Tehnici de Optimizare

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Tehnici de Optimizare"

Transcript

1 Tehnici de Optimizare Cristian OARA Facultatea de Automatica si Calculatoare Universitatea Politehnica Bucuresti Fax: URL: Tehnici de Optimizare - Capitolul 7

2 Capitolul 7: MINIMIZARE CU CONSTRANGERI PRINCIPII GENERALE ALE ALGORITMILOR Introducere Metode Primale Metoda de Penalizare si Bariera Metode Duale si de Plan Secant Metode de Tip Lagrange CAPITOLUL 7: Principii Generale ale Algoritmilor cu Constrangeri 1

3 1. Introducere In acest capitol vom da o descriere foarte sumara a principiilor ce guverneaza algoritmii in cazul optimizarilor cu constrangeri. In general, problema de optimizare cu constrangeri este intotdeauna redusa la una fara constrangeri, cea din urma rezolvandu-se printr-o modificare oarecare a unuia dintre algoritmii cunoscuti. Cele patru clase de metode amintite mai sus corespund unei scheme de clasificare ce are in vedere multimea pe care se face efectiv cautarea minimului. Consideram o problema de minimizare a unei functii de n variabile si avand m constrangeri. Exista diverse metode de rezolvare a acestei probleme ce lucreaza in spatii de dimensiune n m, n, m sau n + m. Aceste patru clase de metode isi au fundamentul in diverse parti ale teoriei prezentate in capitolul anterior. In orice caz, exista puternice interconexiuni intre diversele metode atat in forma finala in care se implementeaza algoritmul cat si in performantele specifice. De exemplu, rata de convergenta a algoritmilor cei mai mai buni dpdv practic este determinata de structura Hessianului Lagrangianului intocmai precum structura Hessianului functiei obiectiv determina rata de convergenta in multe metode pentru probleme fara constrangeri. Pe scurt, cu toate ca diversii algoritmi difera substantial in motivatie, in final sunt guvernati de un set comun de principii. CAPITOLUL 7: Principii Generale ale Algoritmilor cu Constrangeri 2 Introducere

4 2. Metode Primale Consideram problema min f(x), cu h(x) = 0, g(x) 0, unde x este de dimensiune n, in timp ce f, g si h au dimensiunile egale cu 1, p si m. Metodele primale rezolva problema prin minimizarea lui f in regiunea din R n definita de constrangeri. O metoda primala este o metoda de cautare care actioneaza direct pe functia originala cautand solutia optimala intr o regiune fezabila. Fiecare punct curent este fezabil iar valoarea functiei obiectiv descreste continuu. Pentru o problema cu n variabile si avand m constrangeri de tip egalitate, metodele primale actioneaza in spatiul fezabil care are dimensiune n m. Avantajele principale: Fiecare punct generat de metoda este fezabil. Prin urmare, punctul final (la care se termina cautarea) este fezabil si probabil aproape optimal reprezentand prin urmare o solutie acceptabila a problemei practice ce a motivat programarea neliniara; CAPITOLUL 7: Principii Generale ale Algoritmilor cu Constrangeri 3 Metode Primale

5 Cel mai adesea, se poate garanta ca daca metoda genereaza un sir convergent atunci punctul limita al sirului este cel putin un minim local cu constrangeri. Mai precis, convergenta globala este cel mai adesea satisfacatoare pentru aceste metode; Cele mai multe dintre metodele din aceasta clasa nu se bazeaza pe structura particulara a problemei, precum ar fi convexitatea, si prin urmare sunt aplicabile problemelor generale de programare neliniara. Dezavantaje majore: Aceste metode necesita o procedura preliminara pentru a obtine un punct fezabil initial; Apar dificultati majore de calcul intrucat trebuie sa ramanem permanent in regiunea fezabila; Anumite metode pot sa nu convearga daca nu sunt luate anumite precautii speciale. Concluzii: Ratele de convergenta sunt relativ bune si pentru constrangeri liniare metodele primale sunt dintre cele mai eficiente. Mai mult, sunt simple si general aplicabile. Exista doua clase de metode primale: Metode de directii fezabile Metode de constrangeri active CAPITOLUL 7: Principii Generale ale Algoritmilor cu Constrangeri 4 Metode Primale

