ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης"

Transcript

1 ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

2 Περιεχόμενα Εισαγωγή Το πρόβλημα - Συντελεστής συσχέτισης Μοντέλο απλής γραμμικής παλινδρόμησης - Συντελεστής εξάρτησης Έλεγχοι υποθέσεων & Ερμηνεία Το μοντέλο Προκαταρτικοί έλεγχοι Διαγραμματική απεικόνιση (Scatter-plot) Έλεγχος κανονικότητας Δείκτες γραμμικής συσχέτισης Μοντέλο Παλινδρόμησης Δείκτες συσχέτισης Έλεγχοι υποθέσεων Ερμηνεία αποτελεσμάτων Έλεγχος Προϋποθέσεων (Ανάλυση καταλοίπων) Κανονικότητα σφαλμάτων (και Υ) Ανεξαρτησία σφαλμάτων (και Υ) Ομοσκεδαστικότητα σφαλμάτων (και Υ) Έλεγχος έκτροπων ή ασυνήθιστων τιμών Παράδειγμα - Spss Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 2

3 Το πρόβλημα Κύριο πρόβλημα σε αυτή την ενότητα θα αποτελέσει η διερεύνηση της σχέσης μεταξύ δυο μεταβλητών Χ, Υ. Το γενικό πρόβλημα περιγράφεται ως εξής: από έναν (θεωρητικά άπειρο) πληθυσμό λαμβάνουμε ένα δείγμα μεγέθους n και για κάθε μέρος του δείγματος καταγράφουμε τις τιμές των δύο μεταβλητών Χ, Υ. Με βάση λοιπόν τα ζεύγη τιμών (Χ 1,Υ 1 ), (X 2,Υ 2 ),, (X n,υ n ) του δείγματος επιθυμούμε να διερευνήσουμε τη σχέση μεταξύ των μεταβλητών X, Y. Επιπλέον θεωρούμε ότι Η μεταβλητή X η οποία καλείται ανεξάρτητη (independent) ή ερμηνευτική μεταβλητή (explanatory variable) δεν θεωρείται τυχαία, ενώ Η μεταβλητή Y η οποία καλείται εξαρτημένη (dependent) ή μεταβλητή απόκρισης (response variable) θεωρείται τυχαία μεταβλητή. Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 3

4 Συντελεστής συσχέτισης Ο συντελεστής συσχέτισης που εξετάσαμε σε προηγούμενη ενότητα µας πληροφορεί για το αν και κατά πόσο δύο μεταβλητές σχετίζονται. Ωστόσο δεν µας πληροφορεί για το πως σχετίζονται. Δηλαδή, τον τρόπο µε τον οποίο μεταβάλλονται οι τιμές τις μίας, αν μεταβληθούν οι τιμές της άλλης Σε αυτή την περίπτωση, δηλαδή όταν θέλουμε να διερευνήσουμε τη μεταβολή των τιμών της μίας μεταβλητής (εξαρτημένη), συναρτήσει των μεταβολών της άλλης (ανεξάρτητης) εφαρμόζουμε στατιστική εξάρτηση ή παλινδρόμηση. Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 4

5 Μοντέλο απλής γραμμικής παλινδρόμησης Η κύρια ιδέα της γραμμικής εξάρτησης, είναι η δημιουργία μίας ευθείας, που να εφαρμόζει καλύτερα στα δεδομένα. Η ευθεία αυτή περιγράφεται από την εξίσωση: Yˆ E i b b X 0 1 i X i όπου b 0 είναι η σταθερά της και b 1 η κλίση της. Δηλαδή, η μέση τιμή της εξαρτημένης μεταβλητής Υ μεταβάλλεται µε σταθερό ρυθμό, όταν μεταβάλλονται οι τιμές της ανεξάρτητης μεταβλητής. Έτσι για κάθε µία παρατήρηση της Υ, εκτιμάμε : Yˆ i b0 b1 X i i όπου τα e i είναι τα παρατηρηθέντα υπόλοιπα, δηλαδή η διαφορά της τιμής της εξαρτημένης μεταβλητής Υ στο δείγμα, για δεδομένο Χ (παρατηρούμενη τιμή του Υ) από την τιμή που αναμένουμε για την Υ µε βάση την εξίσωση Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 5

6 Συντελεστής εξάρτησης Η κλίση της ευθείας, δηλαδή το b 1, καλείται συντελεστής εξάρτησης, για τον οποίο ισχύουν: Διαθέτει μονάδες, το λόγο των μονάδων της εξαρτημένης μεταβλητής προς τις μονάδες της ανεξάρτητης. Μπορεί να πάρει οποιαδήποτε τιμή. Ο συντελεστής εξάρτησης μπορεί να είναι αρνητικός (αρνητική εξάρτηση), θετικός (θετική εξάρτηση) ενώ όταν είναι μηδέν δεν υπάρχει εξάρτηση μεταξύ των υπό εξέταση μεταβλητών. Είναι εμφανές ότι ο συντελεστής εξάρτησης b 1 εκφράζει το µέσο όρο της μεταβολής της εξαρτημένης μεταβλητής, όταν η ανεξάρτητη μεταβληθεί κατά µία μονάδα (Τιμή του b 1 ίση µε το μηδέν, κατ. επέκταση, ισοδυναμεί µε απουσία εξάρτησης). Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 6

7 Έλεγχοι υποθέσεων & Ερμηνεία Yˆ i b0 b1 X i Κύριος έλεγχος Η 0 : β 1 =0 έναντι της εναλλακτικής Η 1 : β 1 0 ισοδύναμο με τον έλεγχο για συσχέτιση μεταξύ Χ και Υ Δίνει την κλίση της ευθείας Μας ενδιαφέρει για την ερμηνεία των αιτιολογικών σχέσεων μεταξύ φαινομένων μεταβλητών ΕΡΜΗΝΕΙΑ: i Εξετάζει πόσο αναμένουμε να αυξηθεί η Υ με μία μονάδα αύξησης της Χ Η τιμή του β 1 επηρεάζεται από την κλίμακα (μονάδες μέτρησης) των Χ & Υ. Το ρ (και r) και ο αντίστοιχος έλεγχος δεν επηρεάζονται Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 7

8 Έλεγχοι υποθέσεων & Ερμηνεία Yˆ i b0 b1 X i i Δευτερεύον Έλεγχος: Η 0 : β 0 =0 έναντι της εναλλακτικής Η 1 : β 0 0 Μας δίνει το σημείο που η ευθεία τέμνει τον κάθετο άξονα ΥΥ δηλαδή την τιμή του Υ όταν Χ=0 ΕΡΜΗΝΕΙΑ: Η αναμενόμενη τιμή του Υ όταν Χ=0 Πολλές φορές η τιμή αυτή δεν έχει ερμηνεία (διότι η τιμή Χ=0 δεν παρατηρείται ποτέ στην πράξη). Άλλες φορές θέτουμε β 0 =0 εκ-των-προτέρων και ανεξαρτήτως ελέγχου λόγω κοινής λογικής Πολλές φορές «βολεύει» για λόγους ερμηνείας αντί της Χ να χρησιμοποιήσουμε την Χ Χ Χ (στάθμευση). Τότε β 1 δεν αλλάζει (γίνεται μια απλή μετατόπιση της ευθείας έτσι ώστε να έχουν λογική ερμηνεία τα αποτελέσματα) Το β 0 είναι ίσο με την αναμενόμενη τιμή του Υ όταν Χ είναι ίσο με το δειγματικό μέσο Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 8

9 Εφαρμογή γραμμικής παλινδρόμησης - SPSS Ο υπεύθυνος του γραφείου εξυπηρέτησης πελατών μιας εταιρείας, ενδιαφέρεται να εκτιμήσει το χρόνο που μεσολαβεί από την παραγγελία έως την παράδοση (άρα και το αντίστοιχο κόστος αλλά και την ποιότητα εξυπηρέτησης) κάθε παραγγελίας ανάλογα με την απόσταση του πελάτη από τις κεντρικές αποθήκες της εταιρείας. Για το λόγο αυτό πήρε ένα τυχαίο δείγμα 10 παραγγελιών και κατέγραψε την απόσταση των εγκαταστάσεων του πελάτη (σε χιλιόμετρα) και τις ημέρες που μεσολάβησαν μέχρι την παράδοση των εμπορευμάτων παράδοσης. Να κατασκευαστεί ένα μοντέλο που θα βοηθήσει τον υπεύθυνο της εταιρείας Απόσταση Ημέρες 3, ,5 1,5 3 5 Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 9

