nr.c ( (n+1)r.c) Όποτε αρκεί να αποδείξουμε την ισοδυναμία ενός εκ των δυο περιορισμών.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "nr.c ( (n+1)r.c) Όποτε αρκεί να αποδείξουμε την ισοδυναμία ενός εκ των δυο περιορισμών."

Transcript

1 Ενδεικτική Λύση 2 ης Άσκησης (Περιγραφικές Λογικές) Ερώτημα 1 α) Ο κατασκευαστής Q συμβολίζει τους προσοντούχους περιορισμούς πληθυκότητας, δηλαδή τις έννοιες της μορφής: nr.c, nr.c Αρχικά σύμφωνα με τους κανόνες De Morgan έχουμε ότι nr.c ( (n+1)r.c) Όποτε αρκεί να αποδείξουμε την ισοδυναμία ενός εκ των δυο περιορισμών. Ένα αντικείμενο a ανήκει στην ερμηνεία της έννοιας nr.c, αν το αντικείμενο ανήκει στην ερμηνεία του ρόλου R με άλλα άτομα b i το λιγότερο n φορές και ταυτόχρονα όλα τα b i συμμετέχουν στην ερμηνεία της έννοιας C. Η ερμηνεία της έννοιας nr.c μπορεί να αναπαρασταθεί στην ALCHN με τη χρήση των ιεραρχιών, των περιορισμών πληθυκότητας και του περιορισμού τιμής. Αρχικά ορίζουμε ένα νέο ρόλο R nc σαν υπό-ρόλο του R: R nc R Τότε ισχύει ότι: nr.c nr nc R nc.c Θα δείξουμε γιατί συμβαίνει αυτό. Έστω ότι το αντικείμενο a ανήκει στην ερμηνεία της έννοιας nr nc R nc.c. Ας δούμε τι συνεπάγεται αυτό. Αρχικά, εφόσον το a ανήκει στην τομή των δυο παραπάνω εννοιών, τότε θα ανήκει στην ερμηνεία των εννοιών nr nc και R nc.c. Στη συνέχεια, εφόσον το a ανήκει στην ερμηνεία της έννοιας nr nc, θα πρέπει να ανήκει στην ερμηνεία του ρόλου R nc με το λιγότερο n αντικείμενα b i. Εφόσον όμως ο ρόλος R nc είναι υπο-ρόλος του R, τότε το a θα ανήκει και στην ερμηνεία του ρόλου R με το λιγότερο n αντικείμενα b i. Τέλος, το a ανήκει στην ερμηνεία της έννοιας R nc.c. Άρα, όλα τα b i με τα οποία συνδέεται μέσω της R nc (και μόνο αυτά) θα ανήκουν στην ερμηνεία της έννοιας C. Δηλαδή, όποιο αντικείμενο ανήκει στην ερμηνεία της έννοιας nr nc R nc.c θα ανήκει και στην ερμηνεία της έννοιας nr.c. β) Έστω μια έννοια C με κάποιο ορισμό (C...). Θέλουμε να κατασκευάσουμε την έννοια C χωρίς να χρησιμοποιήσουμε τον τελεστή της άρνησης αλλά χρησιμοποιώντας των κατασκευαστή πληθυκότητας (N ). Με άλλα λόγια θέλουμε να δημιουργήσουμε την έννοια notc για την οποία θα ισχύει notc= I \C I. Παρατηρούμε ότι οι κατασκευαστές πληθυκότητας εμπεριέχουν έμμεσα άρνηση. Δηλαδή η έννοια 1R είναι η άρνηση της έννοιας 0R. Έτσι λοιπόν μπορούμε να χρησιμοποιήσουμε τις έννοιες αυτές για να δημιουργήσουμε την έννοια notc. Πιο συγκεκριμένα, θέτουμε C 1R c, όπου R c είναι ένας νέος ρόλος ο οποίος πρέπει να προσέξουμε να μην εμφανίζεται πουθενά στη βάση γνώσης, έτσι ώστε να μην

2 προκαλέσουμε αλληλεπιδράσεις στη σημασιολογία ασυσχέτιστων εννοιών. Στη συνέχεια θέτουμε notc 0R c και λαμβάνουμε την επιθυμητή σημασιολογία για την έννοια notc. Ερώτημα 2 Για να υπάρχει μοντέλο σε μια βάση γνώσης θα πρέπει να βρούμε μια ερμηνεία που να ικανοποιεί τους ισχυρισμούς της. α) Έστω ένα αντικείμενο a το οποίο ανήκει στο σύνολο ( Ψηλός έχειαπόγονο. έχειαπόγονο.( έχειπρόγονο.ψηλός)) I Από τη σημασιολογία του κατασκευαστή της τομής έχουμε ότι a ( Ψηλός) I, a ( έχειαπόγονο. ) I και a ( έχειαπόγονο.( έχειπρόγονο.ψηλός)) I Λόγω της σημασιολογίας του υπαρξιακού περιορισμού και ότι a ( έχειαπόγονο. ) I θα πρέπει να υπάρχει κάποιο α 1 I για το οποίο ισχύουν (a,α 1 ) έχειαπόγονο I και α 1 I. Επιπρόσθετα, λόγω της σημασιολογίας του περιορισμού τιμής και εφόσον a ( έχειαπόγονο.( έχειπρόγονο.ψηλός)) I και (a,α 1 ) έχειαπόγονο I, τότε πρέπει να ισχύει ότι α 1 ( έχειπρόγονο.ψηλός) I. Επιπλέον, από το (a,α 1 ) έχειαπόγονο I έπεται ότι (α 1,a) (έχειαπόγονο - ) I, ενώ επειδή η I πρέπει να ικανοποιεί τα αξιώματα του RBox και λόγω του αξιώματος υπαγωγής ρόλων έχειαπόγονο - έχειπρόγονο ισχύει ότι (α 1,a) έχειπρόγονο I. Τέλος, λόγω των α 1 ( έχειπρόγονο.ψηλός) I, (α 1,a) έχειπρόγονο I και της σημασιολογίας του περιορισμού τιμής, έχουμε ότι a Ψηλός I. Συνεπώς, τελικά βλέπουμε ότι a Ψηλός I και a ( Ψηλός) I a I \Ψηλός I κάτι το οποίο είναι αδύνατο. Έτσι λοιπόν καταλήγουμε στο ότι δεν υπάρχει μοντέλο για τη βάση γνώσης. β) Έστω μια ερμηνεία I η οποία είναι μοντέλο της βάσης γνώσης. Η I ικανοποιεί τους ισχυρισμούς του ABox αν: Θάνος I ( έχειαπόγονο.ψηλός) I και Θάνος I ( έχειαπόγονο. έχειαπόγονο.ψηλός) I. Λόγω του Θάνος I έχειαπόγονο.ψηλός I θα πρέπει να υπάρχει κάποιο b I τέτοιο ώστε (Θάνος I,b) έχειαπόγονο I και b Ψηλός I, ενώ λόγω του περιορισμού τιμής θα έχουμε επίσης ότι b ( έχειαπόγονο.ψηλός) I. Για παρόμοιους λόγους έχουμε ότι υπάρχει c I τέτοιο ώστε (b,c) έχειαπόγονο I και c Ψηλός I. Επειδή ο ρόλος έχειαπόγονο είναι μεταβατικός και επειδή ισχύουν τα (Θάνος I,b) έχειαπόγονο I και (b,c) έχειαπόγονο I, για να είναι η I μοντέλο του RBox θα πρέπει να ισχύει (Θάνος I,c) έχειαπόγονο I.

