ΙΣΟΡΡΟΠΙΑ ΠΟΛΥΜΕΡΩΝ ΣΥΣΤΗΜΑΤΩΝ ΙΑΓΡAΜΜΑΤΑ ΙΣΟΡΡΟΠΙΑΣ ΦΑΣΕΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΙΣΟΡΡΟΠΙΑ ΠΟΛΥΜΕΡΩΝ ΣΥΣΤΗΜΑΤΩΝ ΙΑΓΡAΜΜΑΤΑ ΙΣΟΡΡΟΠΙΑΣ ΦΑΣΕΩΝ"

Transcript

1 ΙΣΟΡΡΟΠΙΑ ΠΟΛΥΜΕΡΩΝ ΣΥΣΤΗΜΑΤΩΝ ΙΑΓΡAΜΜΑΤΑ ΙΣΟΡΡΟΠΙΑΣ ΦΑΣΕΩΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΥΣΤΗΜΑ είνι κάθε ντικείµενο (ή γενικότερ το τµήµ του σύµπντος) που υπόκειτι σε µελέτη. ΣΥΣΤΑΤΙΚΑ ενός συστήµτος υλικών είνι κθρές ουσίες (στοιχεί, χηµικές ενώσεις) ή πολυφσικά µίγµτ που πρτίζουν το σύστηµ. Έν συσττικό µπορεί ν ρίσκετι σε έρι, υγρή ή στερεά κτάστση. ΦΑΣΗ συστήµτος είνι µί οµογενής περιοχή της ύλης που σε δεδοµένες συνθήκες πίεσης κι θερµοκρσίς έχει την ίδι χηµική σύστση κι την ίδι κρυστλλική δοµή σ όλη την έκτσή της. Οι φάσεις ενός διχωρίζοντι µέσω µις επιφάνεις. Είνι προφνές ότι η σύστση µις φάσης µπορεί ν λλάξει µε µετολή της πίεσης ή της θερµοκρσίς του συστήµτος. ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΠΟΛΥΦΑΣΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Έν σύστηµ, νάλογ µε τον ριθµό των φάσεων του, χρκτηρίζετι µονοφσικό, διφσικό κλπ. Η διάκριση των φάσεων µπορεί ν γίνει µε πρτήρηση των κόκκων τους στο µικροσκόπιο ή µε νάλυση µέσω κτίνων-χ ή µε πλή µικροσκληροµέτρηση. ΙΑΓΡΑΜΜΑ ΙΣΟΡΡΟΠΙΑΣ ΤΩΝ ΦΑΣΕΩΝ είνι η γρφική πράστση µε συντετγµένες τη θερµοκρσί κι τη συγκέντρωση σε κάποιο συσττικό του συστήµτος, που περιγράφει τις περιοχές ύπρξης ή συνύπρξης των φάσεων υτού. Από τη µελέτη ενός διγράµµτος ισορροπίς των φάσεων προκύπτουν οι κόλουθες πληροφορίες: 1. Το είδος, ο ριθµός κι η χηµική σύστση των υπρχουσών φάσεων σε διάφορες συγκεντρώσεις κι θερµοκρσίες κι υπό συνθήκες πολύ ργής πόψυξης (συνθήκες ισορροπίς). 2. Η διλυτότητ σε στερεά κτάστση των διφόρων συσττικών µετξύ τους (πάλι υπό συνθήκες ισορροπίς) 3. Οι θερµοκρσίες τήξης (σ.τ.) των διφόρων φάσεων, οι θερµοκρσίες στερεοποίησης των σχηµτιζόµενων κρµάτων σε συνθήκες ισορροπίς κι το θερµοκρσικό εύρος της στερεοποίησης υτής (δηλ. η περιοχή θερµοκρσιών στην οποί ολοκληρώνετι η στερεοποίηση). Στο Σχ. 1 προυσιάζοντι διάφορες µορφές διγρµµάτων φάσεων. ΣΤΕΡΕΟ ΙΑΛΥΜΑ - εν γένει - είνι ο συνδυσµός δύο ή περισσότερων στοιχείων ή ενώσεων. ΚΡΑΜΑ είνι ο συνδυσµός ενός µετάλλου µε έν ή περισσότερ µέτλλ ή µέτλλ ή επµφοτερίζοντ στοιχεί. ΒΑΣΙΚΟ ή ΜΗΤΡΙΚΟ ΜΕΤΑΛΛΟ ενός κράµτος είνι το στοιχείο που ρίσκετι στη µεγλύτερη νλογί κτά το σχηµτισµό υτού. ΚΡΑΜΑΤΙΚΟ ΣΤΟΙΧΕΙΟ ή ΣΤΟΙΧΕΙΟ ΠΡΟΣΘΗΚΗΣ είνι το στοιχείο που διλύετι στο σικό µέτλλο προς σχηµτισµό του κράµτος. ΣΤΕΡΕΑ ΙΑΛΥΜΑΤΑ ΠΛΗΡΟΥΣ ΙΑΛΥΤΟΤΗΤΑΣ είνι υτά που προυσιάζουν πλήρη νµιξιµότητ µετξύ σικού κι κρµτικού στοιχείου, σχηµτίζοντς µί µόνο δοµή. Αντίθετ, τ στερεά διλύµτ µερικής νµιξιµότητς νπτύσσουν περισσότερες φάσεις. 1

2 ΟΡΙΑΚΗ ΣΥΓΚΕΝΤΡΩΣΗ (C B ) του κρµτικού στοιχείου Β στο σικό µέτλλο Α προς σχηµτισµό στερεού διλύµτος Α-Β, είνι η συγκέντρωση εκείνη, πέρν της οποίς το κράµ ποκτά διφορετική κρυστλλική δοµή πό εκείνη του σικού µετάλλου (εξυπκούετι ότι γι συγκέντρωση C<C B η κρυστλλική δοµή του Α-Β είνι ίδι µε υτή του Α). ΑΚΡΑΙΟ ΣΤΕΡΕΟ ΙΑΛΥΜΑ στο διάγρµµ ισορροπίς είνι κάθε συνδυσµός Α-Β στο µεσοδιάστηµ µετξύ κθρού µετάλλου κι συγκέντρωσης C B, π.χ. στο Σχ. 1() οι φάσεις κι είνι κρί διλύµτ. ΕΝ ΙΑΜΕΣΟ ΣΤΕΡΕΟ ΙΑΛΥΜΑ είνι το στερεό διάλυµ που προυσιάζει µί κρυστλλική δοµή διφορετική του σικού µετάλλου κι εντοπίζετι πέρν της συγκέντρωσης C B, π.χ. η φάση στο διάγρµµ ισορροπίς του Σχ. 1(). ΕΝ ΙΑΜΕΣΕΣ ή ΜΕΣΟΜΕΤΑΛΛΙΚΕΣ ΕΝΩΣΕΙΣ ενός µετάλλου µε άλλο µέτλλο ή µέτλλο µπορεί ν εµφνίζοντι σε χρκτηριστικές θέσεις ή σε ισορροπί µε άλλες φάσεις κι ενώσεις σε ενδιάµεσες περιοχές ενός διγράµµτος ισορροπίς, π.χ. οι ενώσεις Mg 2 Ni κι MgNi 2 στο διάγρµµ του Σχ. 2. () () (γ) Σχήµ 1: ιάφοροι τύποι διγρµµάτων ισορροπίς φάσεων κρµάτων () Cu-Zn, () Pb-Sn, (γ) Ni-Cu 2