10 Ανάλυση απλής παλινδρόμησης Βήματα κατά την ανάλυση προβλημάτων απλής παλινδρόμησης 1. Προκαταρκτικοί έλεγχοι (Γραμμικότητα μεταξύ Χ και Υ) 1. Διαγραμματική απεικόνιση (Scatter-plot) 2. Έλεγχος κανονικότητας 3. Δείκτες γραμμικής συσχέτισης 2. Μοντέλο Παλινδρόμησης 1. Δείκτες συσχέτισης 2. Έλεγχοι υποθέσεων 3. Ερμηνεία αποτελεσμάτων 3. Έλεγχος Προϋποθέσεων (Ανάλυση καταλοίπων) 1. Κανονικότητα σφαλμάτων (και Υ) 2. Ανεξαρτησία σφαλμάτων (και Υ) 3. Ομοσκεδαστικότητα σφαλμάτων (και Υ) 4. Έλεγχος έκτροπων ή ασυνήθιστων τιμών Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 10

11 Προκαταρκτικοί έλεγχοι 1.1. Διαγραμματική απεικόνιση Από την μπάρα μενού επιλέγουμε Graphs Scatter: simple Στην θυρίδα διαλόγου που εμφανίζεται βάζουμε τον χρόνο παράδοσης στον άξονα Υ (εξαρτημένη) και την απόσταση στον άξονα Χ (ανεξάρτητη) Διαφαίνεται γραμμική σχέση μεταξύ της απόστασης και του χρόνου παράδοσης. Πως μπορεί να ποσοτικοποιηθεί η σχέση αυτή? Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 11

12 Προκαταρκτικοί έλεγχοι 1.2. Έλεγχος Κανονικότητας Από την μπάρα μενού επιλέγουμε Graphs Q-Q plots Στην θυρίδα διαλόγου που εμφανίζεται βάζουμε τον χρόνο παράδοσης και την απόσταση στον χώρο variables Οι παρατηρούμενες τιμές της μεταβλητής που δίνουμε απεικονίζονται διαγραμματικά σε σχέση με τις αναμενόμενες τιμές αν το δείγμα προερχόταν από την κανονική κατανομή. Αν το δείγμα προέρχεται από κανονική κατανομή τότε τα σημεία θα συνοψίζονται γύρω από την ευθεία γραμμή. Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 12

13 Προκαταρκτικοί έλεγχοι 1.2. Έλεγχος Κανονικότητας Εναλλακτικά ακολουθούμε από το μενού: Analyze Descriptive Statistics Explore, και επιλέγουμε Normality plots with tests από το παράθυρο διαλόγου Plots Εκτός από τα QQ Plots που ξαναεμφανίζονται και με αυτό τον τρόπο, έχουμε επιπλέον τους ελέγχους υποθέσεων κανονικότητας των Kolmogorov-Smirnov (με correction) & Shapiro - Wilk Μεγάλα Δείγματα Μικρά Δείγματα Tests of Normality Kolmogorov-Smirnov a Shapiro-Wilk Statistic df Sig. Statistic df Sig. apostasi,112 10,200 *,970 10,892 imeres,142 10,200 *,937 10,520 Επειδή τα p values είναι μεγαλύτερα του 0,05 δεν απορρίπτουμε την υπόθεση της ακολουθίας κανονικής κατανομής για καμία από τις δύο μεταβλητές Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 13

14 Προκαταρκτικοί έλεγχοι 1.3. Συντελεστές συσχέτισης Από το μενού Analyze Correlate Bivariate Correlations apostasi imeres apostasi Pearson Correlation 1,000,949 ** Sig. (2-tailed),000 N Pearson Correlation,949 ** 1,000 imeres Sig. (2-tailed),000 N **. Correlation is significant at the 0.01 level (2-tailed). r=0,949, δηλαδή ο συντελεστής συσχέτισης είναι πολύ υψηλός (όσο πιο μεγάλος ο δείκτης αυτός, τόσο ισχυρότερη είναι η συσχέτιση των δύο μεταβλητών (θετική ή αρνητική) Στατιστικά σημαντικός ο έλεγχος απορρίπτουμε την Η 0 :ρ=0, δηλαδή παρατηρείται ισχυρή (θετική) γραμμική συσχέτιση μεταξύ των δύο μεταβλητών Spearman's rho apostasi imeres Correlations apostasi imeres Correlation Coefficient 1,000,945 ** Sig. (2-tailed).,000 N Correlation Coefficient,945 ** 1,000 Sig. (2-tailed),000. N Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 14

15 Μοντέλο Παλινδρόμησης Από το μενού Analyze επιλέγουμε Regression και στη συνέχεια Linear ή (Curve Estimation). Στο αριστερό παράθυρο βρίσκονται οι μεταβλητές Στο παράθυρο Dependent μεταφέρουμε την εξαρτημένη μεταβλητή και Στο παράθυρο Independent μεταφέρουμε την ανεξάρτητη μεταβλητή Τσεκάρουμε Linear από τις διαθέσιμες μορφές παλινδρόμησης στη θέση Models. Τσεκάρουμε Include constant in equation για να μας δώσει την τιμή του σταθερού όρου. Τσεκάρουμε Plots Models-για να μας δώσει το γράφημα Τσεκάρουμε Display ANOVA Table Πατάμε ΟΚ Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 15

16 Μοντέλο Παλινδρόμησης 2.1. Δείκτες Συσχέτισης Model Summary and Parameter Estimates Dependent Variable:imeres Model Summary Parameter Estimates Equation R Square F df1 df2 Sig. Constant b1 Linear,900 72, ,000,118,004 The independent variable is apostasi. R=Multiple Correlation Coefficient R 2 (coefficient of determination)= % διακύμανσης της Υ που εξηγείται από το μοντέλο R 2 adj = % διακύμανσης της Υ που εξηγείται από το μοντέλο διορθωμένο για τον αριθμό των μεταβλητών. Ο τελευταίος αυτός δείκτης: α)λαμβάνει υπόψη του τις μεταβλητές, β)χρησιμοποιείται ως μέτρο καλής προσαρμογής ή πρόβλεψης, γ)μπορει να χρησιμοποιηθεί ως κριτήριο επιλογής μοντέλου (ΓΕΝΙΚΑ) Ερμηνεία R 2 (coefficient of determination)= 0,90, δηλαδή η απόσταση εξηγεί το 90% της συνολικής διακύμανσης των ημερών παράδοσης. Το υπόλοιπο 10% της διακύμανσης είναι ανεξήγητο και πρέπει να οφείλεται σε άλλους παράγοντες που δεν λαμβάνονται υπ όψη στην παρούσα μελέτη Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 16

17 Μοντέλο Παλινδρόμησης 2.2. Έλεγχος Υποθέσεων ANOVA Sum of Squares df Mean Square F Sig. Regression 16, ,682 72,396,000 Residual 1,843 8,230 Total 18,525 9 Στο συγκεκριμένο πίνακα (απλή παλινδρόμηση) ελέγχουμε την υπόθεση: Η 0 : β 1 =0 έναντι της εναλλακτικής Η 1 : β 1 0 Στο παράδειγμά μας απορρίπτουμε την Η 0 : β 1 =0 επειδή το p-value<0,05, γεγονός που σημαίνει ότι η επίδραση της ανεξάρτητης μεταβλητής είναι σημαντική και επηρεάζει / καθορίζει τις τιμές της εξαρτημένης Επιπλέον στη στήλη DF (Degree of Freedom) βλέπουμε τους αριθμούς οι οποίοι εκφράζουν τους βαθμούς ελευθερίας οι οποίοι αντιστοιχούν στο άθροισμα τετραγώνων που ερμηνεύεται από την παλινδρόμηση (Regression) και στο άθροισμα τετραγώνων που δεν ερμηνεύεται από την παλινδρόμηση (Residuals). Στη στήλη Sum. Of Squares οι αριθμοί εκφράζουν το άθροισμα τετραγώνων που ερμηνεύεται από την παλινδρόμηση και στο άθροισμα τετραγώνων που δεν ερμηνεύεται από την παλινδρόμηση. Η τιμή F = (F κατανομή) είναι το πηλίκο των τιμών της στήλης Mean square. Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 17