6 Metode de directii fezabile Ideea este ca respectiva cautare sa fie facuta intr-o regiune fezabila de forma x k+1 = x k + α k d k, unde d k este o directie si α k un scalar nenegativ. Scalarul se alege a.i. sa minimizeze functia obiectiv f cu restrictia ca punctul x k+1 si segmentul de dreapta ce uneste x k si x k+1 sa fie fezabile. Prin urmare, un intreg segment x k + αd k, α > 0, trebuie sa fie continut in regiunea fezabila. Deci fiecare pas este o compunere de doi subpasi: Se alege o directie fezabila Se executa o cautare unidimensionala cu constrangeri Dezavantaje: Pentru probleme generale este posibil sa nu existe nici o directie fezabila. Prin urmare trebuie sau sa relaxam cerinta de fezabilitate permitand ca punctele de cautare sa poata devia usor de la suprafata determinata de constrangeri sau sa introducem deplasari de alungul unor curbe pe suprafata determinata de constrangeri; In forma lor pura majoritatea metodelor de directii fezabile nu sunt global convergente; CAPITOLUL 7: Principii Generale ale Algoritmilor cu Constrangeri 5 Metode Primale

7 Metode de Constrangeri Active Ideea centrala a acestor metode este sa impartim constrangerile de tip inegalitate in doua grupe: unele tratate drept constrangeri active iar altele care sunt tratate drept inactive. Cele inactive sunt ignorate! La fiecare pas al unui algoritm se defineste o multime de constrangeri numite multimea curenta (sau de lucru) si care sunt tratate drept active. Multimea de lucru este intotdeauna o submultime a constrangerilor active in punctul curent. Prin urmare punctul curent este fezabil pentru multimea de lucru. Algoritmul se deplaseaza pe suprafata definita de multimea de lucru spre un punct mai apropiat de solutie. In noul punct multimea de lucru se poate schimba. Deci metoda constrangerilor active consta in urmatoarele etape: Determinarea unei multimi de lucru curente care este o submultime a constrangerilor active ; Deplasarea pe suprafata definita de multimea de lucru curenta spre un punct superior (calitativ); Directia de deplasare este in general determinata de aproximarile de odinul intai si ordinul doi ale functiilor in punctul curent intr-un mod asemanator ca pentru cazul neconstrans. CAPITOLUL 7: Principii Generale ale Algoritmilor cu Constrangeri 6 Metode Primale

8 3. Metode de Penalizare si Bariera Acestea sunt proceduri care aproximeaza problemele de optimizare cu constrangeri prin probleme fara constrangeri. Pentru metodele de penalizare aproximarea este realizata prin adaugarea la functia obiectiv a unui termen ce are o valoare mare atunci cand constrangerile sunt violate. Pentru metodele de bariera se adauga un termen ce favorizeaza punctele interioare regiunii fezabile in raport cu cele de pe frontiera. In aceste metode intervine un parametru c care determina severitatea penalizarii sau barierei si indica gradul in care problema neconstransa aproximeaza problema originala constransa. Cand c aproximarea devine din ce in ce mai exacta si exista si anumite functii de penalizare care dau solutii exacte pentru valori finite ale parametrului. Pentru o problema cu n variabile si m constrangeri, metodele de penalizare si bariera actioneaza direct in spatiul n dimensional al variabilelor. Exista doua chestiuni fundamentale care trebuie considerate: Cat de bine aproximeaza problema neconstransa problema originala. Mai precis, trebuie vazut daca pe masura ce c este crescut spre infinit solutia problemei neconstranse converge la solutia problemei originale constranse. CAPITOLUL 7: Principii Generale ale Algoritmilor cu Constrangeri 7 Metode de Penalizare si Bariera