3 Και πάλι λόγω του Θάνος I ( έχειαπόγονο. έχειαπόγονο.ψηλός) I θα πρέπει για το c να ισχύει ότι c ( έχειαπόγονο.ψηλός) I. Και πάλι, όμως, λόγω του τελευταίου περιορισμού θα πρέπει να υπάρχει κάποιο d I τέτοιο ώστε (c,d) έχειαπόγονο I και d Ψηλός I. Από την παραπάνω διαδικασία συλλογισμού μπορούμε να συμπεράνουμε ότι κάθε ερμηνεία η οποία ικανοποιεί τους παραπάνω ισχυρισμούς έχει την ακόλουθη μορφή: I ={Θάνος I, b i }, b i Ψηλός I, b i ( έχειαπόγονο.ψηλός) I και (b i,bj) έχειαπόγονο I για όλα τα 0 i<j, με i,j φυσικούς αριθμούς. Όπως παρατηρούμε η παραπάνω είναι μια άπειρη ερμηνεία. Παρόλα αυτά είναι ένα δυνατό μοντέλο για τη βάση γνώση μας. Αν επιθυμούμε να αποδώσουμε μια πεπερασμένη ερμηνεία τότε στην αρχική μας συλλογιστική θα πρέπει να θέσουμε (c,c) έχειαπόγονο I. Στην περίπτωση αυτή η σχέση c ( έχειαπόγονο.ψηλός) I ικανοποιείται χωρίς να δημιουργήσουμε ένα νέο d I, αφού υπάρχει το c I για το οποίο (c,c) έχειαπόγονο I και c Ψηλός I. Ερώτημα 3 Αρχικά επεξεργαζόμαστε τα αξιώματα και έχουμε: Άνθρωπος Αρσενικό Θηλυκό (1) Αρσενικό Θηλυκό (2) Γονιός Άνθρωπος έχειπαιδί Άνθρωπος έχειπαιδί Άνθρωπος (3) Σύζυγος Αρσενικό παντρεμένος Άνθρωπος παντρεμένος Θηλυκό (4) Το (2) είναι ένα αξίωμα υπαγωγής γενικευμένων εννοιών. Για το λόγω αυτό απαιτείται να εφαρμόσουμε τη μεθοδολογία της εσωτερίκευσης. Για λόγους συντομίας μπορούμε να εφαρμόσουμε την τεχνική αυτή μόνο για το αξίωμα (2) ενώ για τα υπόλοιπα μπορούμε να εφαρμόσουμε την απλή τεχνική του ξεδιπλώματος (unfolding). Παρόλα αυτά η μέθοδος της εσωτερίκευσης μπορεί να εφαρμοστεί και σε όλο το TBox. Έτσι λοιπόν το αξίωμα (2) αντικαθίσταται από το ( Αρσενικό Θηλυκό ) (Αρσενικό Θηλυκό ) εφόσον το Αρσενικό Θηλυκό ισοδυναμεί με τα δύο αξιώματα Αρσενικό Θηλυκό και Αρσενικό Θηλυκό. 1) Για να ελέγξουμε εάν κάποιος που είναι παντρεμένος με Θηλυκό είναι και Σύζυγος, αρκεί να ελέγξουμε εάν η έννοια παντρεμένος.θηλυκό είναι υπό-έννοια της έννοιας Σύζυγος, δηλαδή αν T,Α παντρεμένος.θηλυκό Σύζυγος.

4 Ο έλεγχος του προβλήματος αυτού μπορεί να αναχθεί στον έλεγχο μηικανοποιησιμότητας του ABox {α: παντρεμένος.θηλυκό Σύζυγος} με βάση το T για ένα τυχαίο άτομο α. Στη συνέχεια εφαρμόζουμε τους κανόνες tableaux και αν όλα τα σώματα ισχυρισμών περιέχουν αντίφαση τότε το T συνεπάγεται λογικά την υπαγωγή παντρεμένος.θηλυκό Σύζυγος. Αρχικοποιούμε το Tableaux Α={α: παντρεμένος.θηλυκό Σύζυγος} Εφαρμόζουμε Unfolding (4) Α Α={α: παντρεμένος.θηλυκό (Αρσενικό παντρεμένος.άνθρωπος παντρεμένος Θηλυκό)} (1) Α Α={α: παντρεμένος.θηλυκό (Αρσενικό παντρεμένος.(αρσενικό Θηλυκό) παντρεμένος Θηλυκό)} Κανονική μορφή άρνησης Α Α={α: παντρεμένος.θηλυκό Αρσενικό παντρεμένος.( Αρσενικό Θηλυκό) παντρεμένος. Θηλυκό} Εφαρμόζουμε κανόνες tableaux Λόγω του ( Αρσενικό Θηλυκό ) (Αρσενικό Θηλυκό ) έχουμε Α 1 ={ α: παντρεμένος.θηλυκό Αρσενικό παντρεμένος.( Αρσενικό Θηλυκό) παντ ρεμένος. Θηλυκό, α:( Αρσενικό Θηλυκό ) (Αρσενικό Θηλυκό )} κανόνας- τρεις φορές Α 2 ={α: παντρεμένος.θηλυκό, α: Αρσενικό παντρεμένος.( Αρσενικό Θηλυκό) παντρεμένος. Θηλυκό, α: Αρσενικό Θηλυκό, α:(αρσενικό Θηλυκό) } κανόνας- Α 3a ={ α: παντρεμένος.θηλυκό, α: Αρσενικό Θηλυκό, α:(αρσενικό Θηλυκό) } ή