18 Μοντέλο Παλινδρόμησης 2.3. Ερμηνεία αποτελεσμάτων Unstandardized Coefficients Coefficients Standardized Coefficients Ερμηνεία: B Std. Error Beta t Sig. apostasi,004,000,949 8,509,000 (Constant),118,355,333,748 Η τιμή p value της ανεξάρτητης μεταβλητής (απόσταση) είναι μικρότερη του 0,05 δηλαδή απορρίπτουμε την Η 0 : β 1 = 0 και κατά συνέπεια αποδεχόμαστε την επίδραση της απόστασης (ανεξάρτητη) στον χρόνο παράδοσης (εξαρτημένη). Η τιμή του συντελεστή εξάρτησης β 1 είναι > 0 συνεπώς θετική σχέση όσο αυξάνει η απόσταση τόσο μεγαλώνει ο χρόνος παράδοσης Με κάθε επιπλέον χιλιόμετρο ο αναμενόμενος χρόνος παράδοσης αυξάνει κατά μέρες (περίπου 5,7 λεπτά) ή με κάθε επιπλέον 100 χιλιόμετρα ο αναμενόμενος χρόνος παράδοσης αυξάνει κατά 0.4 μέρες (περίπου 9.6 ώρες) Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 18

19 Μοντέλο Παλινδρόμησης 2.3. Ερμηνεία αποτελεσμάτων Unstandardized Coefficients Coefficients Standardized Coefficients B Std. Error Beta t Sig. apostasi,004,000,949 8,509,000 (Constant),118,355,333,748 Ερμηνεία: Η αντίστοιχη τιμή p value της σταθεράς (0,748) είναι μεγαλύτερη του 0,05 δηλαδή δεν απορρίπτουμε την Η 0 : β 0 = 0 και κατά συνέπεια η σταθερά μπορεί να θεωρηθεί 0 και να αφαιρεθεί από το μοντέλο. Μία επιπλέον ερμηνεία που μπορούμε να δώσουμε στο συγκεκριμένο παράδειγμα είναι ότι η απόσταση είναι πολύ μικρή τότε ο χρόνος παράδοσης είναι 0,118 μέρες (2.8 ώρες), γεγονός που μας οδηγεί στο συμπέρασμα ότι ίσως πρέπει να κάνουμε στάθμιση Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 19

20 Είναι τα αποτελέσματα αξιόπιστα ; Σημαντικό πριν κλείσουμε την ανάλυση (ή καλύτερα πριν την αρχίσουμε) να βεβαιωθούμε ότι οι παρατηρήσεις μας προσαρμόζονται ικανοποιητικά στο μοντέλο ώστε τα συμπεράσματα που προκύπτουν να θεωρούνται αξιόπιστα. Αν διαπιστώσουμε ότι κάτι τέτοιο δεν συμβαίνει τότε θα πρέπει να τροποποιήσουμε κατάλληλα το μοντέλο. Οι υποθέσεις γίνονται στα κατάλοιπα που είναι οι αποκλίσεις των τιμών των ανεξάρτητων μεταβλητών από τις αντίστοιχες εκτιμώμενες τιμές τους: Υπόθεση της κανονικότητας των καταλοίπων, δηλαδή ότι e i ~Ν(0,σ 2 ), όπου Ν είναι ο συμβολισμός της κανονικής κατανομής (Normal distribution) και 0 (μηδέν) και σ 2 είναι ο μέσος και η διακύμανση της κατανομής. Υπόθεση της ανεξαρτησίας των καταλοίπων, δηλαδή ότι Cov(e i, e j )=0 εάν i j. Αυτό σημαίνει ότι θέλουμε για όλα τα ζεύγη των καταλοίπων η συνδιακύμανση τους (Covariance) να είναι μηδέν. Υπόθεση της ομοσκεδαστικότητας των καταλοίπων, δηλαδή Cov(e i, e j )=σ 2 σταθερή εάν i=j για κάθε i. Η διακύμανση δηλαδή των καταλοίπων πρέπει να είναι σταθερή και ίση με σ 2 για όλα τα κατάλοιπα Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 20

21 Έλεγχος Ορθότητας του μοντέλου 1. Εξετάζουμε αν τα τυποποιημένα κατάλοιπα ακολουθούν πράγματι κανονική κατανομή 2. Εξετάζουμε αν υπάρχει σχέση μεταξύ των προσαρμοσμένων Υi και των τυποποιημένων καταλοίπων (υπό τις υποθέσεις του γραμμικού μοντέλου είναι ανεξάρτητα), χρησιμοποιώντας το γράφημα των σημείων στο επίπεδο. 3. Εξετάζουμε αν υπάρχει σχέση μεταξύ των Χi και των τυποποιημένων καταλοίπων, χρησιμοποιώντας το γράφημα των σημείων στο επίπεδο. 4. Εξετάζουμε αν τα τυποποιημένα κατάλοιπα είναι ανεξάρτητα από την σειρά με την οποία πήραμε τις παρατηρήσεις. Για το σκοπό αυτό χρησιμοποιούμε το γράφημα των σημείων, Επίσης συνήθως χρησιμοποιούμε ένα τεστ ροών (runs test) για τα κατάλοιπα ή ένα τεστ αυτοπαλινδρόμησης που είναι γνωστό ως Durbin Watson test. Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 21

22 Έλεγχος Ορθότητας του μοντέλου 5. Εξετάζουμε αν υπάρχουν «έκτροπες» παρατηρήσεις χρησιμοποιώντας και πάλι τα γραφήματα (ακόμη και το γράφημα των (Χi,Yi)). Θεωρούμε ως «ασυνήθιστες» τις παρατηρήσεις με studentized residual μεγαλύτερο του 2 και «έκτροπες» αυτές με studentized residual μεγαλύτερο του 3. Οι έκτροπες παρατηρήσεις είτε προέρχονται από λάθος καταγραφή του ερευνητή (οπότε ελέγχεται αν μια έκτροπη παρατήρηση έχει καταγραφεί και περαστεί στον Η/Υ σωστά) ή είναι πραγματικές παρατηρήσεις υποδεικνύοντας ότι το μοντέλο μας δεν είναι απόλυτα σωστό. Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 22

23 Ανάλυση καταλοίπων 3.1. Κανονικότητα σφαλμάτων Προκειμένου να ελέγξουμε την κανονικότητα των καταλοίπων Θα πρέπει πρώτα να αποθηκεύσουμε στον data editor τις τιμές των τυποποιημένων καταλοίπων. Αυτό γίνεται χρησιμοποιώντας την επιλογή save κατά την εκτέλεση της ανάλυσης της παλινδρόμησης. Analyze Regression Linear επιλέγοντας την επιλογή save και στην συνέχεια από το παράθυρο διαλόγου τις επιλογές unstandardized predicted values, τα studentized residuals και τα leverages values. Στον πίνακα δεδομένων (Data editor) προστίθενται νέες στήλες που έχουν τις ζητούμενες ποσότητες: Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 23

24 Ανάλυση καταλοίπων 3.1. Κανονικότητα σφαλμάτων Προκειμένου να ελέγξουμε την κανονικότητα των καταλοίπων επειδή τα δεδομένα μας είναι λίγα πραγματοποιούμε τον έλεγχο της κανονικότητάς με το τεστ των Shapiro-Wilk. (Analyze Descriptive Statistics Explore Plots: Normality plots with tests Tests of Normality Kolmogorov-Smirnov a Shapiro-Wilk Statistic df Sig. Statistic df Sig. Standardized Residual,140 10,200 *,934 10,487 Στο ιστόγραμμα και τo Q-Q plot των καταλοίπων υπάρχουν ενδείξεις κανονικότητας αλλά δεν μπορούμε να αποφασίσουμε με σιγουριά γιατί οι παρατηρήσεις είναι λίγες. Στο τεστ των Shapiro Wilk το p=0,487 > 0,05 επομένως δεν μπορούμε να απορρίψουμε ότι τα τυποποιημένα κατάλοιπα προέρχονται από την κανονική κατανομή. Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 24