9 Cum poate fi rezolvata o problema neconstransa atunci cand functia obiectiv contine un termen de penalizare sau bariera; analizand acest fenomen rezulta ca pe masura ce c este crescut (pentru a obtine o buna aproximare), structura corespunzatoare a problemei neconstranse devine progresiv mai nefavorabila incetinind prin urmare rata de convergenta. Prin urmare, trebuie sa deducem proceduri de accelerare pentru a evita aceasta convergenta lenta. Metode de Penalizare Consideram problema minimizeaza f(x) (1) unde x S unde f este continua in R n si S este o multime in R n. In majoritatea aplicatiilor S este definita implicit printr-un numar de constrangeri functionale dar aici putem considera direct cazul general. Ideea metodei de penalizare este sa inlocuim problema (1) cu o problema neconstransa de forma minimizeaza f(x) + cp (x) (2) unde c este o constanta pozitiva si P este o functie definita pe R n care satisface: (i) P este continua; (ii) P (x) 0, x R n ; (iii) P (x) = 0 daca si numai daca x S. Procedura pentru rezolvarea problemei (1) prin metoda de penalizare este urmatoarea: Fie {c k }, k = 1, 2,... un sir care tinde la infinit astfel incat pentru fiecare k, c k 0, c k+1 > c k. CAPITOLUL 7: Principii Generale ale Algoritmilor cu Constrangeri 8 Metode de Penalizare si Bariera

10 Definim functia q(c, x) := f(x) + cp (x). Pentru fiecare k rezolvam problema minimizeaza q(c k, x) (3) obtinand o solutie x k. In general, presupunem ca pentru fiecare k problema (3) are o solutie. Aceasta este adevarat in particular atunci cand q(c, x) creste nemarginit pentru x. Metode de Bariera Metodele de bariera sunt aplicabile problemelor de forma unde minimizeaza f(x) x S (4) unde S are un interior nevid care este oricat de aproape de orice punct al lui S. Intuitiv, aceasta inseamna ca multimea are un interior si este posibil sa ajungem la orice punct de frontiera cu puncte din interior. O astfel de multime se numeste robusta. Metodele de bariera stabilesc o bariera pe frontiera multimii fezabile care impiedica procedura de cautare sa paraseasca multimea. O functie bariera este o functie B definita pe interiorul lui S CAPITOLUL 7: Principii Generale ale Algoritmilor cu Constrangeri 9 Metode de Penalizare si Bariera

11 astfel incat (i) B este continua; (ii) B(x) 0; (iii) B(x) pe masura ce x se apropie de frontiera lui S. Corespunzator problemei (4) consideram problema aproximativa unde minimizeaza f(x) + 1 c B(x) x interiorul lui S (5) unde c este o constanta pozitiva. Aceasta problema este oarecum mai complicata decat problema originala dar poate fi rezolvata printr-o metoda de cautare fara constrangeri. Pentru a gasi solutia pornim cu un punct initial interior si folosim ulterior metoda celei mai abrupte pante sau alta procedura de cautare iterativa pentru probleme neconstranse. Deorece valoarea functiei tinde la infinit in apropierea frontierei lui S, procedura de cautare va ramane automat in interiorul lui S si nu mai trebuie sa tinem seama explicit de constrangere. Astfel, cu toate ca problema (5) este din punct de vedere formal o problema constransa, din punct de vedere procedural este neconstransa. Metoda lucreaza in modul urmator: Fie c k un sir care tinde la infinit astfel incat pentru orice k, k = 1, 2,..., c k 0, c k+1 > c k. Definim functia r(c, x) = f(x) + 1 c B(x). CAPITOLUL 7: Principii Generale ale Algoritmilor cu Constrangeri 10 Metode de Penalizare si Bariera