3 Σχήµ 2: ιάγρµµ ισορροπίς των φάσεων στερεού διλύµτος Νi- Mg. ΣΤΟΙΧΕΙΑ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ ΤΩΝ ΚΡΑΜΑΤΩΝ Ορισµοί κι σικές έννοιες ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΙΣΟΡΡΟΠΙΑ ΣΥΣΤΗΜΑΤΟΣ: Υφίσττι ότν το σύστηµ ευρίσκετι τυτόχρον σε µηχνική (ελάχιστη δυνµική ενέργει), θερµική (δεν υφίστντι θερµοκρσικές θµώσεις, δηλ. ροή θερµότητς) κι χηµική ισορροπί (ότν τ ντιδρώντ πύουν ν ντιδρούν). ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ (U) ενός συστήµτος είνι το σύνολο της ενέργεις του συστήµτος. ΕΝΘΑΛΠΙΑ (Η) ενός συστήµτος είνι το άθροισµ H U+ P V(P: πίεση, V: όγκος) dq ΕΝΤΡΟΠΙΑ (S) ενός συστήµτος είνι το ολοκλήρωµ 0 (q: θερµότητ, Τ: θερµοκρσί) T κι σχετίζετι µε το ποσό ενέργεις του συστήµτος που δεν µπορεί ν χρησιµοποιηθεί γι την πόδοση έργου. Ο σττιστικός ορισµός της εντροπίς κτά Blttzmann γι έν σύστηµ µε πολλούς συνδυσµούς κτστάσεων διτυπώνετι ως εξής: S k np, όπου k η στθερά του Blttzmann κι p ο δυντός ριθµός των δυντών συνδυσµών κτνοµής ΕΛΕΥΘΕΡΗ ΕΝΕΡΓΕΙΑ ΚΑΤΑ GIBBS (G) ενός συστήµτος σε θερµοκρσί Τ είνι το µέγεθος G HT S ΕΛΕΥΘΕΡΗ ΕΝΕΡΓΕΙΑ ΚΑΤΑ HELMHOLTZ (F) ενός συστήµτος σε θερµοκρσί Τ είνι το µέγεθος F UT S ΣΥΝΘΗΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ ΙΣΟΡΡΟΠΙΑΣ ΣΥΣΤΗΜΑΤΟΣ: Απιτείτι ελχιστοποίηση της G γι στθερή πίεση Ρ κι ελχιστοποίηση της F γι στθερό όγκο V. ηλδή ( ) ( ) T,P dg d H T S 0 df d U T S 0 Επειδή σε συστήµτ υλικών οι πλείστες διεργσίες λµάνουν χώρ υπό στθερή πίεση, ρκεί η ισχύς της πρώτης πό τις νωτέρω εξισώσεις γι την επίτευξη θερµοδυνµικής ισορροπίς τους. 3 T,V

4 Μετολή της εντροπίς οµογενούς φάσης ως ποτέλεσµ της διεργσίς µίξης (πλήρης νµιξιµότητ). Εκφράζετι µέσω της εντροπίς νάµιξης S m που υπολογίζετι πό τη σχέση (λ. κι Σχ. 3) n! S m k n nk[n nn (1 N) n(1 N n! (nn )! + ) A A όπου: k η στθερά Bltzmann, n A, n Β οι κρυστλλογρφικές θέσεις που κτέχοντι πό άτοµ Α κι Β, ντίστοιχ, n n A + n Β κι Ν n A /n. Σχήµ 3: Μετολή της εντροπίς νάµιξης S m κράµτος Α-Β συνρτήσει της σύστσης του κράµτος. Μετολή της ενθλπίς οµογενούς φάσης : Εκφράζετι µέσω της ενθλπίς νάµιξης Η m που υπολογίζετι πό τη σχέση (λ. κι Σχ. 4) 1 H m n AB[H AB (H AA + H BB )] 2 όπου: Η ΑΑ, Η ΒΒ, Η ΑΒ είνι οι ενθλπίες των δεσµών Α-Α, Β-Β κι Α-Β, ντίστοιχ, που µπορεί ν νπτυχθούν κτά τη µίξη κι n ΑΒ ο ριθµός των δεσµών Α-Β. Σχήµ 4: Μετολή της ενθλπίς στερεού διλύµτος Α-Β συνρτήσει της γρµµοµορικής του σύστσης. Στο Σχ. 4 οι κµπύλες 1, 2, 3 νφέρντι στις κόλουθες περιπτώσεις στερεών διλυµάτων: 1 Κµπύλη 1: H AB (HAA + HBB 2 ) νφέρετι σε ιδνικό διάλυµ, όπου κάθε άτοµο του ενός συσττικού περιάλλετι ισοδύνµ πό άτοµ του ίδιου ή του άλλου συσττικού. 1 Κµπύλη 2: H AB < (HAA + HBB 2 ) νφέρετι στην περίπτωση όπου έν άτοµο του ενός συσττικού περιάλλετι πό άτοµ του άλλου συσττικού, µε ποτέλεσµ τη µεγλύτερη στθερότητ του στερεού διλύµτος. 4

5 1 Κµπύλη 3: H AB > (HAA + HBB 2 ) νφέρετι στην περίπτωση όπου ευνοείτι ο διχωρισµός του µίγµτος στ συσττικά του, δεδοµένου ότι οι δεσµοί Α-Α κι Β-Β είνι θερµοδυνµικά στθερότεροι. Μετολή της ελεύθερης ενέργεις στερεών διλυµάτων : Εκφράζετι µέσω της ελεύθερης ενέργεις νάµιξης ή κινούσς δύνµης G m Hm-T S m, η οποί µπορεί ν λάει τις δυντές τιµές που φίνοντι στο Σχ. 5. Σχήµ 5: Μετολή της ελεύθερης ενέργεις νάµιξης συνρτήσει της σύστσης του κράµτος Α-Β Από τη µελέτη του Σχ. 5 προκύπτουν οι κόλουθες περιπτώσεις στερεών διλυµάτων: I. Ιδνικά διλύµτ µε Η0 κι κµπύλη G µε ελάχιστο. II. ιλύµτ µε Η<0 κι κµπύλη G µε µεγλύτερο ελάχιστο πό πριν. III. ιλύµτ µε Η>0 κι κµπύλη G µε µικρό ελάχιστο. IV. ιλύµτ µε Η>>0 κι κµπύλη G µε 3 κρόττ. Ο ΚΑΝΟΝΑΣ ΤΩΝ ΦΑΣΕΩΝ ΤΟΥ GIBBS Εάν υφίσττι κρµτικό σύστηµ σε θερµοδυνµική ισορροπί µε χρκτηριστικά: ριθµός συσττικών (), ριθµός φάσεων (p), ριθµός θµών ελευθερίς (δηλ. ριθµός νεξάρτητων µετλητών του συστήµτος, δηλ. θερµοκρσί, πίεση, σύστση) (), τότε ο γενικός κνόνς του Gibbs εκφράζετι µε τη σχέση: p++2 όπου το 2 φορά τις µετλητές πίεση κι θερµοκρσί. Eπειδή στην ισορρροπί κρµτικών συστηµάτων η επίδρση των µετολών της πίεσης δεν πίζει σηµντικό ρόλο, συνήθως η µετλητή της πίεσης p µελείτι κι ο κνόνς των φάσεων του Gibbs πίρνει τη µορφή p++1. 5