25 Ανάλυση καταλοίπων 3.2. Ανεξαρτησία σφαλμάτων Η ανεξαρτησία των καταλοίπων δεν είναι εύκολα ελεγχόμενη. Από τους ελέγχους για την ανεξαρτησία των καταλοίπων θα εξετάσουμε τους παρακάτω: Έλεγχος τυχαιότητας (RUNS TEST) Έλεγχος για αυτοσυσχετίσεις χρησιμοποιώντας τον δείκτη Durbin Watson. Η τιμή του δείκτη κυμαίνεται από 0 έως 4 (0<D<4 Όταν η τιμή του είναι μικρότερη του 2 τότε έχουμε θετική αυτοσυσχέτιση Όταν η τιμή του είναι μεταξύ του 2 και του 4 τότε έχουμε αρνητική αυτοσυσχέτιση Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 25

26 Ανάλυση καταλοίπων 3.2. Ανεξαρτησία σφαλμάτων - Έλεγχος τυχαιότητας (RUNS TEST) Για τον έλεγχο της τυχαιότητας των σφαλμάτων εκτελούμε και ένα τεστ ροών. Από το μενού Analyze non - parametric tests runs. Σαν μεταβλητή επιλέγουμε την standardized residuals Runs Test Με βάση το παραπάνω τεστ το οποίο εμφανίζεται στο διπλανό πίνακα κα έχει p-value = 0,094> 0,05 οπότε δεν μπορούμε να απορρίψουμε την μηδενική υπόθεση δηλαδή ότι κατάλοιπα είναι τυχαία. Standardized Residual Test Value a,16337 Cases < Test Value 5 Cases >= Test Value 5 Total Cases 10 Number of Runs 3 Z -1,677 Asymp. Sig. (2-tailed),094 Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) a. Median Διαφάνεια 26

27 Ανάλυση καταλοίπων 3.2. Ανεξαρτησία σφαλμάτων Δείκτης Durbin Watson Για να εμφανιστεί ο δείκτης Durbin Watson στα αποτελέσματα της ανάλυσης μας κατά την εκτέλεση της παλινδρόμησης επιλέγουμε την επιλογή statistics και από το παράθυρο διαλόγου που εμφανίζεται επιλέγουμε Durbin Watson. Ο δείκτης εμφανίζεται στον πίνακα model summary Η τιμή του δείκτη Durbin Watson όπως φαίνεται στον διπλανό πίνακα είναι 0,753 - επικίνδυνα μικρή η οποία προδίδει μια θετική αυτοσυσχέτιση Model Summary b Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 1,949 a,900,888,48002,753 a. Predictors: (Constant), apostasi b. Dependent Variable: imeres Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 27

28 Ανάλυση καταλοίπων 3.3. Ομοσκεδαστικότητα σφαλμάτων Ελέγχουμε αν υπάρχει σχέση μεταξύ των προσαρμοσμένων Υi και των τυποποιημένων καταλοίπων καθώς και αν υπάρχει σχέση μεταξύ των Xi και των τυποποιημένων καταλοίπων Για την εκτέλεση των παραπάνω ελέγχων κατασκευάζουμε τα γραφήματα (scatterplot) των σημείων predicted, studentized residuals και Xi, studentized residuals Οι παρατηρήσεις φαίνεται ότι βρίσκονται τυχαία στο επίπεδο πράγμα που υποδηλώνει ότι δεν πρέπει να υπάρχει κάποια σχέση μεταξύ των μεταβλητών (εξάλλου με τόσες λίγες παρατηρήσεις δεν είναι εύκολο να ανακαλύψουμε κάτι τέτοιο). Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 28

29 Ανάλυση καταλοίπων 3.4. Έλεγχος έκτροπων και ασυνήθιστων τιμών Studentized residuals Centered leverage values 0, , , , , , , , , , , , , , , , , , , , Το διάγραμμα Χi, Yi που υπολογίσαμε στην αρχή της ανάλυσης μας υποδεικνύει ότι δεν υπάρχουν περίεργες παρατηρήσεις (outliers) Παρατηρούμε ότι δεν υπάρχουν έκτροπες ή ασυνήθιστες παρατηρήσεις επειδή οι τιμές των studentized residuals είναι κατά απόλυτη τιμή μικρότερες του 2 (καλό θα είναι να ελέγξουμε την Πέμπτη παρατήρηση) Για να εξετάσουμε αν υπάρχουν παρατηρήσεις που έχουν μεγάλη «επιρροή» στο μοντέλο ελέγχουμε ποιες έχουν centered leverage > 5/n = 5/10 = 0,5. Βλέπουμε ότι καμία παρατήρηση δεν έχει από μόνη της μεγάλη επιρροή στο μοντέλο (τέτοιες παρατηρήσεις πρέπει να λαμβάνονται με προσοχή). Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 29

30 Προκαταρκτικά (Διαγραμματική απεικόνιση) Από n = 12 γυναίκες λαμβάνουμε τις ακόλουθες τιμές της πίεσης του αίματος και της αντίστοιχης ηλικίας σε έτη: Ηλικία Πίεση Λύση Αρχικά εισάγουμε τα δεδομένα στο SPSS σε δύο μεταβλητές (στήλες) Χ, Υ και λαμβάνουμε το διάγραμμα διασποράς (Graphs/scatter/simple/Y axis:y, X axis:x) για να πάρουμε μια αρχική εικόνα για τη σχέση μεταξύ των μεταβλητών Ερμηνεία Από το διάγραμμα φαίνεται να υπάρχει γραμμική σχέση μεταξύ των δυο μεταβλητών και επομένως η εφαρμογή του μοντέλου Υi = b0 + b1xi + εi, i = 1, 2,, n, είναι φυσιολογική Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 30

31 Προκαταρκτικά (Έλεγχος Κανονικότητας) Χρησιμοποιώντας την εντολή Explore ελέγχουμε ως προς την κανονική κατανομή τις μεταβλητές Τα διπλανά διαγράμματα δίνουν ενδείξεις οι οποίες δεν απορρίπτουν την περίπτωση της κανονικής κατανομής των δύο μεταβλητών υπό εξέταση Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 31

32 Προκαταρκτικά (Έλεγχος Κανονικότητας) Τις πιο χρήσιμες πληροφορίες ως προς την κανονικότητας των μεταβλητών τις παίρνουμε με το διάγραμμα των δύο μεταβλητών υπό εξέταση και φυσικά το τεστ των Kolmogorov Smirnov (μεγάλο δείγμα) ή των Shapiro Wilk (μικρό δείγμα) Tests of Normality Kolmogorov-Smirnov a Shapiro-Wilk Statistic df Sig. Statistic df Sig. ilikia,141 12,200 *,955 12,712 piesi,205 12,176,908 12,203 a. Lilliefors Significance Correction *. This is a lower bound of the true significance. Όπως φαίνεται στον παραπάνω πίνακα τα αντίστοιχα p values των μεταβλητών υπό εξέταση στα δύο τεστ είναι μεγαλύτερα του 0,05 και κατά συνέπεια δεν μπορούμε να απορρίψουμε την μηδενική υπόθεση. Δηλαδή δεν απορρίπτουμε για καμία από τις δύο μεταβλητές την υπόθεση ότι ακολουθούν την κανονική κατανομή. Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 32