5 Α 3b ={α: παντρεμένος.θηλυκό, α: παντρεμένος.( Αρσενικό Θηλυκό) παντρεμένος. Θηλυκό, α: Αρσενικό Θηλυκό, α:(αρσενικό Θηλυκό) } κανόνας- στο Α 3a Α 3aa ={α: παντρεμένος.θηλυκό, α:(αρσενικό Θηλυκό) } ή Α 3ab ={α: παντρεμένος.θηλυκό, α: Θηλυκό, α:(αρσενικό Θηλυκό) } κανόνας- στο Α 3aa Α 3aaa ={α: παντρεμένος.θηλυκό, α: } ή Α 3aab ={α: παντρεμένος.θηλυκό, α: Θηλυκό, α:(αρσενικό Θηλυκό)}. Στο σημείο αυτό παρατηρούμε ότι το Α 3aaa δεν περιέχει καμία αντίφαση και κανένας κανόνας tableaux δεν εφαρμόζεται σε αυτό. Άρα η βάση γνώσης μας δε συνεπάγεται λογικά το αξίωμα υπαγωγής. Ο λόγος για τον οποίο συμβαίνει αυτό μπορεί να εξαχθεί κοιτάζοντας το σώμα ισχυρισμών Α 3aaa. Παρατηρούμε ότι το α ανήκει στην έννοια α: Αρσενικό με άλλα λόγια το α είναι ένα άτομο το οποίο είναι παντρεμένο με κάποιο θηλυκό, λόγω του α: παντρεμένος.θηλυκό αλλά το α δεν είναι αρσενικό κάτι το οποίο είναι απαραίτητο ώστε το α να είναι Σύζυγος, με βάση τον ορισμό που έχουμε δώσει στην έννοια αυτή. 2) Για να ελέγξουμε εάν η Μαρία έχει νύφη ουσιαστικά πρέπει να ελέγξουμε τη λογική συνεπαγωγή T,Α Μαρία:Άνθρωπος έχειπαιδί.σύζυγος. Το πρόβλημα αυτό ανάγεται στο πρόβλημα μη-ικανοποιησιμότητας του σώματος ορολογίας Α {Μαρία: (Άνθρωπος έχειπαιδί.σύζυγος)} (το οποίο σε ΚΜΑ είναι το Α {Μαρία: Άνθρωπος έχειπαιδί. Σύζυγος}) μβτ T.

6 Αρχικοποιούμε το Tableaux Α={Μαρία:Θηλυκό Γονιός, Μαρία: Άνθρωπος έχειπαιδί. Σύζυγος, Πέτρος:Σύζυγος, (Μαρία,Πέτρος):έχειΠαιδί}. Εφαρμόζουμε Unfolding Α={Μαρία:Θηλυκό (Άνθρωπος έχειπαιδί.άνθρωπος έχειπαιδί.άνθρωπος), Μαρία: Άνθρωπος έχειπαιδί. Αρσενικό παντρεμένος. Άνρωπος παντρεμένο ς. Θηλυκό, Πέτρος:Αρσενικό παντρεμένος.άνθρωπος παντρεμένος.θηλυκό, (Μαρία,Πέτρος):έχειΠαιδί} Εφαρμόζουμε κανόνες expansion Λόγω του ( Αρσενικό Θηλυκό ) (Αρσενικό Θηλυκό ) έχουμε Α 1 ={Μαρία:Θηλυκό (Άνθρωπος έχειπαιδί.άνθρωπος έχειπαιδί.άνθρωπος), Μαρία: Άνθρωπος έχειπαιδί.( Αρσενικό παντρεμένος. Άνρωπος παντρεμέν ος. Θηλυκό), Πέτρος:Αρσενικό παντρεμένος.άνθρωπος παντρεμένος.θηλυκό, (Μαρία,Πέτρος):έχειΠαιδί, Μαρία:( Αρσενικό Θηλυκό ) (Αρσενικό Θηλυκό ) Πέτρος:( Αρσενικό Θηλυκό ) (Αρσενικό Θηλυκό )} κανόνας- τρεις φορές στον ισχυρισμό: Μαρία:Θηλυκό (Άνθρωπος έχειπαιδί.άνθρωπος έχειπαιδί.άνθρωπος) Α 2 ={Μαρία:Θηλυκό, Μαρία:Άνθρωπος, Μαρία: έχειπαιδί.άνθρωπος, Μαρία: έχειπαιδί.άνθρωπος, Μαρία: Άνθρωπος έχειπαιδί.( Αρσενικό παντρεμένος. Άνρωπος παντρεμέν ος. Θηλυκό), Πέτρος:Αρσενικό παντρεμένος.άνθρωπος παντρεμένος.θηλυκό, (Μαρία,Πέτρος):έχειΠαιδί, Μαρία:( Αρσενικό Θηλυκό ) (Αρσενικό Θηλυκό ) Πέτρος:( Αρσενικό Θηλυκό ) (Αρσενικό Θηλυκό )} κανόνας- στον ισχυρισμό: Μαρία: Άνθρωπος έχειπαιδί.( Αρσενικό παντρεμένος. Άνρωπος παντρεμέν ος. Θηλυκό) Α 3α =Α 2 {Μαρία: Άνθρωπος} ή