6 ΙΑΓΡΑΜΜΑΤΑ ΙΣΟΡΡΟΠΙΑΣ ΦΑΣΕΩΝ ΙΜΕΡΩΝ ΣΥΣΤΗΜΑΤΩΝ Κτηγορίες διγρµµάτων Ανάλογ µε τη διλυτότητ στις διάφορες φάσεις κι το είδος των συσττικών των φάσεων, υφίστντι οι κόλουθες κτηγορίες διγρµµάτων ισορροπίς: 1. ιγράµµτ ισορροπίς φάσεων µε πλήρη νµιξιµότητ κι στην υγρή κι στη στερεά φάση κι σε κάθε νλογί. Στην κτηγορί υτή υφίσττι η εξής διάκριση σε υποκτηγορίες: Α. ιγράµµτ χωρίς ενδιάµεσο κρόττο. Β. ιγράµµτ µε τοπικό µέγιστο. Γ. ιγράµµτ µε τοπικό ελάχιστο.. ιγράµµτ µε χάσµ νµιξιµότητς. 2. ιγράµµτ ισορροπίς φάσεων µε µερική νµιξιµότητ στη στερεά ή/κι στην υγρή φάση. Ανάλογ µε το είδος των προϊόντων ισορροπίς σε κάθε περιοχή του διγράµµτος, προκύπτουν οι εξής υποκτηγορίες: Α. ιγράµµτ µε ευτηκτικό σηµείο. Β. ιγράµµτ µε περιτηκτικό σηµείο. Γ. ιγράµµτ µε µονοτηκτικό σηµείο.. ιγράµµτ µε ενδιάµεσες φάσεις. Χρκτηριστικά πρδείγµτ διγρµµάτων ισορροπίς κάθε κτηγορίς προυσιάζοντι στ Σχ. 6 κι 7, ντίστοιχ. Βσικές έννοιες Σε κάθε διάγρµµ ισορροπίς φάσεων δικρίνουµε ορισµένες χρκτηριστικές κµπύλες, όπως: ΚΑΜΠΥΛΗ LIQUIDUS: Είνι η κµπύλη του διγράµµτος φάσεων που ορίζει τη θερµοκρσί, πάνω πό την οποί το κράµ υπάρχει µόνο ως υγρό, λ. Σχ. 6(). KΑΜΠΥΛΗ SOLIDUS: Είνι η κµπύλη του διγράµµτος φάσεων που ορίζει τη θερµοκρσί, κάτω πό την οποί το κράµ υπάρχει µόνο ως στερεό, λ. Σχ. 6(). ΚΑΜΠΥΛΗ SOLVUS: Είνι η κµπύλη του διγράµµτος φάσεων που ορίζει τη θερµοκρσική εξάρτηση της στερεάς διλυτότητς του µετάλλου Β στο κρυστλλικό πλέγµ του Α, λ. Σχ. 7(). ΠΕΡΙΟΧΗ ΑΠΟΧΩΡΙΣΜΟΥ ΤΩΝ ΦΑΣΕΩΝ είνι η περιοχή του διγράµµτος ισορροπίς φάσεων που οριοθετείτι µετξύ των κµπυλών liquidus κι slidus. ΚΑΜΠΥΛΗ ΑΠΟΨΥΞΗΣ κράµτος µε στθερή περιεκτικότητ είνι κµπύλη µετολής της θερµοκρσί µε το χρόνο κτά την πόψυξή του. 6

7 () () (γ) (δ) Σχήµ 6: ιγράµµτ ισορροπίς φάσεων πλήρους νµιξιµότητς στην υγρή κι στερεά φάση: () Χωρίς ενδιάµεσο κρόττο, () µε µέγιστο, (γ) µε ελάχιστο, (δ) µε χάσµ διλυτότητς. 7

8 () () (γ) (δ) Σχήµ 7: ιγράµµτ ισορροπίς των φάσεων σε στερεά διλύµτ µη πλήρους νµιξιµότητς: () Με ευτηκτικό σηµείο, () µε περιτηκτικό σηµείο, (γ) µε µονοτηκτικό σηµείο, (δ) µε ενδιάµεσες φάσεις κι ενώσεις Ο κνόνς του µοχλού Σχήµ 8: Κνόνς του µοχλού Θεωρούµε στερεό διάλυµ Α+Β, άρους, σε µι περιοχή µετξύ δύο κµπυλών µετσχηµτισµού των φάσεων, µε συγκέντρωση, λ. Σχ. 8. Oι φάσεις κι ρίσκοντι σε 8

9 ισορροπί κι συµµετέχουν µε άρη κι, ντίστοιχ, κι µε συγκεντρώσεις σε συσττικό Β, κι, ντίστοιχ. Προφνώς θ ισχύουν οι σχέσεις: Ισοζύγιο µάζς όλου του κράµτος: + (1) Ισοζύγιο µάζς συσττικού Β: + (2) Η λύση του συστήµτος των εξισώσεων (1) κι (2) δίνει: κι ο (3) ή διιρώντς κτά µέλη: ) ( ) ( ο ο ο (4) Κνόνς του µοχλού 9

Κεφάλαιο 11 Διαγράμματα Φάσεων

Κεφάλαιο 11 Διαγράμματα Φάσεων Κεφάλιο 11 Διγράμμτ Φάσεων Συχνά, σε πολλές διεργσίες, νμιγνύουμε δύο ή κι περισσότερ διφορετικά υλικά, κι πρέπει ν πντήσουμε στο ερώτημ: ποιά θ είνι η φύση του υλικού που θ προκύψει πό υτή την νάμιξη:

Διαβάστε περισσότερα

Case Study στα ιαγράµµατα Φάσεων Κράµατα για συγκολλήσεις τύπου Soldering

Case Study στα ιαγράµµατα Φάσεων Κράµατα για συγκολλήσεις τύπου Soldering ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΏΝ ΒΙΟΜΗΧΑΝΙΑΣ - ΕΡΓΑΣΤΗΡΙΟ ΥΛΙΚΩΝ Μάθηµ: Φυσική Μετλλουργί, Ερινό εξάµηνο 2004 Επιµέλει: Γ.Ν. Χϊδεµενόπουλος, Κθηγητής Φυσικής Μετλλουργίς Case Study στ

Διαβάστε περισσότερα

V v= (1) n. i V. = n. (2) i (3) (4) (5) (7) (8) (9) = (6)

V v= (1) n. i V. = n. (2) i (3) (4) (5) (7) (8) (9) = (6) Μερικός γρµµοµορικός όγκος Ο όγκος είνι µι κύρι εκττική ιδιότητ θερµοδυνµικών συστηµάτων. Γρµµοµορικός όγκος δηλ. ο όγκος νά γρµµοµόριο είνι η ενττική ιδιότητ συστήµτος ενός συσττικού η οποί ορίζετι πό

Διαβάστε περισσότερα

Περιεκτικότητα στα εκατό κατά βάρος (% W/W): εκφράζει τα γραµµάρια της διαλυµένης ουσίας που περιέχονται σε 100 g διαλύµατος.

Περιεκτικότητα στα εκατό κατά βάρος (% W/W): εκφράζει τα γραµµάρια της διαλυµένης ουσίας που περιέχονται σε 100 g διαλύµατος. 1 ΚΕΦΑΛΑΙΟ 1 ο 1. ΙΑΛΥΜΑΤΑ (ΠΕΡΙΕΚΤΙΚΟΤΗΤΑ - ΙΑΛΥΤΟΤΗΤΑ) Όπως νφέρµε διάλυµ είνι έν οµογενές µίγµ που ποτελείτι πό δύο ή περισσότερες χηµικές ουσίες. Περιεκτικότητ διλύµτος είνι η ποσότητ της διλυµένης

Διαβάστε περισσότερα

Ασκήσεις Θερµοδυναµικής. Καταστατικές Εξισώσεις Πρώτος Θερµοδυναµικός Νόµος

Ασκήσεις Θερµοδυναµικής. Καταστατικές Εξισώσεις Πρώτος Θερµοδυναµικός Νόµος Φυσικοχηµεί Ι / Β. Χβρεδάκη Ασκήσεις Θερµοδυνµικής Κτσττικές Εξισώσεις Πρώτος Θερµοδυνµικός Νόµος. Ν ποδειχθεί ότι σε ιδνικό έριο: / κι κ Τ /Ρ όπου ο συντελεστής διστολής κι κ ο ισόθερµος συντελεστής συµπιεστότητς..