33 Προκαταρκτικά (Συντελεστές συσχέτισης) Από το μενού Analyze Correlate Bivariate ελέγχουμε τους συντελεστές συσχέτισης ilikia piesi Correlations Pearson Correlation ilikia piesi 1,000,896 ** Sig. (2-tailed),000 N Pearson Correlation Sig. (2-tailed),000,896** 1,000 N Spearman's rho Correlations ilikia piesi Correlation Coefficient 1,000,932** ilikia Sig. (2-tailed).,000 N Correlation Coefficient,932** 1,000 piesi Sig. (2-tailed),000 N **. Correlation is significant at the 0.01 level (2-tailed). **. Correlation is significant at the 0.01 level (2-tailed). Όπως φαίνεται από τα αποτελέσματα των παραπάνω πινάκων οι οποίοι εξετάζουν την ύπαρξη συσχέτισης μεταξύ της ηλικίας και της πίεσης με παραμετρικό και μη παραμετρικό τρόπο μπορούμε να απορρίψουμε την μηδενική υπόθεση (Η 0 :ρ=0) δηλαδή ότι δεν υπάρχει συσχέτιση μεταξύ των μεταβλητών, επειδή οι αντίστοιχες τιμές των p-values είναι μικρότερες του 0,05. Επίσης η υψηλή θετική τιμή του συντελεστή συσχέτισης προδίδει μια ισχυρή θετική γραμμική σχέση μεταξύ της ηλικίας και της πίεσης δηλαδή όσο αυξάνεται η ηλικία αυξάνεται και η πίεση. Η πσοτικοποίηση αυτής της μεταβολής θα εξεταστεί με την γραμμική παλινδρόμηση Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 33

34 Το μοντέλο (δείκτες συσχέτισης) Model Summary b Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 1,896 a,803,783 7, ,934 a. Predictors: (Constant), ilikia b. Dependent Variable: piesi Όπως βλέπουμε από τον πίνακα model summary ο συντελεστής γραμμικής συσχέτισης του Pearson είναι 0,896 και επιβεβαιώνει την ισχυρή θετική συσχέτιση της ηλικίας με την πίεση. Επίσης παρατηρούμε ότι η ηλικία μπορεί να ερμηνεύσει το 80,30% (R 2 =0.803) της μεταβλητότητας της πίεσης. Το υπόλοιπο 17% οφείλεται σε άλλους παράγοντες οι οποίοι δεν εξετάζονται στην άσκηση. Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 34

35 Το μοντέλο (Έλεγχος Υποθέσεων) Model Sum of Squares ANOVA b Η τιμή p value του αντίστοιχου F test είναι μικρότερη του 0,05 επομένως απορρίπτουμε την μηδενική υπόθεση (Η 0 : β 1 =0) και καταλήγουμε στο συμπέρασμα ότι η ηλικία επιδρά με στατιστικά σημαντικό τρόπο στην διαμόρφωση της πίεσης. df Mean Square F Sig. 1 Regression 2008, ,200 40,778,000 a Residual 492, ,247 Total 2500, a. Predictors: (Constant), ilikia b. Dependent Variable: piesi Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 35

36 Το μοντέλο (Ερμηνεία) Coefficients a Unstandardized Coefficients Standardized Coefficients 95% Confidence Interval for B Model B Std. Error Beta t Sig. Lower Bound Upper Bound 1 (Constant) 80,778 9,544 8,464,000 59, ,043 ilikia 1,138,178,896 6,386,000,741 1,535 a. Dependent Variable: piesi Όπως φαίνεται από τον παραπάνω πίνακα, οι αντίστοιχες τιμές των p-value για τον συντελεστή εξάρτησης καθώς και για την σταθερά είναι σχεδόν 0 επομένως απορρίπτουμε τις αντίστοιχες μηδενικές υποθέσεις (ότι b 1 = 0, b 0 = 0) και καταλήγουμε στο συμπέρασμα ότι ο συντελεστής εξάρτησης και η σταθερά επιδρούν με στατιστικά σημαντικό τρόπο στην διαμόρφωση της ανεξάρτητης μεταβλητής και επομένως έχουν θέση στο μοντέλο. Σαν ερμηνεία μπορούμε να πούμε ότι για κάθε έτος μεταβολής στην ηλικία ενός ατόμου έχουμε αντίστοιχη μεταβολή κατά 1,138 στην πίεση του. Όμως στην ερμηνεία της σταθεράς (b 0 ) δεν είναι λογικό να πούμε ότι για ηλικία 0 έχουμε πίεση 80, επομένως πρέπει να κάνουμε στάθμιση αφαιρώντας από την ηλικία του δείγματος τον μέσο όρο. Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 36

37 Το μοντέλο (Ερμηνεία) Coefficients a Standardized Unstandardized Coefficients Coefficients 95% Confidence Interval for B Model B Std. Error Beta t Sig. Lower Bound Upper Bound 1 (Constant) 139,954 2,027 69,056, , ,470 ilikia1 1,138,178,896 6,386,000,741 1,535 a. Dependent Variable: piesi Όπως φαίνεται από τον παραπάνω πίνακα, οι σημειακές εκτιμήσεις των b 0, b 1 είναι 139,95 και 1,138 αντίστοιχα, ενώ τα αντίστοιχα δ.ε. είναι (135,43, 144,470) και (0,741, 1,535). Επομένως μπορούμε να πούμε ότι για άτομα 53 ετών (μέσος ηλικίας του δείγματος) αναμένεται 139,954 πίεση και για κάθε έτος μεταβολής από τον μέσο όρο αναμένεται αντίστοιχη μεταβολή κατά 1,13 βαθμούς στην πίεση τους Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 37

38 Ορθότητα Μοντέλου (Κανονικότητα σφαλμάτων) Από το μενού Analyze Descriptive Statistics Explore ελέγχουμε την κανονικότητα της κατανομής των καταλοίπων Tests of Normality Kolmogorov-Smirnov a Shapiro-Wilk Statistic df Sig. Statistic df Sig. Studentized Residual,251 12,036,918 12,271 a. Lilliefors Significance Correction Το ιστόγραμμα και τα γραφικά των studentized residuals μας δίνουν ενδείξεις ότι τα κατάλοιπα κατανέμονται κανονικά. Το τεστ για την κανονικότητα των Kolmogorov Smirnov έχει τιμή μικρότερη του 0,05 την οποία όμως αγνοούμε επειδή το δείγμα είναι πολύ μικρό και λαμβάνουμε υπόψη το τεστ των Shapiro Wilk το οποίο παίρνει τιμή μεγαλύτερη του 0,05 και επομένως δεν μπορούμε να απορρίψουμε την υπόθεση ότι τα κατάλοιπα ακολουθούν την κανονική κατανομή. Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 38

39 Ορθότητα Μοντέλου (Ανεξαρτησία σφαλμάτων) Από το μενού Analyze non - parametric tests εκτελούμε ένα τεστ ροών για τον έλεγχο της τυχαιότητας των σφαλμάτων. Σαν μεταβλητή επιλέγουμε την Studentized residuals. Με βάση το παραπάνω τεστ το οποίο εμφανίζεται στο διπλανό πίνακα κα έχει p-value = 0,762 δεν μπορούμε να απορρίψουμε ότι τα κατάλοιπα είναι τυχαία. Runs Test Studentized Residual Test Value a -,50613 Cases < Test Value 6 Cases >= Test Value 6 Total Cases 12 Number of Runs 6 Z -,303 Asymp. Sig. (2-tailed),762 a. Median Από το πίνακα Model Summary παρατηρούμε επίσης ότι ο δείκτης Durbin Watson είναι κοντά στο δύο επομένως δεν έχουμε προβλήματα αυτοσυσχέτισης. Model Summary b Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 1,896 a,803,783 7, ,934 a. Predictors: (Constant), ilikia b. Dependent Variable: piesi Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 39

40 Ορθότητα Μοντέλου (Ομοσκεδαστικότητα σφαλμάτων) Για την εκτέλεση του ελέγχου κατασκευάζουμε τα γραφήματα (scatterplot) των σημείων predicted, studentized residuals και Xi, studentized residuals Οι παρατηρήσεις φαίνεται ότι βρίσκονται τυχαία στο επίπεδο πράγμα που υποδηλώνει ότι δεν πρέπει να υπάρχει κάποια σχέση μεταξύ των μεταβλητών (εξάλλου με τόσες λίγες παρατηρήσεις δεν είναι εύκολο να ανακαλύψουμε κάτι τέτοιο). Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 40