12 Pentru fiecare k rezolvam problema unde minimizeaza r(c k, x) x interiorul lui S si obtinem punctul x k. Pentru metodele de penalizare si bariera avem urmatorul rezultat: Teorema 1. Orice punct limita al unui sir generat de metoda de penalizare sau bariera este o solutie a problemei originale (1). CAPITOLUL 7: Principii Generale ale Algoritmilor cu Constrangeri 11 Metode de Penalizare si Bariera

13 4. Metode Duale si de Plan Secant Metodele Duale sunt bazate pe faptul ca multiplicatorii Lagrange sunt necunoscutele fundamentale asociate cu problema constransa; indata ce acesti multiplicatori sunt determinati, gasirea punctelor solutie este simpla (cel putin in anumite cazuri particulare). Tehnicile duale nu abordeaza problema originala constransa in mod direct ci abordeaza o asa numita problema duala ale carei necunoscute sunt multiplicatorii Lagrange ai primei probleme. Pentru o functie obiectiv cu n variabile si m constrangeri de tip egalitate metodele duale fac cautarea in spatiul m dimensional al multiplicatorilor Lagrange. Metodele de plan secant determina o serie de programe liniare din ce in ce mai bune a caror solutie converge la solutia problemei originale. Aceste metode sunt adesea foarte usor de implementat dar teoria asociata lor nu este foarte bine dezvoltata si proprietatile lor de convergenta nu sunt foarte atractive. CAPITOLUL 7: Principii Generale ale Algoritmilor cu Constrangeri 12 Metode Duale si de Plan Secant

14 5. Metode Lagrange Aceste metode sunt bazate pe rezolvarea directa a conditiilor necesare de ordinul intai de tip Lagrange. Pentru probleme cu constrangeri de tip egalitate minimizeaza f(x) cu h(x) = 0 unde x este n dimensional si h(x) este m dimensional, aceasta abordare conduce la rezolvarea unui sistem de ecuatii f(x) + λ T h(x) = 0, h(x) = 0, in necunoscutele x si λ. Multimea conditiilor necesare este un sistem de n + m ecuatii in n + m necunoscute (componentele lui x si λ). Aceste metode lucreaza intr-un spatiu (n+m) dimensional. CAPITOLUL 7: Principii Generale ale Algoritmilor cu Constrangeri 13 Metode Lagrange

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Algoritmi genetici. 1.1 Generalităţi

Algoritmi genetici. 1.1 Generalităţi 1.1 Generalităţi Algoritmii genetici fac parte din categoria algoritmilor de calcul evoluţionist şi sunt inspiraţi de teoria lui Darwin asupra evoluţiei. Idea calculului evoluţionist a fost introdusă în

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Puncte de extrem pentru funcţii reale de mai multe variabile reale.

Puncte de extrem pentru funcţii reale de mai multe variabile reale. Puncte de extrem pentru funcţii reale de mai multe variabile reale. Definiţie. Fie f : A R n R. i) Un punct a A se numeşte punct de extrem local pentru f dacă diferenţa f(x) f păstrează semn constant pe

Διαβάστε περισσότερα

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Metode de Optimizare Numerică Culegere de probleme

Metode de Optimizare Numerică Culegere de probleme Metode de Optimizare Numerică Culegere de probleme Ion Necoară Dragoş Clipici Andrei Pătraşcu Departamentul de Automatică şi Ingineria Sistemelor Universitatea Politehnică din Bucureşti Email: {ion.necoara,dragos.clipici,andrei.patrascu}@acse.pub.ro

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

CURS 8: METODE DE OPTIMIZARE PARAMETRICĂ

CURS 8: METODE DE OPTIMIZARE PARAMETRICĂ CURS 8: METODE DE OPTIMIZARE PARAMETRICĂ Problemele de optimizare vizează extremizarea (maximizarea sau minimizarea) unui criteriu de performanţă. Acesta din urmă poate fi o funcţie caz în care este vorba