7 Α 3b =Α 2 {Μαρία: έχειπαιδί.( Αρσενικό παντρεμένος. Άνρωπος παντρεμένος. Θηλυκό} To Α 3α περιέχει αντίφαση καθώς {Μαρία: Άνθρωπος, Μαρία:Άνθρωπος} Α 3α. Συνεχίζουμε μόνο με το Α 3b. κανόνας- στον ισχυρισμό: Μαρία: έχειπαιδί.( Αρσενικό παντρεμένος. Άνρωπος παντρεμένος. Θηλυκό Α 4b =Α 3b {Πέτρος: Αρσενικό παντρεμένος. Άνρωπος παντρεμένος. Θηλυκό} κανόνας- δυο φορές στον ισχυρισμό: Πέτρος:Αρσενικό παντρεμένος.άνθρωπος παντρεμένος.θηλυκό Α 5b =Α 4b {Πέτρος:Αρσενικό, Πέτρος: παντρεμένος.άνθρωπος, Πέτρος: παντρεμένος.θηλυκό} κανόνας- δυο φορές στον ισχυρισμό: Πέτρος: Αρσενικό παντρεμένος. Άνρωπος παντρεμένος. Θηλυκό Α 6ab =Α 5b {Πέτρος: Αρσενικό}, Α 6bb =Α 5b {Πέτρος: παντρεμένος. Άνρωπος} Α 6cb =Α 5b {Πέτρος: παντρεμένος. Θηλυκό} To Α 6ab περιέχει αντίφαση καθώς {Πέτρος: Αρσενικό, Πέτρος:Αρσενικό} Α 6ab. Συνεχίζουμε μόνο με τα Α 6bb και Α 6cb. κανόνας- στον ισχυρισμό Πέτρος: παντρεμένος.άνθρωπος που βάλαμε στο Α 5b Α 7bb =Α 6bb {(Πέτρος,b):παντρεμένος, b:άνθρωπος} κανόνας- στον ισχυρισμό: Πέτρος: παντρεμένος. Άνθρωπος που εισάγαμε στο Α 6bb Α 8bb =Α 7bb {b: Άνθρωπος} To Α 8bb περιέχει αντίφαση καθώς {b: Άνθρωπος,b:Άνθρωπος} Α 8bb. Τελικά συνεχίζουμε μόνο με το Α 6cb. κανόνας- στον ισχυρισμό παντρεμένος. Θηλυκό που εισάγαμε στο Α 6cb Α 7cb =Α 6cb {(Πέτρος,b):παντρεμένος, b: Θηλυκό } κανόνας- στον ισχυρισμό: Πέτρος: παντρεμένος.θηλυκό που εισάγαμε στο Α 5b Α 8cb =Α 7cb {b:θηλυκό} To Α 8bb περιέχει αντίφαση καθώς {b: Θηλυκό, b:θηλυκό} Α 8bb. Τελικά συνεχίζουμε μόνο με το Α 6cb. Άρα όλες οι πιθανές επεκτάσεις θα οδηγήσουν σε αντίφαση. Καταλήγουμε, λοιπόν, ότι ο ισχυρισμός συνεπάγεται λογικά από το αρχικό μας σώμα ισχυρισμών με βάση το T.

Περιγραφικές Λογικές. Αλγόριθμοι αυτόματης εξαγωγής συμπερασμάτων. Γ. Στάμου

Περιγραφικές Λογικές. Αλγόριθμοι αυτόματης εξαγωγής συμπερασμάτων. Γ. Στάμου Περιγραφικές Λογικές Αλγόριθμοι αυτόματης εξαγωγής συμπερασμάτων Γ. Στάμου Παράδειγμα Πρόβλημα R.C R.D R.(C D)? Λύση R.C R.D ( R.(C D)) (αναγωγή στην ικανοποιησιμότητα) {a: R.C R.D ( R.(C D))} (αναγωγή

Διαβάστε περισσότερα

Περιγραφικές Λογικές. Αναπαράσταση γνώσης στο Σημασιολογικό Ιστό. Γ. Στάμου

Περιγραφικές Λογικές. Αναπαράσταση γνώσης στο Σημασιολογικό Ιστό. Γ. Στάμου Περιγραφικές Λογικές Αναπαράσταση γνώσης στο Σημασιολογικό Ιστό Γ. Στάμου Τυπικές γλώσσες και αναπαράσταση γνώσης Υπάρχει τυπικός (formal) (μαθηματικός) τρόπος για την καταγραφή της ανθρώπινης γνώσης;

Διαβάστε περισσότερα

Εισαγωγή στις Περιγραφικές Λογικές

Εισαγωγή στις Περιγραφικές Λογικές Εισαγωγή στις Περιγραφικές Λογικές Σύνταξη, Σημασιολογία και Αλγόριθμοι Συλλογιστικής Γιώργος Στοΐλος Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Εθνικό Μετσόβιο Πολυτεχνείο 1. Εισαγωγή Ένα από τα προβλήματα

Διαβάστε περισσότερα

Εισαγωγή στις Περιγραφικές Λογικές

Εισαγωγή στις Περιγραφικές Λογικές Εισαγωγή στις Περιγραφικές Λογικές Σύνταξη, Σημασιολογία και Αλγόριθμοι Συλλογιστικής Δρ. Γεώργιος Στοΐλος Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ, Εθνικό Μετσόβιο Πολυτεχνείο, Ζωγράφου, 15780,

Διαβάστε περισσότερα

Αυτόματη συλλογιστική σε οντολογίες

Αυτόματη συλλογιστική σε οντολογίες εφάλαιο 3 Αυτόματη συλλογιστική σε οντολογίες 3.1 Εισαγωγή Η οντολογική αναπαράσταση γνώσης δίνει τη δυνατότητα ρητής, τυπικής καταγραφής των ιδιοτήτων των αντικειμένων που επιθυμούμε να περιγράψουμε.