41 Ορθότητα Μοντέλου (Ακραίες τιμές) Studentized residuals Centered leverage values -0, , , , , , , , , , ,2641 0, , , , , , ,0379-0, , , , , ,24943 Το διάγραμμα Χi, Yi που υπολογίσαμε στην αρχή της ανάλυσης μας υποδεικνύει ότι δεν υπάρχουν περίεργες παρατηρήσεις (outliers) Επίσης παρατηρούμε ότι δεν υπάρχουν έκτροπες ή ασυνήθιστες παρατηρήσεις (όλα τα studentized residuals είναι κατά απόλυτη τιμή μικρότερα του 2). Για να εξετάσουμε αν υπάρχουν παρατηρήσεις που έχουν μεγάλη «επιρροή» στο μοντέλο ελέγχουμε ποιες έχουν centered leverage > 5/n = 5/12 = 0,416. Βλέπουμε ότι καμία παρατήρηση δεν έχει από μόνη της μεγάλη επιρροή στο μοντέλο (τέτοιες παρατηρήσεις πρέπει να λαμβάνονται με προσοχή). Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 41

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Πολλαπλή Παλινδρόμηση Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία. . ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική

Διαβάστε περισσότερα

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις: Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y 7 50 6 7 6 6 96 7 0 5 55 9 5 59 6 8 8 5 0 59 7 7 8 8 5 5 0 7 69 9 6 6 7 6 9 5 7 6 8 5 6 69 8 0 50 66 0 0 50 8 59 76 8 7 60 7 87 6 5 7 88 9 8 50 0 5

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα: ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, 6-5-0 Άσκηση 8. Δίνονται οι παρακάτω 0 παρατηρήσεις (πίνακας Α) με βάση τις οποίες θέλουμε να δημιουργήσουμε ένα γραμμικό μοντέλο για την πρόβλεψη της Υ μέσω των ανεξάρτητων μεταβλητών

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης

Διαβάστε περισσότερα

Λυμένες Ασκήσεις για το μάθημα:

Λυμένες Ασκήσεις για το μάθημα: Λυμένες Ασκήσεις για το μάθημα: ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΚΩΝΣΤΑΝΤΙΝΟΣ ΖΑΦΕΙΡΟΠΟΥΛΟΣ Τμήμα: ΔΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΣΠΟΥΔΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑ ΑΥΤΟΣΥΣΧΕΤΙΣΤΩΝ ΣΦΑΛΜΑΤΩΝ

ΠΡΟΒΛΗΜΑ ΑΥΤΟΣΥΣΧΕΤΙΣΤΩΝ ΣΦΑΛΜΑΤΩΝ ΠΡΟΒΛΗΜΑ ΑΥΤΟΣΥΣΧΕΤΙΣΤΩΝ ΣΦΑΛΜΑΤΩΝ ΤΡΟΠΟΙ ΕΛΕΓΧΟΥ ΔΙΟΡΘΩΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΣΥΝΕΠΕΙΕΣ ΠΡΟΒΛΗΜΑΤΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ 1 ΤΡΟΠΟΙ ΕΛΕΓΧΟΥ Γραφική παράσταση των υπολοίπων (ή των μαθητικοποιημένων υπολοίπων) ως προς την

Διαβάστε περισσότερα

Ύλη 1 ης Εβδομάδας. Σχέσεις Μεταβλητών ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ. Σχέση μεταξύ Μεταβλητών Παραδείγματα. 2 η Διάλεξη

Ύλη 1 ης Εβδομάδας. Σχέσεις Μεταβλητών ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ. Σχέση μεταξύ Μεταβλητών Παραδείγματα. 2 η Διάλεξη ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ 2 η Διάλεξη Ελένη Κανδηλώρου (Αναπλ. Καθηγήτρια) Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Ύλη 1 ης Εβδομάδας Γραμμική Παλινδρόμηση-Έννοια Παλινδρόμισης 1. Σχέση μεταξύ μεταβλητών

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ,

ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, -- Άσκηση. Δίνονται τα παρακάτω δεδομένα 5 7 8 9 5 X 8 5 5 5 9 7 Y. 5.. 7..7.7.9.. 5.... 8.. α) Να γίνει το διάγραμμα διασποράς β) εξετάστε τα μοντέλα Υ = β + β Χ + ε, (linear),

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ Συχνά στην πράξη το μοντέλο της απλής γραμμικής παλινδρόμησης είναι ανεπαρκές για την περιγραφή της μεταβλητότητας που υπάρχει στην εξαρτημένη

Διαβάστε περισσότερα

Απλή Ευθύγραµµη Συµµεταβολή

Απλή Ευθύγραµµη Συµµεταβολή Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή

Διαβάστε περισσότερα

Άσκηση 2. i β. 1 ου έτους (Υ i )

Άσκηση 2. i β. 1 ου έτους (Υ i ) Άσκηση Ο επόμενος πίνακας δίνει τους βαθμούς φοιτητών (Χ i ) στις εισαγωγικές εξετάσεις ενός κολεγίου και τους αντίστοιχους βαθμούς τους (Υ i ) στο τέλος της πρώτης χρονιάς φοίτησης στο συγκεκριμένο κολέγιο.

Διαβάστε περισσότερα

Ασκήσεις Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη. Διοίκηση των Επιχειρήσεων

Ασκήσεις Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη. Διοίκηση των Επιχειρήσεων Ασκήσεις Εξετάσεων Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων ΑΣΚΗΣΗ 1: Έλεγχος για τη μέση τιμή ενός πληθυσμού Η αντικαπνιστική νομοθεσία υποχρεώνει τους καπνιστές που εργάζονται σε

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Άσκηση 1 η Ένας παραγωγός σταφυλιών ισχυρίζεται ότι τα κιβώτια σταφυλιών που συσκευάζει

Διαβάστε περισσότερα

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Περιεχόμενα 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Πολλαπλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 7 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Πολλαπλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 7 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 12β ΕΡΓΑΣΤΗΡΙΟ 4β ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ-ΠΕΜΠΤΟ ΘΕΩΡΙΑΣ- ΠΟΛΛΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Σηµειώσεις: Θωµόπουλος Γιώργος Ρογκάκος Γιώργος Καθηγητής: Κουνετάς

Διαβάστε περισσότερα

ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΟΣ ΣΧΟΛΗ ΔΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΕΚΠΟΝΗΣΗ : ΜΠΑΡΔΑΚΗ ΘΕΟΔΩΡΑ ΛΑΚΟΥΜΕΝΤΑ ΙΩΑΝΝΑ

Διαβάστε περισσότερα

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται Κεφάλαιο 10 Η Ανάλυση Παλινδρόμησης Η Ανάλυση Παλινδρόμησης Το στατιστικό κριτήριο που μας επιτρέπει να προβλέψουμε τις τιμές μιας μεταβλητής από τις τιμές μιας ή πολλών άλλων γνωστών μεταβλητών Η σχέση

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Επίλυση: Oneway Anova Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Μοντέλα Πολλαπλής Παλινδρόμησης

Μοντέλα Πολλαπλής Παλινδρόμησης Μοντέλα Πολλαπλής Παλινδρόμησης Πέτρος Ρούσσος Πρόγραμμα Ψυχολογίας, ΦΠΨ, ΕΚΠΑ ΕΙΣΑΓΩΓΙΚΑ 1 Ορολογία Προβλεπτικές μεταβλητές ή παράγοντες (predictors) Μεταβλητή κριτήριο (criterion) Απλή και πολλαπλή παλινδρόμηση

Διαβάστε περισσότερα

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Viola adorata Σκηνή Πρώτη Ερωτήσεις Σωστού-Λάθους (µέρος Ι). Ο µέσος όρος

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Γραμμική παλινδρόμηση Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ ΟΓΔΟΟ Γραμμική παλινδρόμηση Σε προηγούμενο κεφάλαιο είδαμε

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011 2012 ΕΠΙΧ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Εισαγωγή Οικονοµετρία (Econometrics) είναι ο τοµέας της Οικονοµικής επιστήµης που περιγράφει και αναλύει