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

Ecuaţii diferenţiale de ordinul întâi rezolvabile prin metode elementare

Ecuaţii diferenţiale de ordinul întâi rezolvabile prin metode elementare Capitolul 1 Ecuaţii diferenţiale de ordinul întâi rezolvabile prin metode elementare Definiţia 1.0.1 O ecuaţie diferenţialǎ de ordinul întâi este o relaţie de dependenţǎ funcţionalǎ de forma g(t, x, ẋ)

Διαβάστε περισσότερα

Metode de optimizare

Metode de optimizare Metode de optimizare numerică Ion Necoară Departamentul de Automatică şi Ingineria Sistemelor Universitatea Politehnica din Bucureşti Email: ion.necoara@acse.pub.ro 2013 Prefaţă Lucrarea de faţă este

Διαβάστε περισσότερα

Probleme pentru clasa a XI-a

Probleme pentru clasa a XI-a Probleme pentru clasa a XI-a 1 ( ) 01. Fie A si B doua matrici de ordin n cu elemente numere reale, care satisfac relatia AB = A + B. a) Sa se arate ca det(a 2 + B 2 ) 0. b) Sa se arate ca rang A + B =

Διαβάστε περισσότερα

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri Generarea şi ordonarea permutărilor. Principiul porumbeilor. Principiul incluziunii si excluziunii Recapitulare din cursul trecut Presupunem că A este o mulţime cu n elemente. Recapitulare din cursul trecut

Διαβάστε περισσότερα

Capitolul 2. Integrala stochastică

Capitolul 2. Integrala stochastică Capitolul 2 Integrala stochastică 5 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 51 2.1 Introducere În acest capitol vom prezenta construcţia integralei stochastice Itô H sdm s, unde M s este o martingală locală

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

Fie I R un interval deschis, G R n, n 1, un domeniu şi f : I G R n. Forma generala a unei ecuaţii diferenţiale de ordinul întâi este: = f(x, y).

Fie I R un interval deschis, G R n, n 1, un domeniu şi f : I G R n. Forma generala a unei ecuaţii diferenţiale de ordinul întâi este: = f(x, y). Ecuaţii diferenţiale Ecuaţii diferenţiale ordinare Ecuaţii cu derivate parţiale Ordinul unei ecuaţii Soluţia unei ecuaţii diferenţiale ordinare Fie I R un interval deschis, G R n, n 1, un domeniu şi f

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare

Διαβάστε περισσότερα

1 Serii numerice Definiţii. Exemple... 45

1 Serii numerice Definiţii. Exemple... 45 Analizǎ matematicǎ Chiş Codruţa 2 Cuprins 1 Serii numerice 5 1.1 Definiţii. Exemple....................... 5 1.2 Criterii de convergenţǎ pentru serii cu termeni pozitivi... 8 1.3 Criterii de convergenţǎ

Διαβάστε περισσότερα

Transformata Laplace

Transformata Laplace Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. NOŢIUNI GENERALE. TEOREMA DE EXISTENŢĂ ŞI UNICITATE Pri ecuaţia difereţială de ordiul îtâi îţelegem o ecuaţie de forma: F,, = () ude F este o fucţie reală

Διαβάστε περισσότερα

7 Distribuţia normală

7 Distribuţia normală 7 Distribuţia normală Distribuţia normală este cea mai importantă distribuţie continuă, deoarece în practică multe variabile aleatoare sunt variabile aleatoare normale, sunt aproximativ variabile aleatoare

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

3. Locuri geometrice Locuri geometrice uzuale

3. Locuri geometrice Locuri geometrice uzuale 3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile

Διαβάστε περισσότερα

a carei ecuatie matriceala este data in raport cu R.