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΙΑΓΡΑΜΜΑΤΩΝ ΙΣΟΡΡΟΠΙΑΣ ΦΑΣΕΩΝ

ΜΕΛΕΤΗ ΙΑΓΡΑΜΜΑΤΩΝ ΙΣΟΡΡΟΠΙΑΣ ΦΑΣΕΩΝ ΜΕΛΕΤΗ ΙΑΓΡΑΜΜΑΤΩΝ ΙΣΟΡΡΟΠΙΑΣ ΦΑΣΕΩΝ 1. ΙΜΕΡΕΣ ΙΑΓΡΑΜΜΑ ΜΕ ΠΛΗΡΗ ΣΤΕΡΕΑ ΙΑΛΥΤΟΤΗΤΑ (Σχ. 1) Σχήµα1: ιµερές διάγραµµα µε πλήρη στερεά διαλυτότητα Μελετάται η απόψυξη διµερούς κράµατος Α-Β, το οποίο βρίσκεται

Διαβάστε περισσότερα

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN Ν6_(6)_Σττιστική στη Φυσική Αγωγή 08_Πλινδρόμηση κι συσχέτιση Γούργουλης Βσίλειος Κθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Σε ορισμένες περιπτώσεις πιτείτι η νίχνευση της σχέσης μετξύ δύο ποσοτικών μετβλητών

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων

Διαβάστε περισσότερα

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ Θέρµνση Ψύξη ΚλιµτισµόςΙΙ Ψυχροµετρί Εργστήριο Αιολικής Ενέργεις Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κτσπρκάκης Ξηρόςκιυγρός τµοσφιρικόςέρς Ξηρόςκιυγρόςτµοσφιρικός έρς Ξηρός τµοσφιρικός έρς: ο πλλγµένος πό τους

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ σε κάθε ριθµό το γράµµ που ντιστοιχεί

Διαβάστε περισσότερα

36 g. 0.5 atm. P (bar) S ds. = dst. o C) θ ( = dp= P P. P γ. ( g) T T. γ γ. δ δ. Sγ δ. β β β. δ β P T. S α β = =247.

36 g. 0.5 atm. P (bar) S ds. = dst. o C) θ ( = dp= P P. P γ. ( g) T T. γ γ. δ δ. Sγ δ. β β β. δ β P T. S α β = =247. Τµήµ Χηµείς Μάθηµ: Φσικοχηµεί Ι Εξετάσεις: Περίοος Ιονίο 009-0 (8.6.00) Θέµ. 36 g Η Ο θερµοκρσίς 90 C κι πίεσης atm (ρά κτάστση, ) φέρετι σε θερµοκρσί 90 C κι πίεση 0.5 atm (έρι κτάστση, β). Ν πολοισθεί

Διαβάστε περισσότερα

Δύο προσεγγίσεις Ποιοτική εκτίμηση: για τη μελέτη ενός γεωλογικού συστήματος ή την πρόβλεψη της επίδρασης φυσικοχημικών μεταβολών (P/T/ P/T/Χ) σε ένα

Δύο προσεγγίσεις Ποιοτική εκτίμηση: για τη μελέτη ενός γεωλογικού συστήματος ή την πρόβλεψη της επίδρασης φυσικοχημικών μεταβολών (P/T/ P/T/Χ) σε ένα Πετρολογία Μαγματικών & Μεταμορφωμένων μ Πετρωμάτων Μέρος 1 ο : Μαγματικά Πετρώματα Ιωάννης Ηλιόπουλος Πανεπιστήμιο Πατρών Τμήμα Γεωλογίας Τομέας Ορυκτών Πρώτων Υλών Φεβρουάριος 2016 ΣΙΚΕΣ ΡΧΕΣ ΘΕΡΜΟΔΥΝΜΙΚΗΣ

Διαβάστε περισσότερα

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ SOOW-SWAN Εισγωγή Η νάλυση της θεωρίς της οικονομικής μεγέθυνσης θ ξεκινήσει νλύοντς το πιο πλό δυνμικό υπόδειγμ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ Φυσική Κτεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ Θέµ ο κ ΙΑΓΩΝΙΣΜΑ Α. (Βάλτε σε κύκλο το γράµµ µε τη σωστή πάντηση) Αν υξήσουµε την πόστση µετξύ δύο ετερόσηµων σηµεικών ηλεκτρικών φορτίων,. η δυνµική

Διαβάστε περισσότερα

Q T Q T. pdv. παραγόµενο έργο κατά την εκτόνωση αερίου: Μεταβολή της εσωτερικής ενέργειας αέρα χωρίς µεταβολή όγκου και παραγωγή έργου.

Q T Q T. pdv. παραγόµενο έργο κατά την εκτόνωση αερίου: Μεταβολή της εσωτερικής ενέργειας αέρα χωρίς µεταβολή όγκου και παραγωγή έργου. Ο 1 ος ΝΟΜΟΣ ΤΗΣ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ ΣΤΗΝ ΑΤΜΟΣΦΑΙΡΑ-1 σχετίζει τη µετβολή της θερµοκρσίς ενός ερίου µετηµετφορά ενέργεις µετξύ του ερίου κι του περιβάλλοντός του κι το πργόµενο/ποδιδόµενο έργο Q U W Q * *

Διαβάστε περισσότερα

ΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ

ΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 8 ΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ.1 ΕΙΣΑΓΩΓΗ Στη µέτρηση της ωµικής λλά κι της σύνθετης ντίστσης µε υψηλή κρίβει χρησιµοποιούντι οι γέφυρες µέτρησης. Γι τη µέτρηση της ωµικής ντίστσης η πηγή τροφοδοσίς της γέφυρς

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ ΚΩΝΙΚΕΣ ΤΜΕΣ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Ποι είνι η εξίσωση του κύκλου με κέντρο το (0,0); ρ (0,0) M(,) C Έστω έν σύστημ συντετγμένων στο επίπεδο κι C ο κύκλος με κέντρο το σημείο (0,0) κι κτίν ρ. Γνωρίζουμε πό

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

ΘΕΜΑ 1 0 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 0 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 8//6 ΘΕΜΑ Οδηγί: Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθμό της ερώτησης κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ.

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ. Ιόνιο Πνεπιστήμιο - Τμήμ Πληροορικής Μθημτικός Λογισμός Ενότητ: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ Πνγιώτης Βλάμος Αδειες Χρήσης Το πρόν εκπιδευτικό υλικό υπόκειτι σε άδειες χρήσης Cativ Commo

Διαβάστε περισσότερα

1) Υπόδειγµα Εντολέα - Εντολοδόχου, η περίπτωση του Ηθικού Κινδύνου.

1) Υπόδειγµα Εντολέα - Εντολοδόχου, η περίπτωση του Ηθικού Κινδύνου. ) Υπόδειγµ Εντολέ - Εντολοδόχου, η περίπτωση του Ηθικού Κινδύνου. Έστω ότι ο εντολοδόχος ελέγχει µί επιχείρηση της οποίς ιδιοκτήτες είνι διάφοροι µέτοχοι (ο εντολές). Στην γενική περίπτωση, ο εντολοδόχος

Διαβάστε περισσότερα

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΣΧΕΤΙΚ ΜΕ ΤΙΣ ΚΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΙ Τ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ ΠΕΡΙΠΤΩΣΗ η: Συνρτήσεις ζήτησης κτά arshall Υπόθεση: Το χρηµτικό

Διαβάστε περισσότερα

Κεφάλαιο. Ψυχρομετρία Εισαγωγή

Κεφάλαιο. Ψυχρομετρία Εισαγωγή Κεφάλιο 4 Ψυχρομετρί Κεφάλιο 4 Ψυχρομετρί 4.. Εισγωγή Η Ψυχρομετρί σχολείτι με τη μελέτη κι τη μέτρηση των περιεχόμενων υδρτμών (υγρσί) στον τμοσφιρικό έρ. Κτ επέκτση, ο όρος χρησιμοποιείτι συνήθως γι

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

Η θεωρία στα μαθηματικά της

Η θεωρία στα μαθηματικά της Η θεωρί στ μθημτικά της Γ γυμνσίου ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ ΤΑΞΗΣ ((ΑΛΓΕΒΡΑ)) ο ΚΕΦΑΛΑΙΙΟ 1 Αλγγεεριικέέςς Πρσττάσεειιςς Α. 1. 1 1. Τι ονομάζετε δύνμη ν με άση τον πργμτικό κι εκθέτη το φυσικό