Διαβάστε περισσότερα

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ. ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει

Διαβάστε περισσότερα

Άσκηση 1. Πληθυσμός (Χ i1 )

Άσκηση 1. Πληθυσμός (Χ i1 ) Άσκηση Μία αντιπροσωπεία πωλήσεως αυτοκινήτων διαθέτει καταστήματα σε 5 διαφορετικές πόλεις. Ο επόμενος πίνακας δίνει τις πωλήσεις Υ i του τελευταίου μήνα καθώς επίσης και τον πληθυσμό Χ i και το οικογενειακό

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 8 ο 8.1 Συντελεστές συσχέτισης: 8.1.1 Συσχέτιση Pearson, και ρ του Spearman 8.1.2 Υπολογισµός του συντελεστή

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΠΟΤΕ ΚΑΙ ΓΙΑΤΙ ΧΡΗΣΙΜΟΠΟΙΕΙΤΑΙ ΜΟΝΤΕΛΟ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΕΚΤΙΜΗΤΩΝ ΤΩΝ ΠΑΡΑΜΕΤΡΩΝ ΤΩΝ ΣΥΝΤΕΛΕΣΤΩΝ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΥΠΟΘΕΣΕΙΣ ΠΙΝΑΚΑΣ ΑΝΑ ΙΑ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΓΙΑ ΤΙΣ ΠΑΡΑΜΕΤΡΟΥΣ

Διαβάστε περισσότερα

Ελένη Κανδηλώρου Αναπλ. Καθηγήτρια. Γραμμικά Μοντέλα. Λύσεις Ασκήσεων

Ελένη Κανδηλώρου Αναπλ. Καθηγήτρια. Γραμμικά Μοντέλα. Λύσεις Ασκήσεων Ελένη Κανδηλώρου Αναπλ. Καθηγήτρια Αθήνα, 6-4-7 Γραμμικά Μοντέλα Λύσεις Ασκήσεων η Άσκηση: (α) Eίναι η σχέση μεταξύ των δύο μεταβλητών γραμμική; Διάγραμμα Διασποράς Για το Υψόμετρο & τις Αρνητικές Τιμές

Διαβάστε περισσότερα

Lampiran 1 Output SPSS MODEL I

Lampiran 1 Output SPSS MODEL I 67 Variables Entered/Removed(b) Lampiran 1 Output SPSS MODEL I Model Variables Entered Variables Removed Method 1 CFO, ACCOTHER, ACCPAID, ACCDEPAMOR,. Enter ACCREC, ACCINV(a) a All requested variables

Διαβάστε περισσότερα

Κεφάλαιο 3: Ανάλυση μιας μεταβλητής

Κεφάλαιο 3: Ανάλυση μιας μεταβλητής Κεφάλαιο 3: Ανάλυση μιας μεταβλητής Γενικά Στο Κεφάλαιο αυτό θα παρουσιάσουμε κάποιες μεθόδους της Περιγραφικής Στατιστικής και της Στατιστικής Συμπερασματολογίας που αφορούν στην ανάλυση μιας μεταβλητής.

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος

Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος ΤΜΜΑ ΕΠΙΧΕΙΡΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΜΑΤΩΝ Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος - Στο παρόν µάθηµα δίνεται µε κάποια απλά παραδείγµατα-ασκήσεις

Διαβάστε περισσότερα

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11 ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 34 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: 17 Οικονομετρικά Εργαστήριο 15/5/11 ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ 7 ΕΡΓΑΣΤΗΡΙΟ ΜΗ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ Σκοπός του παρόντος µαθήµατος είναι η

Διαβάστε περισσότερα

Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων. Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή

Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων. Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή Δεκέμβριος 2011 Στόχος Έρευνας H βιτρίνα των καταστημάτων αποτελεί

Διαβάστε περισσότερα

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 4ο Κατανομές Στατιστικών Συναρτήσεων Δείγμα από κανονική κατανομή Έστω Χ= Χ Χ Χ τ.δ. από Ν µσ τότε ( 1,,..., n) (, ) Τ Χ Χ Ν Τ Χ σ σ Χ Τ Χ n Χ S µ S µ 1( ) = (0,1), ( ) = ( n 1)

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Κωνσταντίνος Ζαφειρόπουλος Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΧΡΗΣΗ SPSS

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΧΡΗΣΗ SPSS ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΧΡΗΣΗ SPSS Πανεπιστήμιο Θεσσαλίας-Τμήμα Πολιτικών Μηχανικών Εργαστήριο Κυκλοφορίας, Μεταφορών και Διαχείρισης Εφοδιαστικής Αλυσίδας Αντικείμενα διάλεξης Σύντομη εισαγωγή

Διαβάστε περισσότερα

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:

Διαβάστε περισσότερα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα ΚΕΦΑΛΑΙΟ ΕΚΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Στο κεφάλαιο αυτό θα ασχοληθούμε με τον έλεγχο της υπόθεσης της ισότητα δύο μέσων τιμών με εξαρτημένα δείγματα. Εξαρτημένα

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΦΡΟΝΤΙ Α ΣΤΟ ΣΑΚΧΑΡΩ Η ΙΑΒΗΤΗ» 2 ο Μάθηµα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΦΡΟΝΤΙ Α ΣΤΟ ΣΑΚΧΑΡΩ Η ΙΑΒΗΤΗ» 2 ο Μάθηµα ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΦΡΟΝΤΙ Α ΣΤΟ ΣΑΚΧΑΡΩ Η ΙΑΒΗΤΗ» 2 ο Μάθηµα Γκριζιώτη Μαρία ΜSc Ιατρικής Ερευνητικής Μεθοδολογίας Όταν ανοίγουµε µία βάση στο SPSS η πρώτη εικόνα που

Διαβάστε περισσότερα

Ενότητα 3 η : Περιγραφική Στατιστική Ι. Πίνακες και Γραφικές παραστάσεις. Δημήτριος Σταμοβλάσης Φιλοσοφίας Παιδαγωγικής

Ενότητα 3 η : Περιγραφική Στατιστική Ι. Πίνακες και Γραφικές παραστάσεις. Δημήτριος Σταμοβλάσης Φιλοσοφίας Παιδαγωγικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στην Ανάλυση Ερευνητικών Δεδομένων στις Κοινωνικές Επιστήμες Με χρήση των λογισμικών IBM/SPSS και LISREL Ενότητα 3 η : Περιγραφική

Διαβάστε περισσότερα

Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων

Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων 1 Μονοπαραγοντική Ανάλυση Διακύμανσης Παραμετρικό στατιστικό κριτήριο για τη μελέτη της επίδρασης μιας ανεξάρτητης μεταβλητής στην εξαρτημένη Λογική

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4Β: Έλεγχοι Κανονικότητας Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες

Διαβάστε περισσότερα

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Σύνολα Δεδομένων - Είδη Ποσοτικής Έρευνας: Παράλογες Ιδέες Γονέων (Δειγματοληπτική)

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης

ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης ΜΑΘΗΜΑ 3ο Υποδείγματα μιας εξίσωσης Οι βασικές υποθέσεις 1. Ο διαταρακτικός όρος u t είναι μια τυχαία μεταβλητή με μέσο το μηδέν. Eu t = 0 για t = 1,2,3..n 2. Η διακύμανση της τυχαίας μεταβλητής u t είναι

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 6: Συσχέτιση και παλινδρόμηση εμπειρική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης

Διαβάστε περισσότερα

1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά

1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά 1. Ιστόγραμμα Δεδομένα από το αρχείο Data_for_SPSS.xls Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale Αλλαγή πάλι σε Data View. Graphs

Διαβάστε περισσότερα

ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ: ΑΣΚΗΣΕΙΣ

ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ: ΑΣΚΗΣΕΙΣ ΜΕΜ264: Εφαρμοσμένη Στατιστική 1 ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ: ΑΣΚΗΣΕΙΣ 1. Σε μελέτη της επίδρασης γεωργικών χημικών στην προσρόφηση ιζημάτων και εδάφους, δίνονται στον πιο κάτω πίνακα 13 δεδομένα για το δείκτη

Διαβάστε περισσότερα

Έλεγχος ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή. μεγέθους n από έναν πληθυσμό με μέση τιμή μ

Έλεγχος ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή. μεγέθους n από έναν πληθυσμό με μέση τιμή μ ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Έλεγχος ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή Έστω ένα τυχαίο δείγμα X,, 1 X n μεγέθους n από έναν πληθυσμό με μέση τιμή μ 2 και διακύμανση σ, άγνωστη.