a carei ecuatie matriceala este data in raport cu R. POZITIA RELATIVA A UNEI DREPTE FATA DE O HIPERCUADRICA AFINA REALA. TANGENTE SI ASIMPTOTE. OANA CONSTANTINESCU Pentru studiul pozitiei relative a unei drepte fata de o hipercuadrica, remarcam ca nu mai

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

APLICAŢII ALE CALCULULUI DIFERENŢIAL. Material pentru uzul studenţilor de la FACULTATEA DE

APLICAŢII ALE CALCULULUI DIFERENŢIAL. Material pentru uzul studenţilor de la FACULTATEA DE 1 APLICAŢII ALE CALCULULUI DIFERENŢIAL Material pentru uzul studenţilor de la FACULTATEA DE MECANICĂ 2 Contents 1 Aplicaţii ale calculului diferenţial 5 1.1 Extreme ale funcţiilor reale de mai multe variabile

Διαβάστε περισσότερα

Laborator/Seminar 2. Probleme de optimizare convexa

Laborator/Seminar 2. Probleme de optimizare convexa Laborator/Seminar 2 Probleme de optimizare convexa 1 Introducere Problemele de optimizare, min f(x) x R n s.l. g i (x) 0, i = 1,..., m, (1) Ax b = 0, in care functia obiectiv f si functiile ce definesc

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

Proiectarea algoritmilor: Programare dinamică

Proiectarea algoritmilor: Programare dinamică Proiectarea algoritmilor: Programare dinamică Dorel Lucanu Faculty of Computer Science Alexandru Ioan Cuza University, Iaşi, Romania dlucanu@info.uaic.ro PA 2014/2015 D. Lucanu (FII - UAIC) Programare

Διαβάστε περισσότερα

CIRCUITE LOGICE CU TB

CIRCUITE LOGICE CU TB CIRCUITE LOGICE CU T I. OIECTIVE a) Determinarea experimentală a unor funcţii logice pentru circuite din familiile RTL, DTL. b) Determinarea dependenţei caracteristicilor statice de transfer în tensiune

Διαβάστε περισσότερα

, m ecuańii, n necunoscute;

, m ecuańii, n necunoscute; Sisteme liniare NotaŃii: a ij coeficienńi, i necunoscute, b i termeni liberi, i0{1,,..., n}, j0{1,,..., m}; a11 1 + a1 +... + a1 nn = b1 a11 + a +... + an n = b (S), m ecuańii, n necunoscute;... am11 +

Διαβάστε περισσότερα

Cap. 9. REZOLVAREA NUMERICĂ A PROBLEMELOR DE OPTIMIZARE

Cap. 9. REZOLVAREA NUMERICĂ A PROBLEMELOR DE OPTIMIZARE Cap. 9. REZOLVAREA NUMERICĂ A PROBLEMELOR DE OPTIMIZARE 9.1. Definirea unei probleme de optimizare În sens larg, optimizare înseamnă [D5], [I1] acţiunea de stabilire, pe baza unui criteriu prestabilit,

Διαβάστε περισσότερα

Lectia III Produsul scalar a doi vectori liberi

Lectia III Produsul scalar a doi vectori liberi Produsul scalar: denitie, proprietati Schimbari de repere ortonormate in plan Aplicatii Lectia III Produsul scalar a doi vectori liberi Oana Constantinescu Oana Constantinescu Lectia III Produsul scalar:

Διαβάστε περισσότερα

Fişier template preliminar

Fişier template preliminar logo.png Contract POSDRU/86/1.2/S/62485 Fişier template preliminar Universitatea Tehnica din Iaşi (front-hyperlinks-colors * 29 iulie 212) UTC.png UTI.png Universitatea Tehnică Gheorghe Asachi din Iaşi

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 998 Clasa a V-a. La gara Timișoara se eliberează trei bilete de tren: unul pentru Arad, altul pentru Deva și al treilea pentru Reșița. Cel pentru Deva

Διαβάστε περισσότερα

Lectia VII Dreapta si planul

Lectia VII Dreapta si planul Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.