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση ΔΥΝΑΜΕΙΣ ΜΕ ΕΚΘΕΤΗ ΡΗΤΟ - ΑΡΡΗΤΟ Αν >0, μ κέριος κι ν θετικός κέριος, τότε ορίζουμε: Επιπλέον, ν μ,ν θετικοί κέριοι, ορίζουμε: 0 =0. Πρδείγμτ: 4 4,, 5 5, 4 0 =0. Γενικότερ μπορούμε ν ορίσουμε δυνάμεις

Διαβάστε περισσότερα

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Εργστήριο Φυσικής Τμήμτος Πληροφορικής κι Τεχνολογίς Υπολογιστών Τ.Ε.Ι. Λμίς Νόμοι Νεύτων - Δυνάμεις Εισγωγή στην έννοι της Δύνμης Γι ν λύσουμε το πρόβλημ του πως θ κινηθεί έν σώμ ότν ξέρουμε το περιβάλλον

Διαβάστε περισσότερα

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ Υπενθυµίζουµε ότι ν στ σηµεί Α, Β ενός άξον ντιστοιχίζοντι οι πργµτικοί ριθµοί, ντίστοιχ τότε: ( ΑΒ) = Β Α Α Β Σχετικά µε την πόστση δύο σηµείων στο κρτεσινό

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ

ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 008 Μρτίου 008 Θεωρητικό Μέρος Θέμ o B Λυκείου. Έν δοχείο με διβτικά τοιχώμτ περιέχει μονοτομικό ιδνικό έριο με σχετική μορική μάζ M r κι ενώ κινείτι

Διαβάστε περισσότερα

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής 6 3. Η ΥΠΕΡΒΟΛΗ Ορισμός Υπερολής Έστω E κι Ε δύο σημεί ενός επιπέδου. Ονομάζετι υπερολή με εστίες τ σημεί E κι Ε ο εωμετρικός τόπος C των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΜΕΤΑΦΟΡΑ ΜΑΖΑΣ ΚΑΙ ΘΕΡΜΟΤΗΤΑΣ

ΕΣΩΤΕΡΙΚΗ ΜΕΤΑΦΟΡΑ ΜΑΖΑΣ ΚΑΙ ΘΕΡΜΟΤΗΤΑΣ 9 ΚΕΦΑΛΑΙΟ 6 ΕΣΩΤΕΡΙΚΗ ΜΕΤΑΦΟΡΑ ΜΑΖΑΣ ΚΑΙ ΘΕΡΜΟΤΗΤΑΣ Εισγωγή Στο προηγούµενο Κεφάλιο νλύσµε το φινόµενο της µετφοράς µάζς κι θερµότητς πό το κυρίως ρεύµ στην εξωτερική επιφάνει του κτλυτικού κόκκου, ή

Διαβάστε περισσότερα

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a, ΕΡΩΤΗΣΕΙΣ Σ Λ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ - Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη σωστό ή λάθος δίπλ στο γράμμ που ντιστοιχεί σε κάθε πρότση

Διαβάστε περισσότερα

Τάξη Γ. Κεφάλαιο. Εμβαδόν Επιπέδου Χωρίου Θεωρία-Μεθοδολογία-Ασκήσεις. Ολοκληρωτικός Λογισμός

Τάξη Γ. Κεφάλαιο. Εμβαδόν Επιπέδου Χωρίου Θεωρία-Μεθοδολογία-Ασκήσεις. Ολοκληρωτικός Λογισμός Τάξη Γ Κεφάλιο Ολοκληρωτικός Λογισμός Θεωρί-Μεθοδολογί-Ασκήσεις Κεφάλιο 3 Ολοκληρωτικός Λογισμός Σε κάθε μί πό τις πρκάτω περιπτώσεις ορίζετι πό τη γρφική πράστση μις τουλάχιστον συνάρτησης κι πό κάποιες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α YΠΡΒΛΗ ρισμός: Υπερολή με εστίες κι λέγετι ο γεωμ. τόπος των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων πό τ κι είνι στθερή κι μικρότερη του Έ. Τη στθερή υτή διφορά τη συμολίζουμε

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υλικών Διαγράμματα Φάσεων Callister Κεφάλαιο 11, Ashby Οδηγός μάθησης Ενότητα 2

Εισαγωγή στην Επιστήμη των Υλικών Διαγράμματα Φάσεων Callister Κεφάλαιο 11, Ashby Οδηγός μάθησης Ενότητα 2 Εισαγωγή στην Επιστήμη των Υλικών Διαγράμματα Φάσεων Callister Κεφάλαιο 11, Ashby Οδηγός μάθησης Ενότητα 2 Έννοιες που θα συζητηθούν Ορισμός Φάσης Ορολογία που συνοδεύει τα διαγράμματα και τους μετασχηματισμούς

Διαβάστε περισσότερα

Yποθέτουμε ότι αρχικά είναι φορτισμένος ο πυκνωτής με φορτίο Q ο. Mετά το κλείσιμο του κυκλώματος και σε τυχούσα χρονική στιγμή ισχύει:

Yποθέτουμε ότι αρχικά είναι φορτισμένος ο πυκνωτής με φορτίο Q ο. Mετά το κλείσιμο του κυκλώματος και σε τυχούσα χρονική στιγμή ισχύει: 0 Kεφ. TAΛANTΩΣEIΣ (prt, pges 0-4 Πράδειγμ 5. Tο κύκλωμ LC Yποθέτουμε ότι ρχικά είνι φορτισμένος ο πυκνωτής με φορτίο Q ο. Mετά το κλείσιμο του κυκλώμτος κι σε τυχούσ χρονική στιγμή ισχύει: O ς κνόνς Kirchhff

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ΙΑΝΥΣΜΑΤΑ - ΘΕΩΡΙΑ & ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ε (ρχή) φορές (πέρς) 1. Τι ορίζετι ως διάνυσµ ; Το διάνυσµ ορίζετι ως έν προσντολισµένο

Διαβάστε περισσότερα

7. Κωνικές τομές Τύποι - Βσικές έννοιες ΚΩΝΙΚΕΣ ΤΟΜΕΣ: Τύποι - Βσικές έννοιες Α. ΚΥΚΛΟΣ Εξίσωση κύκλου με κέντρο Ο( 0, 0 ) κι κτίν ρ : + =ρ Εξίσωση εφ

7. Κωνικές τομές Τύποι - Βσικές έννοιες ΚΩΝΙΚΕΣ ΤΟΜΕΣ: Τύποι - Βσικές έννοιες Α. ΚΥΚΛΟΣ Εξίσωση κύκλου με κέντρο Ο( 0, 0 ) κι κτίν ρ : + =ρ Εξίσωση εφ Ο μθητής που έχει μελετήσει τo κεφάλιο των κονικών τομών θ πρέπει ν είνι σε θέση: Ν προσδιορίζει την εξίσωση του κύκλου με κέντρο την ρχή των ξόνων. Με τη μέθοδο της συμπλήρωσης τετργώνου υπολογίζοντι

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις

Διαβάστε περισσότερα

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση. . Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 008 ΕΚΦΩΝΗΣΕΙΣ Γι τις ερωτήσεις 1.1-1. ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ που ντιστοιχεί στη σωστή πάντηση. 1.1 Tο ηλεκτρόνιο της εξωτερικής

Διαβάστε περισσότερα

Θεωρήματα, Προτάσεις, Εφαρμογές

Θεωρήματα, Προτάσεις, Εφαρμογές Θεωρήμτ, Προτάσεις, Εφρμογές Μιγδικοί Ιδιότητες συζυγών: Αν z i κι z γ δi είνι δυο μιγδικοί ριθμοί, τότε: Μέτρο: z z z z z z z z 3 z z z z 4 z z z z Αν z, z είνι μιγδικοί ριθμοί, τότε z z z z z z z z 3