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Description Logics and Temporal Description Logics

Description Logics and Temporal Description Logics Description Logics and Temporal Description Logics ΑΤΕΙ ΚΡΗΤΗΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Εφαρμοσμένης Πληροφορικής και Πολυμέσων Πτυχιακή εργασία Του Αμανατίδη Δημητρίου Γεωργίου ΑΜ 2121 Επιβλέπων:

Διαβάστε περισσότερα

Σημασιολογική διαχείριση μεταδεδομένων πολιτιστικού περιεχομένου ΜΑΡΘΑΣ Μ. ΙΜΠΡΙΑΛΟΥ Επιβλέπων:

Σημασιολογική διαχείριση μεταδεδομένων πολιτιστικού περιεχομένου ΜΑΡΘΑΣ Μ. ΙΜΠΡΙΑΛΟΥ Επιβλέπων: Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών Σημασιολογική διαχείριση μεταδεδομένων πολιτιστικού περιεχομένου Διπλωματική

Διαβάστε περισσότερα

Οντολογίες και περιγραφικές λογικές

Οντολογίες και περιγραφικές λογικές εφάλαιο 2 Οντολογίες και περιγραφικές λογικές 2.1 Εισαγωγή Σε πολλές περιπτώσεις είναι χρήσιμη η αναπαράσταση της γνώσης με τη μορφή κατηγοριών αντικειμένων. εκινώντας από τον καθορισμό των αντικειμένων,

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα Αναφορά

Διαβάστε περισσότερα

Μάθημα: Δ3. Δίκτυα Γνώσης και Σημασιολογικός Ιστός. Διάλεξη 01 & 02. Δρ. Γεώργιος Χρ. Μακρής

Μάθημα: Δ3. Δίκτυα Γνώσης και Σημασιολογικός Ιστός. Διάλεξη 01 & 02. Δρ. Γεώργιος Χρ. Μακρής ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ στα ΠΟΛΥΠΛΟΚΑ ΣΥΣΤΗΜΑΤΑ και ΔΙΚΤΥΑ Μάθημα: Δ3. Δίκτυα Γνώσης και Σημασιολογικός Ιστός Χειμερινό Εξάμηνο Σπουδών Διάλεξη 01 & 02 Δρ. Γεώργιος Χρ. Μακρής Αναπαράσταση

Διαβάστε περισσότερα

Μάθημα: Δ3. Δίκτυα Γνώσης και Σημασιολογικός Ιστός. Διάλεξη 02 & 03. Δρ. Γεώργιος Χρ. Μακρής

Μάθημα: Δ3. Δίκτυα Γνώσης και Σημασιολογικός Ιστός. Διάλεξη 02 & 03. Δρ. Γεώργιος Χρ. Μακρής ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ στα ΔΙΚΤΥΑ και ΠΟΛΥΠΛΟΚΟΤΗΤΑ Μάθημα: Δ3. Δίκτυα Γνώσης και Σημασιολογικός Ιστός Χειμερινό Εξάμηνο Σπουδών Διάλεξη 02 & 03 Δρ. Γεώργιος Χρ. Μακρής Αναπαράσταση

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης 1. Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons

Διαβάστε περισσότερα

LÔseic Ask sewn sta Jemèlia twn Majhmatik n I

LÔseic Ask sewn sta Jemèlia twn Majhmatik n I LÔseic Ask sewn sta Jemèlia twn Majhmatik n I Rwmanìc-Diogènhc Maliki shc Tetˆrth, 6 OktwbrÐou 2010 Άσκηση 1. Για τυχόντα σύνολα A, B, C, D, να δειχθεί ότι (α ) A (B \ C) = ((A B) \ C) (A C). (β ) (A \

Διαβάστε περισσότερα

HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5

HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5 HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5 Α) ΘΕΩΡΙΑ Η Μορφολογική Παραγωγή ανήκει στα συστήματα παραγωγής, δηλαδή σε αυτά που παράγουν το συμπέρασμα με χρήση συντακτικών κανόνων λογισμού. Η

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60 Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Σημασιολογική Ταξινόμηση Δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του ΚΩΝΣΤΑΝΤΙΝΟΥ

Διαβάστε περισσότερα

Πρόταση. Αληθείς Προτάσεις

Πρόταση. Αληθείς Προτάσεις Βασικές έννοιες της Λογικής 1 Πρόταση Στην καθημερινή μας ομιλία χρησιμοποιούμε εκφράσεις όπως: P1: «Καλή σταδιοδρομία» P2: «Ο Όλυμπος είναι το ψηλότερο βουνό της Ελλάδας» P3: «Η Θάσος είναι το μεγαλύτερο

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Παρασκευή, 02/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar-18

Διαβάστε περισσότερα

ή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν.

ή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν. 93 4 Διαχωριστικά αξιώματα Στο κεφάλαιο αυτό εισάγουμε τα λεγόμενα διαχωριστικά αξιώματα και εξετάζουμε τις βασικές ιδιότητές τους. Ένα από αυτά το έχουμε ήδη εισαγάγει δηλαδή το αξίωμα Husdorff ( ορισμός

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1 Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ ΘΕΩΡΙΑ 1. Η συνεπαγωγή Η πρόταση P Q σηµαίνει ότι, όταν αληθεύει (ισχύει) ο ισχυρισµός P, θα αληθεύει (ισχύει) και o Q. Το σύµβολο διαβάζεται : άρα τότε συνεπάγεται.. Η ισοδυναµία

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ [Κεφ..6: Συνέπειες του Θεωρήματος της Μέσης Τιμής πλην της Ενότητας Μονοτονία Συνάρτησης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................

Διαβάστε περισσότερα

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4)

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι Παραδείγματα ( ο σετ) Διανυσματικοί Χώροι Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με y, V και του πολλαπλασιασμού:

Διαβάστε περισσότερα

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο

Διαβάστε περισσότερα

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Κανονικές Εκφράσεις (1.3) Τυπικός Ορισμός Ισοδυναμία με κανονικές γλώσσες Μη Κανονικές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 4: Μορφολογική Παραγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης

Διαβάστε περισσότερα

Παραδείγματα (2) Διανυσματικοί Χώροι

Παραδείγματα (2) Διανυσματικοί Χώροι Παραδείγματα () Διανυσματικοί Χώροι Παράδειγμα 7 Ελέγξτε αν τα ακόλουθα σύνολα διανυσμάτων είναι γραμμικά ανεξάρτητα ή όχι: α) v=(,4,6), v=(,,), v=(7,,) b) v=(,4), v=(,), v=(4,) ) v=(,,), v=(5,,), v=(5,,)

Διαβάστε περισσότερα

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014 Α Δ Ι Α - Φ 9 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Δευτέρα 13 Ιανουαρίου

Διαβάστε περισσότερα

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q Σημειώσεις του Μαθήματος Μ2422 Λογική Κώστας Σκανδάλης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2010 Εισαγωγή Η Λογική ασχολείται με τους νόμους ορθού συλλογισμού και μελετά τους κανόνες βάσει των οποίων

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Προτασιακή Λογική. Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος

Προτασιακή Λογική. Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος Προτασιακή Λογική (Propositional Logic) Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος - 2015 Λογική Λογική είναι οι κανόνες που διέπουν τη σκέψη. Η λογική αφορά τη μελέτη των διαδικασιών

Διαβάστε περισσότερα

Αντιστρεπτές και μη μεταβολές

Αντιστρεπτές και μη μεταβολές Αντιστρεπτές και μη μεταβολές Στην φύση όλες οι μεταβολές όταν γίνονται αυθόρμητα εξελίσσονται προς μία κατεύθυνση, αλλά όχι προς την αντίθετη, δηλ. δεν είναι αντιστρεπτές, π.χ. θερμότητα ρέει πάντα από

Διαβάστε περισσότερα

ILP-Feasibility conp

ILP-Feasibility conp Διάλεξη 19: 23.12.2014 Θεωρία Γραμμικού Προγραμματισμού Γραφέας: Χαρίλαος Τζόβας Διδάσκων: Σταύρος Κολλιόπουλος 19.1 Θεωρία Πολυπλοκότητας και προβλήματα απόφασης Για να μιλήσουμε για προβλήματα και τον

Διαβάστε περισσότερα

ΕΠΑΛΗΘΕΥΣΗ ΠΡΟΓΡΑΜΜΑΤΩΝ Ι

ΕΠΑΛΗΘΕΥΣΗ ΠΡΟΓΡΑΜΜΑΤΩΝ Ι ΕΠΑΛΗΘΕΥΣΗ ΠΡΟΓΡΑΜΜΑΤΩΝ Ι Η τυπική επαλήθευση βάση μοντέλου είναι κατάλληλη για συστήματα επικοινωνούντων διεργασιών (π.χ. κατανεμημένα συστήματα) όπου το βασικό πρόβλημα είναι ο έλεγχος αλλά γενικά δεν

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις

Διαβάστε περισσότερα

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1 Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα

Διαβάστε περισσότερα

Ανάλυση της Ορθότητας Προγραμμάτων

Ανάλυση της Ορθότητας Προγραμμάτων Ανάλυση της Ορθότητας Προγραμμάτων Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες Απόδειξης Μερικής

Διαβάστε περισσότερα

Ενσωμάτωση Μεθόδων Αναπαράστασης Γνώσης και Τεχνικών Μηχανικής Μάθησης σε Νέες Αρχιτεκτονικές Ταξινόμησης Πληροφοριών ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ενσωμάτωση Μεθόδων Αναπαράστασης Γνώσης και Τεχνικών Μηχανικής Μάθησης σε Νέες Αρχιτεκτονικές Ταξινόμησης Πληροφοριών ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Ενσωμάτωση Μεθόδων Αναπαράστασης Γνώσης και Τεχνικών Μηχανικής Μάθησης

Διαβάστε περισσότερα

Ανάλυση της Ορθότητας Προγραμμάτων

Ανάλυση της Ορθότητας Προγραμμάτων Ανάλυση της Ορθότητας Προγραμμάτων Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων ΚανόνεςΑπόδειξηςΜερικήςΟρθότητας

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai018/lai018html Παρασκευή 3 Νοεµβρίου 018 Ασκηση

Διαβάστε περισσότερα

ΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017

ΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017 ΜΑΣ: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο 07-08, Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: ώρες 8 Νοεμβρίου, 07 Δίνονται 4 προβλήματα που αντιστοιχούν σε 0 μονάδες με άριστα το 00! ΟΝΟΜΑ: Αρ.

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai8/lai8html Παρασκευή 6 Οκτωβρίου 8 Υπενθυµίζουµε

Διαβάστε περισσότερα

Υποδ: Χρησιμοποιήστε τον ορισμό της λογικής συνεπαγωγής (λογικής κάλυψης).

Υποδ: Χρησιμοποιήστε τον ορισμό της λογικής συνεπαγωγής (λογικής κάλυψης). Κανόνας Ανάλυσης 1 Μυθικός Αθάνατος 3 Μυθικός Θηλαστικό ------------------------------ 7 Αθάνατος Θηλαστικό 4 Αθάνατος έχεικέρας -------------------------------- 8 Θηλαστικό έχεικέρας 5 Θηλαστικό έχεικέρας

Διαβάστε περισσότερα

Έχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν

Έχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν 3 4.3 Τελείως κανονικοί χώροι ( ). 3 2 Έχοντας υπόψιν το Λήμμα του Urysoh, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν κανονικός χώρος, x και κλειστό ώστε x. Υπάρχει τότε συνεχής συνάρτηση f :, ώστε

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

x < A y f(x) < B f(y).

x < A y f(x) < B f(y). Χειμερινό Εξάμηνο 2016 2017 Ασκήσεις στα Κεφάλαια 5 & 6 1. Αυτή είναι ουσιαστικά η Άσκηση 5.2 (σελ. 119), από τις σημειώσεις του Σκανδάλη. Εστω A, < καλά διατεταγμένο σύνολο και έστω στοιχείο a A. Αποδείξτε

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 26: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή

Κβαντική Φυσική Ι. Ενότητα 26: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή Κβαντική Φυσική Ι Ενότητα 6: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει

Διαβάστε περισσότερα

Φροντιστήριο 7 Λύσεις

Φροντιστήριο 7 Λύσεις Άσκηση 1 Θεωρείστε το πιο κάτω αυτόματο στοίβας: Φροντιστήριο 7 Λύσεις (α) Να εξηγήσετε με λόγια ποια γλώσσα αναγνωρίζεται από το αυτόματο. (β) Να δώσετε τον τυπικό ορισμό του αυτομάτου. (γ) Να δείξετε

Διαβάστε περισσότερα

Ψηφιακά Συστήματα. 4. Άλγεβρα Boole & Τεχνικές Σχεδίασης Λογικών Κυκλωμάτων

Ψηφιακά Συστήματα. 4. Άλγεβρα Boole & Τεχνικές Σχεδίασης Λογικών Κυκλωμάτων Ψηφιακά Συστήματα 4. Άλγεβρα Boole & Τεχνικές Σχεδίασης Λογικών Κυκλωμάτων Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016.