Διαβάστε περισσότερα

Ακαδημαϊκός Λόγος Κύριο Μέρος

Ακαδημαϊκός Λόγος Κύριο Μέρος - Επίδειξη Συμφωνίας În linii mari sunt de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου Cineva este de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου D'une façon générale,

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

Dreapta in plan. = y y 0

Dreapta in plan. = y y 0 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului

Διαβάστε περισσότερα

Polarizarea tranzistoarelor bipolare

Polarizarea tranzistoarelor bipolare Polarizarea tranzistoarelor bipolare 1. ntroducere Tranzistorul bipolar poate funcţiona în 4 regiuni diferite şi anume regiunea activă normala RAN, regiunea activă inversă, regiunea de blocare şi regiunea

Διαβάστε περισσότερα

Lecţii de Analiză Matematică. Dan Bărbosu şi Andrei Bărbosu

Lecţii de Analiză Matematică. Dan Bărbosu şi Andrei Bărbosu Lecţii de Analiză Matematică Dan Bărbosu şi Andrei Bărbosu 2 Cuprins Şiruri şi serii numerice; şiruri şi serii de funcţii 7. Şiruri numerice. Noţiuni şi rezultate generale......... 7.2 Şiruri fundamentale.

Διαβάστε περισσότερα

4 Funcţii continue Derivate parţiale, diferenţială Extremele funcţiilor, formule Taylor Serii numerice Integrale improprii 36

4 Funcţii continue Derivate parţiale, diferenţială Extremele funcţiilor, formule Taylor Serii numerice Integrale improprii 36 Prefaţă Cartea de faţă a fost elaborată în cadrul proiectului Formarea cadrelor didactice universitare şi a studenţilor în domeniul utilizării unor instrumente moderne de predare-învăţare-evaluare pentru

Διαβάστε περισσότερα

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui - Introducere Αξιότιμε κύριε Πρόεδρε, Αξιότιμε κύριε Πρόεδρε, Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui Αγαπητέ κύριε, Αγαπητέ κύριε, Formal, destinatar de sex

Διαβάστε περισσότερα

1Reziduuri şi aplicaţii

1Reziduuri şi aplicaţii Reziduuri şi aplicaţii În acest curs vom prezenta noţiunea de reziduu, modul de calcul al reziduurilor, teorema reziduurilor şi câteva aplicaţii ale teoremei reziduurilor, în special la calculul unor tipuri

Διαβάστε περισσότερα

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian. Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele

Διαβάστε περισσότερα

CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU Curbe în plan

CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU Curbe în plan CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU 81 Curbe în plan I Definiţia analitică a curbelor plane În capitolul 7 am studiat deja câteva eemple de curbe plane, amintim aici conicele nedegenerate: elipsa, hiperbola

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIE. Dorel Fetcu

ELEMENTE DE GEOMETRIE. Dorel Fetcu ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială

Διαβάστε περισσότερα

I3: PROBABILITǍŢI - notiţe de curs

I3: PROBABILITǍŢI - notiţe de curs I3: PROBABILITǍŢI - notiţe de curs Ştefan Balint, Eva Kaslik, Simina Mariş Cuprins Experienţǎ şi evenimente aleatoare 3 2 Eveniment sigur. Eveniment imposibil 3 3 Evenimente contrare 4 4 Evenimente compatibile.

Διαβάστε περισσότερα

2. CALCULE TOPOGRAFICE

2. CALCULE TOPOGRAFICE . CALCULE TOPOGRAFICE.. CALCULAREA DISTANŢEI DINTRE DOUĂ PUNCTE... CALCULAREA DISTANŢEI DINTRE DOUĂ PUNCTE DIN COORDONATE RECTANGULARE Distanţa în linie dreaptă dintre două puncte se poate calcula dacă

Διαβάστε περισσότερα

Circuite electrice in regim permanent

Circuite electrice in regim permanent Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este

Διαβάστε περισσότερα

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία - Εισαγωγή Stimate Domnule Preşedinte, Stimate Domnule Preşedinte, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του Stimate Domnule,

Διαβάστε περισσότερα

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =.