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµτ Μθηµτικών Θετικής Κτεύθυνσης Β Λυκείου 999 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµ ο Α. Έστω a, ) κι, ) δύο δινύσµτ του κρτεσινού επιπέδου Ο. ) Ν εκφράσετε χωρίς πόδειξη) το εσωτερικό γινόµενο των δινυσµάτων a κι συνρτήσει

Διαβάστε περισσότερα

Κατασκευή θερμικού διαγράμματος ισορροπίας διμερούς κράματος Α,Β σύνθετου ευτηκτικού τύπου. Οδηγίες για την κατασκευή του διαγράμματος

Κατασκευή θερμικού διαγράμματος ισορροπίας διμερούς κράματος Α,Β σύνθετου ευτηκτικού τύπου. Οδηγίες για την κατασκευή του διαγράμματος Μεταλλογνωσία Εργασίες μέσα στην τάξη σελίδα 1 ΜΕΤΑΛΛΟΓΝΩΣΙΑ Γ. Δ. ΠΛΑΪΝΑΚΗΣ Εργασία 01 Κατασκευή θερμικού διαγράμματος ισορροπίας διμερούς κράματος Α,Β σύνθετου ευτηκτικού τύπου για την κατασκευή του

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Δίνετι η εκθετική συνάρτηση: f a Γι ποιες τιμές του η ) γνησίως ύξουσ; β) γνησίως φθίνουσ; ( ) είνι:. Δίνοντι οι

Διαβάστε περισσότερα

Γ.3. Εξισώσεις 2ου βαθμού. Απαραίτητες γνώσεις Θεωρίας 3.3. Θεωρία 5. θεωρία 6.

Γ.3. Εξισώσεις 2ου βαθμού. Απαραίτητες γνώσεις Θεωρίας 3.3. Θεωρία 5. θεωρία 6. Γ.3 3.3 Εξισώσεις ου θμού Απρίτητες νώσεις Θεωρίς Θεωρί 5. Τι ονομάζουμε εξίσωση δευτέρου θμού (ή δευτεροάθμι εξίσωση) μ ένν άνωστο κι τι δικρινουσά της; Ονομάζουμε εξίσωση δευτέρου θμού μ ένν άνωστο κάθε

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους 0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1.

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Δύο μηχνικά κύμτ ίδις συχνότητς διδίδοντι σε ελστική χορδή. Αν λ 1 κι λ 2 τ μήκη κύμτος υτών των κυμάτων ισχύει: ) λ 1 λ 2 γ) λ 1 =λ 2 Δικιολογήστε την πάντησή

Διαβάστε περισσότερα

β. CH 3 COOK γ. NH 4 NO 3 δ. CH 3 C CH. Μονάδες Ποιο από τα παρακάτω ζεύγη ενώσεων όταν διαλυθεί σε νερό δίνει ρυθµιστικό διάλυµα.

β. CH 3 COOK γ. NH 4 NO 3 δ. CH 3 C CH. Μονάδες Ποιο από τα παρακάτω ζεύγη ενώσεων όταν διαλυθεί σε νερό δίνει ρυθµιστικό διάλυµα. ΘΕΜΑ ο Στις ερωτήσεις. έως.4, ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ που ντιστοιχεί στη σωστή πάντηση... Το πλήθος των τοµικών τροχικών στις στιβάδες L κι Μ είνι ντίστοιχ:. 4

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΗ ΧΗMΕΙΑ ΚΑΤ 23/5/2011. ΘΕΜΑ Α ο ΘΕΜΑ Β. Β.1. α

ΑΠΑΝΤΗΣΕΙΣ ΣΤΗ ΧΗMΕΙΑ ΚΑΤ 23/5/2011. ΘΕΜΑ Α ο ΘΕΜΑ Β. Β.1. α ΑΠΑΝΤΗΣΕΙΣ ΣΤΗ ΧΗMΕΙΑ ΚΑΤ /5/0 ΘΕΜΑ Α ο Α.. β. 7 Α... HOO - (ντιστοιχεί στο σθενέστερο οξύ) Α.. δ. H O,0 M H OONa,0 M Α.4. β. sp sp A.5.. Σωστό β. Σωστό γ. Λάθος (είνι λίγο μεγλύτερο πό 7 φού το διάλυμ

Διαβάστε περισσότερα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα Κεφάλιο 2 ο Γρμμικά Δικτυώμτ Έν ηλεκτρικό κύκλωμ ή δικτύωμ ποτελείτι πό ένν ριθμό πλών κυκλωμτικών στοιχείων, όπως υτά που νφέρθηκν στο Κεφ.1, συνδεδεμένων μετξύ τους. Το κύκλωμ θ περιέχει τουλάχιστον

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας Μθηµτικά Κτεύθυνσης Γ Λυκείου Θέµτ Θεωρίς ΑΠΟΔΕΙΞΕΙΣ. N ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων κι - είνι συµµετρικές ως προς την ευθεί y που διχοτοµεί τις γωνίες Oy κι Oy Aς πάρουµε µι

Διαβάστε περισσότερα

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Εργστήριο Φυσικής Τμήμτος Πληροφορικής κι Τεχνολογίς Υπολογιστών Τ.Ε.Ι. Λμίς Ηλεκτρικό φορτίο Εισγωγή στην έννοι του Ηλεκτρικού Φορτίου Κάθε σώμ περιέχει στην φυσική του κτάστση ένν πάρ πολύ μεγάλο ριθμό

Διαβάστε περισσότερα

Γιώργος Χ. Παπαδημητρίου. 8 Ιουλίου 2011

Γιώργος Χ. Παπαδημητρίου. 8 Ιουλίου 2011 Λογισμός των Μετβολών Γιώργος Χ. Ππδημητρίου 8 Ιουλίου 2011 Οι προύσες σελίδες είνι μί χλρή εισγωγή στον λογισμό των μετβολών κι στις κυριότερες χρήσεις τους. Σκοπός τους είνι φ' ενός ν κλύψουν ρκετές

Διαβάστε περισσότερα

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης: Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ εθοδολογί Πρδείγµτ σκήσεις πιµέλει.: άτσιος ηµήτρης ΡΩ-Ρ ΡΩ διότητες: Ρ Πρδείγµτ:. υπολογίσετε τ πρκάτω ολοκληρώµτ: 5 d d συν π ( + ) d 4 Π ΡΩ ΡΩΩ. d c 6. d. d. d 4. d 5. συνd f '( ) d f ( ) + c. ηµ συν

Διαβάστε περισσότερα

Συµπληρωµατικά στοιχεία για το µάθηµα της κυκλοφοριακής τεχνικής

Συµπληρωµατικά στοιχεία για το µάθηµα της κυκλοφοριακής τεχνικής Συµπληρωµτικά στοιχεί γι το µάθηµ της κυκλοφορικής τεχνικής. ιευκρινήσεις στην µέθοδο νάλυσης κυκλοφορικής ικνότητς σε οδούς πολλών λωρίδων κυκλοφορίς. Συµπληρωµτικές Ασκήσεις Πρδείγµτ. 4η Άσκηση Όλες

Διαβάστε περισσότερα

Ευθύγραμμες Κινήσεις (Συμπυκνωμένα)

Ευθύγραμμες Κινήσεις (Συμπυκνωμένα) Εθύγρμμες Κινήσεις (Σμπκνωμέν) Χρήση Λελεδάκης Κωστής ( koleygr@gmailcom ) Οι σημειώσεις πεθύνοντι σε κάποιον πο θέλει ν μάθει ή ν θμηθεί τ βσικά στοιχεί των εθύγρμμων κινήσεων (χωρίς πργώγος κι ολοκληρώμτ)

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΕΙΟΥ ΠΕΜΠΤΗ 9 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΗΣ ΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Γι τις ερωτήσεις 1.1-1.4 ν γράψετε στο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α) Ν ποδείξετε ότι ν µι συνάρτηση f

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo.

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo. Ορισμός συντελεστή διεύθυνσης ευθείς Έστω συνάρτηση κι M, έν σημείο της γρφικής της πράστσης. υπάρχει το κι είνι πργμτικός ριθμός λ, τότε ορίζουμε ως εφπτομένη της στο σημείο M, την ευθεί (ε) που διέρχετι

Διαβάστε περισσότερα

f (x) = g(x) p(x) = q(x). ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ

f (x) = g(x) p(x) = q(x). ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΓΕΝΙΚΑ ΠΕΡΙ ΕΞΙΣΩΣΕΩΝ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Έστω f (x), g(x) είνι δύο πρστάσεις µις µετβλητής x πού πίρνει τιµές στο σύνολο Α. Εξίσωση µε ένν άγνωστο λέγετι κάθε ισότητ της µορφής f (x) =

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Στην προηγούµενη ενότητ συζητήσµε µετσχηµτισµούς της µορφής Y g( µίς τυχίς µετβλητής Όµως σε έν πολυµετβλητό φινόµενο ενδέχετι ν θέλουµε ν µετσχηµτίσουµε τις ρχικές

Διαβάστε περισσότερα

ΜΕΡΟΣ Ι ΥΠΟ ΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ

ΜΕΡΟΣ Ι ΥΠΟ ΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ ΜΕΡΟΣ Ι ΥΠΟ ΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟ ΕΙΓΜΑ SOOW-SWAN Εισγωγή Η νάλυση της θεωρίς της οικονοµικής µεγέθυνσης θ ξεκινήσει εξετάζοντς το πιο πλό δυνµικό υπόδειγµ

Διαβάστε περισσότερα

Αναλυτική Φωτογραμμετρία

Αναλυτική Φωτογραμμετρία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ανλυτική Φωτογρμμετρί Ενότητ # 4 Μθημτικά μοντέλ Συγγρμμικότητς κι Συνεπιπεδότητς Κθηγήτρι Όλγ Γεωργούλ Τμήμ Αγρονόμων & Τοπογράφων Μηχνικών

Διαβάστε περισσότερα

Η έννοια του διανύσματος

Η έννοια του διανύσματος Η έννοι του δινύσμτος Από τη γεωμετρί είμστε εξοικειωμένοι με την έννοι του ευθυγράμμου τμήμτος: δύο διφορετικά σημεί Α κι Β μις ευθείς (ε), ορίζουν το ευθύγρμμο τμήμ ΑΒ Έν ευθύγρμμο τμήμ λέγετι προσντολισμένο,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 52 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α

ΜΑΘΗΜΑ 52 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α ΜΑΘΗΜΑ 5 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α 7. Έστω συνάρτηση f : R R, η οποί είνι πργωγίσιµη κι κυρτή στο R µε f() κι f () i) Ν ποδείξετε ότι f() γι κάθε R f (t)dt Ν ποδείξετε ότι ηµ Αν επιπλέον ισχύει f () (f()

Διαβάστε περισσότερα

Δηλαδή, α ν = α α α α ν παράγοντες. Για δυνάμεις, με εκθέτες γενικά ακέραιους αριθμούς, ισχύουν οι επόμενες ιδιότητες. μ+ν. μ ν. α = μ ν. ν ν.

Δηλαδή, α ν = α α α α ν παράγοντες. Για δυνάμεις, με εκθέτες γενικά ακέραιους αριθμούς, ισχύουν οι επόμενες ιδιότητες. μ+ν. μ ν. α = μ ν. ν ν. 367 ΡΩΤΗΣΙΣ ΘΩΡΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ! ΤΞΗΣ 368 ΡΩΤΗΣΙΙΣ ΘΩΡΙΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ!! ΤΞΗΣ 1. Τι ονομάζετε δύνμη ν ; Ονομάζετι δύνμη ν με άση τον ριθμό κι εκθέτη το φυσικό ν > 1, το γινόμενο πό ν πράγοντες ίσους

Διαβάστε περισσότερα

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι.

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι. ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ Α ΟΜΑΔΑΣ (i Ο συντεεστής διεύθυνσης της ευθείς ΑΒ είνι: 6 ( (ii Ο συντεεστής διεύθυνσης της ευθείς ΓΔ είνι: ( (iii Ο συντεεστής διεύθυνσης κάθε ευθείς κάθετης προς την ΓΔ έχει

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μθητής που έχει μελετήσει το κεφάλιο υτό θ πρέπει ν είνι σε θέση:. Ν γνωρίζει τις έννοιες πράγουσ ή ρχική συνάρτηση, όριστο ολοκλήρωμ κι ν μπορεί ν υπολογίζει πλά όριστ ολοκληρώμτ με τη οήθει των μεθόδων

Διαβάστε περισσότερα

W W Q Q W + W + Q = = = = 1 α C.O.P. C.O.P. = + + = + C.O.P = = = 1 α C.O. H2 H2 C1 C2 C C C C Ψ1

W W Q Q W + W + Q = = = = 1 α C.O.P. C.O.P. = + + = + C.O.P = = = 1 α C.O. H2 H2 C1 C2 C C C C Ψ1 Αντλίες θερµότητς έρος-νερού υψηλών θερµοκρσιών δυο κυκλωµάτων συµπίεσης (σύστηµ cascade). (Από τον Νικόλο Γ. Τσίτσο. Νυπηγό Μηχνολόγο Ε.Μ.Π. Κθηγητ στην Ακδηµί Εµπορικού Νυτικού Ασπροπύργου) εν νκλύψµε

Διαβάστε περισσότερα

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά;

ΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά; ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ι ΗΜΕΡΗΣΙΑ ΘΕΜΑ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÑÏÌÂÏÓ

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÑÏÌÂÏÓ ΘΕΜ 1ο ΘΕΜΤ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ - 000 Στις ερωτήσεις 1-4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ που ντιστοιχεί στη σωστή πάντηση. 1. Ένς νεµιστήρς

Διαβάστε περισσότερα

1) Ποια είναι η αρχική ή παράγουσα; Τι σχέση έχει µε την f. 3) Υπάρχει µια παράγουσα για κάθε συνάρτηση ή περισσότερες;

1) Ποια είναι η αρχική ή παράγουσα; Τι σχέση έχει µε την f. 3) Υπάρχει µια παράγουσα για κάθε συνάρτηση ή περισσότερες; ΛΟΓΙΣΜΟΣ ) Ποι είνι η ρχική ή πράγουσ; Τι σχέση έχει µε την f. Έστω f µι συνάρτηση ορισµένη σ έν διάστηµ. Αρχική ή πράγουσ της f στο θ ονοµάζετι κάθε συνάρτηση F που είνι πργωγίσιµη στο κι ισχύει F ()

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α.1 γ Α. Α. Α.4 γ Α.5 ) Pauli: Δεν υπάρχουν στο ίδιο άτομο

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 3ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 3ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλιο ο: ΚΩΝΙΚΕ ΤΟΜΕ Ερωτήσεις του τύπου «ωστόάθος» 1. * Η εξίσωση + = ( > 0) πριστάνει κύκλο.. * Η εξίσωση + + κ + λ = 0 µε κ, λ 0 πριστάνει πάντ κύκλο.. * Ο κύκλος µε κέντρο Κ (1, 1) που περνά πό το

Διαβάστε περισσότερα

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 5 ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονί συνάρτησης Οι έννοιες γνησίως ύξουσ συνάρτηση, γνησίως φθίνουσ συνάρτηση είνι γνωστές πό προηγούμενη τάξη Συγκεκριμέν,