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο ανεξάρτητων δειγμάτων, που διαχωρίζονται βάσει ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου και ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως προς δύο παράγοντες,

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Έλεγχος κανονικότητας P-P Plot και Q-Q Plot Τεστ Κανονικότητας Τεστ Κανονικότητας

Διαβάστε περισσότερα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος... v

Περιεχόμενα. Πρόλογος... v Περιεχόμενα Πρόλογος... v 1 Χρήση της έκδοσης 10 του SPSS για Windows και καταχώριση δεδομένων... 1 2 Περιγραφή μεταβλητών: πίνακες και γραφήματα... 19 3 Περιγραφή μεταβλητών αριθμητικά: μέσοι όροι, διακύμανση,

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ. Παιεάο Δπζηξάηηνο

ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ. Παιεάο Δπζηξάηηνο ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ Παιεάο Δπζηξάηηνο ΑΘΗΝΑ 2014 1 ΠΔΡΙΔΥΟΜΔΝΑ 1) Δηζαγσγή 2) Πεξηγξαθηθή Αλάιπζε 3) ρέζεηο Μεηαβιεηώλ αλά 2 4) Πξνβιεπηηθά / Δξκελεπηηθά Μνληέια

Διαβάστε περισσότερα

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ 6.1 Εισαγωγή Σε πολλές στατιστικές εφαρµογές συναντάται το πρόβληµα της µελέτης της σχέσης δυο ή περισσότερων τυχαίων µεταβλητών. Η σχέση

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο εξαρτημένων δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως

Διαβάστε περισσότερα

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 6. Συσχέτιση

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 6. Συσχέτιση ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 6. Συσχέτιση Γενικά Υπάρχει σχέση ανάµεσα σε δύο (ή περισσότερες) µεταβλητές; Αν υπάρχει σχέση ποια η φύση της σχέσης αυτής; Συσχέτιση: µέτρο σχέσης ανάµεσα σε µεταβλητές Θετικά συσχετισµένες

Διαβάστε περισσότερα

Εισαγωγή στην ανάλυση μεταβλητών με το IBM SPSS Statistics

Εισαγωγή στην ανάλυση μεταβλητών με το IBM SPSS Statistics Εισαγωγή στην ανάλυση μεταβλητών με το IBM SPSS Statistics Στόχοι του κεφαλαίου Εξοικείωση με το περιβάλλον του SPSS Εξοικείωση με τις διαδικασίες περιγραφικής ανάλυσης μιας μεταβλητής Εξοικείωση με τη

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Αναλυτική Στατιστική

Αναλυτική Στατιστική Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής

Διαβάστε περισσότερα

8. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Ι

8. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Ι 8. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Ι Απλή γραμμική παλινδρόμηση είναι μία στατιστική μέθοδος που χρησιμοποιείται για τη μελέτη της σχέσης μεταξύ δύο ποσοτικών μεταβλητών εκ των οποίων μία είναι η ανεξάρτητη

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ ΕΚΤΟ

Διαβάστε περισσότερα

Περιγραφική Ανάλυση ποσοτικών μεταβλητών

Περιγραφική Ανάλυση ποσοτικών μεταβλητών Περιγραφική Ανάλυση ποσοτικών μεταβλητών Στο data file Worldsales.sav (αρχείο υποθετικών πωλήσεων ανά ήπειρο και προϊόν) Analyze Descriptive Statistics Frequencies Επιλογή μεταβλητής Revenue Πατάμε στο

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ 1 Παλινδρόµηση Έλεγχοι Υποθέσεων ΙI ΕΠΙΜΕΛΕΙΑ ΣΗΜEΙΩΣΕΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ ΗΜΗΤΡΙΟΥ ΒΑΣΙΛΕΙΟΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΕΝΟΤΗΤΕΣ 1. ΓΕΝΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ 3. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΗΣ ΠΡΟΟΔΕΥΤΙΚΗΣ ΠΡΟΣΘΗΚΗΣ

Διαβάστε περισσότερα

UNIVERSITY OF THESSALY FACULTY OF ENGINEERING DEPARTMENT OF PLANNINGAND REGIONAL DEVELOPMENT MASTER «EUROPEAN REGIONAL DEVELOPMENT STUDIES»

UNIVERSITY OF THESSALY FACULTY OF ENGINEERING DEPARTMENT OF PLANNINGAND REGIONAL DEVELOPMENT MASTER «EUROPEAN REGIONAL DEVELOPMENT STUDIES» UNIVERSITY OF THESSALY FACULTY OF ENGINEERING DEPARTMENT OF PLANNINGAND REGIONAL DEVELOPMENT MASTER «EUROPEAN REGIONAL DEVELOPMENT STUDIES» METHODS OF SPATIAL ECONOMIC ANALYSIS LECTURE 11 Δρ. Μαρί-Νοέλ

Διαβάστε περισσότερα

Εισαγωγή στη Βιοστατιστική

Εισαγωγή στη Βιοστατιστική Εισαγωγή στη Βιοστατιστική Π.Μ.Σ.: Έρευνα στη Γυναικεία Αναπαραγωγή Οκτώβριος Νοέμβριος 2017 Αλέξανδρος Γρυπάρης, PhD Αλέξανδρος Γρυπάρης, PhD 3 Περιεχόμενα Ορισμός της Στατιστικής Περιγραφική στατιστική

Διαβάστε περισσότερα

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα)

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα) Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα) Όπως αναφέρθηκε στο προηγούμενο κεφάλαιο σε ορισμένες

Διαβάστε περισσότερα

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια

Διαβάστε περισσότερα

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Μοντέλα Παλινδρόμησης Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εισαγωγή (1) Σε αρκετές περιπτώσεις επίλυσης προβλημάτων ενδιαφέρει η ταυτόχρονη μελέτη δύο ή περισσότερων μεταβλητών, για να προσδιορίσουμε με ποιο

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο δειγμάτων, που διαχωρίζονται βάσει δύο ανεξάρτητων παραγόντων (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς περισσότερους

Διαβάστε περισσότερα

PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI

PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI 155 Lampiran 6 Yayan Sumaryana, 2014 PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI Universitas Pendidikan Indonesia

Διαβάστε περισσότερα

1. Hasil Pengukuran Kadar TNF-α. DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm

1. Hasil Pengukuran Kadar TNF-α. DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm HASIL PENELITIAN 1. Hasil Pengukuran Kadar TNF-α DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm NO KADAR ( pg/ml) ABSORBANSI 1. 0 0.055 2. 15.6 0.207 3. 31.5 0.368 4. 62.5 0.624

Διαβάστε περισσότερα

Συνάφεια μεταξύ ποιοτικών μεταβλητών. Εκδ. #3,

Συνάφεια μεταξύ ποιοτικών μεταβλητών. Εκδ. #3, Συνάφεια μεταξύ ποιοτικών μεταβλητών Εκδ. #3, 19.03.2016 Ο έλεγχος ανεξαρτησίας χ 2 Ο έλεγχος ανεξαρτησίας χ 2 εφαρμόζεται για να εξετάσουμε τη συνάφεια μεταξύ δύο ποιοτικών μεταβλητών με την έννοια της

Διαβάστε περισσότερα

519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008

519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008 .. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.

Διαβάστε περισσότερα

Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο

Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο Πολλαπλή παλινδρόµηση Μάθηµα 3 ο Πολλαπλή παλινδρόµηση (Multivariate regression ) Η συµπεριφορά των περισσότερων οικονοµικών µεταβλητών είναι συνάρτηση όχι µιας αλλά πολλών µεταβλητών Y = f ( X, X 2, X

Διαβάστε περισσότερα