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =. Copyright c ONG TCV Scoala Virtuala a Tanarului Matematician Ministerul Educatiei al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 4 iunie Profilul real Timp

Διαβάστε περισσότερα

UNIVERSITATEA TEHNICĂ GH. ASACHI IAŞI FACULTATEA DE AUTOMATICĂ ŞI CALCULATOARE. Algoritmi genetici. Inteligenţă artificială - referat -

UNIVERSITATEA TEHNICĂ GH. ASACHI IAŞI FACULTATEA DE AUTOMATICĂ ŞI CALCULATOARE. Algoritmi genetici. Inteligenţă artificială - referat - UNIVERSITATEA TEHNICĂ GH. ASACHI IAŞI FACULTATEA DE AUTOMATICĂ ŞI CALCULATOARE Algoritmi genetici Inteligenţă artificială - referat - Chelariu Angela, Topolniceanu Irina, Dumitru Alin - 2002/2003 - ALGORITMI

Διαβάστε περισσότερα

MODELE DE TESTE GRILĂ PENTRU ADMITEREA DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a)

MODELE DE TESTE GRILĂ PENTRU ADMITEREA DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a) Universitatea "Dunărea de Jos" din Galaţi MODELE DE TESTE GRILĂ PENTRU ADMITEREA 01 DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a Testele sunt recomandate pentru următoarele domenii de licenţă şi facultăţi:

Διαβάστε περισσότερα

I3: PROBABILITǍŢI - notiţe de curs

I3: PROBABILITǍŢI - notiţe de curs I3: PROBABILITǍŢI - notiţe de curs Ştefan Balint, Eva Kaslik, Simina Mariş Cuprins Experienţǎ şi evenimente aleatoare 3 2 Eveniment sigur. Eveniment imposibil 3 3 Evenimente contrare 4 4 Evenimente compatibile.

Διαβάστε περισσότερα

CUPRINS 2. Sisteme de forţe... 1 Cuprins..1

CUPRINS 2. Sisteme de forţe... 1 Cuprins..1 CURS 2 SISTEME DE FORŢE CUPRINS 2. Sisteme de forţe.... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 2.1. Forţa...2 Test de autoevaluare 1...3 2.2. Proiecţia forţei pe o axă. Componenta forţei

Διαβάστε περισσότερα

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL 7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in

Διαβάστε περισσότερα

Capitolul 30. Transmisii prin lant

Capitolul 30. Transmisii prin lant Capitolul 30 Transmisii prin lant T.30.1. Sa se precizeze domeniile de utilizare a transmisiilor prin lant. T.30.2. Sa se precizeze avantajele si dezavantajele transmisiilor prin lant. T.30.3. Realizati

Διαβάστε περισσότερα

Proiectarea Algoritmilor 4. Scheme de algoritmi Programare dinamica

Proiectarea Algoritmilor 4. Scheme de algoritmi Programare dinamica Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Proiectarea Algoritmilor 4. Scheme de algoritmi Programare dinamica Bibliografie Cormen Introducere în Algoritmi cap.

Διαβάστε περισσότερα

TEMA 7: INTEGRALE NEDEFINITE. Obiective:

TEMA 7: INTEGRALE NEDEFINITE. Obiective: TEMA 7: INTEGRALE NEDEFINITE 61 TEMA 7: INTEGRALE NEDEFINITE Obiective: Definirea principalelor proprietăţi matematice ale integralelor nedefinite Analiza principalelor proprietăţi matematice ale ecuaţiilor

Διαβάστε περισσότερα