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 5: Διαγράμματα φάσεων και ελεύθερη ενέργεια Gibbs. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 5: Διαγράμματα φάσεων και ελεύθερη ενέργεια Gibbs. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 5: Διαγράμματα φάσεων και ελεύθερη Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Συµπληρωµατικά στοιχεία για το µάθηµα της κυκλοφοριακής τεχνικής

Συµπληρωµατικά στοιχεία για το µάθηµα της κυκλοφοριακής τεχνικής Συµπληρωµτικά στοιχεί γι το µάθηµ της κυκλοφορικής τεχνικής 1. ιευκρινήσεις στην µέθοδο νάλυσης κυκλοφορικής ικνότητς σε οδούς πολλών λωρίδων κυκλοφορίς 2. Συµπληρωµτικές Ασκήσεις Πρδείγµτ 3. 4η Άσκηση

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Στο διπλνό ορθοώνιο τρίωνο, έχουμε φέρει πλά το ύψος που κτλήει στην υποτείνουσ. Είνι προφνές ότι, με υτό τον τρόπο, το μεάλο ορθοώνιο τρίωνο χωρίστηκε σε δύο μικρότερ ορθοώνι, τ κι. Σε

Διαβάστε περισσότερα

ΕΞΑΤΜΙΣΗ ΤΩΝ ΥΓΡΩΝ. (Φυσικ. II 1α,1β )

ΕΞΑΤΜΙΣΗ ΤΩΝ ΥΓΡΩΝ. (Φυσικ. II 1α,1β ) 107 ΕΞΑΜΙΣΗ ΩΝ ΥΓΡΩΝ (Φσικ. II 1,1 ) άση τµών. Μέτρηση κι σηµσί της. Σε θερµοδµµικό κύλινδρο, πο ρίσκετι σε θερµοστάτη µεγάλης θερµοχωρητικότητς, τοποθετείτι ποσότητ γρού. Στην επιφάνει το γρού εφάπτετι

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ Συγγρφή Επιμέλει: Πνγιώτης Φ. Μοίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.pias.weebl.c ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009. ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν

Διαβάστε περισσότερα

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου Στοιχεί εισγωγής γι τη Φυσική Α Λυκείου Οι πρκάτω σημειώσεις δινέμοντι υπό την άδει: Creative Commons Ανφορά Δημιουργού - Μη Εμπορική Χρήση - Πρόμοι Δινομή 4.0 Διεθνές. 1 ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙΟΤΗΤΑ

Διαβάστε περισσότερα

Εκθετική - Λογαριθµική συνάρτηση

Εκθετική - Λογαριθµική συνάρτηση Εκθετική - ογριθµική συνάρτηση Ορισµός δύνµης µε εκθέτη θετικό κέριο..., νν> ν 0 Ορίζουµε: ν πράγοντες,, γι 0., ν ν Αν ν θετικός κέριος, ορίζουµε: ν -ν. ν µ ν ν µ ν Αν >0, µ κέριος κι ν θετικός κέριος,

Διαβάστε περισσότερα

Αλγόριθµοι Άµεσης Απόκρισης

Αλγόριθµοι Άµεσης Απόκρισης Αλγόριθµοι Άµεσης Απόκρισης Εγχειρίδιο Φροντιστηρικών Ασκήσεων Ιωάννης Κργιάννης Ιούνιος 008 Το πρόν εγχειρίδιο περιέχει σκήσεις κι νοιχτά προβλήµτ σχετικά µε το ντικείµενο του µθήµτος Αλγόριθµοι Άµεσης

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΟΓΝΩΣΙΑΣ ΚΑΙ ΥΛΙΚΩΝ ΑΣΚΗΣΗ 3: ΔΙΑΓΡΑΜΜΑΤΑ ΦΑΣΕΩΝ ΚΡΑΜΑΤΩΝ ΟΜΑΔΑ 12

ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΟΓΝΩΣΙΑΣ ΚΑΙ ΥΛΙΚΩΝ ΑΣΚΗΣΗ 3: ΔΙΑΓΡΑΜΜΑΤΑ ΦΑΣΕΩΝ ΚΡΑΜΑΤΩΝ ΟΜΑΔΑ 12 ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΟΓΝΩΣΙΑΣ ΚΑΙ ΥΛΙΚΩΝ ΑΣΚΗΣΗ 3: ΔΙΑΓΡΑΜΜΑΤΑ ΦΑΣΕΩΝ ΚΡΑΜΑΤΩΝ ΟΜΑΔΑ 12 Προφορικές εξετάσεις/αναφορές: Κάθε ομάδα ετοιμάζει μία παρουσίαση (στο πρόγραμμα Power Point για ~30 45 λεπτά, 10 15

Διαβάστε περισσότερα

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ.

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ. 995 ΘΕΜΑΤΑ. ίνοντι οι πργµτικοί ριθµοί κ, λ µε κ < λ κι η συνάρτηση f() ( κ) 5 ( λ) µε. Ν ποδείξετε ότι: ) f () f() 5 κ, γι κάθε κ κι λ. λ ) Η συνάρτηση g() ln f() στρέφει τ κοίλ προς τ κάτω στο διάστηµ

Διαβάστε περισσότερα

( 0) = lim. g x - 1 -

( 0) = lim. g x - 1 - ν ν ΘΕΜΑ Η πολυωνυµική συνάρτηση ν + ν + + + έχει όριο στο R κι ισχύει lim ν ν Έχουµε lim + + + lim ν ν ν ν lim ν + lim ν + ν ν ν lim + ν lim + + lim + lim ν ν ν + ν + + Εποµένως, lim ΘΕΜΑ Η ρητή συνάρτηση

Διαβάστε περισσότερα

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι Έςτω :RR, ςυνεχήσ ςυνάρτηςη κι,,cr Αποδείξτε ότι ) d d β) d d γ) d c c d c c δ) d c c c d ε) d στ) d Απάντηση:, εάν η είνι περιττή d, εάν η είνι άρτι Πρόκειτι γι πολύ βσική άσκηση, που είνι εφρμογή της

Διαβάστε περισσότερα

Φάση ονοµάζεται ένα τµήµα της ύλης, οµοιογενές σε όλη την έκτασή του τόσο από άποψη χηµικής σύστασης όσο και φυσικής κατάστασης.

Φάση ονοµάζεται ένα τµήµα της ύλης, οµοιογενές σε όλη την έκτασή του τόσο από άποψη χηµικής σύστασης όσο και φυσικής κατάστασης. Φάση ονοµάζεται ένα τµήµα της ύλης, οµοιογενές σε όλη την έκτασή του τόσο από άποψη χηµικής σύστασης όσο και φυσικής κατάστασης. Ανεξάρτητα συστατικά ή συνιστώσες ενός ετερογενούς συστήµατος σε ισορροπία

Διαβάστε περισσότερα

B Λυκείου. 22 Μαρτίου Συνοπτικές λύσεις των θεµάτων. Θεωρητικό Μέρος Θέµα 1o. 1 mv 2 =nc v Τ (όπου m η µάζα του αερίου) 2. 1 mv 2 m.

B Λυκείου. 22 Μαρτίου Συνοπτικές λύσεις των θεµάτων. Θεωρητικό Μέρος Θέµα 1o. 1 mv 2 =nc v Τ (όπου m η µάζα του αερίου) 2. 1 mv 2 m. Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 008 Πνεπιστήµιο Αθηνών Εργστήριο Φυσικών Επιστηµών, Τεχνολογίς, Περιβάλλοντος Μρτίου 008 Θεωρητικό Μέρος Θέµ o Λυκείου Συνοπτικές λύσεις των θεµάτων.

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) x (5 + 3)x + 5 3 = (...).(...) ι) x + (5 3)x 5 3 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 3 0x (Μονάδες 3) β) Ν λύσετε την εξίσωση 7x 3 = (10x + x 3 ) (Μονάδες 3,5) Θέμ 3ο Ν πργοντοποιήσετε

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ Συγγρφή Επιμέλει: Πνγιώτης Φ. Μοίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ.

Διαβάστε περισσότερα