Διαβάστε περισσότερα

a n = 3 n a n+1 = 3 a n, a 0 = 1

a n = 3 n a n+1 = 3 a n, a 0 = 1 Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 O πιο κάτω συλλογισμός (αποτελεί μικρή παραλλαγή συλλογισμού που) αποδίδεται στον Samuel Clarke και προέρχεται από την εργασία του Demonstration of the Being and Attributes

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Λύσεις Άσκηση 1 [30 μονάδες] Να αποδείξετε τα πιο κάτω λογικά επακόλουθα χρησιμοποιώντας τα συστήματα

Διαβάστε περισσότερα

Κατηγορία 1 η. Σταθερή συνάρτηση Δίνεται παραγωγίσιμη συνάρτηση f : 0, f '( x) 0 για κάθε εσωτερικό σημείο x του Δ

Κατηγορία 1 η. Σταθερή συνάρτηση Δίνεται παραγωγίσιμη συνάρτηση f : 0, f '( x) 0 για κάθε εσωτερικό σημείο x του Δ Κατηγορία η Σταθερή συνάρτηση Τρόπος αντιμετώπισης: Για να αποδείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ πρέπει: η συνάρτηση να είναι συνεχής στο Δ '( ) 0 για κάθε εσωτερικό σημείο του

Διαβάστε περισσότερα

Προτάσεις. Εισαγωγή στις βασικές έννοιες των Μαθηματικών. Ποιες είναι προτάσεις; Προτάσεις 6/11/ ο Μάθημα Μαθηματική Λογική (επανάληψη)

Προτάσεις. Εισαγωγή στις βασικές έννοιες των Μαθηματικών. Ποιες είναι προτάσεις; Προτάσεις 6/11/ ο Μάθημα Μαθηματική Λογική (επανάληψη) Εισαγωγή στις βασικές έννοιες των Μαθηματικών 5 ο Μάθημα Μαθηματική Λογική (επανάληψη) Προτάσεις Η πρόταση είναι μια γλωσσική ενότητα, η οποία εκφράζει κάποιο νόημα. Παραδείγματα: Η Μαρία σχεδιάζει ένα

Διαβάστε περισσότερα

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle.

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle. Κατηγορία η Συνθήκες θεωρήματος Rolle Τρόπος αντιμετώπισης:. Για να ισχύει το θεώρημα Rolle για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ) πρέπει:

Διαβάστε περισσότερα

Λογικός Προγραμματισμός

Λογικός Προγραμματισμός Λογικός Προγραμματισμός Αναπαράσταση γνώσης: Λογικό Σύστημα. Μηχανισμός επεξεργασίας γνώσης: εξαγωγή συμπεράσματος. Υπολογισμός: Απόδειξη θεωρήματος (το συμπέρασμα ενδιαφέροντος) από αξιώματα (γνώση).

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Αλφάβητα, Γλώσσες, Κανονικές Εκφράσεις

Θεωρία Υπολογισμού Αλφάβητα, Γλώσσες, Κανονικές Εκφράσεις 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 6 : Αλφάβητα, Γλώσσες, Κανονικές Εκφράσεις Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο Τμήμα Μηχανικών

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, 5-10-13 Μ. Παπαδημητράκης. 1 Τώρα θα μιλήσουμε για την έννοια της περιοχής, η οποία έχει κεντρικό ρόλο στη μελέτη της έννοιας του ορίου (ακολουθίας και συνάρτησης). Αν > 0, ονομάζουμε

Διαβάστε περισσότερα

Aναπαράσταση Γνώσης στο Σημασιολογικό Ιστό

Aναπαράσταση Γνώσης στο Σημασιολογικό Ιστό Aναπαράσταση Γνώσης στο Σημασιολογικό Ιστό Οι γλώσσες RDF(S) και OWL Γ. Στάμου Περιγραφή Μεταδεδομένων με την RDF Η RDF χρησιμοποιείται για την απλή περιγραφή πόρων (resources) του διαδικτύου o Περιγράφει

Διαβάστε περισσότερα

Άλγεβρες Διεργασιών και Σχέσεις Ισοδυναμίας

Άλγεβρες Διεργασιών και Σχέσεις Ισοδυναμίας Άλγεβρες Διεργασιών και Σχέσεις Ισοδυναμίας Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Σχέσεις ισοδυναμίας trce equivlence filure equivlence strong isimultion wek isimultion ΕΠΛ 664 Ανάλυση και Επαλήθευση

Διαβάστε περισσότερα

Άσκησηη 1. (α) Το αυτόματο. (γ) Να δείξετε όλα aabbb. Λύση. λέξεις. αυτόματο. (β) Τυπικά. μεταβάσεων δ. ορίζεται. (γ) Θα δείξουμε τα.

Άσκησηη 1. (α) Το αυτόματο. (γ) Να δείξετε όλα aabbb. Λύση. λέξεις. αυτόματο. (β) Τυπικά. μεταβάσεων δ. ορίζεται. (γ) Θα δείξουμε τα. ΕΠΛ211: : Θεωρία Υπολογισμού και Πολυπλοκότητα Φροντιστήριο 7 Λύσεις Άσκησηη 1 Θεωρήστε το πιο κάτω αυτόματο στοίβας: (α) Να εξηγήσετε με λόγια ποια γλώσσαα αναγνωρίζεται από τοο αυτόματο. (β) Να δώσετε

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

f : G G G = 7 12 = 5 / N. x 2 +1 (x y) z = (x+y+xy) z = x+y+xy+z+(x+y+xy)z = x+y+z+xy+yz+xz+xyz.

f : G G G = 7 12 = 5 / N. x 2 +1 (x y) z = (x+y+xy) z = x+y+xy+z+(x+y+xy)z = x+y+z+xy+yz+xz+xyz. Σ.Παπαδόπουλος 1 1 Βασικές έννοιες ομάδας Εστω G ένα σύνολο με G. Μία πράξη στο G είναι μία συνάρτηση f : G G G. Αντί f(x, y) γράφουμε x y και αν δεν υπάρχει περίπτωση σύγχυσης xy. Είναι φανερό ότι σε

Διαβάστε περισσότερα

Υπολογιστική Λογική και Λογικός Προγραμματισμός

Υπολογιστική Λογική και Λογικός Προγραμματισμός ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Υπολογιστική Λογική και Λογικός Προγραμματισμός Ενότητα 2: Λογική: Εισαγωγή, Προτασιακή Λογική. Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες

