned

with N 4. We are concerned Houston Journal of Mathematics c 6 University of Houston Volume 3, No. 4, 6 THE EFFECT OF THE OMAIN TOPOLOGY ON THE NUMBER OF POSITIVE SOLUTIONS OF AN ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

On a Subclass of k-uniformly Convex Functions with Negative Coefficients

On a Subclass of k-uniformly Convex Functions with Negative Coefficients International Mathematical Forum, 1, 2006, no. 34, 1677-1689 On a Subclass of k-uniformly Convex Functions with Negative Coefficients T. N. SHANMUGAM Department of Mathematics Anna University, Chennai-600

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΝΟΜΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΙΣΤΟΡΙΑΣ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΤΟΥ ΔΙΚΑΙΟΥ Διπλωματική εργασία στο μάθημα «ΚΟΙΝΩΝΙΟΛΟΓΙΑ ΤΟΥ ΔΙΚΑΙΟΥ»

Διαβάστε περισσότερα

ECON 381 SC ASSIGNMENT 2

ECON 381 SC ASSIGNMENT 2 ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes

Διαβάστε περισσότερα

L 2 -boundedness of Fourier integral operators with weighted symbols

L 2 -boundedness of Fourier integral operators with weighted symbols Functional Analysis, Approximation and Computation 8 (2) (2016), 23 29 Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac L 2 -boundedness

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a) hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

Multistring Solutions of the Self-Graviting Massive W Boson

Multistring Solutions of the Self-Graviting Massive W Boson Multistring Solutions of the Self-Graviting Massive W Boson Dongho Chae Department of Mathematics Sungkyunkwan University Suwon 44-746, Korea e-mail: chae@skku.edu Abstract We consider a semilinear elliptic

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΗΛΙΚΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Διαπολιτισμική Εκπαίδευση και Θρησκευτική Ετερότητα: εθνικές και θρησκευτικές

Διαβάστε περισσότερα

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition UNIT - I LINEAR ALGEBRA Definition Vector Space : A non-empty set V is said to be vector space over the field F. If V is an abelian group under addition and if for every α, β F, ν, ν 2 V, such that αν

Διαβάστε περισσότερα