Διαβάστε περισσότερα

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#% " #$%& '($) *#+,),# - '($) # -, '$% %#$($) # - '& %#$0##% % '$% %#$0##% % '1*2)$ '#%3$-0 4 '$%3#-#, '1*2)$ '#%3$-0 4 @ @ @

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

x 2 + y 2 = z 2 x = 3, y = 4, z = 5 x 2 + y 2 = z 2 (2.1)

x 2 + y 2 = z 2 x = 3, y = 4, z = 5 x 2 + y 2 = z 2 (2.1) Πυθαγόρειες Τριάδες Χριστίνα Ιατράκη Ημερομηνία παράδοσης -10-014 1 Εισαγωγικά Ορισμός 1.1 Πυθαγόρεια τριάδα καλείται κάθε τριάδα ακέραιων (x, y, z) που είναι μη τετριμμένη λύση της εξίσωσης Μια τέτοια

Διαβάστε περισσότερα

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 3. Σύντομες Λύσεις

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 3. Σύντομες Λύσεις Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων Γ. Καραγιώργος ykarag@aegean.gr Quiz Σύντομες Λύσεις Άσκηση. Δείξτε ότι η απεικόνιση u, v = u v + 5u v, όπου u = (u, u ), v = (v, v ),

Διαβάστε περισσότερα

Μαθηματική Λογική (προπτυχιακό) Εξέταση Ιανουαρίου 2018 Σελ. 1 από 5

Μαθηματική Λογική (προπτυχιακό) Εξέταση Ιανουαρίου 2018 Σελ. 1 από 5 Μαθηματική Λογική (προπτυχιακό) Εξέταση Ιανουαρίου 2018 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 4. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Α 2 Άλγεβρα

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G 1, G 2 οι G 1 και G 2 είναι δύο CFG που παράγουν μια κοινή λέξη μήκους 144 } (β) { D,k το D είναι ένα DFA

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

HY Λογική Διδάσκων: Δ. Πλεξουσάκης

HY Λογική Διδάσκων: Δ. Πλεξουσάκης HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο,

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων

Αρχεία και Βάσεις Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 12η: Συναρτησιακές Εξαρτήσεις - Αξιώματα Armstrong Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Συναρτησιακές Εξαρτήσεις

Διαβάστε περισσότερα

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος 73 3. Συμπαγείς χώροι 3. Συμπαγείς χώροι και βασικές ιδιότητες Οι συμπαγείς χώροι είναι μια από τις πιο σημαντικές κλάσεις τοπολογικών χώρων. Η κλάση των συμπαγών χώρων περιλαμβάνει τα κλειστά διαστήματα,b

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF

Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF 2 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2018 Κρεατσούλας

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Σειρά Προβλημάτων 4 Λύσεις Άσκηση Θεωρήστε τις πιο κάτω διεργασίες: A....A B....B.... P ( A B \{ P ( A A \{,,, },,, } (α Να κτίσετε τα συστήματα μεταβάσεων που αντιστοιχούν στις διεργασίες P, Ρ. Ακολουθούν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Σάββατο, 15 Μαρτίου 2014 Διάρκεια : 9.30 11.30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:

Διαβάστε περισσότερα

B = {x A : f(x) = 1}.

B = {x A : f(x) = 1}. Θεωρία Συνόλων Χειμερινό Εξάμηνο 016 017 Λύσεις 1. Χρησιμοποιώντας την Αρχή του Περιστερώνα για τους φυσικούς αριθμούς, δείξτε ότι για κάθε πεπερασμένο σύνολο A και για κάθε f : A A, αν η f είναι 1-1 τότε

Διαβάστε περισσότερα

Αντιστρεπτές και μη μεταβολές

Αντιστρεπτές και μη μεταβολές Αντιστρεπτές και μη μεταβολές Στην φύση όλες οι μεταβολές όταν γίνονται αυθόρμητα εξελίσσονται προς μία κατεύθυνση, αλλά όχι προς την αντίθετη, θερμότητα ρέει πάντα από θερμό σε ψυχρό σώμα Ένα αέριο καταλαμβάνει

Διαβάστε περισσότερα

Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF

Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες

Διαβάστε περισσότερα

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή ) Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων Λύσεις Άσκηση Έστω αλφάβητο Σ και γλώσσες Α, Β επί του αλφάβητου αυτού. Για κάθε μια από τις πιο κάτω περιπτώσεις να διερευνήσετε κατά πόσο Γ Δ, ή, Δ Γ, ή και τα δύο. Σε περίπτωση, που

Διαβάστε περισσότερα

καλών σχεσιακών σχημάτων

καλών σχεσιακών σχημάτων Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Λογικός Σχεδιασμός Σχεσιακών Σχημάτων Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης (γενική μεθοδολογία) Επιθυμητές Ιδιότητες

Διαβάστε περισσότερα

Ψηφιακή Σχεδίαση Εργαστήριο Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

Ψηφιακή Σχεδίαση Εργαστήριο Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Ψηφιακή Σχεδίαση Εργαστήριο Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2015-2016 Άλγεβρα Boole (Boolean Algebra) Βασικοί ορισμοί Η άλγεβρα Boole μπορεί να οριστεί

Διαβάστε περισσότερα

Επιμέλεια:xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 8ο ΑΣΚΗΣΕΙΣ 701-800 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς Τσιφάκης

Διαβάστε περισσότερα

Επανάληψη. ΗΥ-180 Spring 2019

Επανάληψη. ΗΥ-180 Spring 2019 Επανάληψη Έχουμε δει μέχρι τώρα 3 μεθόδους αποδείξεων του Προτασιακού Λογισμού: Μέσω πίνακα αληθείας για τις υποθέσεις και το συμπέρασμα, όπου ελέγχουμε αν υπάρχουν ερμηνείες που ικανοποιούν τις υποθέσεις

Διαβάστε περισσότερα

, για κάθε n N. και P είναι αριθμήσιμα.

, για κάθε n N. και P είναι αριθμήσιμα. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ Διδάσκοντες: Δ.Φωτάκης Θ. Σούλιου η Γραπτή Εργασία Ημ/νια παράδοσης 5/4/8 Θέμα (Διαδικασίες Απαρίθμησης.

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα